+

WO1989003049A1 - Position meter using laser beam - Google Patents

Position meter using laser beam Download PDF

Info

Publication number
WO1989003049A1
WO1989003049A1 PCT/JP1988/001008 JP8801008W WO8903049A1 WO 1989003049 A1 WO1989003049 A1 WO 1989003049A1 JP 8801008 W JP8801008 W JP 8801008W WO 8903049 A1 WO8903049 A1 WO 8903049A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
laser light
receiver
measuring device
Prior art date
Application number
PCT/JP1988/001008
Other languages
French (fr)
Japanese (ja)
Inventor
Toyoichi Ono
Kenji Tanabe
Yoshio Asayama
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24438687A external-priority patent/JPH07122667B2/en
Priority claimed from JP362588A external-priority patent/JP2601294B2/en
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to DE19883890813 priority Critical patent/DE3890813T1/en
Publication of WO1989003049A1 publication Critical patent/WO1989003049A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Definitions

  • the present invention relates to a position measuring device using laser light, and more particularly to a device suitable for position measurement on highly uneven ground such as an outdoor civil engineering work site.
  • Japanese Patent Published Japanese Patent Application Nos. 62-273408 and 62-273409 both by the same applicant as the present applicant
  • Japanese Patent Application Publication No. 62-50616 the applicant; Kashima Construction Co., Ltd.
  • a laser lighthouse is installed at each of two fixed points, each serving as a laser-emitter.
  • the target moving vehicle such as a work vehicle is equipped with a laser receiver. Then, the laser light is swirled in the horizontal direction from the two laser lighthouses, and the emitted laser light is reflected by the light receiver.
  • Angle (rotation angle) formed by a straight line extending from the other fixed point to the measured point
  • the distance between the two fixed points is calculated by the arithmetic unit, and the position of the measurement point is two-dimensionally determined by triangulation from the obtained angle and the distance between the two fixed points. ) It is calculated.
  • the angle formed by a straight line connecting two fixed points and a straight line extending from the other fixed point to the point to be measured is determined. Then, each laser beam emitted from each lighthouse provided at one and the other two fixed points emits light on a straight line connecting the two fixed points. It is necessary to measure the difference of each light emission time until the measured point is emitted.
  • the first light receiver facing the laser lighthouse provided at one fixed point and the second light receiver facing the laser lighthouse provided at the other fixed point Two receivers are required. Therefore, the laser receiver becomes large and heavy, the installation position is limited, and it is inconvenient to move the measuring point.
  • the vertical position of the light-receiving surface on the receiver side should be taken into consideration in consideration of the height difference between the position where the emitter is installed and the point to be measured. The direction is adjusted.
  • the emitted laser light falls off the light receiving surface of the receiver. In many cases, it is impossible to measure the position of the point to be measured.
  • the present invention has been made in view of the above-mentioned circumstances, and the first purpose is to provide a single laser receiver provided at a point to be measured.
  • the purpose is to provide a position measuring device using laser light.
  • Another object of the present invention is to set the laser projector at two laser lighthouses, such as an outdoor civil engineering work site with severe irregularities, and to set the measurement position at the measurement point. Even in an environment where the height difference from the light receiving surface of the laser receiver is remarkable, the position of the point to be measured can be reliably measured even in a large environment. It is to provide a position measuring device.
  • Still another object of the present invention is to provide a light receiving height position correcting means in a laser receiver installed at a point to be measured. Accordingly, it is possible to provide a position measuring device using laser light, which enables three-dimensional position measurement of a measured point.
  • two vertical fixed points are set apart from each other, and a vertical axis at each of the setting points is defined as a rotation axis.
  • First and second laser emitting means for emitting laser light while rotating, and disposed at the point to be measured, and the first and second lasers being arranged at the measurement point.
  • Laser light receiving means for receiving laser light which is respectively rotationally projected from the laser light emitting means, and by triangulation based on the output of the laser light receiving means.
  • a reference azimuth detector and a reference azimuth signal transmitting means provided on each of the laser light emitting means sides; And a reference azimuth signal receiving means and a calculating means provided on the user light receiving means side.
  • the arithmetic unit detects the direction of the laser beam received, and identifies the laser beam received from the laser unit and the laser beam source.
  • the laser light is characterized in that it is configured to obtain a time difference from each of the reference azimuth detectors to the measurement point by turning.
  • the used position measuring device is provided.
  • each of the first, second and second laser light emitting means in the first aspect is provided. Are emitted from these light emitting means.
  • a position measuring device using laser light which is characterized by having a projection angle changing means capable of changing an elevation angle or a depression angle of the laser light.
  • each of the first and second laser light emitting means in the first aspect has a projection angle changing means for changing an elevation angle or a depression angle of the laser light projected from these light projection means, and further comprises
  • the light receiving means includes a light receiving height position correcting means for correcting a light receiving height position detected by the light receiving means based on an output from the light emitting angle changing means.
  • FIG. 1 is a schematic front view showing the overall configuration of the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the first embodiment shown in FIG. 1, and FIGS. 3 and 4 are a laser lighthouse and a laser having a laser projector, respectively.
  • 1 is a schematic perspective view of the receiver. ,
  • FIG. 5 is a block diagram of the calculation means used in the first specific example.
  • Fig. 6A and Fig. 6B are explanatory diagrams of the direction identification operation of the emitted laser light.
  • FIG. 7 is a schematic front view showing a modified example of each of the two laser lighthouses used in the first embodiment.
  • FIG. 8 is a schematic perspective view showing an arrangement state of the device in the second specific example of the present invention.
  • FIG. 9 is a perspective view conceptually showing a configuration of a mirror drive unit used in the second example shown in FIG.
  • Figure 10 is a diagram used to explain the principle of position measurement used in the second example.
  • Fig. 11 shows the received signal of one laser beam output from each reference azimuth detector at two fixed points, and the output signal from the receiver at the point to be measured. Timing chart with the laser light reception signal
  • FIGS. 12A to 12E are diagrams showing the manner of change of the measured point in the second specific example.
  • FIG. 13 is a block diagram conceptually showing the configuration of the arithmetic unit used in the second specific example.
  • FIG. 14 is a flowchart showing a processing procedure in the arithmetic unit shown in FIG. Detailed description of preferred examples
  • the first and second fixed points (reference points) A and B which are two planes apart from each other by a predetermined distance L, and the measuring point C, and the measuring point C Are formed, and vertices A and B of the triangles A, B and C are the first and second reference points.
  • the first reference point A is provided with a first laser lighthouse 10 for irradiating a turning laser beam, a reference azimuth detector 11 and a reference azimuth signal transmitting means 12.
  • the reference point B emits laser light that rotates in a direction opposite to that of the first laser lighthouse 10, the second laser lighthouse 13, the reference direction detector 14, and the reference direction signal transmission means.
  • a laser receiver 16 a reference azimuth signal receiving means 17, and an arithmetic means 18 are provided at the measurement target point C.
  • the first and second laser lighthouses 10 and 13 are provided on a tripod 10a and 13a. Since laser emitters 10c and 13c having 0b and 13b are installed, the laser receiver 16 is installed as shown in Figs. 1 and 4.
  • the light-receiving element 16 b is placed vertically on the surface of a polygonal prism whose cross section on a tripod 16 a is pentagonal or larger.
  • the light receiving processing means 16c is provided together with a plurality of light receiving processing means, and they are positioned in the same horizontal plane.
  • the reference azimuth detectors 11 and 14 are mounted on the laser projectors 10c and 13c so as to face the laser transmissive sections 10b and 13b, respectively. Is a laser receiver, and upon receiving the laser beam, sends a signal to the reference azimuth signal transmitting means 12 and 15, respectively, and outputs the reference azimuth signal transmitting means 12 and 15. In this case, a reference azimuth signal is output. That is, the reference azimuth signal transmitting means 12 and 15 are transmitters.
  • the reference azimuth signal receiving means 17 serves as a receiver, and outputs a signal to the arithmetic means 18 when receiving the transmitted reference azimuth signal.
  • the arithmetic means 18 is means 20 for identifying the laser lighthouse based on the received signal of the laser light receiver 16, and the reference azimuth time is given by the received signal of the reference azimuth signal receiving means 17.
  • the X and ⁇ coordinates of the point C to be measured are calculated using the first and second angle calculating means 22, 23 and the angle and the reference distance L from the reference distance input means 24. It comprises a coordinate calculation means 25, a display means 26 for displaying the position of the measured point C, and a height calculation means 27 for calculating the height of the laser light.
  • the laser lighthouse identification means 2 ⁇ senses the direction of movement of the laser light in the order in which the light receiving elements 16 b of the laser light receiver 16 receive light horizontally, and thereby detects the mutual direction. O The first and second lighthouses 10 and 13 that turn in opposite directions are identified.
  • the first and second angle calculating means 22 and 23 are connected to the laser receiver 16 after receiving the timing signal from the reference azimuth timing detecting means 21. The angle is calculated based on the time difference until the light is received. .
  • the coordinate calculating means 25 and the display means 26 are the same as the conventional one, and as shown in FIG. 7, the laser projectors 10 of the first and second laser lighthouses 10 and 13 are provided.
  • c and 13c are mounted on a tripod 10a1 3a via screw rods 10d and 13d, which are vertically movable, and the laser projector 13 of the second laser lighthouse 13 is mounted. Attach a leveling light receiving element 13e to c and attach an actuator 13f to rotate its screw rod 13d.
  • actuator 13 f When installing the second laser lighthouses 10 and 13 Drive actuator 13 f until laser emissive element 13 e receives laser light from first laser lighthouse 10 and laser emitter 1 3c may be moved up and down.
  • the laser light of the first laser lighthouse 10 and the laser light of the second laser lighthouse 13 can be set at the same height, so that the manual operation can be performed manually. It is not necessary to adjust the height by operation, and the work can be done easily.
  • the above operation control stops when the referencing light receiving element 13 e receives light after the drive switch of the actuator 13 f is turned to 0 N. It is only necessary to use a CP ⁇ .
  • FIG. 8 Next, a second embodiment of the present invention will be described with reference to FIGS. 8 to 14.
  • FIG. 8
  • FIG. 8 is a schematic diagram showing an arrangement of a position measuring device according to a second specific example of the present invention.
  • the laser projectors 10 and 13 shown in the figure are installed at two predetermined fixed points A and B on the outside civil engineering work site, respectively.
  • the projection positions are set so that they are at the same height.
  • These light emitters 10 and 13 emit the laser light in all directions while rotating at a fixed period, and rotate in the same direction and synchronously with each other. . In this embodiment, as shown by the arrows in FIG. It is assumed that it rotates counterclockwise.
  • the reference azimuths of the laser beam emitted from the projector 103 and the laser beam emitted by the rotation, ie, the azimuth indicated by the dashed line in the figure, are the reference azimuth detectors 11 1 and 1, respectively. There are four power stations.
  • the reference azimuth detectors 11 and 14 are connected to the transmitter / receiver 30, and the transmitter / receiver 30 receives light from the reference azimuth detectors 11 and 14.
  • the received light signal of the laser beam and the output of the controller 18a are transmitted to the transmitter and receiver 31 described later, and the transmitter / receiver 31 Receive the data sent by the user.
  • the controller 1 Sa is connected to the transmitter ⁇ receiver 30, and based on the output of the transmitter ⁇ receiver 30, a mirror driver 32, described later. It controls 3 3.
  • a light receiver 16 having a light receiving portion having a predetermined vertical length H is provided at the measured point.
  • the light receiver 16 is composed of a plurality of light receiving elements 16 b... Arranged at predetermined intervals in the vertical direction.
  • the transmitter / receiver 31 is connected to the arithmetic unit 18 b, receives the data transmitted from the transmitter / receiver 30, and obtains the data from the arithmetic unit 18. Sends the obtained data to the transmitter / receiver 30. os The principle of position measurement (triangulation) used in the explanation is explained.
  • FIG. 10 shows the relationship between the two fixed points AB and the point C to be measured.
  • FIG. 4 is a principle diagram showing a geometric relationship.
  • the distance between the two fixed points A and B is L
