WO1983003535A1 - Systeme de perfusion dans le foie et organe de derivation - Google Patents
Systeme de perfusion dans le foie et organe de derivation Download PDFInfo
- Publication number
- WO1983003535A1 WO1983003535A1 PCT/US1983/000390 US8300390W WO8303535A1 WO 1983003535 A1 WO1983003535 A1 WO 1983003535A1 US 8300390 W US8300390 W US 8300390W WO 8303535 A1 WO8303535 A1 WO 8303535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conduit
- liver
- flow
- blood
- aperture
- Prior art date
Links
- 210000004185 liver Anatomy 0.000 title claims abstract description 91
- 230000010412 perfusion Effects 0.000 title claims abstract description 32
- 239000008280 blood Substances 0.000 claims abstract description 47
- 210000004369 blood Anatomy 0.000 claims abstract description 47
- 210000003734 kidney Anatomy 0.000 claims abstract description 6
- 238000003780 insertion Methods 0.000 claims abstract description 4
- 230000037431 insertion Effects 0.000 claims abstract description 4
- 230000017531 blood circulation Effects 0.000 claims description 14
- 210000002767 hepatic artery Anatomy 0.000 claims description 3
- 238000006213 oxygenation reaction Methods 0.000 claims description 3
- 210000000936 intestine Anatomy 0.000 claims description 2
- 210000000952 spleen Anatomy 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims description 2
- 239000002246 antineoplastic agent Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 229940127089 cytotoxic agent Drugs 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 4
- 210000003240 portal vein Anatomy 0.000 description 4
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000003134 recirculating effect Effects 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 210000002989 hepatic vein Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000001758 mesenteric vein Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/064—Blood vessels with special features to facilitate anastomotic coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3615—Cleaning blood contaminated by local chemotherapy of a body part temporarily isolated from the blood circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M27/00—Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
- A61M27/002—Implant devices for drainage of body fluids from one part of the body to another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/158—Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
- A61M5/1582—Double lumen needles
Definitions
- chemotherapeutic agent can be provided to the liver for longer times than a patient could normally stand if such doses were administered bodywide, resulting in better antitumor effect than has been previously available.
- liver perfusion has proven to be very difficult from a technical viewpoint.
- the perfused liver tends to lose its blood flow capacity at its junction with the vena cava, and other significant difficulties have been encountered.
- a liver perfusion bypass member which simplifies and renders more reliable the liver perfusion procedure in a living patient, with the result that liver perfusion, using the device of this invention, can be more widely used with better effect and reliability.
- the elongated member defines first flow conduit means extending the length thereof to carry vena cava blood therethrough, and lateral aperture means in the first flow conduit means to receive flowing blood from the kidneys while positioned in the vena cava.
- the elongated member also defines a second longitudinal flow conduit, separate from the first flow conduit.
- a liver flow aperture communicates with the second conduit for receiving venous blood from the liver.
- a branch conduit is spaced from the liver flow aperture and communicates with the second conduit for receiving the venous blood from the liver through the second conduit.
- the liver perfusion bypass member may be connected at its branch conduit to a third conduit, to receive venous blood from the liver and to convey it to blood oxygenation means and a blood pump for driving blood through the circuit.
- a heat exchanger may also be included in the circuit to control the temperature of the blood.
- the third conduit then leads to at least the hepatic artery for recycling the blood back to the liver, and also it may communicate with the portal vein, so that the bulk of the blood received by the liver is recirculated blood received from the liver by the perfusion bypass member, and passed to the third conduit for oxygenation, heat exchange, pumping, and return to the liver.
- chemotherapeutic agent added to the blood circuit in the third conduit remains largely localized in the liver, and does not substantially spread through the body. As stated above, the effect of this is to permit higher doses and longer exposures of chemotherapeutic agent to the liver without corresponding side effects of loss of hair, diminution of bone marrow activity, and the like. It is preferred for the liver flow aperture to be covered with grating means to support the liver adjacent the flow aperture. Without this, the liver tends to collapse into the liver flow aperture with a consequent closeoff of blood flow ducts from the liver. Also, the first flow conduit of the bypass member may define along at least part of its length a pair of separate lumens extending through the bypass member, the lumens each defining a separate lateral aperture of the lateral aperture means for communication with a separate kidney.
- a first valve means preferably controls flow through the first flow conduit, while second valve means controls flow through the second conduit means.
