WO1986006924A1 - Cyclotron - Google Patents
Cyclotron Download PDFInfo
- Publication number
- WO1986006924A1 WO1986006924A1 PCT/BE1986/000014 BE8600014W WO8606924A1 WO 1986006924 A1 WO1986006924 A1 WO 1986006924A1 BE 8600014 W BE8600014 W BE 8600014W WO 8606924 A1 WO8606924 A1 WO 8606924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclotron
- hills
- sectors
- valleys
- called
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 35
- 230000004907 flux Effects 0.000 claims abstract description 14
- 230000001133 acceleration Effects 0.000 claims description 10
- 239000003302 ferromagnetic material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
Definitions
- the present invention relates to a conventional cyclotron of a new design which makes it possible to significantly reduce the energy requirements.
- cyclotrons using superconductive coils superconductive cyclotrons
- cyclotrons using non-superconductive coils conventional cyclotrons
- superconductive cyclotrons do not use electrical power to maintain the magnetic field necessary for the acceleration of particles.
- the technology of superconducting coils and associated cryogenics remains complex and expensive.
- these coils require liquid helium as the coolant.
- each separate sector is equipped with a pair of coils. These coils are of complex shape (sector-shaped) and, to free the free space between the sectors, they must be of minimum section.
- the object of the present invention is to provide a new type of non-superconductive cyclotron where the electrical power required to produce the magnetic field is much lower than in the above-mentioned conventional cyclotrons, namely the "compact" cyclotron and the cyclotron. "with separate sectors”.
- This object can be achieved by a new magnetic structure where there is a small air gap, which reduces the number of amps / turn required, but also a pair of essentially circular coils and of large sec ⁇ tion, which reduces the current density and therefore the electrical power required to produce the number of amps / turn required.
- Another object of the invention is to avoid in the new structure the mechanical complexity inherent in so-called "separate sector” cyclotrons.
- This new structure specific to the conventional cyclotron according to the invention is characterized in that it comprises at least three sectors called “hills” where the air gap is reduced to a dimension close to that of the accelerated beam and where the magnetic flux is essentially concentrated, separated by spaces in the form of a sector called “valleys", where the air gap is very large (for example, but not limited to, where the air gap is of the order of 30 times that of the hills), so that * the magnetic flux is essentially zero and by a single pair of essentially circular coils essentially surrounding the "hills” and the "valleys", de ⁇ flux returns being arranged outside the coil opposite the "hills” , with a view to closing the magnetic circuit.
- cyclotron Another characteristic of the cyclotron according to the invention is that the sectors called “hills” are rigidly assembled on two plates called “cuasse” forming lids for the vacuum box and channeling the magnetic flux towards the returns of aforementioned flows.
- the cyclotron preferably comprises four sectors made of a conventional magnetic material.
- a great advantage of the device according to the invention lies in the fact that the acceleration electrodes can be arranged in the "valleys" and that, consequently, the air gap can be reduced to a minimum, that is to say at the location necessary for the circulation of the particles to be accelerated. This results in a notable saving in the energy consumed.
- Another advantage of the cyclotron according to the design principle of the invention lies in the simplicity of the coils which provide the magnetic induction field.
- the magnetic flux is concentrated in the "hills" where the air gap is minimum and essentially zero in the "valleys" where the air gap is large.
- the design of the cyclotron according to the invention makes it possible to house the vertical beam accelerator electrodes as well as the final stage of the power amplifier directly in the "valleys".
- the plate of the electrode is inductively coupled to the cavity of the cyclotron. The stability of the system is only improved.
- FIG. 1 shows a schematic section along the median plane of a cyclotron according to the invention
- - Figure 2 shows a section along line II-II of Figure 1.
- the magnetic structure of the cyclotron has a symmetry with respect to the plane in which the particles are accelerated, called "median plane" 17, for example placed horizontally and with respect to an axis 26 perpendicular to this plane.
- This magnetic structure consists of a certain number of elements made of a ferro- material. magnetic (3, 5, 11, 13, 13 ') and a pair of coils made of a conductive material (21, 23).
- the ferromagnetic structure consists of:
- the angular spaces 15 and 15 ' located respectively between the sectors 13 and 13', are called
- valleys The air gap there is important because it extends from the upper yoke 3 to the lower yoke 5. This air gap is there, for example, of the order of 30 times greater than the air gap 19. The magnetic flux in the valleys is essentially zero.