  • the angle between the X axis and the line segment AC is aa
  • the angle between the x axis and the line segment BC is ab
  • the measured point The xy coordinates of C are expressed by the following equation (1).
  • the two-dimensional position of the measured position point C can be obtained. You can measure.
  • the laser beam emitted from the two projectors 10 and .13 is rotated and projected from the two projectors 10 and .13, and is reliably received by the receiver 16. Is an indispensable factor in performing this position measurement o
  • Fig. 12A shows that one laser beam is projected horizontally from the projectors 10 and 13 installed at the two fixed points A and B, and the laser beam is Measurement point C at the same height as points A and B!
  • the figure shows the case where the light is received by the photodetector 16 installed at the point where the heights of the two fixed points A and B and the measured point Ci are equal.
  • Various dimensions in the length direction of the receiving ⁇ ⁇ 6 are set so that one laser beam is received at the center of the light receiving section of the receiver 16.
  • FIGS 12B and 12C show that the receiver 16 is
  • Receiver 16 has a greater height difference than C
  • the angle of elevation of the light that is rotationally projected from the projectors 10 and 13 is set so that light is received.
  • a means for changing the depression angle is provided. That is, the elevation angle or depression angle of the light is changed by the mirror drive units 32 and 33 provided in each of the projectors 10 and 13 shown in FIG.
  • the mirror drive units 32 and 33 are provided with mirrors 36 and 37 arranged on the optical axis of the laser light sources 34 and 35, and mirrors 36 and 37, respectively.
  • Motors 38, 39 that rotate around the horizontal axis via reduction gears, and a number of pulses corresponding to the amount of rotation of motors 38, 39 are output Pulse encoders 40 and 41, and outputs of encoders 40 and 41. It has counters 42, 43 for counting the screws and drivers 44, 45 for driving the motors 38, 39.
  • the mirrors 36 and 37 rotate in synchronism with the rotation axes of the light emitters 10 and 13 as indicated by an arrow G in FIG. 10a, 13a power, etc. Rotately emits laser light toward the light receiving section of optical device 16.
  • the operation of the above-mentioned mirror driving units 32 and 33 will be described.
  • the tilt angles of 36 and 37 are such that the laser beam is emitted from the laser beam source 10a, 13a toward the receiver 16
  • the optical axis D of the laser beam is set to a reference angle that is parallel to the installation surface of the projectors 10 and 13
  • the tilt angle of 36, 37 is + or 1 in the elevation direction or the depression angle direction from the upper optical axis D by being tilted by a predetermined angle from the reference angle. Obtain a changed optical axis E or F
  • FIG. 2 is a block diagram conceptually showing the configuration of the present invention.
  • FIG. 14 shows the processing procedure of the arithmetic unit 18b.
  • measurement errors such as the installation error of each of the projectors 10 and 13 are measured in preparation for the survey, and the data obtained here is obtained.
  • the data is used to correct the measurement data obtained by the position measurement described below, but the description of the correction operation is omitted since it is not directly related to the present application.
  • the operator is required to set the angle of the mirrors 36 and 37 as necessary so that the laser beam is received by the receiver 16 during such movement and installation. Make adjustments.
  • the tilt angle of the mirrors 36 and 37 should be the same as the one shown in Fig. 12A (as shown in the figure below) in the initial state at the start of the survey.
  • the receiver 16 is set at an angle such that it can be projected in the horizontal direction.
  • the laser beam is moved and installed at the measurement point C 2 C a shown in the figure, the laser light is received by the receiver 16, so the angle adjustment of the mirrors 36 and 37 is performed. Is not done.
  • the mirror angle change command data is transmitted to the transmitter / receiver 30 via the transmitter / receiver 31.
  • the angle change command signal transmitted from the transmission ⁇ receiver 31 is received, and the controller 18 a is based on this reception data.
  • the angle of inclination of each mirror 36, 37 is controlled.
  • the controller 18a the feed having the above-mentioned inclination angle based on the feed hack 1 of the counters 42, 43 is used.
  • the output of the counters 42 and 43 that is, the amount of change in the angle of the mirrors 36 and 37 from the reference angle is expressed by the controller 18 Transmitted from transmitter / receiver 3 via a. ⁇ Transmitted to receiver 3 1.
  • This angle change amount is input from the transmitter / receiver 31 to the coordinate calculator 25.
  • step 102 the laser beams emitted from the projectors 10 and 13 are respectively reflected by the reference azimuth detectors 11 and The light received by the reference azimuth detector 11 and received by the reference azimuth detectors 11 and 14 are transmitted and received by the transmitter and receiver 30 via the transmitter and receiver 30. Is transmitted to the device 31.
  • the transmitter / receiver 31 When the transmitter / receiver 31 receives the laser light reception signal transmitted from the transmitter / receiver 30, the transmitter / receiver 31 sends the light reception signal of the emitter 10 to the time measurement section 21 a and sends the light to the transmitter / receiver 31. Output the light receiving signal of 13 to the time measuring section 21b respectively (Step 103)
  • the emitters 10 and 13 rotate further, and the laser light emitted from these emitters 10 and 13 is received by the receiver of the receiver 16
  • These received light signals are sent to the height calculating section 27 and the time difference measuring sections 21a and 21b, respectively, as signals indicating the light receiving height position and the light receiving time. Is entered.
  • the signal indicating the light receiving height position is a signal indicating which light receiving element of each of the light receiving elements 16 b... Is input to the height calculator 27.
  • ⁇ ⁇ -Rr. Explains how to identify which emitter can receive the above received light signal.
  • the projectors 10 and 13 are rotated almost synchronously.
  • this triangulation is performed in an arrangement such that aa ⁇ 90ab> 90 °.
  • the relationship of each time tatb from the time when the laser beam reaches the reference direction to the time when the laser beam reaches the reference azimuth and the time when the laser beam is received by the light receiving section of the photodetector 16 is ta ⁇ tb. According to such a light receiving sequence, it is possible to identify the light receiving signal from any of the light emitters (step 104).
  • the light receiving signal indicating the reference direction output from the transmitter / receiver 3i and the light receiving signal output from the light receiving unit of the light receiver 16 are used. Based on the above, ta and tb for the projectors 10 and 13 are detected (step 105 in FIG. 11).
  • the height calculation unit 27 calculates the temporary height position of the measured point C in the vertical direction based on the output of the light receiving unit of the light receiver 16.
  • the provisional height position indicates the height position of the measured point C at a stage where the inclination of the mirrors 36 and 37 is not taken into consideration.
  • the installation point A of the emitter 10 (or the installation point B of the emitter 13) is set as the origin in the height direction, and the height of the installation point A and the measurement point C are set as described above.
  • the laser beam is set so that it is received at the center of the light receiving section of the receiver 16 and the above temporary height is set.
  • the position ⁇ is expressed as a displacement from the center of the light receiving section of the light receiver 16.
  • the light receiving position is
  • the provisional height position is set.
  • the light receiving element 16 b of the light receiving section of the light receiver 16 is used. Since the light is received by the same light receiving element, the provisional height position Z1 is the same, but in the case of Fig. 12D, the mirrors 36, 37 are tilted. Since it has been changed, the provisional height position Z 1 in this case does not indicate the true height position.
  • the provisional height position obtained in this way is input to the coordinate calculation unit 25 (step 108).
  • the tilt angle of the mirror 3 6 3 7 changes from the reference angle based on the angle change amount output from the transmitter / receiver 31. It is determined whether or not it has been performed (Step 109) o
  • step 109 above N 0, that is,
  • the temporary height position calculated in step 108 above is taken as the vertical coordinate position Z of the measurement point to be measured. Is performed (step 110).
  • the coordinate position Z is stored in the two-dimensional coordinate values X and X of the measured point calculated in the above step 107, and is displayed on the display unit. It is displayed in 26 (step 11 1).
  • step 109 if the result of the determination in step 109 is YES, that is, if the tilt angles of the mirrors 36 and 37 are tilted and change from the reference angle, And the two-dimensional positions X and y of the measured point calculated in step 107 above and the two-dimensional positions A (XA, X) of the two fixed points A and B y A), B (XB, y B) The process for capturing Z! Is executed.
  • the tilt angles of the mirrors 36 and 37 change so that the laser beam optical axis is horizontal. If the elevation and depression angles change by + ⁇ and 1 ⁇ in order to obtain the coordinate position ⁇ of the measured point, the tentative height position ⁇ , adding a correction value Zeta 2 will that accompanied the change of the optical axis (or subtraction) must be there Ru.
  • the Ru obtains the correction value Zeta 2, the two-dimensional positions of the two fixed points A, two-dimensional position A of B (x A, y A) , B (x B y B) Contact good beauty the measurement point C
  • the distance i? AC between the points A and C from C (X, y) and the distance £ BC between the points B and C are calculated based on the following equation (3).
  • the coordinate position Z is calculated using the two-dimensional coordinates x and x of the measured point calculated in step 107 above. It is stored together with y and displayed on the display unit 26 (step 11 1).
  • the optical axis of one laser beam is changed in the elevation angle or the depression angle direction. Light is received reliably.
  • the light receiving height position of the light receiver is corrected based on the change amount of the optical axis, and the true vertical position coordinates of the measured point are obtained. You can do it. This enables three-dimensional position measurement of the measured point.
  • the angle change command for the mirror drive units 36 and 37 is used as the angle change command. , Which is limited by the power input provided by the operator. There is no.
  • an angle change command generating means for generating an angle change command for appropriately changing the tilt angles of 36 and 37, thereby implementing an automatic control of the mirror angle change.
  • an angle change command to the mirror drive units 32 and 33 is given by radio by means of a two-unit transmitter / receiver.
  • the present invention is not limited to this and can be implemented by wire.
  • the command is not limited to a command by remote control from the measured point, but is sent directly to the controller 18a at the location where the projector is installed. You can give it ⁇
  • the description has been made assuming a case where spot surveying is performed at each point at a work site.However, a receiver is mounted on a moving body, and the position of the moving body is determined. You may try to measure As a matter of course, the position measurement of a moving object is not limited to vehicles, and can be applied to position measurement of any moving object such as positioning of a ship in a port or the like.
  • the reference azimuth signals obtained from the two projectors from the projectors are transmitted and received by one transmitter / receiver. It goes without saying that transmission and reception may be performed by another transmitter / receiver.
  • the rotation directions of the two projectors are set to be the same direction, but needless to say, as in the case of the first embodiment described above, the rotation directions are opposite to each other.
  • the laser light emitted from the two projectors is received by the common receiver of the receiver 16.
  • the receivers at different heights were used. You may set up a part.
  • the reference azimuth detector 11 which identifies and receives the laser light emitted from these two projectors in each reference azimuth of the two projectors
  • each of the 14 is provided separately, the reference azimuth detectors 11 and 14 are not necessarily provided, and each emitter is synchronized to rotate at a constant speed. The position measurement may be performed only at the light receiving timing at the measurement point of the laser beam emitted from each emitter.
  • the configuration of the device itself is arbitrary as long as it is a device that performs triangulation using laser light.
  • the angle of the mirrors 36 and 37 is changed to change the direction of the optical axis of the laser beam.
  • the projector itself may be tilted to change the optical axis direction.
  • a position sensor may be used in the light receiving section of the light receiver 16 to detect the light receiving position in the height direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention provides a position meter which can be used by installing only one laser receiver and can reliably measure the position of a point to be measured even if there is a great difference in level between the position of installation of a laser projector and that of the laser receiver on rugged outdoor construction sites. The position meter of the invention includes laser projectors (10, 13) disposed at two specified points spaced apart from each other, one laser receiver (16) disposed at the point of measurement, reference direction finders (11, 14) and reference direction signal transmitters (12, 15) disposed on the side of the laser projectors and a reference direction receiver (17) and an operational unit (18) disposed on the side of the laser receiver. Furthermore, the laser projector of the invention includes projection angle changing means for changing the elevation angle or depression angle of the laser beam while the laser receiver includes position correction means for correcting the laser beam reception height on the basis of the output from the projection angle changing means.

