WO1990000579A1 - Stripping composition using n-cyclohexyl-2-pyrrolidone - Google Patents
Stripping composition using n-cyclohexyl-2-pyrrolidone Download PDFInfo
- Publication number
- WO1990000579A1 WO1990000579A1 PCT/US1989/003037 US8903037W WO9000579A1 WO 1990000579 A1 WO1990000579 A1 WO 1990000579A1 US 8903037 W US8903037 W US 8903037W WO 9000579 A1 WO9000579 A1 WO 9000579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- percent
- unexposed
- contacting
- weight
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 71
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 21
- -1 amine compound Chemical class 0.000 claims abstract description 15
- 229920002120 photoresistant polymer Polymers 0.000 claims description 46
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- 150000001412 amines Chemical class 0.000 claims description 9
- 239000002798 polar solvent Substances 0.000 claims description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 6
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 6
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 claims description 5
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 5
- BJAARRARQJZURR-UHFFFAOYSA-N trimethylazanium;hydroxide Chemical compound O.CN(C)C BJAARRARQJZURR-UHFFFAOYSA-N 0.000 claims description 5
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims 4
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 239000003960 organic solvent Substances 0.000 abstract description 5
- 235000012431 wafers Nutrition 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 239000003495 polar organic solvent Substances 0.000 description 2
- KGWYICAEPBCRBL-UHFFFAOYSA-N 1h-indene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)C=CC2=C1 KGWYICAEPBCRBL-UHFFFAOYSA-N 0.000 description 1
- 229910016570 AlCu Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- APVPOHHVBBYQAV-UHFFFAOYSA-N n-(4-aminophenyl)sulfonyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 APVPOHHVBBYQAV-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D9/00—Chemical paint or ink removers
- C09D9/005—Chemical paint or ink removers containing organic solvents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
Definitions
- This invention relates to an improved stripping composition for the removal of deep-uv, ion implanted, high temperature baked (above 1603C), and other harshly treated positive photoresists or other polymeric layers. More specifically, it relates to (a) a stripping composition comprising N-cyclohexyl-2-pyrrolidone and (b) removal of deep-uv, ion implanted, high temperature baked, and similar difficult to remove positive photoresists or polymeric layers without causing damage to the underlying substrates or metallic layers with such a composition.
- a stripper including (a) 2-pyrrolidone or its 1 to 3 carbon N-alkyl or N-hydroxyalkyl derivatives and (b) a dialkyl sulfone compound.
- Johnson U.S. Patent No. 4,592,787, discloses a stripper which comprises a lower alkyl monoether of a propylene glycol (or a mixture of such monoethers) , a 2 to 6 carbon
- a deep- uv treatment i ⁇ typically used to stabilize and improve definition of photoresist prior to plasma etching of aluminum or aluminum alloys.
- a typical deep-uv process includes deep-uv exposure, followed by hard bake of the photoresist at 160-2203C prior to etching in a plasma or reactive ion etch system.
- Ion implantation is also widely used in the manufacturing of integrated circuits to change the conductivity of the semiconductor material.
- examples of such ion dopants include phosphorus, boron, arsenic, and antimony.
- a photoresist process i ⁇ typically used prior to ion implantation to restrict ionic species from being implanted into unwanted regions of substrates.
- a - positive photoresist stripper in accordance with this invention has N-cyclohexyl-2-pyrrolidone (CHP) as " its primary active ingredient.
- the CHP stripping solutions of this invention are able to remove deep-uv cured, high temperature baked, ion implanted,
- photoresists are based on the use of a novolac matrix resin and, typically, a diazoquinone photoactive compound or sensitizer.
- Novolac resins are soluble in common organic solvents and also in aqueous base solutions by virtue of the acidic characteristic of their phenolic functionality.
- the diazoquinone derivatives are soluble in common organic solvents but are insoluble in aqueous bases. Upon exposure to light, these photoresists undergo a series of reactions that culminate in the formation of an indene carboxylic acid.