- the central duct 25 is intended to receive, at least in part, the source of particles to be accelerated which are injected into the center of the device by means known per se.
- the angle of a sector is advantageously of the order of 54 °.
- a cyclotron according to the invention advantageously comprises the final stages of two high frequency power amplifiers 27 inductively coupled by a loop to the acceleration electrodes 28 with vertical beam 29, which are housed in the "valleys" between the sectors 13 , 13 '.
- the vacuum chamber (31) can advantageously be very simple. It consists of a ring made of non-magnetic material, extending from the upper yoke 3 to the lower yoke 5 in the space left between the sectors 13, 13 'and the coils 21, 23. Note the advantage of the simplicity of a pair of large coils and the air gap reduced to a minimum, which allows significant energy savings to be obtained.
- the air gap in the hills is 3 cm and the magnetic field 18 kGs, while in the valleys the entre iron is 106 cm and the magnetic field 0.4 kGs.
- the number of ampere turns required is 33,000 At per coil, which, with a current density of 50
- a / cm ⁇ in the coils gives a consumed power of 7 kW for the cyclotron according to the invention against 100 kW for a normal cyclotron.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Abstract
Cyclotrons non supraconducteurs. Selon l'invention un tel cyclotron (1) comporte un circuit magnétique constitué par au moins trois secteurs (13, 13') appelés ''collines'', où l'entrefer (19) est réduit à une dimension voisine de celle du faisceau accéléré et où le flux magnétique est essentiellement concentré, séparés par des espacements (15) en forme de secteurs appelés ''vallées'' où l'entrefer est de dimension très grande, pour que le flux magnétique soit essentiellement nul et par une seule paire de bobines (2) essentiellement circulaire entourant essentiellement les collines (13, 13') et les vallées (15, 15'). Cette forme d'exécution, permet des économies d'énergie importantes, la puissance consommée pouvant être réduite par exemple à 100 kW pour un cyclotron non supraconducteur normal à 7 kW dans la forme d'exécution selon l'invention.
Description
CYCLOTRON •
La présente invention est relative à un cyclotron classique de conception nouvelle qui permet de réduire de manière sensible les besoins en énergie. Les cyclotrons connus sont de deux types : les cyclotrons utilisant des bobinages supraconducteurs (cy¬ clotrons supraconducteurs) et les cyclotrons utilisant des bobinages non supraconducteurs (cyclotrons classi¬ ques) . Les cyclotrons supraconducteurs n'utilisent pas de puissance électrique pour entretenir le champ magné¬ tique nécessaire à l'accélération des particules. Toute¬ fois, la technologie des bobines supraconductrices et de la cryogénie associée restent complexes et coûteuses. De plus, ces bobines requièrent de l'hélium liquide comme fluide réfrigérant. Ces considérations restreignent. forτ_, - tement l'usage des cyclotrons supraconducteurs.
Par contre, dans le cas des cyclotrons classi¬ ques, une part importante de la puissance est utilisée pour produire et profiler le champ magnétique nécessaire à l'accélération des particules.
Il ex-iste actuellement des cyclotrons classiques dits "compacts" qui ne comportent qu'un seul pôle. Dans ce cas, les électrodes d'accélération, généralement ap- pelées "dés" sont disposées dans l'entrefer. Par consé¬ quent, la puissance fournie au cyclotron doit être rela¬ tivement élevée pour établir le champ magnétique dans un entrefer de taille accrue. En revanche, la boîte à vide est très simple et peu coûteuse. On connaît également des cyclotrons classiques dits "à secteurs séparés", dans lesquels la structure magnétique est divisée en unités séparées, entièrement autonomes, en forme de secteurs. Dans les espaces libres laissés entre ces "secteurs séparés" on a installé les dispositifs d'accélération. Dès lors, l'entrefer des secteurs magnétiques peut être réduit et, par consé¬ quent, le nombre d'ampères/tour requis pour produire le
champ magnétique est moins important.
Toutefois, ces cyclotrons présentent une série d'inconvénients. Tout d'abord chaque secteur séparé est équipé d'une paire de bobines. Ces bobines sont de forme complexe (en forme de secteur) et, pour dégager l'espace libre entre les secteurs, elles doivent être de section minimale.