Description

明 細 書  Specification
レ ー ザー 光を用 い た位置計測装置  Position measuring device using laser light
発明 の技術分野  TECHNICAL FIELD OF THE INVENTION
本発明 は、 レ ー ザー光を用 い た位置計測装置 に関 し 、 特 に屋外の土木作業現場等凹凸の激 し い地面に お け る 位 置計測 に好適な装置 に関す る 。  The present invention relates to a position measuring device using laser light, and more particularly to a device suitable for position measurement on highly uneven ground such as an outdoor civil engineering work site.
発明 の背景技術  BACKGROUND OF THE INVENTION
従来、 二つ の定点 (基準点) と 被計測地点 と の幾何学 的関係 に基づい た三角 測量に よ っ て、 該被計測地点の位 置を計測す る 装置 と し て は、 日 本特許出願公開第 62-273 408 号公報及び同第 62 - 273409 号公報 ( いずれ も 本出願 人 と 同一出願人 に よ る ) 、 な ら びに 日 本特許出願公開第 62-50616号公報 (出願人 ; 鹿島建設株式会社) に そ れぞ れ開示 さ れて い る も のがあ る 。  Conventionally, as a device for measuring the position of a measured point by triangulation based on a geometric relationship between two fixed points (reference points) and the measured point, Japanese Patent Published Japanese Patent Application Nos. 62-273408 and 62-273409 (both by the same applicant as the present applicant), and Japanese Patent Application Publication No. 62-50616 (the applicant; Kashima Construction Co., Ltd.).
こ れ ら の従来技術 に よ る 計測装置で は、 二つ の定点 に そ れぞれ レ ー ザ一投光器 と な る レ ー ザー燈台が設置 さ れ —方、 被計測地点ま た は被計測対象 と な る 作業車両等の 移動体に は レ ー ザー受光器が設け ら れて い る 。 そ し て前 記二台 の レ ー ザー 燈台か ら そ れぞれ水平方向 に レ ー ザ一 光が旋回投光 さ れ、 こ れ ら 投光 さ れた レ ー ザー光を前記 受光器で受光す る 際 に、 二つ の定点を結ぶ直線 と 一方の 定点か ら 被計測地点ま で伸 び る 直線 と でつ く ら れ る 角 度 (回転角 ) と 、 二つ の定点专結ぶ直線 と 他方の定点か ら 被計測地点 ま で伸 び る 直線 と で作 ら れ る 角度 (回転角 ) と を演算装置で求め、 該求め ら れた両角度 と二つ の定点 間の距離 と か ら 三角 測量法に よ り 被計測地点の位置が二 次元的に ( x 、 y 座禪 と し て) 算出 さ れ る 。 In these conventional measuring devices, a laser lighthouse is installed at each of two fixed points, each serving as a laser-emitter. The target moving vehicle such as a work vehicle is equipped with a laser receiver. Then, the laser light is swirled in the horizontal direction from the two laser lighthouses, and the emitted laser light is reflected by the light receiver. When receiving light, the angle (rotation angle) formed by a straight line connecting two fixed points and a straight line extending from one fixed point to the measurement point, and a straight line connecting the two fixed points Angle (rotation angle) formed by a straight line extending from the other fixed point to the measured point And the distance between the two fixed points is calculated by the arithmetic unit, and the position of the measurement point is two-dimensionally determined by triangulation from the obtained angle and the distance between the two fixed points. ) It is calculated.
こ の よ う な計測装置で あ る と 、 二つ定点を結ぶ直線 と —方ま た は他方の定点か ら 被計測地点ま で伸 び る 直線 と でつ く ら れる 角度を求め る た め に、 一方お よ び他方の二 つ の定点に設けた そ れぞれの燈台か ら投光さ れ る 各 レ ー ザ一光が、 二つ の定点を結ぶ直線上で投光 し てか ら 被計 測点を投光す る ま での それぞれの投光時間差を計測 し な ければな ら な い。 こ の た め に、 被計測地点で は一方の定 点に設けた レ ーザー燈台 に対向す る 第一受光器 と 、 他方 の定点に設けた レ ーザー燈台 に対向す る 第二受光器 と の 二台の受光器が必要であ る 。 従 っ て、 レ ー ザー受光器が 大型かつ大重量 と な り 、 設置位置が限定 さ れた り 、 被計 測地点を移動 さ せ る の に不便であ っ た り す る 。  With such a measuring device, the angle formed by a straight line connecting two fixed points and a straight line extending from the other fixed point to the point to be measured is determined. Then, each laser beam emitted from each lighthouse provided at one and the other two fixed points emits light on a straight line connecting the two fixed points. It is necessary to measure the difference of each light emission time until the measured point is emitted. For this purpose, at the point to be measured, the first light receiver facing the laser lighthouse provided at one fixed point and the second light receiver facing the laser lighthouse provided at the other fixed point. Two receivers are required. Therefore, the laser receiver becomes large and heavy, the installation position is limited, and it is inconvenient to move the measuring point.
ま た、 レ ー ザー燈台か ら は レ ー ザー光が水平方向 に投 光 さ れる た め、 投光器の設置位置 と 被計測地点 と の高低 差を考慮 し て、 受光器側で受光面の鉛直向長を調整す る よ う に し てい る 。 と こ ろ が、 凹凸の激 し い屋外の土木作 業現場等、 地面の高低差が著 し く 大 き い環境では、 投光 さ れた レ ー ザー光が受光器の受光面か ら 外れ る こ と が多 々 あ り 、 被計測地点の位置計測が不可能に成 る 場合が起 し る 。  In addition, since the laser light is emitted from the laser lighthouse in the horizontal direction, the vertical position of the light-receiving surface on the receiver side should be taken into consideration in consideration of the height difference between the position where the emitter is installed and the point to be measured. The direction is adjusted. However, in an environment where the height difference between the ground is remarkable and large, such as an outdoor civil engineering work site with severe unevenness, the emitted laser light falls off the light receiving surface of the receiver. In many cases, it is impossible to measure the position of the point to be measured.
こ う し て位置計測が不能 と な っ た場合に は、 た と え そ れが一時的で あ る にせよ 、 作業車両等の移動体 に よ る 作 業は中断せ ざ る を得な く な る で あ ろ う し 、 ま た 当 の計測 不能地点を計測すべ く 他の方法に よ る 対策を講 じ せ ざ る を得な い こ と に な り 、 人的お よ び時間的 ロ ス を来た し 、 作業経済性を著 し く 損な う こ と に な る 。 If position measurement becomes impossible in this way, it is probable that Even if this is temporary, work by moving objects such as work vehicles will have to be interrupted, and other points where measurement is impossible cannot be measured. This has forced us to take countermeasures by using the methods described above, resulting in loss of personnel and time, and significantly impairing the work economy. .
な お、 こ う し た 問題点を解決す る 方法 と し て、 受光器 'の鉛直方向長を長 く 設定す る な ど の方法 も 検討 さ れてい る 。 し か し 、 こ の方法 は受光器が移動体上 に設置 さ れて い る 場合 に は、 当 の移動体の安定性を'損ね る 虞れがあ.ろ う し 、 ま た設備 コ ス ト の上昇が招来す る こ と な どか ら 、 いずれ も 採用 、 実施 さ れ る に は至 っ て い な い。  As a method of solving such a problem, a method of setting the length of the receiver ′ in the vertical direction to be long has been studied. However, this method may impair the stability of the moving object if the receiver is installed on the moving object, and the equipment cost may be reduced. None of them have been recruited and implemented because of the rise in the number of employees.
発明 の概要  Summary of the Invention
本発明 は前述 し た事情に鑑み てな さ れた も ので あ っ て そ の第一 目 的 は、 被計測地点に設け ら れ る レ ー ザー受光 器を一台だ け と し た レ ー ザー光を用 い た位置計測装置を 提供す る こ と で あ る 。  The present invention has been made in view of the above-mentioned circumstances, and the first purpose is to provide a single laser receiver provided at a point to be measured. The purpose is to provide a position measuring device using laser light.
本発明 の も う 一つ の 目 的 は、 凹凸 の激 し い屋外土木作 業現場等、 二台 の レ ー ザー 燈台 に お け る レ ー ザー 投光器 設定位置 と 、 被計測地点に設置 さ れ る レ ー ザー受光器の 受光面 と の高低差が著 し く 大 き い環境下 に お い て も 、 被 計測地点の位置計測を確実 に行な い得 る 、 レ ー ザー 光を 用 い た 位置計測装置を提供す る こ と で あ る 。  Another object of the present invention is to set the laser projector at two laser lighthouses, such as an outdoor civil engineering work site with severe irregularities, and to set the measurement position at the measurement point. Even in an environment where the height difference from the light receiving surface of the laser receiver is remarkable, the position of the point to be measured can be reliably measured even in a large environment. It is to provide a position measuring device.
本発明 の さ ら に も う 一つ の 目 的 は、 被計測地点 に設置 さ れ る レ ー ザ一受光器 に受光高 さ 位置補正手段を設 け る こ と に よ っ て、 被計測地点の三次元的位置計測を可能に し た、 レ ーザー光を用 い た位置計測装置を提供す る こ と <¾ ό ο Still another object of the present invention is to provide a light receiving height position correcting means in a laser receiver installed at a point to be measured. Accordingly, it is possible to provide a position measuring device using laser light, which enables three-dimensional position measurement of a measured point.
前記第一 目 的を達成す る た め に、 本発明の第一態様に よれば、 互に離間 し た二つ の定点に設置 さ れ、 各設置点 に お け る 鉛直軸を回転軸 と し て回転 し つつ、 レ ー ザー光 を投光す る 第一お よ び第二の レ ー ザー投光手段と、 被計 測地点に配置 さ れ、 上記第一お よ び第二の レ ー ザー投光 手段か ら そ れぞれ回転投光 さ れ る レ ーザー光を受光す る レ ー ザー受光手段と を具え、 該 レ ーザー受光手段の 出力 に基づ く 三角 測量に よ つ て上記被計測地点の位置を計測 す る 位置計測装置 におい て、 前記各 レ ーザー投光手段側 に そ れぞれ設け ら れ る 基準方位検出器およ び基準方位信 号送信手段 と 、 前記 レ ーザー受光手段側 に設け ら れ る 基 準方位信号受信手段お よ び演算手段 と を さ ら に含み、 該 演算手段 に よ り レ ーザー光の受光方位を検出 し て、 受光 し た レ ー ザー光がいずれの レ ー ザ一投光手段力、 ら の レ ー ザ一光であ る かを識別す る と 共に、 旋回 に よ り 前記各基 準方位検出器か ら前記被計測地点に到達す る ま での時間 差を求め る よ う に構成 した こ と を特徵 と す る レ ー ザー光 を用 い た位置計測装置が提供 さ れ る 。  In order to achieve the first object, according to the first aspect of the present invention, two vertical fixed points are set apart from each other, and a vertical axis at each of the setting points is defined as a rotation axis. First and second laser emitting means for emitting laser light while rotating, and disposed at the point to be measured, and the first and second lasers being arranged at the measurement point. Laser light receiving means for receiving laser light which is respectively rotationally projected from the laser light emitting means, and by triangulation based on the output of the laser light receiving means. In the position measuring device for measuring the position of the measured point, a reference azimuth detector and a reference azimuth signal transmitting means provided on each of the laser light emitting means sides; And a reference azimuth signal receiving means and a calculating means provided on the user light receiving means side. The arithmetic unit detects the direction of the laser beam received, and identifies the laser beam received from the laser unit and the laser beam source. In addition, the laser light is characterized in that it is configured to obtain a time difference from each of the reference azimuth detectors to the measurement point by turning. The used position measuring device is provided.
前記第二の 目 的を達成す る た め に、 本発明の第二態様 に よ れば、 前記第一態様に お け る 第一およ び第、二の レ — ザー投光手段の 各々 が、 こ れ ら の投光手段か ら投光 さ れ る レ ー ザー光の仰角 ま た は俯角 を変化 さ せ得 る 投光角度 変化手段を備え た こ と を特徵 と す る レ ー ザー光を用 い た 位置計測装置が提供 さ れ る 。 In order to achieve the second object, according to a second aspect of the present invention, each of the first, second and second laser light emitting means in the first aspect is provided. Are emitted from these light emitting means. Provided is a position measuring device using laser light, which is characterized by having a projection angle changing means capable of changing an elevation angle or a depression angle of the laser light.
前記第三の 目 的を達成す る た め に 、 本発明 の第三態様 に よ れば、 前記第一態様 に お け る 第一お よ び第二の レ.一 ザー投光手段の各 々 が、 こ れ ら の投光手段か ら 投光 さ れ る レ ー ザー光の仰角 ま た は俯角 を変化 さ せ得 る 投光角 度 変化手段を備え、 さ ら に前記 レ ー ザ一受光手段が、 該受 光手段に よ つ て検出 さ れた受光高 さ 位置を前記投光角度 変化手段か ら の 出力 に基づい て補正す る 受光高 さ 位置補 正手段を備え 、 それに よ つ て前記被計測地点の三次元位 置が計測 さ れ る こ と を特徵 と す る レ ー ザー光を用 い た位 置計測装置が提供 さ れ る 。  In order to achieve the third object, according to a third aspect of the present invention, each of the first and second laser light emitting means in the first aspect is provided. Each of them has a projection angle changing means for changing an elevation angle or a depression angle of the laser light projected from these light projection means, and further comprises The light receiving means includes a light receiving height position correcting means for correcting a light receiving height position detected by the light receiving means based on an output from the light emitting angle changing means. Thus, there is provided a position measuring device using laser light, which is characterized in that the three-dimensional position of the measured point is measured.
前記な ら びに他の本発明 の 目 的、 態様、 そ し て利点 は 本発明 の原理 に合致す る 好適 な具体例が実施例 と し て示 さ れて い る 以下の記述お よ び添附の 図面 に関連 し て説明 さ れ る こ と に よ り 、 当該技術の熟達者 に と っ て明 ら か に な る で あ ろ う 。  The above and other objects, aspects, and advantages of the present invention are described in the following description and appendixes in which preferred embodiments are shown as examples that are consistent with the principles of the present invention. Will be apparent to those skilled in the art by being described in connection with the drawings herein.
図面の簡単な 説明  Brief description of the drawings