- the photoproduct unlike its precursor, i ⁇ extremely soluble in aqueous bases by virtue of its carboxylic acid functionality.
- organometallic compounds will react with transition and nontransition metals to form organometallic compounds.
- transition and nontransition metals will react with transition and nontransition metals to form organometallic compounds.
- organometallic compounds During deep-uv treatment with subsequent plasma or reactive ion etching of metal or ion implantation these organometallic compounds occur due to the heavy metals present during the ⁇ e proces ⁇ steps.
- These organometallic compounds have different solubility properties, which make them difficult to remove in commonly used solvents, and
- SUBSTITUTESHEET they are also impervious to strong oxidizing agents, such as sulf ric acid.
- the present proces ⁇ preferably uses a combination of CHP solvent, an alkaline solvent, and a polar solvent to remove the organometallic resist by dissolution or lift off.
- the stripping composition of this invention comprises from about 5 to 100 percent by weight, preferably from about 5 to about 60 percent by weight, and most preferably from about 15 to 25 percent by weight of N-cyclohexyl-2-pyrrolidone (CHP) :
- N-cyclohexyl-2- pyrrolidone compounds with alkyl, hydroxy, and hydroxyalkyl substituents on the cyclohexyl group will also have the stripping properties of N-cyclohexyl-2- pyrrolidone disclosed herein.
- the preferred composition includes a polar or non- polar organic solvent.
- polar organic solvent e.g., benzyl ether
- SUBST ITUTESHEET solvents include N-methyl-2-pyrrolidone (NMP), ⁇ - butylac-tone, diethylene glycol n-butyl ether, propylene glycol ether acetal, dimethyl formamide, and the like.
- the most preferred polar organic solvents are NMP and ⁇ butylactone.
- Suitable nonpolar organic solvents ' ' include aliphatic and aromatic hydrocarbons, preferably aromatic hydrocarbons.
- the organic solvents are used in the composition from about 0 percent to about 95 percent by weight, are preferably used from about 20 to about 70 percent by weight, and most preferably used from about 30 to 50 percent by weight.
- the solvents may be used singly or a ⁇ a mixture. High boiling point solvents should be used, due to the elevated temperatures employed in the proces ⁇ .
- the preferred composition also uses an alkaline solvent, such as the following alkaline amines: monoethanolamine, triethanolamine, diglycolamine (marketed by Texaco), trimethyl-ammonium hydroxide, and the like.
- alkaline amines are triethanolamine and digycolamine. These alkaline amines are preferably used in the composition from about 20 to about 70 percent by weight, and most preferably used from about 30 to 50 percent by weight. The amines may be used singly or as a mixture.
- composition of this invention is suitable for use with all commonly employed positive photoresists used in the semiconductor industry.
- positive photoresists include KTI 820 and 825 resists, Shipley 1400 and 1500 resists, AZ 1300 resists, MacDermid 900 series resists, and Dyna-Chem 800 series resists.
- the method for stripping photoresi ⁇ t from a substrate in accordance with the invention comprises contacting the positive photore ⁇ i ⁇ t with the CHP composition at a temperature and for a time sufficient to remove the photoresi ⁇ t, typically at a temperature of about 70-1303C for a time of about 1 minute to 75 minutes.
- Stripper formulas used 1. 20% N-methyl-2-pyrrolidone (NMP)/20% monoethanolamine/ 60% diethylene glycol n-butyl ether. 2. 100% NMP. 3. 50% NMP/50% digycolamine. 4. 20% N-cyclohexyl-2-pyrrolidone (CHP)/5% butylactone/ ⁇ 35% NMP/40% digycolamine.
- Set 1 Wafers 1. Wafers with Si0 2 deposited with Ti/SiAl/TiN. 2. Coated with positive photoresist and patterned. 3. Deep-uv treated, then baked at 1603C. 4. Reactive ion etched using a chlorinated gas.
- Set 2 Wafers 1. Processed same as in Set 1 but baked at 2003C.