Ceci entraîne que la densité de courant doit être élevée dans ces bobines et, en conséquence, la puissance électrique requise pour produire le champ magnétique reste élevée bien que le nombre d'ampères/tour soit plus faible.
Enfin, les secteurs étant mécaniquement indépen¬ dants, la conception mécanique du cyclotron et notamment de la boîte à vide est complexe et coûteuse.
Le but de la présente invention est de fournir un nouveau type de cyclotron non supraconducteur où la puissance électrique requise pour produire le champ magnétique est beaucoup plus faible que dans les cyclo- trons classiques précités à savoir le cyclotron "com¬ pact" et le cyclotron "à secteurs séparés".
Ce but peut être atteint par une structure magné¬ tique nouvelle où l'on trouve un faible entrefer, ce qui réduit le nombre d'ampères/tour requis, mais aussi une paire de bobines essentiellement circulaires et de sec¬ tion importante, ce qui permet de diminuer la densité de courant et donc la puissance électrique requise pour produire le nombre d'ampères/tour requis.
Un autre but de 1'invention est d'éviter dans la nouvelle structure la complexité mécanique inhérente aux cyclotrons dits "à secteurs séparés".
Cette nouvelle structure propre au cyclotron classique selon l'invention est caractérisée par ce qu'elle comporte au moins trois secteurs appelés "colli- nés" où l'entrefer est réduit à une dimension voisine de celle du faisceau accéléré et où le flux magnétique est essentiellement concentré, séparés par des espacements
en forme de secteur dénommés "vallées", où l'entrefer est de dimension très grande (par exemple, mais de façon non limitative, où l'entrefer est de l'ordre de 30 fois supérieur à celui des collines), pour*que le flux magné- tique soit essentiellement nul et par une seule paire de bobines essentiellement circulaires entourant essentiel¬ lement les "collines" et les "vallées", deέ retours de flux étant disposés à 1'extérieur de la bobine en face des "collines", en vue de la fermeture du circuit magné- tique.
Une autre caractéristique du cyclotron selon l'invention est que les secteurs appelés "collines" sont -assemblés de façon rigide sur deux plaques appelées "cu¬ lasse" formant couvercles pour la boîte â vide et cana- lisant le flux magnétique vers les retours de flux pré¬ cités.
Selon l'invention, le cyclotron comporte de pré¬ férence quatre secteurs en un matériau magnétique clas¬ sique. Un grand avantage du dispositif selon 1'invention réside dans le fait que les électrodes d'accélération peuvent être disposées dans les "vallées" et que, par conséquent, l'entrefer peut être réduit à un minimum, c'est-à-dire à l'emplacement nécessaire pour la circula- tion des particules à accélérer. Il en résulte une nota¬ ble économie de 1'énergie consommée.
Un autre avantage du cyclotron selon le principe de conception de l'invention, réside dans la simplicité des bobines qui fournissent le champ d'induction magnê- tique.
Des géométries présentant des similitudes ont dé¬ jà été décrites pour des cyclotrons supraconducteurs par les documents US-A-3 925 676; FR-A-2 234 733; IEEE Transactions on Nuclear Science Vol. NS-30 (1983) Aug., No. 4, Part 1, New York, USA p 2126-2128 E. ACERBI; et Nuclear Instruments & Methods in Physics Research, vol. 220 (1984) Febr., No. 1, Amsterdam, Netherlands, p 186-
193 U. TRINKS .
Toutefois la similitude entre les cyclotrons su¬ praconducteurs cités ci-dessus et le cyclotron non su¬ praconducteur selon l'invention est limitée à la géomé- trie. Le fonctionnement magnétique est fondamentalement différent.
Pour obtenir un faible nombre d'ampères/tour dans le cyclotron selon l'invention, le flux magnétique est concentré dans les "collines" où l'entrefer est minimum et essentiellement nul dans les "vallées" où l'entrefer est grand.