第 1 図 は本発明 の第一具体例の全体構成を示す概略正 面図で あ り 、  FIG. 1 is a schematic front view showing the overall configuration of the first embodiment of the present invention.
第 2 図 は第 1 図図示の第一具体例の概略平面図であ り 第 3 図お よ び第 4 図 は そ れぞれ レ ー ザー 投光器を有す る レ ー ザー 燈台お よ び レ .一ザー 受光器の概略斜視図で あ 、 FIG. 2 is a schematic plan view of the first embodiment shown in FIG. 1, and FIGS. 3 and 4 are a laser lighthouse and a laser having a laser projector, respectively. 1 is a schematic perspective view of the receiver. ,
第 5 図 は第一具体例 に用 い ら れ る 演算手段の プ ロ ッ ク 線図であ 、  FIG. 5 is a block diagram of the calculation means used in the first specific example.
第 6 A お よ び第 6 B 図 は投光 さ れた レ ーザー光の方位 識別動作 _説明図であ り 、  Fig. 6A and Fig. 6B are explanatory diagrams of the direction identification operation of the emitted laser light.
第 7 図 は第一具体例 に用 い ら れ る 二台の レ ー ザー燈台 の そ れぞれの変形例を示す概略正面図であ り 、  FIG. 7 is a schematic front view showing a modified example of each of the two laser lighthouses used in the first embodiment.
第 8 図 は本発明 の第二具体例 にお け る 装置の配置状態 を示す概略斜視図であ り 、  FIG. 8 is a schematic perspective view showing an arrangement state of the device in the second specific example of the present invention.
第 9 図 は第 8 図図示の第二具体例 に用 い ら れる ミ ラ ー 駆動部の構成を概念的 に示す斜視図であ り 、  FIG. 9 is a perspective view conceptually showing a configuration of a mirror drive unit used in the second example shown in FIG.
第 1 0 図は第二具体例で採用す る 位置計測の原理を説 明する ため に用 い る 図であ  Figure 10 is a diagram used to explain the principle of position measurement used in the second example.
第 1 1 図は二つ の定点にお け る そ れぞれの基準方位検 出器か ら 出力 さ れ る レ ーザ一光の受光信号 と 、 被計測地 点の受光器か ら 出力 さ れ る レ ー ザー光の受光信号 と の そ れぞれの タ イ ム チ ャ ー ト であ り 、  Fig. 11 shows the received signal of one laser beam output from each reference azimuth detector at two fixed points, and the output signal from the receiver at the point to be measured. Timing chart with the laser light reception signal
第 1 2 Α 図乃至第 1 2 E 図 は第二具体例 にお け る 被計 測地点の変化態様を示 し た 図であ り 、  FIGS. 12A to 12E are diagrams showing the manner of change of the measured point in the second specific example.
第 1 3 図 は第二具体例 に用 い ら れ る演算器の構成を概 念的 に示すプロ ッ ク 線図であ り 、 そ し て  FIG. 13 is a block diagram conceptually showing the configuration of the arithmetic unit used in the second specific example.
第 1 4 図 は、 第 1 3 図 に示す演算器 に おけ る 処理手順 を示すフ ロ ー チ ヤ ー ト であ る 。 好ま し い具体例の詳細 な説明 FIG. 14 is a flowchart showing a processing procedure in the arithmetic unit shown in FIG. Detailed description of preferred examples
以下、 本発明 の好 ま し い具体例を添附の 図面に関連 し て詳細 に説明す る 。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
先ず、 第 1 図乃至第 7 図 に 関連 し て、 本発明 の第一具 体例を説明す る 。  First, an example of the first embodiment of the present invention will be described with reference to FIGS. 1 to 7.
第 2 図 に示すよ う に 、 平面的 に所定距離 L だ け離隔 し た第一、 第二定点 (基準点) A、 B と 計測地点 C と に よ つ て平面.的 に被計測地点 C を含む三角形 A、 B 、 C を形 成 し 、 こ の三角形 A、 B 、 C の各頂点 A、 B が第一、 第 二基準点 と な っ て い る 。  As shown in Fig. 2, the first and second fixed points (reference points) A and B, which are two planes apart from each other by a predetermined distance L, and the measuring point C, and the measuring point C Are formed, and vertices A and B of the triangles A, B and C are the first and second reference points.
第一基準点 A に は旋回す る レ ー ザ ー光を照射す る 第一 レ ー ザー 燈台 1 0 と 基準方位検出器 1 1 と 基準方位信号 送信手段 1 2 と が設け ら れ、 第二基準点 B に は第一 レ ー ザー燈台 1 0 と は逆回転 し て旋回する レ ー ザー光を照射 す る 第二 レ ー ザー 燈台 1 3 と 基準方位検出器 1 4 と 基準 方位信号送信手段 1 5 と が設 けて あ る と 共 に 、 被計測地 点 C に は レ ー ザー受光器 1 6 と 基準方位信号受信手段 17 と 演算手段 1 8が設け て あ る 。  The first reference point A is provided with a first laser lighthouse 10 for irradiating a turning laser beam, a reference azimuth detector 11 and a reference azimuth signal transmitting means 12. The reference point B emits laser light that rotates in a direction opposite to that of the first laser lighthouse 10, the second laser lighthouse 13, the reference direction detector 14, and the reference direction signal transmission means. In addition to the provision of 15 and, a laser receiver 16, a reference azimuth signal receiving means 17, and an arithmetic means 18 are provided at the measurement target point C.
前記第一、 第二 レ ー ザ一燈台 1 0 , 1 3 は第 1 及び第 3 図 に示す よ う に 、 三脚 1 0 a , 1 3 a 上 に 回転す る レ 一ザ一 透光部 1 0 b , 1 3 b を有す る レ ー ザー 投光器 1 0 c , 1 3 c を設置 し た も の で、 レ ー ザ ー 受光器 1 6 は第 1 図及び第 4 図 に示す よ う に三脚 1 6 a 上の断面が 五角 形以上の多角 柱の表面 に受光素子 1 6 b を上下方向 に複数配設す る と 共に、 受光処理手段 1 6 c を設けた も ので、 それ ら は同一水平面内 に位置決め さ れてい る 。 As shown in FIGS. 1 and 3, the first and second laser lighthouses 10 and 13 are provided on a tripod 10a and 13a. Since laser emitters 10c and 13c having 0b and 13b are installed, the laser receiver 16 is installed as shown in Figs. 1 and 4. The light-receiving element 16 b is placed vertically on the surface of a polygonal prism whose cross section on a tripod 16 a is pentagonal or larger. The light receiving processing means 16c is provided together with a plurality of light receiving processing means, and they are positioned in the same horizontal plane.
前記各基準方位検出器 1 1 , 1 4 は レ ーザー投光器 1 0 c , 1 3 c 上に レ ー ザー透光部 1 0 b , 1 3 b と対 向 し てそれぞれ取付け ら れ、 こ れ ら は レ ー ザー受光器 と な っ てい る と共に、 レ ー ザー光を受光す る と 基準方位信 号送信手段 1 2 , 1 5 に それぞれ信号を送 り 、 基準方位 信号送信手段 1 2 , 1 5 に は基準方位信号を出力す る よ う に し て あ る 。 つ ま り 、 基準方位信号送信手段 1 2 , 15 は送信器 と な っ てい る 。  The reference azimuth detectors 11 and 14 are mounted on the laser projectors 10c and 13c so as to face the laser transmissive sections 10b and 13b, respectively. Is a laser receiver, and upon receiving the laser beam, sends a signal to the reference azimuth signal transmitting means 12 and 15, respectively, and outputs the reference azimuth signal transmitting means 12 and 15. In this case, a reference azimuth signal is output. That is, the reference azimuth signal transmitting means 12 and 15 are transmitters.
前記基準方位信号受信手段 1 7 は受信機 と な っ て、 送 信さ れた基準方位信号を受信す る と演算手段 1 8 に信号 を出力す る 。  The reference azimuth signal receiving means 17 serves as a receiver, and outputs a signal to the arithmetic means 18 when receiving the transmitted reference azimuth signal.
前記演算手段 1 8 は レ ー ザー受光器 1 6 の受信信号に よ り レ ー ザー燈台を識別する 手段 2 0 と 、 基準方位信号 受信手段 1 7 の受信信号に よ り 基準方位タ イ ミ ン グを検 出す る 手段 2 1 と、 それ ら の信号に よ り 第一、 第二 レ ー ザー燈台 1 0 , 1 3 の 回転角、 すな わ ち 、 第一、 第二角 度 α 、 /3 を演算す る 第一、 第二角度計算手段 2 2 , 2 3 と 、 そ の角度 と基準距離入力手段 2 4 よ り の基準距離 L と で被計測地点 C の X、 Υ座標を演算す る 座標計算手段 2 5 と 、 被計測地点 C の位置を表示す る 表示手段 2 6 と レ ー ザー光の高さ を計算す る 高 さ 計算手段 2 7 と を備え てい る 。 前記 レ ー ザ—燈台識別手段 2 ◦ は レ ー ザー受光器 1 6 の受光素子 1 6 b が水平方向 に受光す る 順序で レ ー ザー 光の移動方向 を感知 し 、 そ れ に よ り 相互 に逆方向 に旋回 す る 第一、 第二燈台 1 0 , 1 3 を識別す る よ う に し て あ る o The arithmetic means 18 is means 20 for identifying the laser lighthouse based on the received signal of the laser light receiver 16, and the reference azimuth time is given by the received signal of the reference azimuth signal receiving means 17. Means 21 for detecting the rotation angle of the first and second laser lighthouses 10 and 13 based on these signals, that is, the first and second angle α, / The X and Υ coordinates of the point C to be measured are calculated using the first and second angle calculating means 22, 23 and the angle and the reference distance L from the reference distance input means 24. It comprises a coordinate calculation means 25, a display means 26 for displaying the position of the measured point C, and a height calculation means 27 for calculating the height of the laser light. The laser lighthouse identification means 2 ◦ senses the direction of movement of the laser light in the order in which the light receiving elements 16 b of the laser light receiver 16 receive light horizontally, and thereby detects the mutual direction. O The first and second lighthouses 10 and 13 that turn in opposite directions are identified.
例え ば、 第 6 A 図 に示 さ れ る よ う に第一の受光素子 1 6 b ! か ら第二の受光素子 1 6 b 2 に 向 け て順次受光 す る 際 に は第一 レ ー ザー燈台 1 0 力、 ら の レ ー ザー光であ る と 判断 し 、 第 6 B 図 に示 さ れ る よ う に第三の受光素子 1 6 b 3 か ら 第二の受光素子 1 6 b 2 に 向 け て順次受光 す る 際 に は第二 レ ー ザー燈台 1 3 力、 ら の レ ー ザー光であ る と 判断す る 。 For example, when you toward Ke sequentially received by the cormorants by Ru is indicated in the first 6 A view to the first light-receiving element 1 6 b! Pressurized et al second light-receiving element 1 6 b 2 is the first-les-over It is determined that the laser light is from the lighthouse 10 and the third light-receiving element 16b3 to the second light-receiving element 16b, as shown in FIG. 6B. When light is sequentially received in the direction 2 , it is determined that the laser light is from the second laser lighthouse 13.
前記第一、 第二角度計算手段 2 2 , 2 3 は基準方位 タ ィ ミ ン グ検出手段 2 1 か ら の タ イ ミ ン グ信号が入力 さ れ てか ら レ ー ザ一受光器 1 6 が受光す る ま での時間差 に よ つ て角度を計算す る 。 .  The first and second angle calculating means 22 and 23 are connected to the laser receiver 16 after receiving the timing signal from the reference azimuth timing detecting means 21. The angle is calculated based on the time difference until the light is received. .
座標計算手段 2 5 と 表示手段 2 6 は従来 と 同一で あ る ま た 、 第 7 図 に示す よ う に 、 第一、 第二 レ ー ザー燈台 1 0 , 1 3 の レ ー ザー 投光器 1 0 c , 1 3 c を三脚 10 a 1 3 a に ネ ジ杆 1 0 d , 1 3 d を介 し て上下動 自 在 に取 付け 、 第二 レ ー ザー燈台 1 3 の レ ー ザー投光器 1 3 c に レ べ リ ン グ用受光素子 1 3 e を取付 け る と 共 に 、 そ の ネ ジ杆 1 3 d を回転す る ァ ク チ ユ エ ー タ 1 3 f を設 け、 第 —、 第二 レ ー ザー 燈台 1 0 , 1 3 を設置す る 際 に レ ペ リ ン グ用受光素子 1 3 e が第一 レ ー ザー燈台 1 0 よ り の レ 一ザ一光を受光す る ま でァ ク チ ユ エ ー タ 1 3 f を駆動 し て レ ー ザー投光器 1 3 c を上下移動 さ せ る よ う に し て も 良い。 The coordinate calculating means 25 and the display means 26 are the same as the conventional one, and as shown in FIG. 7, the laser projectors 10 of the first and second laser lighthouses 10 and 13 are provided. c and 13c are mounted on a tripod 10a1 3a via screw rods 10d and 13d, which are vertically movable, and the laser projector 13 of the second laser lighthouse 13 is mounted. Attach a leveling light receiving element 13e to c and attach an actuator 13f to rotate its screw rod 13d. When installing the second laser lighthouses 10 and 13 Drive actuator 13 f until laser emissive element 13 e receives laser light from first laser lighthouse 10 and laser emitter 1 3c may be moved up and down.
こ の よ う にすれば、 第一 レ ーザー燈台 1 0 の レ ー ザー 光 と第二 レ ー ザー燈台 1 3 の レ ー ザー光を同一高 さ にす る こ と がで き る ので、 手動操作で高さ合せ し な く と も良 く 、 そ の作業が容易 にで き る 。  By doing so, the laser light of the first laser lighthouse 10 and the laser light of the second laser lighthouse 13 can be set at the same height, so that the manual operation can be performed manually. It is not necessary to adjust the height by operation, and the work can be done easily.
な お、 以上の動作制御 はァ ク チ ユ エ 一 タ 1 3 f の駆動 ス ィ ツ チ を 0 N し た後に レ ペ リ ン グ用受光素子 1 3 e が 受光 し た ら 停止す る よ う に C P ϋ な どを用 い て行な えば 良い。  The above operation control stops when the referencing light receiving element 13 e receives light after the drive switch of the actuator 13 f is turned to 0 N. It is only necessary to use a CP に.
次に、 第 8 図乃至第 1 4 図を参照 し て本発明 の第二具 体例 につ い て説明す る 。  Next, a second embodiment of the present invention will be described with reference to FIGS. 8 to 14. FIG.
第 8 図 は、 本発明 の第二具体例 に関す る 位置計測装置 の配置態様を示す概略図であ る 。  FIG. 8 is a schematic diagram showing an arrangement of a position measuring device according to a second specific example of the present invention.
同図 に示す レ ー ザー投光器 1 0 , 1 3 は、 そ れぞれ屋 外土木作業現場の予め設定 し た二つ の定点 A 、 B に設置 さ れてお り 、 こ れ ら の レ ー ザー投光位置は同一の高 さ に な る よ う に設定 さ れてい る 。  The laser projectors 10 and 13 shown in the figure are installed at two predetermined fixed points A and B on the outside civil engineering work site, respectively. The projection positions are set so that they are at the same height.
こ れ ら投光器 1 0 , 1 3 は、 レ ー ザー光を全方位に一 定周期で回転 し なが ら 投光す る も のであ り 、 それぞれ同 —方向 にかつ互い に 同期 し て回転す る 。 こ の実施例で は 同図 に矢印で示す ごと く 両投光器 1 0 , 1 3 は、 上か ら みて反時計方向 に 回転す る も の と す る 。 These light emitters 10 and 13 emit the laser light in all directions while rotating at a fixed period, and rotate in the same direction and synchronously with each other. . In this embodiment, as shown by the arrows in FIG. It is assumed that it rotates counterclockwise.
