WO1986000333A1 - Compositions de combustibles - Google Patents
Compositions de combustibles Download PDFInfo
- Publication number
- WO1986000333A1 WO1986000333A1 PCT/US1985/001209 US8501209W WO8600333A1 WO 1986000333 A1 WO1986000333 A1 WO 1986000333A1 US 8501209 W US8501209 W US 8501209W WO 8600333 A1 WO8600333 A1 WO 8600333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- additive
- weight
- improved
- fuels
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 156
- 239000000203 mixture Substances 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000654 additive Substances 0.000 claims abstract description 38
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 36
- 229920001083 polybutene Polymers 0.000 claims abstract description 36
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 35
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 32
- 230000000996 additive effect Effects 0.000 claims abstract description 29
- 239000002283 diesel fuel Substances 0.000 claims abstract description 22
- 229920000098 polyolefin Polymers 0.000 claims abstract description 21
- 239000003502 gasoline Substances 0.000 claims abstract description 19
- 239000004094 surface-active agent Substances 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000000178 monomer Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 14
- 239000010763 heavy fuel oil Substances 0.000 claims description 9
- -1 polyoxyethylene ethanol Polymers 0.000 claims description 6
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 3
- 239000010687 lubricating oil Substances 0.000 claims description 3
- 150000001491 aromatic compounds Chemical class 0.000 claims description 2
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 claims 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 34
- 238000002485 combustion reaction Methods 0.000 abstract description 18
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 abstract description 4
- 238000005336 cracking Methods 0.000 abstract description 2
- 239000000839 emulsion Substances 0.000 description 26
- 239000003921 oil Substances 0.000 description 14
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000009469 supplementation Effects 0.000 description 3
- 241000282372 Panthera onca Species 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- MRMOZBOQVYRSEM-UHFFFAOYSA-N tetraethyllead Chemical compound CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- JFDZEKQWQQZSAE-UHFFFAOYSA-N 2,3-dihydro-1h-indole;octane Chemical compound CCCCCCCC.C1=CC=C2NCCC2=C1 JFDZEKQWQQZSAE-UHFFFAOYSA-N 0.000 description 1
- 241000437284 Andalucia Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- OOCMUZJPDXYRFD-UHFFFAOYSA-L calcium;2-dodecylbenzenesulfonate Chemical compound [Ca+2].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O OOCMUZJPDXYRFD-UHFFFAOYSA-L 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000010771 distillate fuel oil Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1625—Hydrocarbons macromolecular compounds
- C10L1/1633—Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
- C10L1/1641—Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1608—Well defined compounds, e.g. hexane, benzene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
- C10L1/191—Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
- C10L1/1985—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the present invention is concerned with greatly improved fuel compositions having a number of desirable properties such as significantly increased combustion efficiencies so that the fuels are more economical in use. More particularly, it is concerned with such fuels which are supplemented by minor amounts of certain polyolefins or derivatives thereof; the fuels of the invention include typical hydrocarbon fuels such as gasoline or diesel fuel in combination with an appropriate polyolefin additive, and also emulsified fuels containing substantial fractions of water.
- additives have been proposed in the past for use with conventional hydrocarbon fuels such as gasoline, diesel fuel or the like.
- additives have been proposed to remedy specific problems, such as the elimination of knocking through the addition of tetraethyl lead to gasoline.
- Other agents have also been proposed for the purpose of enhancing combustion efficiency, and hence the work output derived per unit of fuel consumed.
- Patent No. 2,896,593 relates to a two cycle fuel which includes a mixture of lead-free, straight run gasoline and from about 6-9% by volume polyisobutylene. This combination is said to be particularly useful in two cycle engines, where the polyisobutylene prevents engine fouling.
- Patent No. 3,753,905 is likewise directed to a two cycle fuel which includes poly- butene along with mineral oil and other additives.
- Patent No. 3,085,978 is in some respects similar to the last mentioned patent, and teaches the use of polybutene along with a calcium salt of petroleum sulfonic acid in the context of a fuel composition.
- Patents Nos. 3,909,214 and 3,782,912 describe the use of polyolefins as fuel additives, along with other constituents such as amine salts and the like.
- none of the above mentioned patents relate specifically to emulsified fuels.
- the invention resides in the discovery that use of certain types of polyolefinic compounds, typically in relatively minor amounts, gives significantly enhanced combustion efficiencies.
