WO1982003294A1 - Dispositif a semi-conducteur comprenant un boitier sans placage - Google Patents
Dispositif a semi-conducteur comprenant un boitier sans placage Download PDFInfo
- Publication number
- WO1982003294A1 WO1982003294A1 PCT/US1982/000154 US8200154W WO8203294A1 WO 1982003294 A1 WO1982003294 A1 WO 1982003294A1 US 8200154 W US8200154 W US 8200154W WO 8203294 A1 WO8203294 A1 WO 8203294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- die
- package
- metallization
- copper
- copper alloy
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 238000001465 metallisation Methods 0.000 claims abstract description 45
- 229910000679 solder Inorganic materials 0.000 claims abstract description 43
- 239000010949 copper Substances 0.000 claims abstract description 41
- 229910052802 copper Inorganic materials 0.000 claims abstract description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims 1
- 239000004593 Epoxy Substances 0.000 abstract description 5
- 239000008393 encapsulating agent Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 32
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- NTSDHVIXFWZYSM-UHFFFAOYSA-N [Ag].[Sb].[Sn] Chemical compound [Ag].[Sb].[Sn] NTSDHVIXFWZYSM-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910004077 HF-HNO3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 aluminum-gold Chemical compound 0.000 description 1
- 239000002140 antimony alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910021357 chromium silicide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/043—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
- H01L23/045—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads having an insulating passage through the base
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/492—Bases or plates or solder therefor
- H01L23/4924—Bases or plates or solder therefor characterised by the materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
- H01L23/49562—Geometry of the lead-frame for individual devices of subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04026—Bonding areas specifically adapted for layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45014—Ribbon connectors, e.g. rectangular cross-section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/4823—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48599—Principal constituent of the connecting portion of the wire connector being Gold (Au)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48699—Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48799—Principal constituent of the connecting portion of the wire connector being Copper (Cu)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85053—Bonding environment
- H01L2224/85095—Temperature settings
- H01L2224/85099—Ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01012—Magnesium [Mg]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01051—Antimony [Sb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01072—Hafnium [Hf]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20753—Diameter ranges larger or equal to 30 microns less than 40 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20754—Diameter ranges larger or equal to 40 microns less than 50 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20755—Diameter ranges larger or equal to 50 microns less than 60 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20756—Diameter ranges larger or equal to 60 microns less than 70 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20757—Diameter ranges larger or equal to 70 microns less than 80 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20758—Diameter ranges larger or equal to 80 microns less than 90 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20759—Diameter ranges larger or equal to 90 microns less than 100 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/2076—Diameter ranges equal to or larger than 100 microns
Definitions
- This invention relates in general to a semiconductor device structure and more particularly to a semiconductor die mounted and bonded to a plateless copper alloy package.
- a semiconductor device typically includes a semiconductor die and a package or housing for the die.
- the package includes a die mount portion and a lead portion.
- the die including diffused regions, junctions, and the like, is metallized on both its top and bottom surfaces.
- a solder is used to bond the bottom metallization to the die mount portion of the package.
- Wire leads bond to and interconnect the top metallization and the package lead portion.
- the die and interconnecting leads are then enclosed within the package.
- the enclosure comprises either plastic encapsulation molded about the die and part of the die mount and lead portions or a metal cover welded to the mounting portion and extending over the die.
- the die mount portion of the package provides mechanical support, electrical contact, and functions as a heat sink.
- the die is usually attached to the die mount portion using soft solder, hard solder, or conductive epoxy.
- soft solders for example, which are lead-based or tin-based alloys, are inexpensive, but are susceptible to thermal fatigue and higher electrical and thermal resistance than the hard solders.
- Hard solders are gold-based alloys and provide highly reliable bonds having good thermal, electrical, and mechanical properties, but the gold-based hard solders are very expensive.
- Conductive epoxies like the soft solders, are less expensive but provide less desirable bonds than do the hard solders and often contain precious metal fillers.
- the back of the semiconductor die is metallized to provide a bondable surface. When solder is used for bonding the back metallization must be compatible with the solder chosen.
- solder must be compatible with the metal of the die mount portion. That is, the back metal, solder, and die mount metal must all be metallurgically compatible.