- a branch conduit is desirably sealed in communication with the second flow conduit means and in rotatable communication therewith with the second valve being defined by structure that opens and closes flow through the branch conduit in a manner dependent upon its rotational position.
- Figure 1 is a diagramatic view of a liver perfusion apparatus in accordance with this invention utilizing the liver perfusion bypass member disclosed herein.
- Figure 2 is an enlarged longitudinal sectional view of the liver bypass member of Figure 1 emplaced in the vena cava of a patient.
- Figure 3 is a sectional view taken along line 3-3 of Figure 2.
- Figure 4 is a sectional view taken along line 4-4 of Figure 2.
- Figure 5 is a sectional view taken along line 5-5 of Figure 2.
- Figure 6 is a fragmentary elevational view of the structure of Figure 4.
- Figure 7 is a fragmentary plan view of the structure of Figure 4.
- Figure 8 is a perspective view of a portion of the liver perfusion bypass member disclosed in the previous drawings, with parts broken away.
- liver perfusion bypass member 10 is disclosed.
- Bypass member 10 is shown inserted into the vena cava 11 of a patient through first and second incisions 12, 14 with circumferential ties 16, 18 cooperating with annular grooves 20, 22 of bypass member 10 to seal the incision sites, with the bypass member mounted within the vena cava.
- the bypass member 10 of this invention may be made of any desired material which is susceptible to sterilization, typically semi-rigid or rigid materials such as stainless steel or an autoclavable plastic such as polysulfone. Also a one-use, disposable version of a plastic such as polypropylene may be used.
- first flow conduit means 24 defines through a substantial portion of bypass member 10 a pair of lumens 26, 28, each of which defines a side aperture 30 in an adjacent outer wall, positioned to receive blood from a hepatic vein where it joins the vena cava, so that blood from the kidneys can flow freely into first flow conduit 24, i.e., lumens 26, 28.
- Lumens 26, 28 join together into a common flow lumen 32 adjacent first end portion 34 of bypass member 10.
- the lumens 26, 28 also join into a common second end flow passage 36 at second end 38 of the bypass member. Accordingly, venous blood flowing through the vena cava is not seriously hindered by the presence of bypass member 10, since there is an open flow path passing from end to end thereof, to permit flow along the length of the vena cava during the bypass procedure.
- Bypass member 10 also defines second longitudinal flow conduit 40, which is separate from first flow conduit 24.
- Second conduit 40 may have both ends closed respectively with plug 42 and end wall 43.
- Second conduit 40 also defines liver flow aperture 44, which is positioned and proportioned to receive venous blood from liver 46 through the venous blood vessels that naturally provide flow communication between the liver and the vena cava. Accordingly, since bypass member 10 is positioned within the vena cava, aperture 44 can receive the flowing venous blood from the liver 46 within second flow conduit 40, isolating such blood from the flowing blood of the first flow conduit 24.
- Annular grooves 48, 50 are provided in bypass member 10 to receive circular ties 52, 54, to tie the vena cava 11 at these points to prevent the substantial leakage of blood within the vena cava, but outside of bypass member 10, so that substantially all blood flow from the liver passes through second conduit 40.
- Liver flow aperture 44 defines a grating 56 to support the liver tissue 46, and to prevent the collapse of the liver into aperture 40, as can otherwise take place during liver perfusion or bypass procedures. While the reason for collapsing of the liver is not entirely understood, it is believed, without wishing to be limited to any particular theory, that siphon effects in the artificial bypass system may cause negative or suction pressures to act on the liver in an unnatural manner, causing the liver to collapse inwardly through aperture 44 by suction effects. The effect of this is to cut off flow of liver blood vessels, which, of course, is a potentially very serious occurrence.
- Grating 56 may comprise a series of apertures 58 defined by upstanding, spaced support members 60 therebetween, to support portions of the liver and prevent it from collapse.
- the liver-contacting surfaces of the support members 60 are preferably rounded as shown, to avoid abrasion or other damage of the liver tissue.
- Support members 60 may define an outer surface that is generally of convex shape so as to support the liver 46 with central portions being slightly higher than the edge portions.
- Support members 60 also define a plurality of slots 61, with the central portions of support members 60 being approximately 1/4 inch high and slots 61 being typically 0.075 inch wide. Central portions of support members 60 may be tied together by cross piece or pieces 63 for structural stability.