- an improved fuel essentially free of lubricating oil comprises (and preferably consists essentially of) a combustible hydrocarbon material, and up to about 2.5% (e.g., about 0.1- 2.5%) by weight of a polyolefinic additive.
- the type and amount of additive serve to increase the work output per unit of fuel obtained using the improved fuel, as compared with the work output per unit of fuel obtained under the same conditions and using the identical fuel except for the absence of the polyolefinic additive therein.
- the additive is selected from the group consisting of polyolefins having recurring C 2 -C 10 monomers therein (i.e., the monomers contain from 2 to 10 carbon atoms, inclusive), and derivatives of such polyolefins.
- the hydrocarbon material is selected from the group consisting of liquid hydrocarbons such as the gasolines, diesel fuels and heavy fuel oils of virtually any specific composition and type.
- the polyolefinic additive (the most preferred polyolefin being polybutene or polyisobutylene) is advantageously present at a level of from about 0.1 to 2% by weight, and most preferably at a level of from about 0.3 to 0.8% by weight.
- the specific amount of polyolefinic additive to be employed in a particular situation depends upon the hydrocarbon base material being employed, and the desired characteristics in the ultimate polyolef.in-supplemented fuel.
- polyolefinic additives can be used in the context of the invention. While polyolefins having recurring C 2 -C 10 monomers can be used, the most preferred polyolefins have recurring C 3 -C 6 monomers therein. In addition to the most preferred polybutene additive, additives such as polyethylene, polypropylene, and polypentene can be employed; moreover, the various isomers of the polyolefins find utility in the invention, as well as diolefins and mixed polymers (e.g., co- and terpolymers). Finally, various types of polyolefin derivatives can also be employed, such as polyolefinic substituted with various moieties such as aryl groups and the like.
- an aromatic compound e.g., toluene
- another fuel different than the base hydrocarbon e.g., diesel fuel in the case of a gasoline-based fuel.
- liquid emulsified fuels which broadly include respective quantities of a liquid hydrocarbon combustible fuel, water, at least one surfactant, and an additive selected from the group consisting of polyolefins having recurring C 2 -C 10 monomers therein.
- the combustible fuel is advantageously selected from the group consisting of the gasolines, diesel fuels and heavy fuel oils, although other possibilities such as the residual oils could also be employed.
- the combustible fuel component is present at a level of from about 5 to 99% by weight, and more preferably from about 55 to 90% by weight.
- the water fraction is preferably present at a level of from about 1 to 95% by weight, and most preferably from about 10 to 45% by weight.
- the polyolefinic additive should be present at a level of up to about 2.5% by weight, and more preferably at a level of from about 0.1 to 2% by weight.
- surfactants can be employed in the invention, in order to produce stable emulsions having good handling and combus tion characteristics.
- one or more surfactants can be used, although in practice it has been found that a combination of surfactants is best suited to the purposes of the invention.
- the surfactants should be present at a level of up to about 5% by weight, but in this case the prime consideration is one of cost. That is to say, an excess amount of surfactants may not deleteriously affect the characteristics of the fuel, but would be impractical from an economic standpoint.
- the single Figure is a plot obtained during the tests described in Example I and illustrates the gain in horsepower/unit of fuel obtained with the improved fuels of the invention, and also that in the case of the indoline hydrocarbon fuel use of polybutene at a level above about 1% by weight is disadvantageous.
- the selected polyolefin additive is simply mixed with the hydrocarbon base fuel material at the desired level of addition.
- the most preferred hydrocarbon bases are the gasolines and diesel fuels (particularly #2 diesel fuel), whereas the poleolefin additive is most preferably polybutene.
- the polybutene should be dispersible in the hydrocarbon fuel being used, and advantageously has an average molecular weight of from about 500 to 2,000, and includes recurring isobutane monomers and a terminal olefinic group.
- One particular commercially available polybutene used to good effect in the invention is commercialized by the Chevron Chemical Co.
- Polybutene Grade 24 This material is a pale colored, chemically inert oily liquid of moderate to high viscosity and tackiness. The chemical and physical properties of this product are set forth in a publication from the manufacturer entitled “Technical Data Sheet Chevron Polybutenes” dated November 13, 1981. This data sheet is expressly incorporated by reference herein. Briefly, however, the polybutene Grade 24 material has a specific gravity at 15/15° C. of 0.898 (ASTM D 287), a density at 15/15° C. of 7.48 pounds per gallon and an average molecular weight (Mechrolab Osmometer) of 950.