- Metallurgically compatible means the solder is capable of wetting and forming a strong bond to the metallic surfaces it contacts but forms no undesirable intermetallies at the bond. In contrast, gold and tin can form a brittle intermetallic which is fracture prone and would therefore provide a low reliability bond.
- the requirement of compatibility has typically led to the use of clad or plated die mount regions.
- the underlying material for the die mount region is selected for its thermal, electrical and mechanical properties.
- the cladding or plating provides the required metallurgical compatibility.
- the die mount region is over coated with a thin layer of material, usually either nickel or gold. This adds the expense of the plating or cladding operation as well as the cost of the material itself to the total cost of the device.
- the front surface of a semiconductor die is metallized with a patterned metal layer which allows electrical contact to, for example in the case of a bipolar transistor, the base and emitter electrodes of the transistor.
- This patterned metallization is connected to the lead portion of the semiconductor package by fine wires (typically in the range of 25-500 micrometers in diameter) which are bonded between the surface metallization and the package leads.
- the wires are usually aluminum or gold
- the top surface metallization is aluminum or a number of alternative multi-layer metal systems
- the package leads are plated with nickel or gold.
- the lead plating or cladding is necessary for metallurgical compatibility between the aluminum or gold wires and the rigid material of the package leads.
- solder wetting but metallurgical compatibility again requires that no undesirable intermetallics form at the bond.
- the plating or cladding of the package leads is expensive and further expense is added by the gold wires, where used.
- the total semiconductor device, assembled as described above, is beset by a number of shortcomings. Assembling the semiconductor device requires the selection from among various metallurgical alternatives and requires tradeoffs with regard to such variables as cost, thermal and electrical properties, and reliability. Reliability, for example, may be compromised by the formation of aluminum-gold intermetallics. Because of these shortcomings and required tradeoffs, a need existed for an improved semiconductor device assembly.
- the semiconductor device includes a semiconductor die metallized on its first surface and attached to an unplated copper alloy die mount portion of the package using a solder composition metallurgically compatible with both the die metallization and the copper alloy package portion.
- a copper ribbon is bonded between and electrically interconnects an unplated copper alloy lead portion of the package and a metallization layer patterned on a second surface of the semiconductor die.
- the copper ribbon is metallurgically compatible with the lead portion and the patterned metallization layer.
- the die and interconnecting ribbon are encapsulated to provide mechanical and ambient protection.
- FIG. 1 illustrates in a partially cut-away, perspective view a plastic encapsulated semiconductor device in accordance with the invention
- FIG. 2 schematically illustrates in cross-section the assembly of a semiconductor device
- FIG. 3 illustrates in partially cut-away perspective view a further embodiment of the invention.
- FIG. 1 illustrates, in a partially cut-away view, one embodiment of a semiconductor device 10 in accordance with the invention.
- Device 10 shown here to be a silicon bipolar transistor, comprises a semiconductor die 12 which is bonded and encapsulated within a protective package.
- the package includes a die mount portion 14, lead portion 16, and a molded plastic encapsulant 18.
- Die 12 is metallurgically bonded to the die mount portion 14.
- the die mount portion provides a mechanical support, provides electrical contact to the back or collector of the transistor die, and functions as a heat sink for dissipation of heat generated in operation of the device.
- the die mount portion may also include a flange portion 20 having a mounting hole 22 extending through the flange.
- the flange and hole facilitate the mounting of the device, for example, to an electrical chassis or heat sink.
- a patterned metallization including base metal 24 and emitter metal 26 making electrical contact to the base and emitter terminals of the transistor, respectively.
- Leads 28 which are metal wires or preferably ribbons interconnect the base and emitter metal with the lead portion 16.
- the leads are bonded, preferably by ultrasonically assisted bonding techniques, between the top surface metallization and a bonding area 30 located at the ends of lead portion 16.
- One of the leads 32 of the lead portion 16 is mechanically joined to a post portion 34 of the die mount portion 14.
- the joining together of the two package portions and the bonding of leads 28 between the die and the lead portions 16 provides a means for making electrical contact to the often very small and sensitive transistor die. A user of the semiconductor device can then make effective electrical contact external to the package.
- the bonded semiconductor die, the interconnecting leads, and parts of the die mount portion and the lead portion are encapsulated in a molded protective plastic housing 18.
- the plastic protects the die and leads from mechanical damage and from contamination.