- Sets 3 and 4 Wafers 1. Wafers with Si ⁇ 2 deposited with TiW/AlCu. 2. Coated with positive photoresist and patterned. 3. Baked at 1803C for 30 minutes. 4a.
- Set 3 Wafers processed using chlorinated plasma etch process followed by a fluorinated treatment.
- Stripper Formula 1 is not suitable for the removal of difficult to remove positive photoresi ⁇ t ⁇ ; (2) Stripper Formula 2 did not accomplish total dissolution of photoresist until a temperature greater than 1203C was used. This formula is unsuitable because it has to be used 103 higher than its flash point for ⁇ ucces ⁇ ful results; (3) Stripper Formula 3 also had difficulty in removing the photoresist at temperatures lower than 1203C; (4) Stripper Formula 4 removed the photoresist using a temperature 15 to 203 lower than the other strippers used (i.e. at " 100 to 1153C), and below the products' flash point (1203C). Scanning electron microscope analysis of the wafers verified these results.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
A stripping composition for removing resist materials or other polymeric layers from a substrate contains N-cyclohexyl-2-pyrrolidone. Either or both of an organic solvent and an alkaline amine compound may be added to the stripping composition.
Description
Specification "Stripping Composition Using N-Cyclohexyl-2-Pyrrolidone" BACKGROUND OF THE INVENTION Field of the Invention This invention relates to an improved stripping composition for the removal of deep-uv, ion implanted, high temperature baked (above 1603C), and other harshly treated positive photoresists or other polymeric layers. More specifically, it relates to (a) a stripping composition comprising N-cyclohexyl-2-pyrrolidone and (b) removal of deep-uv, ion implanted, high temperature baked, and similar difficult to remove positive photoresists or polymeric layers without causing damage to the underlying substrates or metallic layers with such a composition.
Description of the Prior Art Stripping compositions utilizing various amine compounds for the removal of positive photoresist from semiconductor wafers using the photoresist process to delineate a pattern on a wafer surface during the manufacturing of integrated circuits are known in the art. Sizensky, U.S. Patent No. 4,617,251, teaches a stripper comprised of an amine compound (such as monoethanolamine or triethanolamine) and an organic polar solvent (including alkyl lactams such as N--methyl- 2-pyrrolidone) . Ward et al., U.S. Patent No. 4,401,747, disclose a stripper including (a) 2-pyrrolidone or its 1 to 3 carbon N-alkyl or N-hydroxyalkyl derivatives and (b) a dialkyl sulfone compound. Johnson, U.S. Patent No. 4,592,787, discloses a stripper which comprises a lower alkyl monoether of a propylene glycol (or a mixture of such monoethers) , a 2 to 6 carbon
SUBSTITUTESHEET
alkanol, an alkanolamine, and a base. Bakoε et al. , U.S. Patent No. 4,276,186 teach a solder flux removing composition that includes N-methyl-2-pyrrolidone and an alkanolamine.
In the manufacturing of integrated circuits a deep- uv treatment iε typically used to stabilize and improve definition of photoresist prior to plasma etching of aluminum or aluminum alloys. For example, a typical deep-uv process includes deep-uv exposure, followed by hard bake of the photoresist at 160-2203C prior to etching in a plasma or reactive ion etch system.
Ion implantation is also widely used in the manufacturing of integrated circuits to change the conductivity of the semiconductor material. Examples of such ion dopants include phosphorus, boron, arsenic, and antimony. A photoresist process iε typically used prior to ion implantation to restrict ionic species from being implanted into unwanted regions of substrates.
As a result of such processes as deep-uv, high temperature baking, plasma etching, reactive ion etching, and ion implantation, the positive photoresist becomes extremely difficult to remove. Commercially available photoresist stripping solutions have not" proven to be suitable for removing such photoresists without the help of a plasma ash system. A common method used to remove the photoresist after these processes is: (A) Immersion of substrate into a commercially available photoresist stripper for 30-60 minutes; (B) Plasma ash for 1 hour; and (C) Repeat
SUBSTITUTESHEET
step A. This process is very time consuming and expensive for device manufactures.