- the presently most preferred non-emulsified fuel composition consists essentially of about 99.5% of base hydrocarbon fuel, particularly gasoline or #2 diesel oil, along with 0.5% of polybutene admixed therein.
- the most preferred fuels include the polybutene Grade 24 additive described above, along with a substantial fraction of water in order to form a water- in-fuel emulsion.
- the presently preferred hydrocarbon base fuels include members taken from the group consisting of the gasolines, diesel fuels and heavy fuel oils.
- the most preferred combination includes respective minor amounts of three eraulsifiers, namely: "TOXIMUL D", an anionic/nonionic blend emulsifier sold by the Stepan Chemical Co. and identified as calcium dodecyl benzene sulfonate/alkyl phenoxy polyoxy- ethylene ethanol blend, "Ammonyx LO” , sold by Onyx Chemical Co. and identified as dodecyldimethyl- amine oxide; and "Atpet-200” sold by ICI Americas and identifed as a sorbitan tallate.
- various other kinds of surfactants can be used to good effect in the invention, such as "Z-MAZ 90" sold by Mazer Chemical Co.
- the preferred emulsifier blend may have applicability in other types of emulsified fuels which do not contain the olefinic additive hereof.
- the following table sets forth the constituents of the especially preferred emulsified fuels in accordance with the invention, along with the most preferred levels of use thereof and appropriate ranges:
- the test program included addition of polybutene (Polybutene grade 24 purchased from the Chevron Chemicals Co. of San Francisco, California) at levels ranging from 0.25% to 2% by weight, to the Indoline test fuel to obtain ratios of work output/fuel consumed at standard engine RPM and torque load levels.
- Engine RPM was measured and monitored by digital pulse counter from about 700 RPM to maximum of 3,000 RPM.
- Torque load was held at 52.5 ft-lbs.
- a level of 0.3% by weight polybutene was selected for testing at three RPM levels (1,500, 2,000, 2,500) and 52.5 ft-lbs. of torque.
- Example 1 In order to quantitatively confirm the results obtained in Example 1 and to more fully establish the viability of additive-supplemented distillate hydrocarbon fuels having a major proportion of a hydrocarbon base fuel distilling within the gasoline distillation range, consumption tests were conducted at Jarama Race Track in Madrid, Spain. Tests were conducted by, and all drivers certified by, the Real Automobil Club de Espana.
- Test A was conducted by driving a 1978
- Daimler Jaguar with a six cylinder engine engine was recently installed new and has less than six months usage having a bore of 92.07 mm, a stroke of 106 mm, and displacement of 4.2 liters, for a duration of approximately ten liters fuel consumption.
- the Jaguar was first tested using straight 98 octane gasoline and then compared against additive-supplemented 90 octane gasoline containing 0.5% polybutene. Data is listed in Table III and, in the opinion of the test driver, results obtained with the additive-supplemented fuels were "spectacular.”
- Test B was conducted by driving a 1982 Datsun, model 280ZX, with an engine having a bore of 3.386 mm, a stroke of 79 mm, and displacement of 2.8 liters, and equipped with 5-speed transmission and electronically controlled fuel injection.. The auto was driven at the top speed possible for a duration of approximately ten liters fuel consumption.
- the Datsun was first tested on standard 98 octane gasoline and then compared against additive-supplemented (0.5% by weight polybutene) 90 octane gasoline. The data is set forth in Table III. It should be noted that both cars will not operate on standard 90 octane gasoline without additive supplementation due to detonation ("knocking" or "pinging").
- Another test involved a qualitative comparison of detonation effects between 98 octane and additive-supplemented (0.5% by weight polybutene) 90 octane gasolines using a new Honda, model VF-1000, 1.0 liter, four cycle test motorcycle at Jarama Race Track in Madrid, Spain. The motorcycle was found to detonate using 98 octane gasoline at high temperatures whereas no detonation occurred at high temperatures with the additive-supplemented, 90 octane gasoline.