上記投光器 1 0 1 3 力、 ら 回転投光 さ れ る レ ー ザー光 の基準方位、 すな わ ち 同図 に一点鎖線で示す方位に は、 そ れぞれ基準方位検出器 1 1 , 1 4 力 配設 さ れて い る 。  The reference azimuths of the laser beam emitted from the projector 103 and the laser beam emitted by the rotation, ie, the azimuth indicated by the dashed line in the figure, are the reference azimuth detectors 11 1 and 1, respectively. There are four power stations.
基準方位検出器 1 1 , 1 4 は、 送 · 受信機 3 0 に接統 さ れて い て、 該送 ♦ 受信機 3 0 は、 こ れ ら 基準方位検出 器 1 1 , 1 4 で受光 さ れた レ一ザ一 光の受光信号お よ び コ ン ト ロ ー ラ 1 8 a の 出力 を後述す る 送 , 受信機 3 1 に 送信す る と 共 に 、 該送 · 受信機 3 1 か ら 送信 さ れた デー 夕 を受信す る 。  The reference azimuth detectors 11 and 14 are connected to the transmitter / receiver 30, and the transmitter / receiver 30 receives light from the reference azimuth detectors 11 and 14. The received light signal of the laser beam and the output of the controller 18a are transmitted to the transmitter and receiver 31 described later, and the transmitter / receiver 31 Receive the data sent by the user.
コ ン ト ロ 一 ラ 1 S a は、 上記送 ♦ 受信機 3 0 に接続 さ れて い て、 該送 ♦ 受信機 3 0 の 出力 に基づい て、 後述す る ミ ラ ー駆動部 3 2 , 3 3 を制御す る も の であ る 。  The controller 1 Sa is connected to the transmitter ♦ receiver 30, and based on the output of the transmitter ♦ receiver 30, a mirror driver 32, described later. It controls 3 3.
—方、 被計測地点であ る じ に は、 所定の鉛直方向長 H の受光部を有す る 受光器 1 6 が配設 さ れて い る 。 こ の受 光器 1 6 は、 鉛直方向 に所定の 間隔で配設 さ れた複数の 受光素子 1 6 b … で構成 さ れて い る 。  On the other hand, a light receiver 16 having a light receiving portion having a predetermined vertical length H is provided at the measured point. The light receiver 16 is composed of a plurality of light receiving elements 16 b... Arranged at predetermined intervals in the vertical direction.
送 · 受信機 3 1 は、 演算器 1 8 b に接続 さ れて い て、 上記送 · 受信機 3 0 か ら 送信 さ れた デー タ を受信 し 、 か っ該演算器 1 8 か ら 得 ら れた デー タ を上記送 · 受信機 3 0 に送信す る も のでめ る o s
Figure imgf000013_0001
¾明 に採用す る 位置計測 (三角 測量) の原 理 につ い て説明す る 。
The transmitter / receiver 31 is connected to the arithmetic unit 18 b, receives the data transmitted from the transmitter / receiver 30, and obtains the data from the arithmetic unit 18. Sends the obtained data to the transmitter / receiver 30. os
Figure imgf000013_0001
The principle of position measurement (triangulation) used in the explanation is explained.
第 1 0 図 は、 二つ の定点 A B と 被計測地点 C と の幾 何学的関係を示す原理図であ る 。 Fig. 10 shows the relationship between the two fixed points AB and the point C to be measured. FIG. 4 is a principle diagram showing a geometric relationship.
同図 に おい て二つ の定点 A、 B 間の距離を L 、 X 軸 と 線分 A C と の なす角 を a a 、 x 軸 と線分 B C と の なす角 を a b と す る と 被計測地点 C の x y 座標は、 次の第 ( 1 ) 式の よ う に表わ さ れ る 。  In the figure, the distance between the two fixed points A and B is L, the angle between the X axis and the line segment AC is aa, and the angle between the x axis and the line segment BC is ab, the measured point The xy coordinates of C are expressed by the following equation (1).
sin b · cos a a  sin b · cos a a
x = L  x = L
sin { a b — a a ) C 1 ) sin b sin a a  sin {a b — a a) C 1) sin b sin a a
y = L  y = L
sin ( cr b — a a )  sin (cr b — a a)
こ の位置計測方法では、 上記角度 a a 、 な b を求め る に際 し 、 上記投光器 1 0 , 1 3 力、 ら 回転投光さ れる 光が. 上記基準方位に達 し てか ら 、 上記受光器 1 6 に よ っ て受 光 さ れ る ま での 回転角 を二つ の定点 A、 B にお け る 投光 器 1 0 , 1 3 の それぞれにつ い て検出す る こ と に よ り 行 なわれ る。  In this position measurement method, when the angles aa and b are determined, the light emitted by the projectors 10 and 13 is rotated and emitted. The rotation angle before the light is received by the light source 16 is detected for each of the light emitters 10 and 13 at the two fixed points A and B. It is performed.
つ ま り 、 第 1 1 図 に示す ご と く 、 二つ の定点 A、 B に お け る 投光器 1 0, 1 3 か ら 投光 さ れ る 先の周期をそれ ぞれ T a 、 T b (第 1 1 図 ( a ) 、 ( c ) 、 こ こ で T a = T b ) と す る 。 二つ の定点 A、 B に お け る 投光器 1 0 , 1 3 か ら 投光 さ れる レ ー ザー光が基準方位 ( X 軸方向) に達 し てか ら 、 C 点に お け る受光器 1 6 で受光さ れ る ま での時間を A、 B につ い てそ れぞれ t a 、 t b (第 1 1 図 ( b ) ( d ) と す る と 、 上記回転角 a a 、 a b は次の 第 ( 2 ) 式の よ う に表わ さ れる 。 a t b In other words, as shown in Fig. 11, the periods at which the light is emitted from the light emitters 10 and 13 at the two fixed points A and B are denoted by Ta and Tb, respectively. (Figure 11 (a), (c), where Ta = Tb). After the laser beams emitted from the emitters 10 and 13 at the two fixed points A and B reach the reference azimuth (X-axis direction), the receiver at the point C Assuming that the time until light is received at 16 is ta and tb for A and B respectively (Fig. 11 (b) and (d)), the rotation angles aa and ab are as follows. Equation (2) is expressed as follows. atb
a a 2 π a b 2 π ( 2 )  a a 2 π a b 2 π (2)
T a T b  T a T b
そ こ で、 こ れ ら 角度 a 、 と 二台の投光器 1 〇 、 1 3 間の距離 L を上記第 ( 1 ) 式 に代入す る こ と に よ り 上記被計測位置地点 C 二次元位置を計測す る こ と がで. き る  Then, by substituting the angle a and the distance L between the two projectors 1〇 and 13 into the above equation (1), the two-dimensional position of the measured position point C can be obtained. You can measure.
と こ ろ で こ の場合、 上記二台 の投光器 1 0 , .1 3 力、 ら 回転投光 さ れた レ ーザ一光が上記受光器 1 6 に お い て確 実に受光さ れ て い る こ と が当の位置計測を行な う 上で不 可欠の要素 と な っ て い る o  However, in this case, the laser beam emitted from the two projectors 10 and .13 is rotated and projected from the two projectors 10 and .13, and is reliably received by the receiver 16. Is an indispensable factor in performing this position measurement o
第 1 2 A 図 は、 二つ の定点 A、 B に設置 さ れた投光器 1 0 , 1 3 か ら 水平方向 に レ ー ザ一 光が投光 さ れ、 該 レ 一ザ一光が、 上記 A、 B 点 と 同一高 さ の被計測地点 C ! に設置 さ れた受光器 1 6 で受光 さ れ る 場合を示 し てお り こ の よ う に 二つ の定点 A、 B と 被計測地点 C i の 高 さ 位 置が等 し い と き に レ ー ザ一光が受光器 1 6 の受光部の 中 心で受光 さ れ る よ う 受 ττ 丄 6 の 问 さ 方向 の 各種寸法が 設定 さ れて め る 。  Fig. 12A shows that one laser beam is projected horizontally from the projectors 10 and 13 installed at the two fixed points A and B, and the laser beam is Measurement point C at the same height as points A and B! The figure shows the case where the light is received by the photodetector 16 installed at the point where the heights of the two fixed points A and B and the measured point Ci are equal. Various dimensions in the length direction of the receiving ττ 丄 6 are set so that one laser beam is received at the center of the light receiving section of the receiver 16.
ま た第 1 2 B 図お よ び第 1 2 C 図 は、 受光器 1 6 が  Figures 12B and 12C show that the receiver 16 is
Η  Η
C と の高低差が 以内 の被計測地点 C 2 ま た は Measured point C 2 or less within height difference from C
2  Two
C 3 に移動 、 設置 さ れた場合を示 し て お り 、 こ の場合 も 該地点に お い て受光器 1 6 の受光部 に お け る 受光が可能 であ る ο と こ ろ が第 1 2 D 図お よ び第 1 2 Ε 図 に示す ご と く 、 It shows the case where it is moved to and installed at C3, and in this case also, light can be received at the light receiving section of the light receiver 16 at that point.ο As shown in Fig. 12D and Fig. 12Ε,
Η  Η
受光器 1 6 が C と の高低差が よ り も大 き い被 Receiver 16 has a greater height difference than C
2  Two
計測地点 C 4 ま た は C 5 に移動、 設置 さ れた 際に は、 上 記回転投光 さ れた光が受光器 1 6 の受光部 1 6 において 受光 さ れな く な っ て し ま う 。 When moved to or installed at measurement point C 4 or C 5 , the light emitted by rotation above is no longer received by the light receiving section 16 of the light receiver 16. U.
そ こ で、 こ の第二具体例では、 こ の よ う な場合であ つ て も 受光が行なわれ る よ う に上記投光器 1 0 , 1 3 か ら 回転投光さ れ る 光の仰角 ま た は俯角 を変化 さ せ る 手段を 設けてい る 。 すなわ ち 、 第 9 図 に示す投光器 1 0 , 1 3 の それぞれ. に具え た ミ ラ ー駆動部 3 2 , 3 3 に よ っ て光の仰角 ま た は俯角 を変化 さ せ る 。  Therefore, in the second specific example, even in such a case, the angle of elevation of the light that is rotationally projected from the projectors 10 and 13 is set so that light is received. Or, a means for changing the depression angle is provided. That is, the elevation angle or depression angle of the light is changed by the mirror drive units 32 and 33 provided in each of the projectors 10 and 13 shown in FIG.
ミ ラ ー駆動部 3 2 , 3 3 は、 レ ーザー光源 3 4 , 3 5 の光軸上に配置 さ れた ミ ラ ー 3 6 , 3 7 と 、 こ の ミ ラ ー 3 6 , 3 7 を減速ギヤ を介 し て水平軸を中心に回動 さ せ る モ ー タ 3 8 , 3 9 と 、 モー タ 3 8 , 3 9 の 回転量に対 応 し た数のパ ル ス を出力す る パ ル ス エ ン コ ー ダ 4 0 , 41 と 、 エ ン コ ー ダ 4 0 , 4 1 の 出カノ、。ルス を カ ウ ン 卜 す る カ ウ ン タ 4 2 , 4 3 と 、 モ ー 夕 3 8 , 3 9 を駆動す る ド ラ イ バ 4 4 , 4 5 と を備えた構成を も つ。  The mirror drive units 32 and 33 are provided with mirrors 36 and 37 arranged on the optical axis of the laser light sources 34 and 35, and mirrors 36 and 37, respectively. Motors 38, 39 that rotate around the horizontal axis via reduction gears, and a number of pulses corresponding to the amount of rotation of motors 38, 39 are output Pulse encoders 40 and 41, and outputs of encoders 40 and 41. It has counters 42, 43 for counting the screws and drivers 44, 45 for driving the motors 38, 39.
な お上記 ミ ラ ー 3 6 , 3 7 は、 同図 に矢印 G で示す ご と く 、 投光器 1 0 , 1 3 の 回転軸を中心 と し て こ れ ら と 同期 し て回転 し、 レ ー ザー投光ロ 1 0 a , 1 3 a 力、 ら 受 光器 1 6 の受光部 に 向 け て レ ー ザー 光を回転投光す る 。 こ こ で、 上記 ミ ラ 一駆動部 3 2 , 3 3 の作用 につ い て 説明す る The mirrors 36 and 37 rotate in synchronism with the rotation axes of the light emitters 10 and 13 as indicated by an arrow G in FIG. 10a, 13a power, etc. Rotately emits laser light toward the light receiving section of optical device 16. Here, the operation of the above-mentioned mirror driving units 32 and 33 will be described.
3 6 , 3 7 の傾 き 角 は、 初期状態に お い て は、 レ ー ザー投光 ロ 1 0 a , 1 3 a 力、 ら 受光器 1 6 に 向 けて 投光 さ れ る レ ー ザー 光の光軸 D が、 投光器 1 0 , 1 3 の 設置面 に対 し て平行方向 と な る よ う な基準角 度 に設定 さ れて い る  In the initial state, the tilt angles of 36 and 37 are such that the laser beam is emitted from the laser beam source 10a, 13a toward the receiver 16 The optical axis D of the laser beam is set to a reference angle that is parallel to the installation surface of the projectors 10 and 13
—方、 コ ン 卜 D 1 8 a 力、 ら の指令力《 ド ラ イ バ 4 4 4 5 に加え ら れ る と 、 モ ー タ 3 8 , 3 9 に よ っ て ミ ラ ー -D D 18a force, and the command force of them <When the driver force is applied to the driver 4 4 4 5 5, the motor 3 8
3 6 , 3 7 の傾 き 角 が上記基準角度か ら 所定角度だ け傾 動 さ れ る れに よ つ て上 己光軸 D か ら 仰角方向 ま た は 俯角方向 に + ま た は 一 だ け変化 し た光軸 E ま た は F を得 る こ と がで き る The tilt angle of 36, 37 is + or 1 in the elevation direction or the depression angle direction from the upper optical axis D by being tilted by a predetermined angle from the reference angle. Obtain a changed optical axis E or F
こ の よ う に 、 光軸が変化 し た場合 に は、 第 1 2 D 図お よ び第 1 2 E 図の よ う な場合 に お い て も 、 こ れ ら の 各図 に そ れぞれ破線で示す ご と く 、 投光器 1 0 , 1 3 か ら 投 光 さ れた レ一ザ一光が受光器 1 6 の受光部 に お い て受光 さ れ る よ う に な る の で、 位置計測が可能に な る 。  As described above, when the optical axis changes, even in the cases shown in FIGS. 12D and 12E, each of these figures is used. As indicated by the broken line, the laser beam emitted from the emitters 10 and 13 is received by the light receiving section of the receiver 16. Position measurement becomes possible.
な お、 6 , 3 7 につ い て の基準角度か ら の角 度変化量すな わ ち レ一ザ一 光の光軸変化角 は、 カ ウ ン タ Note that the amount of change in the angle from the reference angle for 6 and 37, that is, the change in the optical axis of the laser beam, is
4 2 , 4 3 で計測 さ れ、 コ ン ト ロ ー ラ 1 8 a に フ ィ ー ド /- ッ ク さ 4 Measured by 2 and 4 3 and fed / -loaded to controller 18a
図 は、 受光器 1 6 側 に備え ら れ た演算器 1 8 b の構成を概念的 に示すブロ ッ ク 図であ る 。 ま た、 第 1 4 図 は、 演算器 1 8 b の処理手順を示す。 The figure shows the operation unit 18 b provided on the receiver 16 side. FIG. 2 is a block diagram conceptually showing the configuration of the present invention. FIG. 14 shows the processing procedure of the arithmetic unit 18b.
以下、 こ れ ら 図面を参照 し て第二具体例を よ り 詳 し く 説明す る 。  Hereinafter, the second specific example will be described in more detail with reference to these drawings.
レ ーザー光に よ る 位置計測を行な う 場合 に は、 そ の測 量準備 と し て各投光器 1 0 , 1 3 の設置誤差等の計測が 行な われ、 こ こ で得 ら れた デー タ は、 以下に述べ る 位置 計測で得 ら れた計測デー タ を捕正す る も の と し て使用 さ れる が、 こ の補正演算は本願 と は直接関係な い ので説明 を省略す る 。  When performing position measurement using laser light, measurement errors such as the installation error of each of the projectors 10 and 13 are measured in preparation for the survey, and the data obtained here is obtained. The data is used to correct the measurement data obtained by the position measurement described below, but the description of the correction operation is omitted since it is not directly related to the present application.