Dans les cyclotrons supraconducteurs de géométrie similaire, au contraire l'acier est complètement saturé et le flux magnétique est très élevé dans les "vallées" comme dans les "collines" (voir réf. Nuclear Instruments Se Methods in Physics Research, vol. 220 _(1984) Febr.., No. 1, page 187, tableau 1) et l'effet recherchée à sa¬ voir réduire le nombre d'ampère tours n'est pas atteint. Par ailleurs, contrairement aux cyclotrons clas- siques existants, la structure a une symétrie de révolu¬ tion, avec des retours de flux dans l'alignement de cha¬ cun des secteurs, ce qui élimine complètement les dissy¬ métries néfastes du champ magnétique associées aux con¬ ceptions classiques. En outre, la conception du cyclotron selon l'in¬ vention permet de loger les électrodes accélératrices à poutre verticale ainsi que l'étage final de l'amplifica¬ teur de puissance directement dans les "vallées". Avan¬ tageusement, la plaque de l'électrode est couplée induc- tivement à la cavité du cyclotron. La stabilité du sys¬ tème n'en est qu'améliorée.
Bien qu'un tel couplage inductif ait déjà été utilisé dans les cyclotrons classiques, il n'a jamais été utilisé pour résoudre les problèmes de charge varia- ble dans les cyclotrons à haute intensité.
Les cyclotrons classiques font également appel à des montages des électrodes d'accélération sur une pou-
tre verticale résonnant à demi-longueur d'onde. Ces ca¬ vités sont généralement excitées à partir d'un généra¬ teur de puissance à haute fréquence, situé à une certai¬ ne distance. Par ailleurs, dans le cas des cyclotrons classi¬ ques, si l'intensité du faisceau accéléré par le cyclo¬ tron est telle que la puissance d'accélération devient comparable à la puissance dissipée par effet Joule dans les cavités, l'impédance shunt apparente de la cavité est diminuée, et le système de couplage est désaccordé, entraînant l'apparition de puissance réfléchie sur la ligne de transmission. Cet effet peut être à l'origine d'instabilités dans le système interactif faisceau-ten¬ sion accélératrice. D'autres détails et avantages apparaîtront plus clairement dans la description qui suit accompagnée j_es figures dans lesquelles :
- la figure 1 représente une coupe schématique selon le plan médian d'un cyclotron selon l'invention; et - la figure 2 représente une coupe selon la ligne II-II de la figure 1.
Il est bien évident que la présente description n'est donnée qu'à titre d'exemple et qu'elle ne vise pas à limiter la portée de la présente invention. Des dispositifs accessoires tels que les conduits de sortie, le support du cyclotron, les pompes à vide, sont mentionnés à titre d'illustration mais ne sont pas spécifiques au cyclotron selon l'invention. Dans les fi¬ gures, des repères identiques représentent des éléments identiques ou analogues.
La structure magnétique du cyclotron présente une symétrie' par rapport au plan dans lequel les particules sont accélérées, dit "plan médian" 17, par exemple placé horizontalement et par rapport à un axe 26 perpendicu- laire à ce plan.
Cette structure magnétique se compose d'un cer¬ tain nombre d'éléments réalisés dans un matériau ferro-
magnétique (3, 5, 11, 13, 13') et d'une paire de bobines réalisées dans un matériau conducteur (21, 23).
La structure ferromagnétique se compose de :
1) Deux plaques de- base 3 et 5, appelées culas- ses, par exemple en forme de disques situées essentiellement de façon coaxiale par rapport à l'axe 26, parallèle et symétrique par rap¬ port au plan médian 17, l'une étant au-dessus du plan médian, l'autre étant en-dessous de celui-ci.
2) D'au moins trois secteurs supérieurs 13 et d'un nombre égal de secteurs inférieurs 13' situés l'un en face de l'autre symétriquement par rapport au plan médian 17, séparés par un entrefer 19 minimum, c'est-à-dire juste suffi¬ sant pour le passage du faisceau .de..particu- .. les, le flux magnétique étant de cette manière essentiellement concentré à cet endroit. Les secteurs 13 et 13' sont fixés rigidement à la culasse supérieure 3 et inférieure 5 et sont appelés collines.
3) D':au moins trois retours de flux 11 réunissent de façon rigide la culasse inférieure 3 et su¬ périeure 5, situés à l'extérieur, en face des secteurs 13 et 13' et séparés de ceux-ci par un espace de forme annulaire dans lequel est située la paire de bobines 21, 23. Outre la fonction mécanique précitée, ces "re¬ tours de flux" 11 assurent le retour du flux magnétique tout en laissant accessibles les espaces angulaires 15 et 15' situés entre les collines. Les bobines 21 et 23 sont de forme essentielle¬ ment circulaires et sont localisées dans 1'espace annu- laire laissé entre les secteurs 13 et 13'et les retours de flux 11. Avantageusement, ces bobines ont une sec¬ tion importante, ce qui entraîne une faible, densité de courant et donc une faible puissance électrique dissipée
pour produire le champ magnétique.