- Test 1 measured comparative fuel consumption of straight GAS-OIL A and the emulsified GAS-OIL A during operation of a Diter, D302.1, 16 HP, one cylinder diesel engine with a displacement of 745 cc used to power constant load water pump at 2,300 RPM.
- Test 2 compared fuel consumption of straight GAS-OIL A and emulsified GAS-OIL A while operating a four cylinder, Mercedes 200D diesel engine. It was evident during Test 2 that the Mercedes produced more power while consuming emulsified GAS-OIL A as opposed to GAS-OIL A without emulsion although the amount was not quantitatively measured. Consumption results are set forth below:
- Tests were conducted to determine the general characteristics of emulsified distillate fuels in a conventional fuel handling system such as a boiler or furnace. Factors considered were pumpability, filterability, ignitability and flare stability.
- Equipment used was a Century Type Jl oil burner assembly with a Sundstrand fuel pump and Marathon Model T2742 motor. The assembly was modified by the addition of a horizontal, 3 foot long, 5 inch diameter pipe equipped with 2 foot long, 8 inch diameter vertical chamber, and a 5 foot long, 5 inch diameter chimney at the outlet end of the horizontal pipe.
- a 1/2 inch diameter, horizontal water pipe was installed through the vertical chamber to permit water to be introduced through the pipe without direct flame impingement against the water pipe, and to measure water inlet and outlet temperatures.
- fuel (2) is an emulsion containing 15% by weight water, 0.5% by weight polybutene, the same emulsifiers and amounts as fuel (1), and 82.5% #2 diesel fuel
- fuel (3) is straight #2 diesel fuel
- fuel (4) is identical with fuel (1) except that the polybutene is eliminated and 78% by weight #2 diesel fuel is present.
- the boiler was brought up to pressure on minimum fire with the fuel bypass modulator valve locked in the minimum position. Approximately six minutes after high pressure shut down, the boiler was filled with water until the pump was shut off by the high level switch. The water flowmeter was then reset to zero and the fuel level measured. The boiler was allowed to fire automatically by the high and low steam pressure switches through four complete cycles. At approximately six minutes after high pressure shut down on the fourth firing cycle, the boiler was again filled and final measurements taken of the fuel level and water meter reading.
- CO 2 increased from 11%, firing #2 diesel fuel (reference fuel), to 12.5%, firing emulsified diesel fuel (same as fuel (1), Table IV) indicating increased combustion efficiency.
- the fire became unstable when switched to emulsified fuel because, according to the Testing Engineer, there was insufficient excess air (oxygen) to support combustion. Excess air was opened to approximately maximum (supporting more than 3MM BTU/hour combustion), and fuel flow rate was reduced to minimum (approximately 1.2MM BTU/hour) and there was still insufficient air to support combustion. This indicates that the emulsified fuel of the invention had a combustion efficiency greatly in excess of straight #2 diesel fuel.
- Emulsion #1 20% by weight water, 0.5% by weight polybutene, 2.0% by weight emulsifiers (0.75% by weight T-MULZ-D,
- Emulsion #2 20% by weight water, 0.5% by weight polybutene, 2.0% by weight emulsification agents (same makeup as Emulsion #1) and 77.5% by wegiht GAS-OIL B - pH - 7.5 Viscosity at 37.8°C - 5.4 cSt
- Emulsion #3 20% by weight water, 0.5% by weight polybutene, 2.0% by weight emulsifica- tion agents (same makeup as Emulsion # 1) and 77.5% by weight GAS-OIL C - pH - 7.7
- Emulsion #4 20% by weight water, 0.5% by weight polybutene, 2.0% by weight emulsification agents (same makeup as Emulsion #1) and 77.5% by weight residual fuel oil - Viscosity at 37.8°C - 580.4 cSt Viscosity at 50.0°C - 331E