上記測量準備が終了す る と 、 オペ レ ー タ は各被計測地 点に受光器 1 6 を移動、 設置す る 。  When the above survey preparation is completed, the operator moves and installs the light receiver 16 to each measurement point.
オペ レ ー タ は、 かか る 移動、 設置の 際 レ ー ザー光が受 光器 1 6 にお い て受光 さ れる よ う に、 必要に応 じ て ミ ラ 一 3 6 , 3 7 の角度調整を行な う 。  The operator is required to set the angle of the mirrors 36 and 37 as necessary so that the laser beam is received by the receiver 16 during such movement and installation. Make adjustments.
すなわ ち 、 上記 ミ ラ ー 3 6 , 3 7 の傾 き 角 は、 測量開 始時点であ る 初期状態におい ては、 第 1 2 A 図 (.こ示す ご と く 、 レ ー ザ一光が水平方向 に投光 さ れ る よ う な 角 度に 設置 さ れてい る 。 し たが っ て、 こ の状態か ら 受光器 1 6 が、 第 1 2 B 図お よ び第 1 2 C 図 に示す被計測地点 C 2 C a に移動、 設置 さ れた 際は、 レ ー ザー光が受光器 1 6 に おい て受光 さ れ る ので上記 ミ ラ ー 3 6 , 3 7 の 角度調 整は行な われな い。 In other words, the tilt angle of the mirrors 36 and 37 should be the same as the one shown in Fig. 12A (as shown in the figure below) in the initial state at the start of the survey. The receiver 16 is set at an angle such that it can be projected in the horizontal direction. When the laser beam is moved and installed at the measurement point C 2 C a shown in the figure, the laser light is received by the receiver 16, so the angle adjustment of the mirrors 36 and 37 is performed. Is not done.
し 力、 し 、 第 1 2 D 図お よ び第 1 2 E 図 に示す ご と く 、 受光器 1 6 が、 被計測地点 C 4 ま た は C 5 に移動、 設置 さ れ た 際 に は 、 該受光器 1 6 に お い て受光が行な われ る よ う に所定角度だけ ミ ラ ー 3 6 , 3 7 の傾 き 角 を変化 さ せ る た め の ミ ラ 一 角度変化指令デー タ を、 ミ ラ ー 角度変 化指令入力部 2 〇 a に入力す る ( ス テ ッ プ 1 0 1 ) 。 As shown in Figures 12D and 12E, When the receiver 16 is moved to and installed at the measurement point C 4 or C 5 , a mirror is provided at a predetermined angle so that light is received at the receiver 16. -Input the mirror angle change command data for changing the tilt angles of 36 and 37 to the mirror angle change command input section 2 〇a (Step 1 0 1).
上記 ミ ラ ー 角度変化指令デ ー タ は、 送 · 受信機 3 1 を 介 し て—、 送 · 受信機 3 0 に送信 さ れ る 。 な お、 送 ♦ 受信 機 3 1.か ら 送 · 受信機 2 0 に送信 さ れ る 角 度変化指令信 号 に は、 い ずれの ミ ラ ー に対す る 指令で あ る かを識別す る 信号が付加 さ れて い る 。  The mirror angle change command data is transmitted to the transmitter / receiver 30 via the transmitter / receiver 31. ♦ Identify which of the mirrors is included in the angle change command signal transmitted from the receiver 3 1. to the transmitter / receiver 20. A signal has been added.
送 ♦ 受信機 3 0 で は 、 送 ♦ 受信機 3 1 か ら 送信 さ れた 角 度変化指令信号が受信 さ れ、 コ ン ト ロ ー ラ 1 8 a は こ の受信デ一 夕 に基づ き 各 ミ ラ ー 3 6 , 3 7 の 傾 き 角 を制 御す る 。  In the transmission ♦ receiver 30, the angle change command signal transmitted from the transmission ♦ receiver 31 is received, and the controller 18 a is based on this reception data. The angle of inclination of each mirror 36, 37 is controlled.
こ の場合、 コ ン ト ロ ー ラ 1 8 a で は 、 カ ウ ン タ 4 2 , 4 3 の フ イ ー ドハ ッ ク 1 号 に基づ く 上記傾 き 角 の フ ィ ー ド、ノ ' ッ ク 制御が行な われ る や がて、 各 ミ ラ ー 3 6 , 37 の傾 き 角 が 目 標値であ る 上記角度変化指令デー タ に対応 す る 所定角度に達 し た 際 に は 、 こ の カ ン タ 4 2 , 4 3 の 出力、 す な わ ち ミ ラ 一 3 6 , 3 7 に つ い て の基準角度か ら の 角 度変化量は 、 コ ン ト ロ ー ラ 1 8 a を介 し て、 送 · 受信機 3 〇 か ら 送 ♦ 受信機 3 1 に送信 さ れ る 。 こ の 角 度 変化量 は、 上記送 · 受信機 3 1 か ら 座標演算部 2 5 に入 力 さ れ る な お、 上述 し た レ ー ザー投光角可変動作の後、 ォペ レ ー タ は、 受光器 1 6 にお い て、 受光が行なわれてい る か 否かを確認 し 、 受光が行なわれてい な い こ と が判明 さ れ た際に は、 角度を変えた ミ ラ ー角度変化指令デー タ を再 入力する こ と に よ っ て上記処理を繰 り 返 し実行す る 。 ま た受光が行なわれた こ と が判明 さ れた際 に は、 処理は、 次の ス テ ッ プ 1 0 3 に移行 さ れる (ス テ ッ プ 1 0 2 ) o こ の よ う に し て、 ミ ラ ー 3 6 , 3 7 の傾 き 角 が確定す る と 、 投光器 1 0 , 1 3 か ら投光 さ れた レ ー ザ一光がそ れぞれ基準方位検出器 1 1 , 1 4 で受光 さ れて、 こ れ ら 基準方位検出器 1 1 , 1 4 でそれぞれ受光 さ れた レ ー ザ 一光の受光信号は、 送 · 受信機 3 0 を介 し て、 送 · 受信 機 3 1 に送信 さ れ る 。 In this case, in the controller 18a, the feed having the above-mentioned inclination angle based on the feed hack 1 of the counters 42, 43 is used. As soon as the lock control is performed, when the tilt angles of the mirrors 36 and 37 reach the predetermined angle corresponding to the target angle change command data, which is the target value, The output of the counters 42 and 43, that is, the amount of change in the angle of the mirrors 36 and 37 from the reference angle is expressed by the controller 18 Transmitted from transmitter / receiver 3 via a. ♦ Transmitted to receiver 3 1. This angle change amount is input from the transmitter / receiver 31 to the coordinate calculator 25. After the above-described operation of changing the laser projection angle, the operator checks whether or not light is being received by the receiver 16 and receives the light. If it is determined that the angle has not been changed, the above process is repeated by re-inputting the mirror angle change command data with the changed angle. If it is determined that light has been received, the process proceeds to the next step 103 (step 102). When the tilt angles of the mirrors 36 and 37 are determined, the laser beams emitted from the projectors 10 and 13 are respectively reflected by the reference azimuth detectors 11 and The light received by the reference azimuth detector 11 and received by the reference azimuth detectors 11 and 14 are transmitted and received by the transmitter and receiver 30 via the transmitter and receiver 30. Is transmitted to the device 31.
送 · 受信機 3 1 で は、 送 · 受信機 3 0 か ら 送信 さ れた レ ー ザー光の受光信号を受信 し た 際、 投光器 1 0 の受光 信号を時間測定部 2 1 a に、 投光器 1 3 の受光信号を時 間測定部 2 1 b に それぞれ出力す る ( ス テ ッ プ 1 0 3 ) When the transmitter / receiver 31 receives the laser light reception signal transmitted from the transmitter / receiver 30, the transmitter / receiver 31 sends the light reception signal of the emitter 10 to the time measurement section 21 a and sends the light to the transmitter / receiver 31. Output the light receiving signal of 13 to the time measuring section 21b respectively (Step 103)
—方、 投光器 1 0 , 1 3 力 さ ら に回転 し 、 こ れ ら 投光 器 1 0 , 1 3 か ら 投光 さ れ る レ ー ザー光が受光器 1 6 の 受光部で受光さ れる と 、 こ れ ら受光信号は、 そ の受光高 さ 位置およ び受光時間を示す信号 と し て高 さ 演算部 2 7 お よ び上記時間差測定部 2 1 a , 2 1 b に そ れぞれ入力 さ れる 。 な お、 受光高 さ 位置を示す信号 は、 各受光素子 1 6 b … の い ずれの受光素子で受光 さ れた かを示す信号 と し て、 高 さ 演算部 2 7 に入力 さ れ る 。 , The emitters 10 and 13 rotate further, and the laser light emitted from these emitters 10 and 13 is received by the receiver of the receiver 16 These received light signals are sent to the height calculating section 27 and the time difference measuring sections 21a and 21b, respectively, as signals indicating the light receiving height position and the light receiving time. Is entered. The signal indicating the light receiving height position is a signal indicating which light receiving element of each of the light receiving elements 16 b… Is input to the height calculator 27.
― ― -rr.、 上記受光信号が いずれの投光器か ら の受光信 で め る かを識別す る 方法を説明す る 。 前期 し た ご と く 投光器 1 0 , 1 3 は ほぼ同期 し て回転 さ れ る 。 さ ら に第 1 〇 図 に示す ご と く 、 こ の三角測量は、 a a < 9 0 a b > 9 0 ° と な る よ う な配置で行な われ る 。 し た 力 つ て、 レ ー ザ一光が基準方位 に達 し て力、 ら 、 受光器 1 6 の 受光部で受光 さ れ る ま で の 各時間 t a t b の 関係 は 、 t a < t b と な り 、 こ の よ う な受光順序 に よ っ ていずれ の投光器か ら の受光信号で あ る かを識別す る こ と がで き る ( ス テ ッ プ 1 0 4 )  ― ― -Rr., Explains how to identify which emitter can receive the above received light signal. As in the previous period, the projectors 10 and 13 are rotated almost synchronously. Furthermore, as shown in Fig. 1 (1), this triangulation is performed in an arrangement such that aa <90ab> 90 °. The relationship of each time tatb from the time when the laser beam reaches the reference direction to the time when the laser beam reaches the reference azimuth and the time when the laser beam is received by the light receiving section of the photodetector 16 is ta <tb. According to such a light receiving sequence, it is possible to identify the light receiving signal from any of the light emitters (step 104).
時間差測定部 2 1 a お よ び 2 1 b で は、 送 · 受信器 3 i か ら 出力 さ れ る 基準方位を示す受光信号 と 受光器 1 6 の 受光部か ら 出力 さ れ る 受光信号 に基づい て投光器 1 0 お よ び 1 3 に つ い て の上記時 t a お よ び t b がそ れぞれ 検出 さ れ る (第 1 1 図参照 ス テ ッ プ 1 0 5 ) 。  In the time difference measurement units 21a and 21b, the light receiving signal indicating the reference direction output from the transmitter / receiver 3i and the light receiving signal output from the light receiving unit of the light receiver 16 are used. Based on the above, ta and tb for the projectors 10 and 13 are detected (step 105 in FIG. 11).
こ れ ら 時間 t a お よ び t b を上記第 ( 2 ) 式 に代入す る こ と に よ り 、 投光器 1 0 1 3 の そ れぞれの 回転角 a a α b が角度演算部 2 2 , 2 3 に よ っ て そ れぞれ演 算 さ れ る ( ス テ ッ プ 1 0 6 ) O  By substituting these times ta and tb into the above equation (2), the respective rotation angles aa αb of the projector 103 can be calculated by the angle calculators 22, 2. (Steps 10 6) O
さ ら に、 こ れ ら 演算 さ れた 回転角 a a b お よ び両 投光器 1 〇 1 3 間の距離 L を上記第 ( 1 ) 式 に代入す る こ と に よ り 、 受光器 1 6 の二次元の位置すな わ ち 被計 測地点の 位置 C ( X y ) が、 座標演算部 2 5 に お い て 演算さ れ る ( ス テ ッ プ 1 0 7 ) 。 Further, by substituting the calculated rotation angle aab and the distance L between the two projectors 1〇13 into the above equation (1), it is possible to obtain the values of the two photodetectors 16-2. The position of the dimension, that is, the position C (X y) of the measured point is calculated by the coordinate calculation unit 25. An operation is performed (step 107).
—方、 高 さ 演算部 2 7 では、 受光器 1 6 の受光部の 出 力 に基づい て、 被計測地点 C の鉛直方向 の仮高さ位置 The height calculation unit 27 calculates the temporary height position of the measured point C in the vertical direction based on the output of the light receiving unit of the light receiver 16.
Z ! が演算 さ れる。 Z! Is calculated.
すな わ ち 、 こ の仮高 さ 位置 は、 ミ ラ ー 3 6 , 3 7 の傾 き を考慮 し な い段階での被計測地点 C の高さ 位置を 示す も の であ り 、 こ の場合投光器 1 0 の設置点 A (ま た は投.光器 1 3 の設置点 B ) を高 さ 方向の原点 と し、 ま た 前述 し た よ う に設置点 A と被計測地点 C の高 さ位置が等 し い と き (第 1 2 A図参照) 、 レ ー ザー光が受光器 1 6 の受光部の 中心で受光さ れ る よ う 設定さ れて い る た め、 上記仮高 さ 位置 Ζ ι は受光器 1 6 の受光部の 中心か ら の 変位 と し て表わ さ れる 。  That is, the provisional height position indicates the height position of the measured point C at a stage where the inclination of the mirrors 36 and 37 is not taken into consideration. In this case, the installation point A of the emitter 10 (or the installation point B of the emitter 13) is set as the origin in the height direction, and the height of the installation point A and the measurement point C are set as described above. When the heights are equal (see Fig. 12A), the laser beam is set so that it is received at the center of the light receiving section of the receiver 16 and the above temporary height is set. The position ιι is expressed as a displacement from the center of the light receiving section of the light receiver 16.
例え ば、 第 1 2 B 図 に示す ごと く 、 受光位置が受光器  For example, as shown in Fig. 12B, the light receiving position is
H  H
1 6 の受光部の 中心力、 ら 下側 に ズ レ てい る と き は  16 When the center of the light-receiving part of 6 is shifted downward from
2  Two
H  H
仮高さ 位置 Z i = と な る 。 ま た第 1 2 D 図 に示す The provisional height position Z i =. Also shown in Fig. 12D
2  Two
被計測地点 C 4 に おい て も 、 第 1 2 B 図の受光素子 1 6 b と 同 じ受光素子で受光が行な われ る の で、 仮高 さ 位置 Even at the point C 4 to be measured, since the light is received by the same light receiving element as the light receiving element 16 b in FIG. 12B, the provisional height position is set.
H  H
は同 じ ぐ、 τ 、 = と な る 。  Is the same, τ, =.
2  Two
すなわ ち 第 1 2 Β 図 に示す場合 と第 1 2 D 図 に示す場 合 とで は、 受光器 1 6 の受光部の受光素子 1 6 b と し て 同一の受光素子 に おい て受光が行な われ る ので、 仮高 さ 位置 Z 1 は同 じ に な る が、 第 1 2 D 図 の場合 は、 ミ ラ ー 3 6 , 3 7 の傾 き を変化 さ せて い る ので、 こ の場合の仮高 さ 位置 Z 1 は真の高 さ 位置を示 し て は い な い。 こ の よ う に し て求め ら れた仮高 さ 位置 は、 座標演算部 2 5 に 入力 さ れ る ( ス テ ッ プ 1 0 8 ) 。 In other words, in the case shown in Fig. 12 2 and the case shown in Fig. 12D, the light receiving element 16 b of the light receiving section of the light receiver 16 is used. Since the light is received by the same light receiving element, the provisional height position Z1 is the same, but in the case of Fig. 12D, the mirrors 36, 37 are tilted. Since it has been changed, the provisional height position Z 1 in this case does not indicate the true height position. The provisional height position obtained in this way is input to the coordinate calculation unit 25 (step 108).