Les espaces angulaires 15 et 15', situés respec- tivement entre les secteurs 13 et 13', sont appelés
"vallées". L'entrefer y est important car il s'étend de la culasse supérieure 3 à la culasse inférieure 5. Cet entrefer y est, par exemple, de l'ordre de 30 fois supé¬ rieur à l'entrefer 19. Le flux magnétique dans les val¬ lées est essentiellement nul.
Les divers éléments constitutifs sont assemblés par des moyens connus en soi comme des boulons.
Le conduit central 25 est destiné à recevoir, au moins en partie, la source de particules à accélérer qui sont injectées au centre de l'appareil par des moyens connus en soi. Dans le cas représenté d'un cyclotron à quatre secteurs ou à quatre "collines", l'angle d'un secteur est avantageusement de l'ordre de 54°.
Un cyclotron selon 1'invention comporte avanta¬ geusement les étages finals de deux amplificateurs de puissance à haute fréquence 27 couplés inductivement par une boucle aux électrodes d'accélération 28 à poutre verticale 29, qui sont logés dans les "vallées" entre les secteurs 13, 13'.
Dans le cyclotron selon l'invention, la chambre à vide (31) peut avantageusement être très simple. Elle se compose d'un anneau en matériau non magnétique, s'éten¬ dant de la culasse supérieure 3 à la culasse inférieure 5 dans l'espace laissé entre les secteurs 13, 13' et les bobines 21, 23. On notera l'avantage de la simplicité d'une paire de grosses bobines et de l'entrefer réduit à un minimum, qui perm'et d'obtenir des économies d'énergie importan¬ tes.
A titre d'exemple, on peut mentionner que, dans le cas d'un cyclotron d'une énergie de l'ordre de 30MeV l'entrefer dans les collines est de 3 cm et le champ magnétique 18 kGs, tandis que dans les vallées l'entre-
fer est de 106 cm et le champ magnétique 0,4 kGs. Dans ce cas le nombre d'ampère tours requis est de 33.000 At par bobine, ce qui, avec une densité de courant de 50
A/cm^ dans les bobines donne une puissance consommée de 7 kW pour le cyclotron selon l'invention contre 100 kW pour un cyclotron normal.
Notons par exemple que pour un cyclotron supra¬ conducteur selon US-A-3 925 676, le nombre d'ampère tours requis est de 1,8 10^ At par bobine (col. 4, ligne 33 à 43).
Claims
1. Cyclotron non supraconducteur, caractérisé en ce qu'il comporte un circuit magnétique constitué par au moins trois secteurs (13,- 13') appelés "collines", où l'entrefer (19) est réduit à une dimension voisine de celle du faisceau accéléré et où le flux magnétique est essentiellement concentré, séparés par des espacements (15) forme de secteurs appelés "vallées" où l'entrefer est de dimension très grande, pour que le flux magnéti- que soit essentiellement nul et par une seule paire de bobines (21, 23) essentiellement circulaire entourant essentiellement les collines (13, 13') et les vallées (15, 15').
2. Cyclotron selon la revendication 1 caractérisé en ce que les secteurs appelés "collines" sont rigide¬ ment fixés à une. pièce unique en matériau ferromagnéti¬ que.
3. Cyclotron selon la revendication 1 caractérisé -en ce que l'entrefer des vallées (15, 15') est de l'or- dre de 30 fois supérieure à l'entrefer (19) des collines (13, 13').
4. Cyclotron selon la revendication 1 caractérisé en ce qu'il comporte des retours de flux agencés (11) à l'extérieur de la bobine annulaire (2), en face des collines (13, 13'), pour former le circuit magnétique.
5. Cyclotron selon la revendication 1 caractérisé en ce que les secteurs (13, 13') dénommés colline pré¬ sentent un angle de l'ordre de 54e.
6. Cyclotron selon la revendication 1 caractérisé en ce que les électrodes d'accélération (28) sont logées dans les vallées (15, 15').