- a qualitative comparison of the quantity of sulphur in combustion gases of emulsified and non-emulsified fuel oils was made by sequentially burning various grades of fuel oils in a dish. A 5 inch diameter tube, 1 1/2 foot long was placed over the flame to act as flue stock. Porous filter papers soaked with potassium permanganate solution were placed over the tub ⁇ for one minute. A bleaching of these papers would indicate the presence of sulphur in the combistior. gases.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR8506797A BR8506797A (pt) | 1984-06-27 | 1985-06-26 | Composicoes combustiveis |
MW11/86A MW1186A1 (en) | 1984-06-27 | 1986-02-21 | Fuel compositions |
DK88886A DK88886A (da) | 1984-06-27 | 1986-02-26 | Motorbraendstof |
FI860839A FI860839A0 (fi) | 1984-06-27 | 1986-02-27 | Braenslekompositioner. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62504584A | 1984-06-27 | 1984-06-27 | |
US625,045 | 1984-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986000333A1 true WO1986000333A1 (fr) | 1986-01-16 |
Family
ID=24504349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1985/001209 WO1986000333A1 (fr) | 1984-06-27 | 1985-06-26 | Compositions de combustibles |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0191033A4 (fr) |
JP (1) | JPS62500525A (fr) |
AU (1) | AU4608585A (fr) |
BR (1) | BR8506797A (fr) |
DK (1) | DK88886A (fr) |
ES (1) | ES8609441A1 (fr) |
FI (1) | FI860839A0 (fr) |
HU (1) | HUT40156A (fr) |
MW (1) | MW1186A1 (fr) |
NO (1) | NO860669L (fr) |
OA (1) | OA08217A (fr) |
RO (1) | RO95015A (fr) |
WO (1) | WO1986000333A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993001260A1 (fr) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents, Inc. | Traitement pour carburant |
WO1993001259A1 (fr) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents Inc. | Traitement pour carburant |
WO1998054274A1 (fr) * | 1997-05-30 | 1998-12-03 | Ju Heung Sung | Combustible emulsifie |
ES2140350A1 (es) * | 1998-06-30 | 2000-02-16 | I Feliu Tomas Coll | Un aditivo para realizar emulsiones estables de agua con aceites o grasas en forma de emulsiones o carburantes y utilizacion de dicho aditivo. |
GB2364325A (en) * | 2000-04-03 | 2002-01-23 | World Rubber Ltd | Calorific enhancer |
DE10046678A1 (de) * | 2000-07-12 | 2002-02-07 | Oleg Murashov | Kraftstoff |
WO2020124034A1 (fr) * | 2018-12-15 | 2020-06-18 | Hka Hydrofuel, Llc | Compositions de carburant |
US20220389339A1 (en) * | 2019-10-22 | 2022-12-08 | Shell Oil Company | Method for reducing intake valve deposits |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8710955D0 (en) * | 1987-05-08 | 1987-06-10 | Shell Int Research | Gasoline composition |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550982A (en) * | 1947-07-12 | 1951-05-01 | Petrolite Corp | Fog inhibited hydrocarbon product and method |
US2873182A (en) * | 1953-12-29 | 1959-02-10 | Monsanto Chemicals | Motor fuel |
US3454379A (en) * | 1964-10-23 | 1969-07-08 | Sinclair Research Inc | Hydrocarbon oil composition having improved low temperature pumpability |
US3488704A (en) * | 1966-05-27 | 1970-01-06 | Exxon Research Engineering Co | Lubricity agents |
US3502451A (en) * | 1966-04-29 | 1970-03-24 | Texaco Inc | Motor fuel composition |
US3838990A (en) * | 1968-10-23 | 1974-10-01 | Standard Oil Co | Middle distillate fuel oil compositions having improved pumpability |
US3996023A (en) * | 1968-04-11 | 1976-12-07 | Imperial Chemical Industries Limited | Aviation fuel containing dissolved polymer and having reduced tendency to particulate dissemination under shock |
US4175926A (en) * | 1974-09-18 | 1979-11-27 | Exxon Research & Engineering Co. | Polymer combination useful in fuel oil to improve cold flow properties |
US4381414A (en) * | 1981-05-06 | 1983-04-26 | Gulf Research & Development Company | Fuel having reduced tendency to particulate dissemination under shock |