OBJECTS OF THE INVENTION It is an object of this invention to provide a photoresist stripping solution which will completely and reliably remove polymeric materials, and in particular positive photoresist, that have been subjected to deep-uv curing, high temperature baking, ion implantation, and other processes that harshly treat the materials.
It is another object of the invention to provide such a stripping solution which is usable with commonly used commercially available positive photoresists.
It is still another object of the invention to eliminate or minimize the need to use oxygen plasma equipment and processes to remove deep-uv treated, high temperature baked, ion implanted positive photoresist and other hard to remove polymeric materials from substrates.
These and related objects may be achieved through the use of a novel stripping composition for stripping positive photoresist and other hard to remove polymeric coatings from substrates as herein disclosed. A - positive photoresist stripper in accordance with this invention has N-cyclohexyl-2-pyrrolidone (CHP) as" its primary active ingredient.
Because of its strong dissolving properties, the CHP stripping solutions of this invention are able to remove deep-uv cured, high temperature baked, ion implanted,
SUBSTITUTESHEET
and other harshly treated polymeric films used in semiconductor device manufacturing. At the same time, these solutions do not attack the substrates, aluminum, or metal alloys used to manufacture semiconductor devices.
The attainment of the foregoing and related objects, advantages and features of the invention should be more readily apparent to those skilled in the art, after review of the following more detailed description of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Positive photoresists are based on the use of a novolac matrix resin and, typically, a diazoquinone photoactive compound or sensitizer. Novolac resins are soluble in common organic solvents and also in aqueous base solutions by virtue of the acidic characteristic of their phenolic functionality. The diazoquinone derivatives are soluble in common organic solvents but are insoluble in aqueous bases. Upon exposure to light, these photoresists undergo a series of reactions that culminate in the formation of an indene carboxylic acid. The photoproduct, unlike its precursor, iε extremely soluble in aqueous bases by virtue of its carboxylic acid functionality. These substances will react with transition and nontransition metals to form organometallic compounds. During deep-uv treatment with subsequent plasma or reactive ion etching of metal or ion implantation these organometallic compounds occur due to the heavy metals present during theεe procesε steps. These organometallic compounds have different solubility properties, which make them difficult to remove in commonly used solvents, and
SUBSTITUTESHEET
they are also impervious to strong oxidizing agents, such as sulf ric acid. The present procesε preferably uses a combination of CHP solvent, an alkaline solvent, and a polar solvent to remove the organometallic resist by dissolution or lift off.
The stripping composition of this invention comprises from about 5 to 100 percent by weight, preferably from about 5 to about 60 percent by weight, and most preferably from about 15 to 25 percent by weight of N-cyclohexyl-2-pyrrolidone (CHP) :
Experimental testing demonstrated that the CHP was effective in the stripping composition in mixtures of from about 5 to 100 percent by weight. Improvement in performance was not found for mixtureε containing in excess of about 25 percent by weight of CHP.
Although verifying experiments have not been conducted, it is believed that N-cyclohexyl-2- pyrrolidone compounds with alkyl, hydroxy, and hydroxyalkyl substituents on the cyclohexyl group will also have the stripping properties of N-cyclohexyl-2- pyrrolidone disclosed herein.
The preferred composition includes a polar or non- polar organic solvent. Specific suitable polar organic
SUBSTITUTESHEET
solvents include N-methyl-2-pyrrolidone (NMP), ^- butylac-tone, diethylene glycol n-butyl ether, propylene glycol ether acetal, dimethyl formamide, and the like. The most preferred polar organic solvents are NMP and ^ butylactone. Suitable nonpolar organic solvents '' include aliphatic and aromatic hydrocarbons, preferably aromatic hydrocarbons. The organic solvents are used in the composition from about 0 percent to about 95 percent by weight, are preferably used from about 20 to about 70 percent by weight, and most preferably used from about 30 to 50 percent by weight. The solvents may be used singly or aε a mixture. High boiling point solvents should be used, due to the elevated temperatures employed in the procesε.