つ ぎ に座標演算部 2 5 で は 、 上記送 · 受信機 3 1 か ら 出力 さ れ る 前記角度変化量 に基づい て、 上記 ミ ラ — 3 6 3 7 の傾 き 角が基準角度か ら変化 し た か否かが判断 さ れ る ( ス テ ツ プ 1 0 9 ) o  Next, in the coordinate calculation unit 25, the tilt angle of the mirror 3 6 3 7 changes from the reference angle based on the angle change amount output from the transmitter / receiver 31. It is determined whether or not it has been performed (Step 109) o
上記ス テ ッ プ 1 0 9 の判断結果が N 0 の場合、 つ ま り If the result of step 109 above is N 0, that is,
3 6 , 3 7 の傾 き 角 が基準角度であ る 場合 に は、 上記ス テ ツ プ 1 0 8 で演算 さ れた仮高 さ 位置 を被計 測定地点の鉛直方向 の座標位置 Z と す る 処理が実行 さ れ る ( ス テ ツ プ 1 1 0 ) 。 こ の場合、 上記座標位置 Z は上 言己 ス テ ッ プ 1 0 7 に お い て演算 さ れた被計測地点の二次 元座標値 X 、 と と.も に格納 さ れ、 かつ表示部 2 6 に表 示 さ れ る ( ス テ ツ プ 1 1 1 ) 。 If the inclination angles of 36 and 37 are the reference angles, the temporary height position calculated in step 108 above is taken as the vertical coordinate position Z of the measurement point to be measured. Is performed (step 110). In this case, the coordinate position Z is stored in the two-dimensional coordinate values X and X of the measured point calculated in the above step 107, and is displayed on the display unit. It is displayed in 26 (step 11 1).
—方、 上記ス テ ッ プ 1 0 9 の判断結果が Y E S の場合 つ ま り ミ ラ ー 3 6, 3 7 の傾 き 角 が傾動 さ れて基準角度 か ら 変化 し た場合 に は、 こ の 角 度変化量 と 上記ス テ ッ プ 1 0 7 に お い て演算 さ れた被計測地点の二次元位置 X 、 y お よ び二つ の定点 A、 B の二次元位置 A ( X A 、 y A ) 、 B ( X B 、 y B ) に 基づい て、 上記仮高 さ 位置 Z ! を捕正す る処理が実行 さ れ る 。 On the other hand, if the result of the determination in step 109 is YES, that is, if the tilt angles of the mirrors 36 and 37 are tilted and change from the reference angle, And the two-dimensional positions X and y of the measured point calculated in step 107 above and the two-dimensional positions A (XA, X) of the two fixed points A and B y A), B (XB, y B) The process for capturing Z! Is executed.
すなわ ち 、 第 1 2 D 図お よ び第 1 2 E 図に示す ご と く ミ ラ ー 3 6 , 3 7 の傾き 角 が変化 し て、 レ ー ザー光の光 軸方向が水平方向か ら 、 仰角 、 俯角方向 に + α お よ び一 α だけ変化 し た とす る と 、 被計測地点の座標位置 Ζ を求 め る た め に は、 上記仮高さ 位置 Ζ , に対 し て上記光軸の 変化に伴な う 補正値 Ζ 2 を加算 (ま た は減算) する 必要 があ る 。 That is, as shown in Figs. 12D and 12E, the tilt angles of the mirrors 36 and 37 change so that the laser beam optical axis is horizontal. If the elevation and depression angles change by + α and 1α in order to obtain the coordinate position 地点 of the measured point, the tentative height position Ζ, adding a correction value Zeta 2 will that accompanied the change of the optical axis (or subtraction) must be there Ru.
. 上記補正値 Ζ 2 を求め る に は、 二つ の定点 A、 B の二 次元位置 A ( x A 、 y A ) 、 B ( x B y B ) お よ び被 計測地点 C の二次元位置 C ( X、 y ) か ら A、 C 点間の 距離 i? ACお よ び B 、 C 間の距離 £ BCを下記 ( 3 ) 式に基 づいてそれぞれ演算す る 。 . The Ru obtains the correction value Zeta 2, the two-dimensional positions of the two fixed points A, two-dimensional position A of B (x A, y A) , B (x B y B) Contact good beauty the measurement point C The distance i? AC between the points A and C from C (X, y) and the distance £ BC between the points B and C are calculated based on the following equation (3).
5. AC= ( x A - X c ) 2 + ( y A _ y c ) 5. AC = (x A - X c ) 2 + ( y A _ yc)
( 3 ) (3)
BC ( X B - X c ) 1 + ( y B - y c ) そ し て、 上記 ミ ラ ー 3 6 , 3 7 の角度変化量か ら 対応 す る 光軸の仰角 ま た は俯角方向 の変化量 + a ま た は一 a を求め、 こ の変化量 と上記距離 ACま た は £ BCを下記第 ( 4 ) 式に代入する こ と によ っ て上記捕正値 Z 2 が演算 さ れ る (ス テ ッ プ 1 1 2 ) 。 BC (XB-Xc) 1 + (yB-yc) Then, the amount of change in the elevation or depression angle direction of the corresponding optical axis from the amount of angle change of mirrors 36 and 37 above + a, requested an a was, the amount of change in this and the distance AC or is Tsu by the and this substituting £ BC below equation (4) above ToTadashichi Z 2 is Ru is calculated ( Step 1 1 2).
Z 2 = Q tan a - ( 4 ) Z 2 = Q tan a-(4)
(但 し、 J? ; i? A Cま た は J2 B C) 以上の よ う に し て捕正値 Z 2 が演算 さ れる と 、 下記第 ( 5 ) 式 に し たが っ て、 座標位置 Z を演算す る 処理が実 行 さ れ る 。 (However, J ?; i? AC or J2 BC) When the calibration value Z2 is calculated as described above, the following According to the equation (5), processing for calculating the coordinate position Z is executed.
Z = Z i + Z 2 … ( 5 ) ち な み に 、 第 1 2 D 図 に示す被計測地点 C 4 の仮高 さ 位置 Z 1 は、 前記 し た ご と く 第 1 2 B 図の仮高 さ 位置 Z 1 と 同 じ く Ζ ·! = H Z 2 で あ り 、 補正値 Z 2 は、 上記 第 ( 4 ) 式力、 ら ί Actan a ( ま た は B Ctan a ) と な る ので、 被計測地点 C 4 の真の座標位置 は、 Z = H Z 2 + ΰ Actan ( ま た は H Z 2 + £ B Ctan a ) と な る ( ス テ ッ プ 1 1 3 ) 。 Z = Z i + Z 2 (5) Incidentally, the temporary height position Z 1 of the measured point C 4 shown in FIG. 12D is the same as the temporary height shown in FIG. 12B. Ri Oh at the height position Z 1 and the same rather than Ζ ·! = HZ 2, correction value Z 2, the above equation (4) force, since et al ί Actan a (or the BC tan a) and that Do, true coordinate position of the measurement point C 4 is, Z = HZ 2 + ΰ Actan ( or the HZ 2 + £ BC tan a) and that Do (scan STEP 1 1 3).
こ の よ う に じて、 座標位置 Z が演算 さ れ る と 、 該座標 位置 Z は、 上記ス テ ッ プ 1 0 7 に お い て演算 さ れた被計 測地点の二次元座標 x 、 y と と も に格納 さ れ、 かつ表示 部 2 6 に表示 さ れ る ( ス テ ッ プ 1 1 1 ) 。  When the coordinate position Z is calculated in this way, the coordinate position Z is calculated using the two-dimensional coordinates x and x of the measured point calculated in step 107 above. It is stored together with y and displayed on the display unit 26 (step 11 1).
以上説明 し た よ う に こ の第二具体例 に よ れば、 レ ー ザ 一光の光軸が仰角 ま た は俯角 方向 に変化す る よ う に し た ので、 受光器 に お け る 受光が確実に行な われ る 。  As described above, according to the second specific example, the optical axis of one laser beam is changed in the elevation angle or the depression angle direction. Light is received reliably.
こ れ と と も に 、 第二具体例の変形例 と し て こ の光軸の 変化量に基づい て受光器の受光高 さ 位置 を補正 し て、 被 計測地点の 真の鉛直位置座標を求め る こ と がで き る 。 こ れ に よ り 、 被計測地点の三次元の位置計測が可能 に な る な お、 第二具体例で は、 ミ ラ ー 駆動部 3 6 , 3 7 に対 す る 角度変化指令 と し て、 オペ レ ー タ に よ る デー タ 入力 に よ っ て与え る よ う に し て い る 力く、 こ れ に 限定 さ れ る こ と はな い。 At the same time, as a modification of the second specific example, the light receiving height position of the light receiver is corrected based on the change amount of the optical axis, and the true vertical position coordinates of the measured point are obtained. You can do it. This enables three-dimensional position measurement of the measured point. In the second specific example, the angle change command for the mirror drive units 36 and 37 is used as the angle change command. , Which is limited by the power input provided by the operator. There is no.
すな わ ち 、 演算器 1 8 b に受 丄 6 の受光部に お い て受光が行な われたか否かを判断す る 手段 と 、 該手段に お い て受光が行な われてい な い と 判断 さ れた 際  In other words, means for determining whether or not light was received at the light receiving section of receiver 6 in arithmetic unit 18b, and no light was received by the means When it is determined that
一 3 6 , 3 7 の傾 き 角 を適宜変化 さ せ る 角度変化指令を 発生す る 角度変化指令発生手段を具え る よ う に し て、 ミ ラ 一 の角度変化制御を 自動化す る 実施 も 当然可能であ る な おま た 、 第二具体例で は、 ミ ラ ー駆動部 3 2 , 3 3 に対する 角度変化指令を二合の送 · 受信機に よ る 無線で 与え る よ う に し てい る が、 こ れに限定 さ れ る こ と な く 当 然有線に て実施可能であ る 。 ま た、 こ の場合の指令は、 被計測地点か ら の遠隔操作に よ る 指令 限定 される こ と な く 、 投光器の設置地点におい て コ ン ト ロ ー-ラ 1 8 a に 直接指令を与え る よ う に し て も よ い ο (I) It is also possible to provide an angle change command generating means for generating an angle change command for appropriately changing the tilt angles of 36 and 37, thereby implementing an automatic control of the mirror angle change. Naturally, it is possible. In the second specific example, an angle change command to the mirror drive units 32 and 33 is given by radio by means of a two-unit transmitter / receiver. However, the present invention is not limited to this and can be implemented by wire. In this case, the command is not limited to a command by remote control from the measured point, but is sent directly to the controller 18a at the location where the projector is installed. You can give it ο
ま た 、 第二具体例では、 作業現場 にお け る 各点を ス ポ ッ 卜 測量す る場合を想定 し て説明 し たが、 移動体に受光 器を搭載 し て、 該移動体の位置を計測す る よ う に し て も よ い。 も ち ろ ん こ の移動体の位置計測 と し て は、 車両に 限 ら ず港湾等に お け る 船舶の測位等あ ら ゆ る 移動体の位 置計測 に適用可能であ る 。  Also, in the second specific example, the description has been made assuming a case where spot surveying is performed at each point at a work site.However, a receiver is mounted on a moving body, and the position of the moving body is determined. You may try to measure As a matter of course, the position measurement of a moving object is not limited to vehicles, and can be applied to position measurement of any moving object such as positioning of a ship in a port or the like.
ま た、 第二具体例では、 二台か ら 投光器か ら それぞれ 得 ら れ る 基準方位信号を一台の送 · 受信機で送受信す る よ う に し てい る が、 上記基準方位信号を各別の送 · 受信 機で送受信す る よ う に し て も よ い こ と は勿論であ る 。 ま た 、 第二具体例で は、 二台 の投光器の 回転方向が同 方向 に な る よ う に し て い る が、 も ち ろ ん前述 し た第一具 体例の よ う に互い逆方向 に 回転 さ せ る よ う に し て も よ い ま た、 第二具体例で は、 二台の投光器か ら 投光 さ れた レ ー ザー光を受光器 1 6 の共通の受光部で受光す る よ う に し て い る が、 二台 の投光器か ら そ れぞれ受光 さ れ る レ 一ザ一光を各別に受光す る た め に互 い に高 さ を異 に し た 受光部を設 け る よ う に し て も よ い。 Further, in the second specific example, the reference azimuth signals obtained from the two projectors from the projectors are transmitted and received by one transmitter / receiver. It goes without saying that transmission and reception may be performed by another transmitter / receiver. Also, in the second specific example, the rotation directions of the two projectors are set to be the same direction, but needless to say, as in the case of the first embodiment described above, the rotation directions are opposite to each other. Alternatively, in the second specific example, the laser light emitted from the two projectors is received by the common receiver of the receiver 16. However, in order to receive each of the laser beams received from the two projectors respectively, the receivers at different heights were used. You may set up a part.
ま た 、 第二具体例で は、 二台 の投光器の各基準方位 に こ れ ら 二台 の投光器か ら 投光 さ れた レ ー ザー光を識別受 光す る 基準方位検出器 1 1 , 1 4 を そ れぞれ設 け る よ う に し てい る が、 必ず し も こ れ ら 基準方位検出器 1 1 , 1 4 を設け る こ と な く 、 各投光器を同期 し て定速回転 さ せて 各投光器か ら 投光 さ れ る レ ー ザー光の被計測地点に お け る 受光 タ イ ミ ン グの みで、 位置計測を行な う よ う に し て も よ い。  Further, in the second specific example, the reference azimuth detector 11, which identifies and receives the laser light emitted from these two projectors in each reference azimuth of the two projectors, Although each of the 14 is provided separately, the reference azimuth detectors 11 and 14 are not necessarily provided, and each emitter is synchronized to rotate at a constant speed. The position measurement may be performed only at the light receiving timing at the measurement point of the laser beam emitted from each emitter.
要は、 レ ー ザー光を用 い た三角 測量を行な う 装置で あ れば、 そ れ 自 体の構成 は任意であ る 。  The point is that the configuration of the device itself is arbitrary as long as it is a device that performs triangulation using laser light.
な お、 こ の実施例で は レ ー ザー光を投光 し て三角 測量 を行な う 例を示 し たが、 勿論 レ ー ザー光に 限 ら ず直進性 に優れた光であ れば、 こ れを使用 す る 実施 も 当然可能で め る o  In this embodiment, an example in which a laser beam is projected and triangulation is performed is shown. However, it is needless to say that the laser beam is not limited to the laser beam and has excellent straightness. , It is of course possible to implement using it o
な お、 ま た第二具体例で は、 ミ ラ 一 3 6 , 3 7 の 角 度 を変化 さ せて、 レ ー ザ一光の光軸方向 を変え て い る が、 こ れに 限定 さ れ る こ と な く 、 投光器 自 身を傾動変化 さ せ て、 上記光軸方向 を変え る よ う に し て も よ い。 In the second example, the angle of the mirrors 36 and 37 is changed to change the direction of the optical axis of the laser beam. Without being limited to this, the projector itself may be tilted to change the optical axis direction.
要は、 レ ー ザー光の光軸方向 を変化 さ せる こ と がで き る のであれば、 そ の方法は任意であ る 。  The point is that any method can be used as long as the optical axis direction of the laser beam can be changed.
さ ら に、 高さ 方向 の受光位置を検出する た め に、 受光 器 1 6 の受光部に ポ ジ シ ョ ンセ ン サ ( P S D ) を用 い る よ う に し て も よ い。  In addition, a position sensor (PSD) may be used in the light receiving section of the light receiver 16 to detect the light receiving position in the height direction.

Claims

請求の範囲 The scope of the claims
1 .互に離間 し た二つ の定点に設置 さ れ、 各設置点に お け る 鉛直軸を 回転軸 と し て旋回 し つつ 、 レ ー ザー 光を投光 す る 第一お よ び第二の レ ー ザー投光手段 と 、 被計測地点 に配置 さ れ、 前記第一お よ び第二の レ ー.ザー 投光手段か ら そ れぞれ回転投光 さ れ る レ ー ザー光を受光す る レ ー ザ ー受光手段 と を具え 、 該 レ ー ザー 受光手段の 出力 に基づ く 三角 測量 に よ っ て前記被計測地点の 位置を計測す る 、 レ ー ザー を用 い た 位置計測装置 に お い て、 前記各 レ ー ザ ー投光手段側 に そ れぞれ設け ら れ る 基準方位検出器お よ び基準方位信号送信手段 と 、 前記 レ ー ザー受光手段側 に 設 け ら れ る 基準方位信号受信手段お よ び演算手段 と を さ ら に含み、 該演算手段 に よ り レ ー ザー光の受光方位を検 出 し て、 受光 し た レ ー ザ一光がいずれの レ ー ザー投光手 段か ら の レ ー ザー 光であ る かを識別す る と 共 に 、 旋回 に よ り 前記各基準方位検出器か ら 前記被計測地点に到着す る ま での そ れぞれの時間差を求め る よ う に構成 し た こ と を特徴 と す る レ ー ザー光を用 い た位置計測装置。  1.Installed at two fixed points separated from each other, and emit laser light while turning around the vertical axis at each installation point as the axis of rotation. A second laser light emitting means, and a laser light arranged at the point to be measured and which are respectively rotated and emitted from the first and second laser light emitting means. A laser receiving means for receiving the laser beam, and measuring the position of the measurement point by triangulation based on the output of the laser receiving means. In the position measuring device, a reference azimuth detector and a reference azimuth signal transmitting means provided on each of the laser light emitting means sides, and a laser light receiving means side are provided. The reference direction signal receiving means and the calculating means are further included, and the relay is performed by the calculating means. -Detects the direction of the received light, identifies the laser beam from the laser beam source that received the laser beam, The laser light is characterized in that it is configured to calculate the time difference between each of the reference azimuth detectors and the time of arriving at the point to be measured. Position measuring device.
2 .請求の範囲第 1 項に記載の位置計測装置で あ っ て、 前 記第一お よ び第二の レ ーザー投光手段の各 々 が、 こ れ ら の投光手段か ら 投光 さ れ る レ ー ザー 光の仰角 ま た は俯角 を変化 さ せ得 る 投光角度変化手段を備え る こ と を特徴 と す る レ ー ザー光を用 い た位置計測装置。  2. The position measuring device according to claim 1, wherein each of the first and second laser light emitting means emits light from the light emitting means. A position measuring device using laser light, characterized by having a projection angle changing means for changing an elevation angle or a depression angle of the laser light to be emitted.
3 .請求の範囲第 1 項 に 記載の 位置計測装置で あ っ て、 記 第一およ び第二の-レ ーザー投光手段の各々 が、 こ れ ら の 投光手段か ら投光 さ れ る レ ー ザー光の仰角 ま た は俯角 を 変化 さ せ得 る 投光角度変化手段を備え、 さ ら に前記 レ ー ザー受光手段が、 該受光手段に .よ っ て検出 さ れた受光高 さ 位置を前記投光角度変化手段か ら の 出力に基づい て補 正す る 受光高 さ 位置補正手段を備え、 それに よ つ て前記 被計測地点の三次元位置が計測 さ れ る こ と を特徵 と す る レ ー ザ一光を用 い た位置計測装置。 3. The position measuring device according to claim 1, wherein Each of the first and second laser emitting means can change the elevation angle or the depression angle of the laser light emitted from these light emitting means. Angle changing means, and the laser light receiving means corrects a light receiving height position detected by the light receiving means based on an output from the light emitting angle changing means. A position measuring apparatus using a laser beam, comprising a light receiving height position correcting means, whereby the three-dimensional position of the measured point is measured.
4 .請求の範囲第 1 項に記載の位置計測装置であ っ て、 前 記第一お よ び第二の レ ーザー投光手段の各々 が、 投光高 さ を調節す る た め に、 各々 の レ ー ザー投*光器を上下方向 に移動 さ せる 手段を有す る こ と を特徵 と す る レ ー ザー光 を用 い た位置計測装置。  4. The position measuring device according to claim 1, wherein each of the first and second laser light emitting means is arranged to adjust a light emitting height. A position measuring device using laser light, characterized by having means for moving each laser projector in the vertical direction.
5 .請求の範囲第 1 項に記載の位置計測装置であ っ て、 前 記 レ ーザー受光手段が、 水平断面に関 し て五角形以上の 多角形を有す る 受光器を有する こ と を特徵と す る レ ー ザ 一光を用い た位置計測装置。  5. The position measuring device according to claim 1, wherein the laser light receiving means has a light receiver having a polygonal shape of a pentagon or more in a horizontal section. Laser Position measurement device using one light.
6 .請求の範囲第 1 項に記載の位置計測装置であ っ て、 前 記演算手段が、 レ ー ザー投光手段識別手段 と 、 二個一組 の角度検出器 と 、 タ イ ミ ン グ検出手段 と 、 レ ー ザー光の 高 さ 検出手段 と 、 基準距離入力手段 と 、 座標演算手段 と そ し て表示手段 と を有す る こ と を特徵 と す る レ ーザー光 を用 い た位置計測装置。  6. The position measuring device according to claim 1, wherein the calculating means includes a laser light emitting means identifying means, a pair of angle detectors, and a timing. A position using a laser beam characterized by having a detecting means, a laser beam height detecting means, a reference distance inputting means, a coordinate calculating means and a display means. Measuring device.
7 .請求の範囲第 2 項およ び第 3 項の いずれか一項に記載 の 位置計測装置であ っ て、 前記投光角度変化手段が、 レ 一ザ—光源の光軸上に前記 レ ー ザー投光手段の旋回 と 同 期 し て旋回す る と 共 に、 水平軸 に 関 し て仰俯 自 在に設 け ら れた一枚の ミ ラ ー と 、 そ し て該 ミ ラ ー に仰俯動作を与 え る ミ ラ ー駆動手段 と を有す る こ と を特徴 と す る レ ー ザ 一 光を用 い た位置計測手段。 7.Described in any one of claims 2 and 3 The position measuring device according to claim 1, wherein the light projecting angle changing means rotates on the optical axis of the laser light source in synchronization with the turning of the laser light projecting means, With respect to the mirror, a mirror provided on its own and a mirror driving means for giving the mirror an elevation motion. Characterized laser Position measurement means using light.
8 .請求の範囲第 4 項に記載の位置計測装置であ っ て、 前 記 レ ー ザー投光器の上下移動手段の一方 に レペ リ ン グ用 受光素子 と 、 そ し て該 レべ リ ン グ用受光素子か ら の 出力 に よ り 前記上下移動手段を駆動す る た めの一個の ァ ク チ ユ エ 一 夕 と を設け た こ と を特徵 と す る レ ー ザー 光を用 い た位置計測装置。  8. The position measuring device according to claim 4, wherein a light receiving element for repelling is provided on one of the up-and-down moving means of the laser projector, and the leveling device. And a laser beam for driving the up / down moving means by an output from the light receiving element for laser. Position measurement device.
9 .請求の範囲第 7 項に記載の 位置計測装置で あ っ て、 前 記 ミ ラ 一 駆動手段が、 一個の モ ー タ と 、 該モ ー タ の 回転 量 に 対応 し た 数の パ ル ス を 出力す る 一個 のパル ス ェ ン コ ー ダ と 、 該エ ン コ ー ダの 出力パ ル ス を カ ウ ン ト す る 一個 の カ ウ ン タ と 、 前記モ ー タ を駆動す る ド ラ イ バ手段 と 、 そ し て前記カ ウ ン タ の 出力 に応 じ て該 ド ラ イ バ手段を制 御す る 一台の コ ン 卜 ロ ー ラ と を有す る こ と を特徴 と す る レ ー ザ一光を用 い た位置計測装置。  9. The position measuring device according to claim 7, wherein the mirror driving means includes one motor and a number of pulses corresponding to a rotation amount of the motor. One pulse encoder that outputs a pulse, one counter that counts the output pulse of the encoder, and the motor that drives the motor It is characterized by having driver means and one controller for controlling the driver means according to the output of the counter. A position measuring device that uses laser light.
PCT/JP1988/001008 1987-09-30 1988-09-30 Position meter using laser beam WO1989003049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19883890813 DE3890813T1 (en) 1987-09-30 1988-09-30 POSITION MEASURING DEVICE USING LASER BEAMS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62/244386 1987-09-30
JP24438687A JPH07122667B2 (en) 1987-09-30 1987-09-30 Surveyor using laser light
JP362588A JP2601294B2 (en) 1988-01-11 1988-01-11 Position measurement device
JP63/003625 1988-01-11

Publications (1)

Publication Number Publication Date
WO1989003049A1 true WO1989003049A1 (en) 1989-04-06

Family

ID=26337253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/001008 WO1989003049A1 (en) 1987-09-30 1988-09-30 Position meter using laser beam

Country Status (2)

Country Link
AU (1) AU628301B2 (en)
WO (1) WO1989003049A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536296A1 (en) * 1995-09-29 1997-04-03 Daimler Benz Ag Signal mark identification method for optical three=dimensional coordinate measurement, esp. for inspection and position monitoring of motor vehicles
DE19536295A1 (en) * 1995-09-29 1997-04-03 Daimler Benz Ag Arrangement of partially structured flat signal markers for calibration and orientation of three=dimensional sensors
CN111527265A (en) * 2017-12-12 2020-08-11 爱知制钢株式会社 Marker construction method and marker construction system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802560B2 (en) * 1992-02-24 1998-09-24 本田技研工業株式会社 Mobile steering control device
US8991062B2 (en) * 2011-12-15 2015-03-31 Atkinson Audio Inc. Locating and relocating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104503A (en) * 1982-12-07 1984-06-16 Kubota Ltd Device for detecting position of moving object
JPS59126275A (en) * 1983-01-06 1984-07-20 Toshihiro Tsumura Method for detecting position of moving body
JPS61191976A (en) * 1985-02-20 1986-08-26 Matsushita Electric Ind Co Ltd Position detector
JPS6250616A (en) * 1985-08-30 1987-03-05 Kajima Corp Surveying method using laser
JPS62179675A (en) * 1986-02-03 1987-08-06 Komatsu Ltd System for measuring three-dimensional position of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591994B2 (en) * 1986-05-21 1989-12-21 Kabushiki Kaisha Komatsu Seisakusho Apparatus for measuring position of moving body
IE59553B1 (en) * 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104503A (en) * 1982-12-07 1984-06-16 Kubota Ltd Device for detecting position of moving object
JPS59126275A (en) * 1983-01-06 1984-07-20 Toshihiro Tsumura Method for detecting position of moving body
JPS61191976A (en) * 1985-02-20 1986-08-26 Matsushita Electric Ind Co Ltd Position detector
JPS6250616A (en) * 1985-08-30 1987-03-05 Kajima Corp Surveying method using laser
JPS62179675A (en) * 1986-02-03 1987-08-06 Komatsu Ltd System for measuring three-dimensional position of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536296A1 (en) * 1995-09-29 1997-04-03 Daimler Benz Ag Signal mark identification method for optical three=dimensional coordinate measurement, esp. for inspection and position monitoring of motor vehicles
DE19536295A1 (en) * 1995-09-29 1997-04-03 Daimler Benz Ag Arrangement of partially structured flat signal markers for calibration and orientation of three=dimensional sensors
DE19536295C2 (en) * 1995-09-29 2000-12-14 Daimler Chrysler Ag Spatially designed signal mark
DE19536296B4 (en) * 1995-09-29 2004-10-14 Daimlerchrysler Ag Signal marks and methods for their identification
CN111527265A (en) * 2017-12-12 2020-08-11 爱知制钢株式会社 Marker construction method and marker construction system
CN111527265B (en) * 2017-12-12 2022-06-28 爱知制钢株式会社 Marker construction method and marker construction system

Also Published As

Publication number Publication date
AU2488688A (en) 1989-04-18
AU628301B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
US10488519B2 (en) Polygon mirror, fan beam output device, and survey system
US10469754B2 (en) Position guiding device, position guiding method, and position guiding program
JP4177765B2 (en) Surveying system
US10895632B2 (en) Surveying system
CN108871265A (en) measuring system
CN106716061A (en) Survey information marking device and survey information marking method
US10564265B2 (en) Measurement device and measurement method
JP7120723B2 (en) laser scanner system
US20230305152A2 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP2022055525A (en) Marking system and marking method
US6421360B1 (en) Rotational constructional laser
WO1989003049A1 (en) Position meter using laser beam
CN110988903B (en) Laser surface scanning target positioning system and method
JP2017187386A (en) Laser range-finder
JP2013152224A (en) Optical system
US11754677B2 (en) Measurement device
US20050278963A1 (en) Self-aligning, self plumbing baseline instrument
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
CN118258363A (en) Lofting laser measurement system
JP2601294B2 (en) Position measurement device
JPH112521A (en) Position-measuring plotting device with inclination sensor
US20220170744A1 (en) Laser Level Systems and Controls
JP2689266B2 (en) Three-dimensional position measuring device
JP2019015602A (en) Survey system
WO2020052255A1 (en) Projection apparatus and control method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DE SU US

RET De translation (de og part 6b)

Ref document number: 3890813

Country of ref document: DE

Date of ref document: 19900830

WWE Wipo information: entry into national phase

Ref document number: 3890813

Country of ref document: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载