US4477258A (en) * | 1980-10-30 | 1984-10-16 | Labofina, S.A. | Diesel fuel compositions and process for their production |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE567350C (de) * | 1928-05-10 | 1932-12-31 | I G Farbenindustrie Akt Ges | Verfahren zur Herstellung von Starrschmieren |
FR1188950A (fr) * | 1957-12-24 | 1959-09-28 | Procédé d'amélioration des carburants destinés à la production de force motrice | |
US3901665A (en) * | 1972-10-06 | 1975-08-26 | Du Pont | Multi-functional fuel additive compositions |
US3958915A (en) * | 1974-02-15 | 1976-05-25 | The Toyo Rubber Industry Co., Ltd. | Method of burning emulsion oils |
CA1127845A (fr) * | 1977-02-23 | 1982-07-20 | Norman H. Cherry | Melanges d'eau et d'hydrocarbures, de bouillies et d'autres particules combustibles |
SE447392B (sv) * | 1979-06-29 | 1986-11-10 | Berol Kemi Ab | Emulsion av vatten i en mineralolja samt emulgeringsmedlet |
-
1985
- 1985-06-26 EP EP19850903551 patent/EP0191033A4/fr not_active Withdrawn
- 1985-06-26 HU HU853135A patent/HUT40156A/hu unknown
- 1985-06-26 RO RO85122363A patent/RO95015A/fr unknown
- 1985-06-26 JP JP60503028A patent/JPS62500525A/ja active Pending
- 1985-06-26 BR BR8506797A patent/BR8506797A/pt unknown
- 1985-06-26 ES ES544573A patent/ES8609441A1/es not_active Expired
- 1985-06-26 WO PCT/US1985/001209 patent/WO1986000333A1/fr not_active Application Discontinuation
- 1985-06-26 AU AU46085/85A patent/AU4608585A/en not_active Abandoned
-
1986
- 1986-02-21 MW MW11/86A patent/MW1186A1/xx unknown
- 1986-02-24 NO NO86860669A patent/NO860669L/no unknown
- 1986-02-26 DK DK88886A patent/DK88886A/da not_active Application Discontinuation
- 1986-02-27 FI FI860839A patent/FI860839A0/fi not_active Application Discontinuation
- 1986-02-27 OA OA58794A patent/OA08217A/xx unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550982A (en) * | 1947-07-12 | 1951-05-01 | Petrolite Corp | Fog inhibited hydrocarbon product and method |
US2873182A (en) * | 1953-12-29 | 1959-02-10 | Monsanto Chemicals | Motor fuel |
US3454379A (en) * | 1964-10-23 | 1969-07-08 | Sinclair Research Inc | Hydrocarbon oil composition having improved low temperature pumpability |
US3502451A (en) * | 1966-04-29 | 1970-03-24 | Texaco Inc | Motor fuel composition |
US3488704A (en) * | 1966-05-27 | 1970-01-06 | Exxon Research Engineering Co | Lubricity agents |
US3996023A (en) * | 1968-04-11 | 1976-12-07 | Imperial Chemical Industries Limited | Aviation fuel containing dissolved polymer and having reduced tendency to particulate dissemination under shock |
US3838990A (en) * | 1968-10-23 | 1974-10-01 | Standard Oil Co | Middle distillate fuel oil compositions having improved pumpability |
US4175926A (en) * | 1974-09-18 | 1979-11-27 | Exxon Research & Engineering Co. | Polymer combination useful in fuel oil to improve cold flow properties |
US4477258A (en) * | 1980-10-30 | 1984-10-16 | Labofina, S.A. | Diesel fuel compositions and process for their production |
US4381414A (en) * | 1981-05-06 | 1983-04-26 | Gulf Research & Development Company | Fuel having reduced tendency to particulate dissemination under shock |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993001260A1 (fr) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents, Inc. | Traitement pour carburant |
WO1993001259A1 (fr) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents Inc. | Traitement pour carburant |
US5460634A (en) * | 1991-07-02 | 1995-10-24 | Exxon Chemical Patents Inc. | Fuel oil treatment |
WO1998054274A1 (fr) * | 1997-05-30 | 1998-12-03 | Ju Heung Sung | Combustible emulsifie |
ES2140350A1 (es) * | 1998-06-30 | 2000-02-16 | I Feliu Tomas Coll | Un aditivo para realizar emulsiones estables de agua con aceites o grasas en forma de emulsiones o carburantes y utilizacion de dicho aditivo. |
WO2000000572A3 (fr) * | 1998-06-30 | 2000-08-24 | Feliu Tomas Coll | Additif permettant d'obtenir des emulsions stables d'eau avec des huiles ou graisses sous forme d'emulsions combustibles et son utilisation |
GB2364325A (en) * | 2000-04-03 | 2002-01-23 | World Rubber Ltd | Calorific enhancer |
DE10046678A1 (de) * | 2000-07-12 | 2002-02-07 | Oleg Murashov | Kraftstoff |
DE10046678C2 (de) * | 2000-07-12 | 2002-09-19 | Valerij Albrandt | Kraftstoff |
WO2020124034A1 (fr) * | 2018-12-15 | 2020-06-18 | Hka Hydrofuel, Llc | Compositions de carburant |
US20220389339A1 (en) * | 2019-10-22 | 2022-12-08 | Shell Oil Company | Method for reducing intake valve deposits |
US11912949B2 (en) * | 2019-10-22 | 2024-02-27 | Shell Usa, Inc. | Method for reducing intake valve deposits |
Also Published As
Publication number | Publication date |
---|---|
EP0191033A4 (fr) | 1986-11-05 |
AU4608585A (en) | 1986-01-24 |
HUT40156A (en) | 1986-11-28 |
BR8506797A (pt) | 1986-11-25 |
FI860839A7 (fi) | 1986-02-27 |
DK88886D0 (da) | 1986-02-26 |
DK88886A (da) | 1986-04-24 |
ES544573A0 (es) | 1986-09-01 |
MW1186A1 (en) | 1987-05-13 |
EP0191033A1 (fr) | 1986-08-20 |
OA08217A (en) | 1987-10-30 |
RO95015A (fr) | 1988-09-15 |
FI860839A0 (fi) | 1986-02-27 |
ES8609441A1 (es) | 1986-09-01 |
JPS62500525A (ja) | 1987-03-05 |
NO860669L (no) | 1986-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102643691B (zh) | 一种汽油复合添加剂 | |
US4392865A (en) | Hydrocarbon-water fuels, emulsions, slurries and other particulate mixtures | |
RU2134715C1 (ru) | Жидкое топливо для двигателя внутреннего сгорания | |
CA1174850A (fr) | Methode, carburant automobile et concentre d'augmentation en indice d'octane a la demande | |
AU2007338811A1 (en) | Novel single phase hydrous hydrocarbon-based fuel, methods for producing the same and compositions for use in such method | |
CA1331428C (fr) | Composition d'essence | |
WO1986000333A1 (fr) | Compositions de combustibles | |
CN102549120A (zh) | 乙烯/醋酸乙烯酯/不饱和酯三元共聚物作为改善液态烃如中间馏分和燃料的耐低温性能的添加剂 | |
JP2005054102A (ja) | ガソリン | |
JP2001098288A (ja) | 燃料油組成物 | |
CA2213656C (fr) | Compositions de carburants | |
RU2257400C2 (ru) | Топливо на углеводородной основе, содержащее добавку, улучшающую низкотемпературные свойства | |
CA1127845A (fr) | Melanges d'eau et d'hydrocarbures, de bouillies et d'autres particules combustibles | |
US4973336A (en) | Fuel additives | |
CA2319526A1 (fr) | Additifs solides pour carburants | |
EP0292526A1 (fr) | Procede d'amelioration des huiles paraffineuses en vue d'obtenir des produits pouvant etre utilises comme gazoles legers, carburants diesel et autres huiles ameliorees, et procede pour l'amelioration des produits ainsi obtenus et leur application comme succedanes. | |
US4647292A (en) | Gasoline composition containing acid anhydrides | |
CN100526441C (zh) | 包含费-托衍生烃燃料的低排放燃料乳液 | |
WO2003075954A1 (fr) | Additif de combustible | |
JPH0579275B2 (fr) | ||
Naga et al. | Polymeric additives for pour point depression of residual fuel oils | |
JPH027353B2 (fr) | ||
WO2004033602A1 (fr) | Additif de fioul comprenant des sels de metaux alcalino-terreux d'acide alkylbenzene sulphonique | |
Sheet | Relative change in SI engine’s emission and performance parameters using new locally made octane enhancer | |
EP1232234A1 (fr) | Detergents ameliores destines a etre utilises dans la prevention de formation de complexes de fer dans des combustibles hydrocarbones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): AU BR DK FI HU JP KP LK MC MG MW NO RO SU |
|
AL | Designated countries for regional patents |
Designated state(s): AT BE CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1985903551 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 860839 Country of ref document: FI |
|
WWP | Wipo information: published in national office |
Ref document number: 1985903551 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1985903551 Country of ref document: EP |