The preferred composition also uses an alkaline solvent, such as the following alkaline amines: monoethanolamine, triethanolamine, diglycolamine (marketed by Texaco), trimethyl-ammonium hydroxide, and the like. The most preferred alkaline amines are triethanolamine and digycolamine. These alkaline amines are preferably used in the composition from about 20 to about 70 percent by weight, and most preferably used from about 30 to 50 percent by weight. The amines may be used singly or as a mixture.
The composition of this invention is suitable for use with all commonly employed positive photoresists used in the semiconductor industry. Examples of such positive photoresists include KTI 820 and 825 resists, Shipley 1400 and 1500 resists, AZ 1300 resists, MacDermid 900 series resists, and Dyna-Chem 800 series resists.
SUBSTITUTESHEET
The method for stripping photoresiεt from a substrate in accordance with the invention comprises contacting the positive photoreεiεt with the CHP composition at a temperature and for a time sufficient to remove the photoresiεt, typically at a temperature of about 70-1303C for a time of about 1 minute to 75 minutes.
The effectiveness of the preferred embodiment of the invention is demonstrated by the following non-limiting examples: Stripper formulas used: 1. 20% N-methyl-2-pyrrolidone (NMP)/20% monoethanolamine/ 60% diethylene glycol n-butyl ether. 2. 100% NMP. 3. 50% NMP/50% digycolamine. 4. 20% N-cyclohexyl-2-pyrrolidone (CHP)/5% butylactone/^ 35% NMP/40% digycolamine. Set 1 Wafers 1. Wafers with Si02 deposited with Ti/SiAl/TiN. 2. Coated with positive photoresist and patterned. 3. Deep-uv treated, then baked at 1603C. 4. Reactive ion etched using a chlorinated gas. Set 2 Wafers 1. Processed same as in Set 1 but baked at 2003C. Sets 3 and 4 Wafers 1. Wafers with Siθ2 deposited with TiW/AlCu. 2. Coated with positive photoresist and patterned. 3. Baked at 1803C for 30 minutes. 4a. Set 3: Wafers processed using chlorinated plasma etch process followed by a fluorinated treatment. Set : Wafers ion implanted with As at 150 KeV, at a doping level of 5.0 x 1015.
SUBSTITUTE SHEET
Procesε: All wafers were processed through a single bath of each stripper formula, rinsed with deionized water, and manually dried with dry nitrogen gas.
SUBSTITUTESHEET
Results For Set 1
Stripper Temperature Bath Time Formula Q J (Minutes) Comments 2 90 15 No removal
30 Same.
45
130
120 15 Partial reεiεt diεεolution. 30 Complete resist dissolution.
90 15 No removal 30 Same. 45 Same.
100 15 Partial removal with undiεsolved resist in bath.
30 Same. 45 Same. -
110 15 Same as 1003. 30 Complete resist removal with undissolved resiεt in bath.
45 Same. 60 Complete resist dissolution.
SUBSTITUTESHEET
Results For Set 3
Stripper Temperature Bath Time
Formula (3C) (Minutes ) Comments 1 90 10 Incomplete strip with undissolved resist in bath.
100 10 Same.
110 10 Same.
(No further testing was completed using Stripper Formula 1 for Set 3 or Set 4)
90 10 Undisεolved resist in both.
130 10 Complete diεεolu¬ tion,
90 10 Undissolved resist in bath.
110
120 10 Partial dissolu¬ tion.
20 Complete dissolu¬ tion^
90 10 Undissolved resiεt in bath. "
20 Same. 30 Same . ■■
100 10 Partial dissolu¬ tion.
20 Same . 30 90% dissolution.
110 10 Complete dissolu¬ tion.