- the plastic encapsulation also mechanically supports the lead portion 16 and maintains the correct positioning of the package parts.
- FIG. 2 illustrates in an exploded view the assembly of a semiconductor device in accordance with the invention.
- the semiconductor die 12 has a patterned front metallization 24, 26.
- the underside of the die is metallized with a layer of metal 40 which makes good electrical and mechanical contact to the underside of the die.
- Solder 38 is used to join the semiconductor die to the package die mount portion 14. The solder is supplied either as a preform, by pretinning the die mount area, or by precoating the underside of the die.
- the die mount portion 14 is formed of copper or a copper alloy and remains unplated. Copper or selected copper alloys are chosen for the package portions because of their desirable thermal, electrical, and mechanical properties. Plating or cladding of die mount portion 14 which would add to the expense of the device is unnecessary.
- the term "unplated copper alloy” is meant to include surface alloys and intermetallics formed by applying thin surface layers to the package portion and subsequently heating to form a shallow surface alloy, and especially wherein the heating comprises merely the normal subsequent bonding steps. That is, "unplated” does not mean “uncoated”; unplated does not exclude protective coatings such as methyl methacrylate or other acrylic.
- solder 38 is selected which will bond directly to that material.
- the conventional hard and soft solders besides having the various disadvantages previously noted, will not bond directly to copper in a repeatable and reliable fashion.
- a tin-silver- antimony solder as disclosed in U.S. Patent 4,170,472 is therefore a preferred solder in this application.
- solder comprised, in weight percent, of about 61-69 tin, 8-11 antimony, and 23-28 silver is preferred.
- This solder has properties somewhat intermediate between those of the hard and soft solders and combines many of the desirable features of the various prior art solders.
- the tin-silver-antimony solder bonds directly to the unplated die mount area.
- a metallization layer 40 is applied to the back of the semiconductor die to provide good electrical contact to the die and to provide a solderable surface.
- the metallization layer must adhere to the die and provide an ohmic electrical connection; it must also be metallurgically compatible with the solder chosen for the die bond.
- a preferred metallization layer comprises sequential layers of titanium, nickel, and silver. The titanium contacts the exposed back of the silicon wafer. Upon heating, a titanium silicide is formed which provides a good electrical contact as well as a strong metallurgical bond to the wafer. The silver forms a strong bond with the solder. The intermediate nickel layer acts as a barrier to prevent silver migration to the silicon wafer. Alternate metallization layers can be used, but the Ti-Ni-Ag system is preferred.
- An alternate metallization layer for example, comprises sequential layers of chromium and silver, but chromium silicide exhibits a weaker mechanical bond to the silicon and is metallurgically inferior to the bond formed by titanium.
- Package lead portion 16 is also formed of unplated copper or copper-alloy. Copper alloys are preferred because they impart to the lead portion a desirable amount of rigidity. The rigidity is required, for example, to permit the easy insertion of the leads into a socket or in holes in a printed circuit board and to maintain the location of the device once it has been wired into a circuit.
- the lead portion 16 and die mount portion 14 are physically joined together at area 42. The joining together is accomplished before the die mount operation. Because in this embodiment the die mount portion and lead mount portion are initially separate, the two can be formed from the same alloy from different copper alloys having different metallurgical properties to accommodate a particular need.
- the lead portion for example, can be of an alloy which has higher yield strength or hardness in contrast to the die mount portion which can be of a softer alloy to facilitate the die bonding.
- the die mount portion and lead portion are formed as a single unitary structure. In such embodiment, of course, the two portions must be formed of the same material.
- a patterned metal layer indicated by reference numbers 24 and 26.
- the metal layer makes electrical contact to device regions such as the base and emitter of the transistor.
- Leads 28 interconnect the patterned metallization with the package lead portion.
- Aluminum wires, used in conventional packages, are less reliable for bonding to the unplated copper alloy package.
- Gold wires can be used, but only with stringent and restrictive process limitations. Additionally, the gold leads are very expensive.
- leads 28 comprise copper or copper alloy and are used to bond directly to the copper alloy package.
- Patterned metal layers 24, 26 must be compatible with leads 28. Accordingly, layers 24, 26 preferably comprise sequential layers of titanium, nickel and copper. The titanium is in direct contact with the semiconductor die and makes good electrical and mechanical contact.
- the copper layer makes possible a strong bond to the copper lead.