7'. Cyclotron selon la revendication 1 caractérisé en ce que 1'étage final de 1'amplificateur de puissance (27) est monté dans les vallées (15, 15'). 8. Cyclotron selon la revendication 1 caractérisé en ce que l'étage final de l'amplificateur de puissance (27) est couplé inductivement aux électrodes d'accéléra¬ tion (29).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8686902291T DE3672566D1 (de) | 1985-05-10 | 1986-04-30 | Zyklotron. |
JP61502424A JPH0654719B2 (ja) | 1985-05-10 | 1986-04-30 | サイクロトロン |
AT86902291T ATE54531T1 (de) | 1985-05-10 | 1986-04-30 | Zyklotron. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU85895A LU85895A1 (fr) | 1985-05-10 | 1985-05-10 | Cyclotron |
LU85895 | 1985-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986006924A1 true WO1986006924A1 (fr) | 1986-11-20 |
Family
ID=19730465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BE1986/000014 WO1986006924A1 (fr) | 1985-05-10 | 1986-04-30 | Cyclotron |
Country Status (6)
Country | Link |
---|---|
US (1) | US4771208A (fr) |
EP (1) | EP0222786B1 (fr) |
JP (1) | JPH0654719B2 (fr) |
DE (1) | DE3672566D1 (fr) |
LU (1) | LU85895A1 (fr) |
WO (1) | WO1986006924A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991007864A1 (fr) * | 1989-11-21 | 1991-05-30 | Ion Beam Applications S.A. | Cyclotrons focalises par secteurs |
US5139731A (en) * | 1991-05-13 | 1992-08-18 | Cti, Incorporated | System and method for increasing the efficiency of a cyclotron |
WO1993010651A1 (fr) * | 1991-11-22 | 1993-05-27 | Ion Beam Applications S.A. | Cyclotron isochrone compact |
WO1995017802A1 (fr) * | 1993-12-23 | 1995-06-29 | Cti Cyclotron Systems, Inc. | Cyclotron, bobine d'electro-aimant et procede de fabrication associe |
EP2410823A1 (fr) | 2010-07-22 | 2012-01-25 | Ion Beam Applications | Cyclotron apte à accélérer au moins deux types de particules |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1009669A3 (fr) * | 1995-10-06 | 1997-06-03 | Ion Beam Applic Sa | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode. |
US5977554A (en) * | 1998-03-23 | 1999-11-02 | The Penn State Research Foundation | Container for transporting antiprotons |
US6576916B2 (en) * | 1998-03-23 | 2003-06-10 | Penn State Research Foundation | Container for transporting antiprotons and reaction trap |
US6414331B1 (en) | 1998-03-23 | 2002-07-02 | Gerald A. Smith | Container for transporting antiprotons and reaction trap |
SE513190C2 (sv) * | 1998-09-29 | 2000-07-24 | Gems Pet Systems Ab | Metod och system för minimerande av magnetstorlek i en cyclotron |
EP1069809A1 (fr) * | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Cyclotron isochrone et procédé d'extraction de particules chargées hors de ce cyclotron |
EP1385362A1 (fr) * | 2002-07-22 | 2004-01-28 | Ion Beam Applications S.A. | Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules |
EP3294045B1 (fr) | 2004-07-21 | 2019-03-27 | Mevion Medical Systems, Inc. | Générateur de forme d'onde de fréquence radio programmable pour un synchrocyclotron |
ES2594619T3 (es) | 2005-11-18 | 2016-12-21 | Mevion Medical Systems, Inc. | Radioterapia con partículas cargadas |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
EP2190269B1 (fr) * | 2006-01-19 | 2017-03-15 | Massachusetts Institute of Technology | Structure d'aimants pour accélération de particules |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8153997B2 (en) * | 2009-05-05 | 2012-04-10 | General Electric Company | Isotope production system and cyclotron |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
ES2739634T3 (es) | 2012-09-28 | 2020-02-03 | Mevion Medical Systems Inc | Control de terapia de partículas |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