20 Same.
SUBSTITUTESHEET
SUBSTITUTE SHEET
The test results above show the following: (1) Stripper Formula 1 is not suitable for the removal of difficult to remove positive photoresiεtε; (2) Stripper Formula 2 did not accomplish total dissolution of photoresist until a temperature greater than 1203C was used. This formula is unsuitable because it has to be used 103 higher than its flash point for εuccesεful results; (3) Stripper Formula 3 also had difficulty in removing the photoresist at temperatures lower than 1203C; (4) Stripper Formula 4 removed the photoresist using a temperature 15 to 203 lower than the other strippers used (i.e. at" 100 to 1153C), and below the products' flash point (1203C). Scanning electron microscope analysis of the wafers verified these results.
Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It iε therefore intended that the following claims be interpreted as covering all such alterations and modif- ications as fall within the true spirit and scope of the invention.
SUBSTITUTESHEET
Claims
CLAIMS What iε claimed is: 1. A stripping composition comprising from about 5 to about 100 percent by weight of N-cyclohexyl-2- pyrrolidone.
2. A composition of claim 1 having from about 1 percent to about 95 by weight of an organic polar solvent or mixture thereof.
3. A composition of claim 2 comprising from about 5 to about 80 percent by weight of N-cyclohexyl-2-pyrrolidone and from about 20 to about 95 percent by weight of said organic polar solvent.
4. A composition of claim 2 wherein said organic polar solvent iε selected from the group consisting of N- methyl-2-pyrrolidone, ^ -butylactone, glycol ether, glycol ether acetal, dimethyl formamide, and mixtures thereof.
5. A composition of claim 4 comprising from about 5 to about 80 percent by weight of N-cyclohexyl-2-pyrrolidone and from about 20 to about 95 percent by weight of said organic polar solvent.
6. A composition of claim 1 having from about 20 percent to about 70 percent by weight of an alkaline amine compound or mixtures thereof.
7. A composition of claim 6 wherein said amine is selected from the group consisting of monoethanolamine, triethanolamine, diglycolamine, trimethylammonium hydroxide, and mixtures thereof.
SUBSTITUTESHEET
8. A composition of claim 2 having from about 20 percent to about 70 percent by weight of an alkaline amine compound or mixtures thereof.
9. A composition of claim 3 having from about 20 percent to about 70 percent by weight of said amine compound or mixtures thereof.
10. A composition of claim 8, comprising from about 15 to about 25 percent by weight of N-cyclohexyl-2- pyrrolidone, from about 30 to about 50 percent by weight of said organic polar solvent, and from about 30 to about 50 percent by weight of said amine.
11. A composition of claim 8 wherein εaid amine iε selected from the group consisting of monoethanolamine, triethanolamine, diglycolamine, trimethylammonium hydroxide, and mixtures thereof, and wherein said organic polar solvent iε selected from the group consiting of N-methyl-2-pyrrolidone, _^ -butylactone, glycol ether, glycol ether acetal, dimethyl forma ide, and mixtures thereof.
12. A composition of claim 9 wherein said amine iε εelected from the group conεiεting of monoethanolamine, triethanolamine, diglycolamine, trimethylammonium hydroxide, and mixtures thereof, and wherein said organic polar solvent is selected from the group consiting of N-methyl-2-pyrrolidone, -butylactone, glycol ether, glycol ether acetal, dimethyl formamide, and mixtures thereof.
SUBSTITUTESHEET
13. A composition of claim 10 wherein said amine iε selected from the group consisting of monoethanolamine, triethanolamine, diglycolamine, trimethylammonium hydroxide, and mixtures thereof, and wherein said organic polar solvent is selected from the group consiting of N-methyl-2-pyrrolidone, X -butylactone, glycol ether, glycol ether acetal, dimethyl formamide, and mixtures thereof.
14. A method wherein unexposed photoresiεt is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 1.
15. A method wherein unexpoεed photoresist is εtripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 2.
16. A method wherein unexposed photoresist iε εtripped from a substrate by contacting the unexposed photoresiεt with a stripping composition the composition of claim 3.