- the nickel layer provides a barrier to the migration of copper and prevents the migration of copper to the semiconductor die where it can have adverse effects upon device performance.
- the Ti-Ni-Cu metal system is also preferred because the three metals can be etched in a single etch operation; for example, in an etchant comprising nitric acid, acetic acid, hydrofluoric acid and water.
- Alternative metal systems, such as Al-TiW-Cu are metallurgically acceptable but have the disadvantage of requiring three separate etchants and thus three separate etch steps to pattern the layer.
- Precautions must be taken to prevent the oxidation of the unplated copper surface during the assembly of the semiconductor device. Oxidation of the surface inhibits the proper metallurgical bonding and can cause problems with assembly yields and reliability.
- the heated package members are maintained under a flowing inert or reducing ambient such as nitrogen or forming gas to prevent oxidation which will interfere with the die bonding or subsequent wire bonding.
- the leads are attached to the top metallization and to the package leads using ultrasonically assisted bonding' techniques. Such techniques minimize heating, especially in comparison to thermal compression or ballbonding techniques. Ultrasonic wire bonding is a room temperature operation so no special protective ambient is required to prevent oxidation during bonding.
- Leads 28 are preferably in the form of a copper ribbon instead of a circular cross-section wire. Copper leads are harder to deform than are the conventional aluminum or gold leads.
- the flat ribbon shape distributes the ultrasonic energy over the total bonding area and requires less deformation than does the circular cross-section wire. Ultrasonic bonding of the copper ribbon makes the bonding more controllable in comparison to other metals. The relatively harder copper deforms very little, forms a uniform and reproducible bond area, and thus reduces the number of shorts which can result from excessive deformation.
- the semiconductor die and the bond areas are coated with a die coat.
- the die coat appears to be mandatory to prevent the migration of copper and the formation of dendrites at the copper-copper bonds.
- Polyimides are preferred die coat materials.
- the die coat forms a first barrier layer protecting the die and bonds from the ambient.
- a plastic housing 18 as shown in FIG. 1 is injection or transfer molded about the die and a portion of the lead and die mount package parts.
- the plastic may be epoxy, polyimide, engineering plastic, or the like.
- FIGURE 3 illustrates an alternative embodiment of the present invention in which unplated copper or copper alloy parts are assembled into a non-plastic device 50.
- Device 50 comprises a semiconductor die 52 mounted on unplated pedestal 54 which, in turn, is mounted on a header base 55.
- the plateless pedestal can be part of the base itself.
- the base serves to facilitate mounting of the semiconductor device. Holes 57 in each end of the base allow the device to be attached to a heak sink, chassis, or the like.
- Copper alloy bonding posts 56 protrude through holes in the base and are physically secured to the base by insulating glass eyelets 59 which are melted to fuse the leads in place.
- Metal cover 58 shown partly cut away, is welded to the base to provide a hermetically sealed enclosure within which the ambient can be controlled.
- Semiconductor device 50 is assembled in a manner similar to that described above with respect to FIG. 2.
- Copper leads 68 are bonded between the copper alloy bonding post 56 and patterned metallization 64, 66 on the top surface of the die.
- the leads are preferably copper ribbon and are ultrasonically bonded to both the package posts and the metallization.
- the top surface metallization preferably comprises sequential layers of titanium, nickel, and copper.
- the die is metallized on its bottom surface to provide electrical contact to the die and to provide a solderable surface.
- a solder joins this metallized layer to the copper alloy die mount pedestal.
- the solder as above, must be metallurgically compatible with the copper alloy and with the bottom surface metallization and is advantageously a tin-silver-antimony alloy.
- the bottom surface metallization preferably comprises sequen-tial layers of titanium, nickel, and silver.
- a number of silicon bipolar power transistors are assembled in packages substantially as illustrated in FIG. 1.
- the front surface of the transistors are metallized with sequential layers of titanium, nickel, and copper.
- the titanium layer directly contacting exposed portions of the silicon die surface, has a thickness of about 50-100 nanometers.
- Overlying the titanium is a layer of nickel having a thickness of about 300-500 nanometers.
- a layer of copper having a thickness of about 4-6 micrometers is formed on the nickel.
- the metal layers are patterned in a single etch step using an HF-HNO 3 - CH 3 COOH - water etch solution to form base and emitter contacts.
- the back surface of the transistors are metallized with sequential layers of titanium, nickel and silver having thicknesses of about 100, 500, and 4000 nanometers, respectively.
- the die mount package portion is formed of alloy C19400, a copper alloy of iron and zinc.
- the transistor is attached to the die mount package portion using a tin-silver-antimony solder.
- the solder is preformed on the package in a reducing atmosphere. Bonding of the transistor to the package is done in a reducing atmosphere at about 350-450°C.
- the lead portion package member is formed of alloy C15500, a copper alloy of silver and magnesium. Copper ribbon having a cross-section of about 75 micrometers by 125 micrometers is ultrasonically bonded between the patterned base and emitter metal and the package lead portions.
- the transistor, ribbon, exposed die attach area and the bonded ends of the wire attach portion are coated with a polyiraide die coat.
- the polyimide is cured by baking at about 300°C.
- the die and portions of the metal package members are encapsulated by injection molding a protective epoxy housing.
- the devices are subjected to tests designed to screen for the most commonly occurring failures found with such devices, namely mechanical failure of the die attachment to the package, mechanical failure of the lead attachment to base or emitter, and moisture penetration of the molding compound.
- the tests include, for example, power cycling or intermittent operating life tests and high humidity, high temperature reverse bias testing.
- the percentage of device failures defined as a specified change in V BEF, BV CEO , H FE , and the like, is reduced for the devices made in accordance with the invention as contrasted to conventionally assembled devices.
- the device includes unplated copper or copper alloy package parts and metallurgically compatible metal systems and solder for assembling the device. While the invention has been described in conjunction with specific device and package types, it is not intended that the invention or its usage be so limited. The invention can also be used, for example, for other devices and integrated circuits assembled in various package types. Other variations and modifications will be apparent, of course, to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such variations and modifications as fall within the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Lead Frames For Integrated Circuits (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
Abstract
Dispositif a semi-conducteur (10) comprenant un boitier non plaque metallurgiquement compatible. Le boitier comprend une zone de montage (2) de en alliage de cuivre sans placage (14) sur laquelle est fixee un de semi-conducteur (12). Le de semi-conducteur (12) est metallise sur sa surface de montage (40) pour assurer un contact electrique. Une soudure metallique (38) compatible aussi bien avec l'alliage de cuivre qu'avec la surface de metallisation du de relie le de (12) a la zone de montage de de (14). Le boitier comprend en outre une partie de conducteur en alliage de cuivre sans placage (16) reliee physiquement (42) a la zone de montage de de (14). La surface superieure du de semi-conducteur (12) est pourvue d'une couche de metallisation deposee selon un motif (24, 26) assurant le contact electrique avec des parties selectionnees du de. Le contact electrique entre la couche de metallisation de la surface superieure du de (24, 26) et la partie de conducteur (16) du boitier est realisee au moyen d'un ruban (28) de cuivre soude aux ultrasons. Le de (12) et le ruban d'interconnection (28) sont ensuite proteges par un element de scellement epoxyde (18) ou par un couvercle metallique soude (58).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24678481A | 1981-03-23 | 1981-03-23 | |
US246784810323 | 1981-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1982003294A1 true WO1982003294A1 (fr) | 1982-09-30 |
Family
ID=22932185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1982/000154 WO1982003294A1 (fr) | 1981-03-23 | 1982-02-05 | Dispositif a semi-conducteur comprenant un boitier sans placage |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0074378A4 (fr) |
JP (1) | JPS58500463A (fr) |
KR (1) | KR900001223B1 (fr) |
IT (1) | IT1147903B (fr) |
WO (1) | WO1982003294A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0149232A2 (fr) * | 1984-01-17 | 1985-07-24 | Robert Bosch Gmbh | Composant semi-conducteur comprenant un socle métallique |
EP0199415A2 (fr) * | 1985-04-22 | 1986-10-29 | Philips Electronics Uk Limited | Dispositif semi-conducteur comportant une enveloppe imprimable par laser |
EP0285718A2 (fr) * | 1987-04-10 | 1988-10-12 | Citizen Watch Co. Ltd. | Procédé pour la fabrication d'un couvercle de protection pour une grille de broches |
US5514913A (en) * | 1991-12-05 | 1996-05-07 | Consorzio Per La Ricerca Sulla Microelettronica Net Mezzogiorno | Resin-encapsulated semiconductor device having improved adhesion |
EP0911877A1 (fr) * | 1997-10-24 | 1999-04-28 | Eni Technologies, Inc. | Transistor de puissance fonctionnant dans la gamme du kilowatt |
WO2005071750A3 (fr) * | 2004-01-13 | 2006-01-12 | Halliburton Energy Serv Inc | Compositions de materiau conducteur, dispositif, systemes et procedes |
US7091820B2 (en) * | 1996-04-18 | 2006-08-15 | Tessera, Inc. | Methods for manufacturing resistors using a sacrificial layer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088446A (ja) * | 1995-05-25 | 1996-01-12 | Rohm Co Ltd | 個別ダイオード装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2984774A (en) * | 1956-10-01 | 1961-05-16 | Motorola Inc | Transistor heat sink assembly |
US3434018A (en) * | 1966-07-05 | 1969-03-18 | Motorola Inc | Heat conductive mounting base for a semiconductor device |
US3597666A (en) * | 1969-11-26 | 1971-08-03 | Fairchild Camera Instr Co | Lead frame design |
US3763403A (en) * | 1972-03-01 | 1973-10-02 | Gen Electric | Isolated heat-sink semiconductor device |
US3821615A (en) * | 1973-05-16 | 1974-06-28 | Solitron Devices | Long life lead frame means for semiconductor devices |
US3922712A (en) * | 1974-05-01 | 1975-11-25 | Gen Motors Corp | Plastic power semiconductor flip chip package |
US4124864A (en) * | 1977-04-18 | 1978-11-07 | Rca Corporation | Plastic encapsulated semiconductor devices |
US4259685A (en) * | 1978-03-09 | 1981-03-31 | Sgs-Ates Componenti Elettronici S.P.A. | Clamp for securing an encased power frame to a heat sink |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120323B2 (fr) * | 1972-08-08 | 1976-06-24 | ||
JPS5315763A (en) * | 1976-07-28 | 1978-02-14 | Hitachi Ltd | Resin sealed type semiconductor device |
JPS5516425A (en) * | 1978-07-21 | 1980-02-05 | Toshiba Corp | Semiconductor device |
JPS55127027A (en) * | 1979-03-26 | 1980-10-01 | Toshiba Corp | Semiconductor device |
-
1982
- 1982-02-05 JP JP57500908A patent/JPS58500463A/ja active Granted
- 1982-02-05 WO PCT/US1982/000154 patent/WO1982003294A1/fr not_active Application Discontinuation
- 1982-02-05 EP EP19820900878 patent/EP0074378A4/fr not_active Withdrawn
- 1982-03-11 KR KR8201045A patent/KR900001223B1/ko not_active Expired
- 1982-03-16 IT IT48005/82A patent/IT1147903B/it active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2984774A (en) * | 1956-10-01 | 1961-05-16 | Motorola Inc | Transistor heat sink assembly |
US3434018A (en) * | 1966-07-05 | 1969-03-18 | Motorola Inc | Heat conductive mounting base for a semiconductor device |
US3597666A (en) * | 1969-11-26 | 1971-08-03 | Fairchild Camera Instr Co | Lead frame design |
US3763403A (en) * | 1972-03-01 | 1973-10-02 | Gen Electric | Isolated heat-sink semiconductor device |
US3821615A (en) * | 1973-05-16 | 1974-06-28 | Solitron Devices | Long life lead frame means for semiconductor devices |
US3922712A (en) * | 1974-05-01 | 1975-11-25 | Gen Motors Corp | Plastic power semiconductor flip chip package |
US4124864A (en) * | 1977-04-18 | 1978-11-07 | Rca Corporation | Plastic encapsulated semiconductor devices |
US4259685A (en) * | 1978-03-09 | 1981-03-31 | Sgs-Ates Componenti Elettronici S.P.A. | Clamp for securing an encased power frame to a heat sink |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0149232A2 (fr) * | 1984-01-17 | 1985-07-24 | Robert Bosch Gmbh | Composant semi-conducteur comprenant un socle métallique |
EP0149232A3 (en) * | 1984-01-17 | 1987-02-04 | Robert Bosch Gmbh | Semiconductor component having a metalic base |
EP0199415A2 (fr) * | 1985-04-22 | 1986-10-29 | Philips Electronics Uk Limited | Dispositif semi-conducteur comportant une enveloppe imprimable par laser |
EP0199415A3 (en) * | 1985-04-22 | 1987-07-22 | Philips Electronic And Associated Industries Limited | Semiconductor device having a laser printable envelope |
EP0285718A2 (fr) * | 1987-04-10 | 1988-10-12 | Citizen Watch Co. Ltd. | Procédé pour la fabrication d'un couvercle de protection pour une grille de broches |
EP0285718A3 (en) * | 1987-04-10 | 1989-02-01 | Citizen Watch Co. Ltd. | Method of forming protective cover of pin grid array |
US5514913A (en) * | 1991-12-05 | 1996-05-07 | Consorzio Per La Ricerca Sulla Microelettronica Net Mezzogiorno | Resin-encapsulated semiconductor device having improved adhesion |
US5766985A (en) * | 1991-12-05 | 1998-06-16 | Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno | Process for encapsulating a semiconductor device having a heat sink |
US7091820B2 (en) * | 1996-04-18 | 2006-08-15 | Tessera, Inc. | Methods for manufacturing resistors using a sacrificial layer |
EP0911877A1 (fr) * | 1997-10-24 | 1999-04-28 | Eni Technologies, Inc. | Transistor de puissance fonctionnant dans la gamme du kilowatt |
WO2005071750A3 (fr) * | 2004-01-13 | 2006-01-12 | Halliburton Energy Serv Inc | Compositions de materiau conducteur, dispositif, systemes et procedes |
US7696611B2 (en) | 2004-01-13 | 2010-04-13 | Halliburton Energy Services, Inc. | Conductive material compositions, apparatus, systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
EP0074378A4 (fr) | 1985-04-25 |
JPH0412028B2 (fr) | 1992-03-03 |
IT1147903B (it) | 1986-11-26 |
KR830009650A (ko) | 1983-12-22 |
KR900001223B1 (ko) | 1990-03-05 |
IT8248005A0 (it) | 1982-03-16 |
EP0074378A1 (fr) | 1983-03-23 |
JPS58500463A (ja) | 1983-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4631805A (en) | Semiconductor device including plateless package fabrication method | |
US4546374A (en) | Semiconductor device including plateless package | |
US6164523A (en) | Electronic component and method of manufacture | |
KR100239406B1 (ko) | 표면 실장형 반도체 패키지 및 그 제조 방법 | |
JP3027512B2 (ja) | パワーmosfet | |
USRE39603E1 (en) | Process for manufacturing semiconductor device and semiconductor wafer | |
JP3425202B2 (ja) | 電子装置パッケージ・アセンブリー | |
US4736236A (en) | Tape bonding material and structure for electronic circuit fabrication | |
JP3367299B2 (ja) | 樹脂封止型半導体装置およびその製造方法 | |
US20010015481A1 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
US6759597B1 (en) | Wire bonding to dual metal covered pad surfaces | |
JP2001110957A (ja) | パワー半導体モジュールの製造方法 | |
WO1982003294A1 (fr) | Dispositif a semi-conducteur comprenant un boitier sans placage | |
US20040072396A1 (en) | Semiconductor electronic device and method of manufacturing thereof | |
JP3171477B2 (ja) | 半導体装置 | |
JP3685659B2 (ja) | 半導体装置の製造方法 | |
JP3314574B2 (ja) | 半導体装置の製造方法 | |
KR101008534B1 (ko) | 전력용 반도체모듈패키지 및 그 제조방법 | |
EP0154187B1 (fr) | Matériau pour le montage sur bande et structure pour la fabrication d'un circuit électronique | |
JP3446829B2 (ja) | 半導体装置 | |
JP2716355B2 (ja) | 半導体装置の製造方法 | |
JP2986661B2 (ja) | 半導体装置の製造方法 | |
JP2000124356A (ja) | 半導体パッケ―ジ用部材,半導体パッケ―ジ及び半導体パッケ―ジ製造方法 | |
JPH0855856A (ja) | 半導体装置とその製造方法 | |
JP2894172B2 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP |
|
AL | Designated countries for regional patents |
Designated state(s): DE FR GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1982900878 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1982900878 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1982900878 Country of ref document: EP |