TW201433331A (zh) | 2012-09-28 | 2014-09-01 | Mevion Medical Systems Inc | 線圈位置調整 |
JP6121544B2 (ja) | 2012-09-28 | 2017-04-26 | メビオン・メディカル・システムズ・インコーポレーテッド | 粒子ビームの集束 |
CN104813749B (zh) | 2012-09-28 | 2019-07-02 | 梅维昂医疗系统股份有限公司 | 控制粒子束的强度 |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
CN104812444B (zh) | 2012-09-28 | 2017-11-21 | 梅维昂医疗系统股份有限公司 | 粒子束的能量调节 |
WO2014052721A1 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Système de commande pour un accélérateur de particules |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
ES2768659T3 (es) | 2013-09-27 | 2020-06-23 | Mevion Medical Systems Inc | Exploración de haces de partículas |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
DE102014003536A1 (de) * | 2014-03-13 | 2015-09-17 | Forschungszentrum Jülich GmbH Fachbereich Patente | Supraleitender Magnetfeldstabilisator |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
JP7059245B2 (ja) | 2016-07-08 | 2022-04-25 | メビオン・メディカル・システムズ・インコーポレーテッド | 治療計画の決定 |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
JP6940676B2 (ja) | 2017-06-30 | 2021-09-29 | メビオン・メディカル・システムズ・インコーポレーテッド | リニアモーターを使用して制御される構成可能コリメータ |
EP3934751B1 (fr) | 2019-03-08 | 2024-07-17 | Mevion Medical Systems, Inc. | Collimateur et dégradeur d'énergie pour système de thérapie par particules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175131A (en) * | 1961-02-08 | 1965-03-23 | Richard J Burleigh | Magnet construction for a variable energy cyclotron |
FR2176485A1 (fr) * | 1972-03-20 | 1973-11-02 | Thomson Csf | |
FR2234733A1 (fr) * | 1973-06-19 | 1975-01-17 | Ca Atomic Energy Ltd | |
US3925676A (en) * | 1974-07-31 | 1975-12-09 | Ca Atomic Energy Ltd | Superconducting cyclotron neutron source for therapy |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3789335A (en) * | 1971-10-04 | 1974-01-29 | Thomson Csf | Magnetic focusing device for an isochronous cyclotron |
CA1008125A (en) * | 1975-03-07 | 1977-04-05 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Method and apparatus for magnetic field shimming in an isochronous cyclotron |
SU747396A1 (ru) * | 1979-01-04 | 1983-12-30 | Предприятие П/Я А-7904 | Кольцевой циклотрон |
US4445102A (en) * | 1981-11-19 | 1984-04-24 | The United States Of America As Represented By The United States Department Of Energy | Magnet pole tips |
-
1985
- 1985-05-10 LU LU85895A patent/LU85895A1/fr unknown
-
1986
- 1986-04-30 DE DE8686902291T patent/DE3672566D1/de not_active Expired - Lifetime
- 1986-04-30 US US07/010,280 patent/US4771208A/en not_active Expired - Lifetime
- 1986-04-30 EP EP86902291A patent/EP0222786B1/fr not_active Expired - Lifetime
- 1986-04-30 JP JP61502424A patent/JPH0654719B2/ja not_active Expired - Lifetime
- 1986-04-30 WO PCT/BE1986/000014 patent/WO1986006924A1/fr active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175131A (en) * | 1961-02-08 | 1965-03-23 | Richard J Burleigh | Magnet construction for a variable energy cyclotron |
FR2176485A1 (fr) * | 1972-03-20 | 1973-11-02 | Thomson Csf | |
FR2234733A1 (fr) * | 1973-06-19 | 1975-01-17 | Ca Atomic Energy Ltd | |
US3925676A (en) * | 1974-07-31 | 1975-12-09 | Ca Atomic Energy Ltd | Superconducting cyclotron neutron source for therapy |
Non-Patent Citations (2)
Title |
---|
IEEE Transactions on Nuclear Science, Vol. NS-30, Nr.4, part 1, August 1983, New York, (US) E. ACERBI et al.: "Status of the Milan Superconducting Cyclotron Project", pages 2126-2128, see figure 1 (cited in the application) * |
Nuclear Instruments & Methods in Physics Research, Vol.220, Nr.1, February 1984, Amsterdam, (NL) V.TRINKS: "Superconducting Cyclotrons as Boosters for Tandems",pages 186-193, see figures 3,7 (cited in the application) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991007864A1 (fr) * | 1989-11-21 | 1991-05-30 | Ion Beam Applications S.A. | Cyclotrons focalises par secteurs |