17. A method wherein unexposed photoresist is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 4.
18. A method wherein unexposed photoresiεt is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 5.
SUBSTITUTE SHEET
19. A method wherein unexposed photoresist is εtripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 6.
20. A method wherein unexposed photoresist is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 7.
21. A method wherein unexposed photoresiεt iε εtripped from a substrate by contacting the unexposed photoreεist with a stripping composition the composition of claim 8.
22. A method wherein unexposed photoresist is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 9.
23. A method wherein unexposed photoresist iε stripped from a substrate by contacting the unexposed photoresiεt with a stripping composition the composition of claim 10.
24. A method wherein unexposed photoresist is stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of 'claim 11.
25. A method wherein unexposed photoresist iε εtripped from a substrate by contacting the unexpoεed photoreεist
SUBSTITUTESHEET with a stripping composition the composition of claim 12.
26. A method wherein unexposed photoresist iε stripped from a substrate by contacting the unexposed photoresist with a stripping composition the composition of claim 13.
SUBSTITUTESHEET
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21993788A | 1988-07-15 | 1988-07-15 | |
US219937 | 1988-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990000579A1 true WO1990000579A1 (en) | 1990-01-25 |
Family
ID=22821339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1989/003037 WO1990000579A1 (en) | 1988-07-15 | 1989-07-12 | Stripping composition using n-cyclohexyl-2-pyrrolidone |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU3983989A (en) |
WO (1) | WO1990000579A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446094A (en) * | 1992-08-21 | 1995-08-29 | Basf Aktiengesellschaft | Thermoplastic coupling agent mixture |
US6998225B2 (en) * | 2002-04-10 | 2006-02-14 | Mitsubishi Denki Kabushiki Kaisha | Method of producing compound semiconductor device |
WO2012044460A1 (en) * | 2010-09-27 | 2012-04-05 | Eastman Chemical Company | Polymeric or monomeric compositions comprising at least one mono-amide and/or at least one diamide for removing substances from substrates and methods of using the same |
US8309502B2 (en) | 2009-03-27 | 2012-11-13 | Eastman Chemical Company | Compositions and methods for removing organic substances |
US8389455B2 (en) | 2009-03-27 | 2013-03-05 | Eastman Chemical Company | Compositions and methods for removing organic substances |
US8614053B2 (en) | 2009-03-27 | 2013-12-24 | Eastman Chemical Company | Processess and compositions for removing substances from substrates |
US9029268B2 (en) | 2012-11-21 | 2015-05-12 | Dynaloy, Llc | Process for etching metals |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796602A (en) * | 1972-02-07 | 1974-03-12 | Du Pont | Process for stripping polymer masks from circuit boards |
US4276186A (en) * | 1979-06-26 | 1981-06-30 | International Business Machines Corporation | Cleaning composition and use thereof |
US4453984A (en) * | 1982-06-30 | 1984-06-12 | International Business Machines Corporation | Method for removing electrically conductive paste from a screening mask |
US4617251A (en) * | 1985-04-11 | 1986-10-14 | Olin Hunt Specialty Products, Inc. | Stripping composition and method of using the same |
US4791043A (en) * | 1983-12-20 | 1988-12-13 | Hmc Patents Holding Co., Inc. | Positive photoresist stripping composition |
-
1989
- 1989-07-12 WO PCT/US1989/003037 patent/WO1990000579A1/en unknown
- 1989-07-12 AU AU39839/89A patent/AU3983989A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796602A (en) * | 1972-02-07 | 1974-03-12 | Du Pont | Process for stripping polymer masks from circuit boards |
US4276186A (en) * | 1979-06-26 | 1981-06-30 | International Business Machines Corporation | Cleaning composition and use thereof |