- grating 56 may comprise a mesh of plastic or metal strands without upstanding support members, if such is desired.
- Branch conduit 62 projects outwardly from bypass member 10, and may be proportioned to receive a third conduit 64 in flow relationship therewith.
- Third conduit 64 may be simple plastic tubing defining a conventional access port or injection site 66 to permit the administration of chemotherapeutic agent to flowing blood in branch conduit 64.
- Third conduit 64 also passes through oxygenator means 68, which may be any desired oxygenator for blood, preferably also carrying a heat exchanger, or, if desired, a separate heat exchange member may be placed in the third conduit 64.
- Conduit 64 also passes through pump means 66, which may be a conventional roller pump for blood and, as shown, conduit 64 may branch into a pair of added branches 68, 70, one of which may communicate, for example at the portal vein and the other at the hepatic artery of liver 46.
- pump means 66 which may be a conventional roller pump for blood and, as shown, conduit 64 may branch into a pair of added branches 68, 70, one of which may communicate, for example at the portal vein and the other at the hepatic artery of liver 46.
- liver 46 a complete, substantially isolated, independent blood flow circuit is created through liver 46, with the blood being oxygenated to the degree necessary for the liver's needs and recirculated through the liver, powered by roller pump 66, since the recirculating system is substantially disconnected from the pumping action of the heart. Accordingly, the blood circulates and recirculates through a third conduit 64 and the other stations of the conduit, plus second conduit 40 of bypass member 10, while the chemotherapeutic agent or other material is inserted through injection site 66.
- the isolated blood circulating through the liver may carry a concentration of chemotherapeutic agent which could normally practically kill the patient if such concentration were on a bodywide basis, for increased effectiveness against tumors in the liver and the like.
- First flow conduit means 24 desirably carries a first stopcock-type valve 72 which may, per se, be of conventionally designed rotational valve of the on-off type, having a handle 74 for manual control thereof and a valve barrel 75.
- Valve 72 will be shut off during implantation of bypass member 10 in the vena cava. After vena cava 11 is tied in place surrounding bypass member 10, valve 72 can be opened to once again permit blood flow through the vena cava by means of first flow path 24.
- Second flow path 40 also carries a second valve means which may be defined by the mounting of branch conduit 62.
- Branch conduit 62 defines a rotation ball 76 sealingly and rotatably fitting in socket 78 of housing 80, so that branch conduit 62 can be rotated about its axis back and forth between first and second positions.
- Second conduit 40 defines a second aperture 82 of housing 81 leading into socket 78.
- a third aperture 84 extends through rotation ball 76, and communicates with the remainder of branch conduit 62.
- Handle 79 is attached to branch conduit 62 to facilitate its axial rotation for opening and closing of the second valve means. Accordingly, when branch conduit 62 is in the position shown in Figure 2, flow is permitted between second flow path 40 and branch conduit 62, because apertures 82 and 84 are in registry with each other. However, branch conduit 62 can be rotated about its axis to move aperture 84 out of registry with aperture 82, with the result that blood flow is no longer possible through second flow path 40 and branch conduits 62.
- the second valve would, of course, be closed during installation of the bypass member in the vena cava until connection and set up of third conduit 64 and the connection of branches 68, 70 to liver 46 was complete. Then it would be opened, permitting flow of blood through second conduit 40, branch conduit 62, and third conduit 64 for the desired liver perfusion.
- Side conduit 80 may also be provided, if desired, for communication between the exterior and first flow path 24, side conduit 80 communicating typically at second end flow passage 36.
- Side conduit 80 may be used to receive bypass blood flow from splanchnic circulation, i.e., flow from the intestines, spleen and stomach, being connected to the portal vein via the inferior mesenteric vein, for example.
- splanchnic circulation i.e., flow from the intestines, spleen and stomach
- Side conduit 80 may be of a design substantially identical to branch conduit 62, with a third valve being provided in a similar manner as in branch conduit 62. 5 When the liver perfusion is complete, the two valves
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Ophthalmology & Optometry (AREA)
- Otolaryngology (AREA)
- External Artificial Organs (AREA)
Abstract
Organe de dérivation pour la perfusion dans le foie (10) destiné à être utilisé dans un système de perfusion dans le foie et comprenant un organe allongé (10) possédant une première et une deuxième parties extrêmes (34, 38) dimensionnées de manière à pouvoir être insérées dans la veine cave (11). L'organe allongé (10) définit une première conduite d'écoulement (24), s'étendant sur toute sa longueur, pour amener le sang de la veine cave, et des ouvertures latérales (30) dans la première conduite d'écoulement (24) pour recevoir le sang provenant des reins. L'organe allongé (10) définit également une deuxième conduite d'écoulement longitudinal (40). Une ouverture d'écoulement du foie (44) est en communication avec la deuxième conduite (40) et reçoit du sang veineux provenant du foie (46). Une conduite de branchement (62) espacée de l'ouverture d'écoulement du foie (44) reçoit le sang veineux provenant du foie (46) au travers de la deuxième conduite (40). L'organe de dérivation (10) peut être raccordé au moyen de sa conduite de branchement (62) à une troisième conduite (64) de manière à faire circuler le sang veineux provenant du foie (46) au travers d'un oxygénateur de sang (68), d'une pompe sanguine (66) et, le cas échéant, d'un échangeur thermique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36892582A | 1982-04-16 | 1982-04-16 | |
US368,925820416 | 1982-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1983003535A1 true WO1983003535A1 (fr) | 1983-10-27 |
Family
ID=23453329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1983/000390 WO1983003535A1 (fr) | 1982-04-16 | 1983-03-18 | Systeme de perfusion dans le foie et organe de derivation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0105904A1 (fr) |
WO (1) | WO1983003535A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5147318A (en) * | 1991-03-04 | 1992-09-15 | Board Of Regents, The University Of Texas System | Valved arterial catheter |
WO2007107327A1 (fr) | 2006-03-20 | 2007-09-27 | Medical Device Works Nv Sa | Appareil pour administrer un traitement médical |
EP1157709A4 (fr) * | 1999-02-10 | 2009-10-28 | Tomio Ohta | Dispositif de traitement sans perfusion |
CN101329227B (zh) * | 2008-07-14 | 2010-09-29 | 中国人民解放军第三军医大学 | 用于小型动物肝脏淋巴细胞分离的肝脏灌注方法 |
CN115252072A (zh) * | 2022-06-15 | 2022-11-01 | 中国人民解放军总医院第七医学中心 | 一种肝移植术中供肝快速固定灌注装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678688B1 (en) | 2000-10-26 | 2004-01-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for composite font generation |
CN103839249B (zh) * | 2012-11-23 | 2017-02-08 | 上海联影医疗科技有限公司 | Ct肝灌注的图像后处理方法和ct肝灌注方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624341A (en) * | 1950-07-18 | 1953-01-06 | American Cystoscope Makers Inc | Catheter |
US4164221A (en) * | 1977-07-28 | 1979-08-14 | Bentley Laboratories, Inc. | Atraumatic blood access device valve |
US4192302A (en) * | 1978-09-12 | 1980-03-11 | Boddie Arthur W | Hepatic isolation and perfusion circuit assembly |
US4204525A (en) * | 1978-07-14 | 1980-05-27 | Olson Edward A | Method and device for supplying venous pressure in a portal vein |
US4217890A (en) * | 1978-11-03 | 1980-08-19 | Owens Milton L | Surgical sling for positioning a harvested kidney during surgical reattachment |
US4274411A (en) * | 1979-03-30 | 1981-06-23 | Dotson Robert S Jun | Fluid operated ophthalmic irrigation and aspiration device |
US4306545A (en) * | 1980-07-11 | 1981-12-22 | Canadian Patents & Development Limited | Re-entrant cannula device |
-
1983
- 1983-03-18 EP EP83901487A patent/EP0105904A1/fr not_active Withdrawn
- 1983-03-18 WO PCT/US1983/000390 patent/WO1983003535A1/fr unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624341A (en) * | 1950-07-18 | 1953-01-06 | American Cystoscope Makers Inc | Catheter |
US4164221A (en) * | 1977-07-28 | 1979-08-14 | Bentley Laboratories, Inc. | Atraumatic blood access device valve |
US4204525A (en) * | 1978-07-14 | 1980-05-27 | Olson Edward A | Method and device for supplying venous pressure in a portal vein |
US4192302A (en) * | 1978-09-12 | 1980-03-11 | Boddie Arthur W | Hepatic isolation and perfusion circuit assembly |
US4217890A (en) * | 1978-11-03 | 1980-08-19 | Owens Milton L | Surgical sling for positioning a harvested kidney during surgical reattachment |
US4274411A (en) * | 1979-03-30 | 1981-06-23 | Dotson Robert S Jun | Fluid operated ophthalmic irrigation and aspiration device |
US4306545A (en) * | 1980-07-11 | 1981-12-22 | Canadian Patents & Development Limited | Re-entrant cannula device |
Non-Patent Citations (3)
Title |
---|
New York State Medical Journal, issued 1961 December 1, (New York), Robert K. AUSMAN, Development of a Technic for Isolated Perfusion of the Lever', "(see pages 3993-3997). * |
Surgery, Volume 51, Number 4, issued 1962 April, W.B. CHUNG, et al, 'A Technique of Isolated Perfusion of the Liver', (see pages 508-511). * |
Surgical Forum, Volume X issued 1959, Robert K. AUSMAN and J. BRADLEY Aust, 'Isolated Perfusion of the Liver with HN2', (see pages 77-79). * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5147318A (en) * | 1991-03-04 | 1992-09-15 | Board Of Regents, The University Of Texas System | Valved arterial catheter |
WO1992015352A1 (fr) * | 1991-03-04 | 1992-09-17 | Board Of Regents, The University Of Texas System | Catheter arteriel a soupape |
EP1157709A4 (fr) * | 1999-02-10 | 2009-10-28 | Tomio Ohta | Dispositif de traitement sans perfusion |
WO2007107327A1 (fr) | 2006-03-20 | 2007-09-27 | Medical Device Works Nv Sa | Appareil pour administrer un traitement médical |
CN101329227B (zh) * | 2008-07-14 | 2010-09-29 | 中国人民解放军第三军医大学 | 用于小型动物肝脏淋巴细胞分离的肝脏灌注方法 |
CN115252072A (zh) * | 2022-06-15 | 2022-11-01 | 中国人民解放军总医院第七医学中心 | 一种肝移植术中供肝快速固定灌注装置 |
CN115252072B (zh) * | 2022-06-15 | 2024-04-19 | 中国人民解放军总医院第七医学中心 | 一种肝移植术中供肝快速固定灌注装置 |
Also Published As
Publication number | Publication date |
---|---|
EP0105904A1 (fr) | 1984-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6123725A (en) | Single port cardiac support apparatus | |
US6699231B1 (en) | Methods and apparatus for perfusion of isolated tissue structure | |
JP2831056B2 (ja) | 癌の治療のためのカテーテル及び使い捨てキット | |
US6083198A (en) | Perfusion catheter providing segmented flow regions and methods of use | |
WO1999033407A1 (fr) | Procedes et appareil de perfusion dans une structure tissulaire isolee | |
US5141499A (en) | Peritoneal dialysis catheter | |
US6585681B2 (en) | Methods and apparatus for performing flow-through peritoneal dialysis | |
CA2425501C (fr) | Catheter de dialyse peritoneale | |
EP1119389B1 (fr) | Appareil pour administrer une composition dans les poumons | |
US7341570B2 (en) | Apparatus and methods for treating congestive heart disease | |
US7008395B1 (en) | Multi-lumen catheter system used in a blood treatment process | |
US6981977B2 (en) | Body fluid cartridge exchange platform device | |
US20020177822A1 (en) | Dual lumen adjustable length cannulae for liquid perfusion or lavage | |
EP1202759B1 (fr) | Systeme de perfusion | |
US7473240B2 (en) | Valve port assembly with coincident engagement member for fluid transfer procedures | |
AU2003248190A1 (en) | Circulatory support system and method of use for isolated segmental perfusion | |
JPS58502036A (ja) | 腹膜透析のための多教室システム | |
JPH08508186A (ja) | バルーンカテーテル及びバルーンカテーテルで潅流するための装置 | |
WO1983003535A1 (fr) | Systeme de perfusion dans le foie et organe de derivation | |
US6620124B1 (en) | Valve port assembly with coincident engagement member for fluid transfer procedures | |
Pagana | A new technique for hepatic infusional chemotherapy | |
Tabata et al. | Intermittent vascular access for extracorporeal circulation in conscious rats: a new technique | |
US20070073239A1 (en) | Catheter device | |
McDermott et al. | An isolated limb infusion technique: a guide for the perfusionist | |
WO2000029046A2 (fr) | Systeme de perfusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP |
|
AL | Designated countries for regional patents |
Designated state(s): AT BE CH DE FR GB LU NL SE |