BE1003551A3 (fr) * | 1989-11-21 | 1992-04-21 | Ion Beam Applic Sa | Cyclotrons focalises par secteurs. |
US5139731A (en) * | 1991-05-13 | 1992-08-18 | Cti, Incorporated | System and method for increasing the efficiency of a cyclotron |
WO1993010651A1 (fr) * | 1991-11-22 | 1993-05-27 | Ion Beam Applications S.A. | Cyclotron isochrone compact |
BE1005530A4 (fr) * | 1991-11-22 | 1993-09-28 | Ion Beam Applic Sa | Cyclotron isochrone |
WO1995017802A1 (fr) * | 1993-12-23 | 1995-06-29 | Cti Cyclotron Systems, Inc. | Cyclotron, bobine d'electro-aimant et procede de fabrication associe |
EP2410823A1 (fr) | 2010-07-22 | 2012-01-25 | Ion Beam Applications | Cyclotron apte à accélérer au moins deux types de particules |
WO2012010387A1 (fr) | 2010-07-22 | 2012-01-26 | Ion Beam Applications | Cyclotron apte à accélérer au moins deux types de particules |
CN103004292A (zh) * | 2010-07-22 | 2013-03-27 | 离子束应用公司 | 能够对至少两种粒子进行加速的回旋加速器 |
JP2013531354A (ja) * | 2010-07-22 | 2013-08-01 | イオン ビーム アプリケーションズ | 少なくとも二種類の粒子を加速することのできるサイクロトロン |
Also Published As
Publication number | Publication date |
---|---|
EP0222786B1 (fr) | 1990-07-11 |
JPH0654719B2 (ja) | 1994-07-20 |
LU85895A1 (fr) | 1986-12-05 |
EP0222786A1 (fr) | 1987-05-27 |
US4771208A (en) | 1988-09-13 |
DE3672566D1 (de) | 1990-08-16 |
JPS63501533A (ja) | 1988-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0222786B1 (fr) | Cyclotron | |
EP0613607B1 (fr) | Cyclotron isochrone compact | |
EP0359774B1 (fr) | Accelerateur d'electrons a cavite coaxiale | |
EP1130949B1 (fr) | Dispositif électromagnetique pour la production d'atomes froids | |
FR2857555A1 (fr) | Accelerateur a plasma a derive fermee d'electrons | |
WO1995000758A1 (fr) | Moteur a plasma de longueur reduite a derive fermee d'electrons | |
EP2591643A1 (fr) | Cyclotron comprenant un moyen de modification du profil de champ magnétique et procédé associé | |
FR2624596A1 (fr) | Canon electromagnetique | |
WO1983001541A1 (fr) | Machine electrique synchrone a inducteur supraconducteur | |
BE1019557A3 (fr) | Synchrocyclotron. | |
FR2842261A1 (fr) | Propulseur plasmique a effet hall | |
FR2925217A1 (fr) | Structure hyperfrequences pour tube microondes avec dispositif de confinement du faisceau a aimants permanents et refroidissement ameliore | |
EP0128052A1 (fr) | Cyclotron à système de défocalisation | |
EP0203952A1 (fr) | Aimant solenoidal sans fer. | |
BE1003551A3 (fr) | Cyclotrons focalises par secteurs. | |
EP4070442A1 (fr) | Machine électrique à barrière de flux à induit et inducteur supraconducteurs | |
FR2601498A1 (fr) | Source d'ions a resonance cyclotronique electronique | |
FR3055507A1 (fr) | Synchrocyclotron supraconducteur | |
FR2621439A1 (fr) | Cavite resonnante, dispositif de couplage, accelerateur de particules et tube a ondes progressives comportant de telles cavites | |
FR2766049A1 (fr) | Cyclotron compact et son utilisation en proton-therapie | |
CA2495458A1 (fr) | Accelerateur de particules | |
FR2578057A1 (fr) | Procede de fabrication d'une bobine de type bitter et aimant solenoidal resultant de la mise en oeuvre de ce procede | |
EP4266332A1 (fr) | Dispositif de couplage magnétique et procédé de fabrication d'un tel dispositif de couplage magnétique | |
FR3133513A1 (fr) | Cyclotron à bi-secteurs séparés | |
EP2633741A1 (fr) | Synchrocyclotron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1986902291 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1986902291 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1986902291 Country of ref document: EP |