US4453984A (en) * | 1982-06-30 | 1984-06-12 | International Business Machines Corporation | Method for removing electrically conductive paste from a screening mask |
US4791043A (en) * | 1983-12-20 | 1988-12-13 | Hmc Patents Holding Co., Inc. | Positive photoresist stripping composition |
US4617251A (en) * | 1985-04-11 | 1986-10-14 | Olin Hunt Specialty Products, Inc. | Stripping composition and method of using the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446094A (en) * | 1992-08-21 | 1995-08-29 | Basf Aktiengesellschaft | Thermoplastic coupling agent mixture |
US6998225B2 (en) * | 2002-04-10 | 2006-02-14 | Mitsubishi Denki Kabushiki Kaisha | Method of producing compound semiconductor device |
EP1363167A3 (en) * | 2002-04-10 | 2007-06-06 | Mitsubishi Denki Kabushiki Kaisha | Method of producing compound semiconductor device |
US8309502B2 (en) | 2009-03-27 | 2012-11-13 | Eastman Chemical Company | Compositions and methods for removing organic substances |
US8389455B2 (en) | 2009-03-27 | 2013-03-05 | Eastman Chemical Company | Compositions and methods for removing organic substances |
US8444768B2 (en) | 2009-03-27 | 2013-05-21 | Eastman Chemical Company | Compositions and methods for removing organic substances |
US8614053B2 (en) | 2009-03-27 | 2013-12-24 | Eastman Chemical Company | Processess and compositions for removing substances from substrates |
US8916338B2 (en) | 2009-03-27 | 2014-12-23 | Eastman Chemical Company | Processes and compositions for removing substances from substrates |
WO2012044460A1 (en) * | 2010-09-27 | 2012-04-05 | Eastman Chemical Company | Polymeric or monomeric compositions comprising at least one mono-amide and/or at least one diamide for removing substances from substrates and methods of using the same |
US9029268B2 (en) | 2012-11-21 | 2015-05-12 | Dynaloy, Llc | Process for etching metals |
Also Published As
Publication number | Publication date |
---|---|
AU3983989A (en) | 1990-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0301756B1 (en) | Triamine positive photoresist stripping composition and prebaking process | |
US5279771A (en) | Stripping compositions comprising hydroxylamine and alkanolamine | |
EP0596515B1 (en) | Alkaline photoresist stripping composition producing reduced metal corrosion | |
KR100913048B1 (en) | Stripper composition for photoresist | |
KR100360985B1 (en) | Resist stripper composition | |
KR100846057B1 (en) | Stripper composition for photoresist | |
WO1990000579A1 (en) | Stripping composition using n-cyclohexyl-2-pyrrolidone | |
KR100544889B1 (en) | Stripper composition for photoresist | |
KR101304723B1 (en) | Photoresist stripping liquid containing amide and a methodof stripping photoresists using the same | |
KR100363271B1 (en) | Photoresist remover composition | |
KR101213731B1 (en) | Stripper composition for photoresist | |
JP4698123B2 (en) | Resist remover composition | |
KR100440484B1 (en) | Photoresist stripper composition | |
CN112711176A (en) | Photoresist stripping liquid applicable to semiconductor field and preparation method | |
JP3742624B2 (en) | Photoresist remover composition containing ammonium fluoride | |
WO1987005314A1 (en) | Photoresist stripper composition and process of use | |
KR20040028382A (en) | Photoresist remover composition | |
KR102372922B1 (en) | Resist stripper composition | |
KR20170111411A (en) | Resist stripper composition, and method for manufacturing a plat panel for a display device and plat panel for a display device, and display device | |
KR20150000183A (en) | A resist stripper composition for preparing a flat panel display | |
GB2342727A (en) | Composition to remove resists and tp inhibit titanium corrosion | |
KR101543827B1 (en) | Resist stripper composition and a method of stripping resist using the same | |
CN108535971B (en) | Stripping liquid composition for removing photoresist | |
KR20080017848A (en) | Photoresist stripping solution and stripping method using the same | |
KR101706987B1 (en) | Preparing method of liquid composition for stripping an organic dielectric layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |