WO1979000146A1 - A process and a measuring cell for the coulometric determination of the content of a component dissolved in water - Google Patents
A process and a measuring cell for the coulometric determination of the content of a component dissolved in water Download PDFInfo
- Publication number
- WO1979000146A1 WO1979000146A1 PCT/SE1978/000043 SE7800043W WO7900146A1 WO 1979000146 A1 WO1979000146 A1 WO 1979000146A1 SE 7800043 W SE7800043 W SE 7800043W WO 7900146 A1 WO7900146 A1 WO 7900146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- water
- content
- dissolved
- measuring cell
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008569 process Effects 0.000 title claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000003869 coulometry Methods 0.000 title claims abstract description 9
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 11
- 230000010354 integration Effects 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000003411 electrode reaction Methods 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 8
- 239000013535 sea water Substances 0.000 abstract description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 4
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 68
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000007788 liquid Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- -1 iron ions Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229910018143 SeO3 Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1813—Specific cations in water, e.g. heavy metals
Definitions
- the present invention relates to a process for tine coulometric determination of the content of components dissolved in water, such as gases, e.g. oxygen gas in sea-water, and ions, e.g. iron ions, and a measuring cell for carrying out the process.
- gases e.g. oxygen gas in sea-water
- ions e.g. iron ions
- Various titrimetric methods can be used for the determination of the content of components dissolved in water.
- a number of electrochemical measuring devices are available for measurements in situ. These devices are often based upon a galvanometric or polarographic principle. This means that the measuring signal is proportional to the flow of the component towards an electrode surface. At constant diffusion conditions said flow is proportional to the area of the electrode and to the chemical potential of the dissolved component. The area of the electrode will vary due to precipitation on and contamination of the electrode surface. As a result thereof this type of instrument exhibits an unsatisfactory precision and long term stability.
- salinity and temperature must be determined in addition to the partial pressure of the gas if the concentration is to be calculated.
- the invention relates to a process for the coulometric determination of the content of a component dissolved in water, in which process a definite constant voltage is applied across the electrodes of a coulometer cell filled with a water sample, said constant voltage being maintained for a period of time sufficient for a complete reaction of the dissolved component in a desired electrode reaction, the quantity of electricity passing through the cell being measured by integration, and the content of the dissolved component being calculated on the basis of said integration.
- the process is characterized by employing an elongated three-part coulometer cell composed of a central measuring cell and two auxiliary cells which are directly connected to each end of the measuring cell, and by perform ing electrolysis simultaneously in the measuring cell and the auxiliary cells under such conditions that the concentration of the dissolved component will decrease at the same rate in all three cell elements, two such electrolyses being performed with the same integration time in order to correct for temperature and salt content dependence and for charging of the electric double layer.
- the coulometer cell used in this process is characterized in that it consists of an elongated central measuring cell which has both of its ends directly connected each to one of two elongated auxiliary cells, each of the measuring and auxiliary cells being provided with an anode and a cathode in the form of electrically conducting wires, said wires being parallel inter se and extending in the longitudinal direction of the respective cell elements.
- a specific embodiment of the invention is described below, viz. the determination of the content of oxygen gas dissolved in sea-water.
- the invention is not limit ed to said embodiment but can be used also for the determination of other reactive gases dissolved in water, such as hydrogen sulphide and sulphur dioxide, and ions, such as iron and manganese ions, etc.
- the electrode materials and the voltage applied are chosen in such a manner that the component to be analyzed will participate in a definite electrode reaction which shall be the dominating reaction at the electrode in question.
- the principle utilized in the determination of oxygen in sea-water is based upon the fact that in sea-water the reduction of oxygen is the electrode reaction of quantitative importance which has the lowest activation potential at a platinum cathode.
- the reduction of oxygen is the electrode reaction of quantitative importance which has the lowest activation potential at a platinum cathode.
- anode and potential difference of the cell essentially all current through the cell is a function of the reduction of oxygen and is limited only by the supply of oxygen for the cathode reaction.
- the total number of electrons which can pass through the cell is quantitatively determined by the amount of dissolved oxygen gas in the volume according to Faraday's law.
- a silver-plated platinum wire is suitably used as the anode, the anode reaction being the following:
- the dimentions of the electrolysis cell are determined i.a. by the conditions that the electrolysis time should be moderate (normally maximum 15 minutes) and that the current through the cell should be measurable with a reasonable precision and simplicity. Said conditions lead to a very long and narrow cell in the form of a tube with the electrodes extending in the axial direction. Suitable cell dimensions are the following: diameter 0.3-0.4 mm; length 100-200 mm.
- the solution according to the invention is to use a measuring cell open in both ends but connected to identical electrolysis cells (auxiliary cells) which are switched in at the same time as the measuring cell.
- auxiliary cells identical electrolysis cells
- the liquid column through the measuring and auxiliary cells is kept immovable during the measurement by using a pump not permitting any passage of liquid. Small liquid movements due to a moderate leakage or due to temperature expansion do not affect the measuring result since the liquid entering into the cell has the same oxygen concentration as the liquid being replaced.
- the advantage of the design according to the invention is that the measuring volume is well defined since longitudinal advection and diffusion of oxygen have been eliminated.
- Fig. 1 shows the fundamental construction of the coulometer cell
- Figs. 2 and 3 show the extension of the electrode wires
- Fig. 4 illustrates the joining of a measuring cell with an auxiliary cell.
- the fundamental construction of the cell is shown in Fig. 1.
- the cell consists of a central measuring cell 1 and two auxiliary cells 2 on each side of the measuring cell.
- the measuring cell as well as the auxiliary cells consist of open tube segments (capillary tubes) interconnected to each other.
- the capillary tubes are normally glass tubes, e.g. of Pyrex glass. If the length of the measuring cell is 100 mm, the length of each auxiliary cell may be e.g. 50 mm.
- the auxiliary cells 2 are connected to outer tube segments 3.
- the tube segment 3 in the intake end is connected to a particle filter 4, possibly via a plastics hose.
- the tube segment 3 in the other end is, via a plastics hose, connected to a pump 5, preferably a peristaltic pump.
- Figs. 2 and 3 show how threadlike electrodes 6 are arranged in the longitudinal direction of a measuring cell or auxiliary cell and, in the ends of the capillary tube, are located in grooves 7 between the inner surface and the outer surface of the capillary tube.
- the cathode consists of a fine platinum wire
- the anode consists of a similar platinum wire coated with a silver layer. If the inner diameter of the capillary tube is e.g. 0.4 mm the diameter of the platinum wires may be 0.05 mm. The thickness of the anode silver layer may be 0.01 mm.
- the wires are applied in the following way. Each wire is passed through the capillary tube, one end of the wire is folded over one end of the tube in said groove, and the wire end is fixed on the outer side of the tube, e.g. by means of an adhesive and shrinkable plastics hose 8 (see Fig, 4). The wire is stretched by hand along the inner side of the tube, and the other wire end is fixed in the same way as the first end. The two wires in each capillary tube are applied diametrically opposite to each other.
- Fig. 4 illustrates the joining of a measuring cell 1 and an auxiliary cell 2.
- the auxiliary cell is turned 90° in relation to the measuring cell so that the electrodes 6 o.f the two cells will not contact each other.
- Some silicon rubber is applied to the ends of the tube segments, the ends are then pressed against each other and shrinkable plastics hose 9 is applied to hold said ends together.
- Each auxiliary cell 2 is joined with an outer tube segment 3 in the same way.
- each electrode wire 6 is connected in any suitable way to a connection wire.
- the various connection wires are brought together in a screened cable.
- the two auxiliary cells are connected electrically.
- the cell assembly is applied in a plexiglass housing and all joints and solders are casted into an adhesive, e.g. of epoxy type.
- the flow velocity is controlled in such a manner that the depression in the m easuring cell will not be so great that gas bubbles are foar med .
- the rinsing of the cell must be performed fo r a period of time sufficient for the replacement of the w hole liquid volume of the measuring cell (thus , also the liquid nearest the cell wall) by new test liquid . After stopping the pump the electrolysis can be started .
- the voltage applied is main tained constant during the whole electrolysis time and this can be accomplished by means of two operational amplifiers , one for the measuring cell and one for the two auxiliary cel ls .
- the reference voltage is obtained via a voltage divider from the stabilize d supply voltage .
- the oxygen concentration in the auxiliary sells will be equal to the oxygen concentration in the measur ing cell .
- V the cell volume
- A the area of the working electrode
- E' the electrode potential in relation to electrocapillary maximum.
- the charge Q F is a measure of the oxygen concentration to be determined.
- Q D and TK o are probably salt and tem perature dependent and proportional to the effective electrode area. According to the invention said terms are determined by a second electrolysis of the same sample with the same integration time. The charge will then be:
- the integration is carried out in the following way
- the anode of the measuring cell is connected to an operational amplifier which functions as a current-to-voltage converter and is provided with a booster amplifier so that the current surge passing through the cell and the current-to-voltage converter initially shall not affect the input parameters of the converter.
- the voltage is converted by means of a voltage-to-frequency converter to a pulse train with voltage proportional frequency which is counted in an up/ down counter. In the first integration the frequency is counted up, and in the second integration the frequency is counted down from the first value.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
A process for the coulometric determination of the content of a component dissolved in water, e.g. oxygen gas in sea-water, and a coulometer cell for carrying out said process. The cell consists of an elongated central measuring cell (1) and two auxiliary cells (2) which are directly connected to each end of the measuring cell (1). Electrolysis is performed simultaneously in the measuring cell (1) and the auxiliary cells (2) under such conditions that the concentration of the dissolved component will decrease at the same rate in all there cell elements.
Description
A PROCESS AND A MEASURING CELL FOR THE COULOMETRIC DETERMINATION OP THE CONTENT OF A COMPONENT DISSOLVED IN WATER
The present invention relates to a process for tine coulometric determination of the content of components dissolved in water, such as gases, e.g. oxygen gas in sea-water, and ions, e.g. iron ions, and a measuring cell for carrying out the process.
Various titrimetric methods can be used for the determination of the content of components dissolved in water. A number of electrochemical measuring devices are available for measurements in situ. These devices are often based upon a galvanometric or polarographic principle. This means that the measuring signal is proportional to the flow of the component towards an electrode surface. At constant diffusion conditions said flow is proportional to the area of the electrode and to the chemical potential of the dissolved component. The area of the electrode will vary due to precipitation on and contamination of the electrode surface. As a result thereof this type of instrument exhibits an unsatisfactory precision and long term stability. When measuring dissolved gases salinity and temperature must be determined in addition to the partial pressure of the gas if the concentration is to be calculated.
Also coulometric methods have been previously used; not very successfully, however.
According to the invention an improved coulometric
measuring method has been developed, in which method a specific three-part coulometer cell is used.
Thus, the invention relates to a process for the coulometric determination of the content of a component dissolved in water, in which process a definite constant voltage is applied across the electrodes of a coulometer cell filled with a water sample, said constant voltage being maintained for a period of time sufficient for a complete reaction of the dissolved component in a desired electrode reaction, the quantity of electricity passing through the cell being measured by integration, and the content of the dissolved component being calculated on the basis of said integration. The process is characterized by employing an elongated three-part coulometer cell composed of a central measuring cell and two auxiliary cells which are directly connected to each end of the measuring cell, and by perform ing electrolysis simultaneously in the measuring cell and the auxiliary cells under such conditions that the concentration of the dissolved component will decrease at the same rate in all three cell elements, two such electrolyses being performed with the same integration time in order to correct for temperature and salt content dependence and for charging of the electric double layer.
The coulometer cell used in this process is characterized in that it consists of an elongated central measuring cell which has both of its ends directly connected each to one of two elongated auxiliary cells, each of the measuring and auxiliary cells being provided with an anode and a cathode in the form of electrically conducting wires, said wires being parallel inter se and extending in the longitudinal direction of the respective cell elements.
A specific embodiment of the invention is described below, viz. the determination of the content of oxygen gas dissolved in sea-water. However, the invention is not limit ed to said embodiment but can be used also for the determination of other reactive gases dissolved in water, such as
hydrogen sulphide and sulphur dioxide, and ions, such as iron and manganese ions, etc. In each particular case the electrode materials and the voltage applied are chosen in such a manner that the component to be analyzed will participate in a definite electrode reaction which shall be the dominating reaction at the electrode in question.
The principle utilized in the determination of oxygen in sea-water is based upon the fact that in sea-water the reduction of oxygen is the electrode reaction of quantitative importance which has the lowest activation potential at a platinum cathode. By a suitable choice of anode and potential difference of the cell essentially all current through the cell is a function of the reduction of oxygen and is limited only by the supply of oxygen for the cathode reaction. In a defined volume the total number of electrons which can pass through the cell is quantitatively determined by the amount of dissolved oxygen gas in the volume according to Faraday's law.
The following is the dominating cathode reaction:
O2 + 2H2O + 4e- -> 4OH-
A silver-plated platinum wire is suitably used as the anode, the anode reaction being the following:
Ag + Cl- - > AgCl + e-
The dimentions of the electrolysis cell are determined i.a. by the conditions that the electrolysis time should be moderate (normally maximum 15 minutes) and that the current through the cell should be measurable with a reasonable precision and simplicity. Said conditions lead to a very long and narrow cell in the form of a tube with the electrodes extending in the axial direction. Suitable cell dimensions are the following: diameter 0.3-0.4 mm; length 100-200 mm.
It is difficult mechanically to close and open such a small volume with accuracy, especially as the volume between the cell and the surrounding liquid should be of
the same order of magnitude as the cell volume to facilitate the rinsing between the measurements.
The solution according to the invention is to use a measuring cell open in both ends but connected to identical electrolysis cells (auxiliary cells) which are switched in at the same time as the measuring cell. This means that the oxygen concentration in the adjacent auxiliary cells is essentially the same as that in the measuring cell during the whole electrolysis, so no diffusion of oxygen into the measuring volume will take place. The liquid column through the measuring and auxiliary cells is kept immovable during the measurement by using a pump not permitting any passage of liquid. Small liquid movements due to a moderate leakage or due to temperature expansion do not affect the measuring result since the liquid entering into the cell has the same oxygen concentration as the liquid being replaced. The advantage of the design according to the invention is that the measuring volume is well defined since longitudinal advection and diffusion of oxygen have been eliminated.
The invention will be described below referring to the drawings in which Fig. 1 shows the fundamental construction of the coulometer cell; Figs. 2 and 3 show the extension of the electrode wires; and Fig. 4 illustrates the joining of a measuring cell with an auxiliary cell.
The fundamental construction of the cell is shown in Fig. 1. The cell consists of a central measuring cell 1 and two auxiliary cells 2 on each side of the measuring cell. The measuring cell as well as the auxiliary cells consist of open tube segments (capillary tubes) interconnected to each other. The capillary tubes are normally glass tubes, e.g. of Pyrex glass. If the length of the measuring cell is 100 mm, the length of each auxiliary cell may be e.g. 50 mm. The auxiliary cells 2 are connected to outer tube segments 3. The tube segment 3 in the intake end is connected to a particle filter 4, possibly via a plastics hose. The tube segment 3 in the other end is, via a plastics
hose, connected to a pump 5, preferably a peristaltic pump.
Figs. 2 and 3 show how threadlike electrodes 6 are arranged in the longitudinal direction of a measuring cell or auxiliary cell and, in the ends of the capillary tube, are located in grooves 7 between the inner surface and the outer surface of the capillary tube.
In the determination of oxygen the cathode consists of a fine platinum wire, and the anode consists of a similar platinum wire coated with a silver layer. If the inner diameter of the capillary tube is e.g. 0.4 mm the diameter of the platinum wires may be 0.05 mm. The thickness of the anode silver layer may be 0.01 mm.
The wires are applied in the following way. Each wire is passed through the capillary tube, one end of the wire is folded over one end of the tube in said groove, and the wire end is fixed on the outer side of the tube, e.g. by means of an adhesive and shrinkable plastics hose 8 (see Fig, 4). The wire is stretched by hand along the inner side of the tube, and the other wire end is fixed in the same way as the first end. The two wires in each capillary tube are applied diametrically opposite to each other.
Fig. 4 illustrates the joining of a measuring cell 1 and an auxiliary cell 2. The auxiliary cell is turned 90° in relation to the measuring cell so that the electrodes 6 o.f the two cells will not contact each other. Some silicon rubber is applied to the ends of the tube segments, the ends are then pressed against each other and shrinkable plastics hose 9 is applied to hold said ends together. Each auxiliary cell 2 is joined with an outer tube segment 3 in the same way.
The two ends of each electrode wire 6 are connected in any suitable way to a connection wire. The various connection wires are brought together in a screened cable. The two auxiliary cells are connected electrically. The cell assembly is applied in a plexiglass housing and all joints and solders are casted into an adhesive, e.g. of epoxy type.
Before the measurement water is sucked into the mea
suring cell by means of the pump 5. The flow velocity is controlled in such a manner that the depression in the m easuring cell will not be so great that gas bubbles are foar med . Furthermore , the rinsing of the cell must be performed fo r a period of time sufficient for the replacement of the w hole liquid volume of the measuring cell (thus , also the liquid nearest the cell wall) by new test liquid . After stopping the pump the electrolysis can be started .
It is important that the voltage applied is main tained constant during the whole electrolysis time and this can be accomplished by means of two operational amplifiers , one for the measuring cell and one for the two auxiliary cel ls . The reference voltage is obtained via a voltage divider from the stabilize d supply voltage . During each moment of th e electrolysis the oxygen concentration in the auxiliary sells will be equal to the oxygen concentration in the measur ing cell .
At the time t = 0 a constant voltage is applied; across the electrodes . After the time t the charge Q' has passed through the cell . Said charge can be divided in the following components :
(1 ) The Faraday charge Q' F which is related to the reaction
O2 + 2H2O + 4e - -> 40H-
(2) The charge Q'S deriving from trace amounts of substances reacting at the same overpotential as oxygen or at a lower potential . The quantitatively dominating reactions in sea-water are probably the following:
Cu2+ + 2e - -> Cu
SeO4 2- + H2O + 2e - -> SeO3 2- + 20H-
BiCl4- + 3e - -> Bi + 4Cl-
(3) Slow reactions having an activating potential higher than the cell voltage used give a charge
(4) The charge Q'D necessary for building up the electrical double layer at the working electrode.
The current associated with the charges Q'F, Q'S and Q'D will decrease exponentially with the time, so said charges approach constant values QF, QS and QD when t approaches infinity. On the other hand, the reactions giving the charge Q'o are slow and the concentration change of the reacting substances may be neglected. We have the following approximate relationships:
V = the cell volume
A = the area of the working electrode
[X] = the molarity of X
E' = the electrode potential in relation to electrocapillary maximum.
If the total integration time T is great as compared to ƮF, ƮS and ƮD we have the following relationship:
The charge QF is a measure of the oxygen concentration to be determined. QD and TKo are probably salt and tem
perature dependent and proportional to the effective electrode area. According to the invention said terms are determined by a second electrolysis of the same sample with the same integration time. The charge will then be:
Q* - QD + TKo
Thus: Q - Q*= QF + QS
The magnitude of QS depends upon the content of the substances being capable of reacting at the working electrode . We have the following ratio :
In sea-water saturated with oxygen said ratio is about 10-4; furthermore, the concentrations of the ions are proportional to the salinity S.
By means of the double integration the following calibration equation is obtained:
ΔQ = Q - Q* = K[O2] + kS
This equation is not temperature dependent, and K»k.
The integration is carried out in the following way The anode of the measuring cell is connected to an operational amplifier which functions as a current-to-voltage converter and is provided with a booster amplifier so that the current surge passing through the cell and the current-to-voltage converter initially shall not affect the input parameters of the converter. The voltage is converted by means of a voltage-to-frequency converter to a pulse train with voltage proportional frequency which is counted in an up/ down counter. In the first integration the frequency is counted up, and in the second integration the frequency is counted down from the first value.
When determining oxygen in sea-water by means of the inventive process the accuracy attained is as good as that attained in conventional Winkler titration.
Claims
1. A process for the coulometric determination of the content of a component dissolved in water, in which process a definite constant voltage is applied across the electrodes of a coulometer cell filled with a water sample, said constant voltage being maintained for a period of time sufficient for a complete reaction of the dissolved component in a desired electrode reaction, the quantity of electricity passing through the cell being measured by integration, and the content of the dissolved component being calculated on the basis of said integration, characterized by employing an elongated three-part coulometer cell composed of a central measuring cell and two auxiliary cells which are directly connected to each end of the measuring cell, and by performing electrolysis simultaneously in the measuring cell and the auxiliary cells under such conditions that the concentration of the dissolved component will decrease at the same rate in all three cell elements, two such electrolyses being performed with the same integration time in order to correct for temperature and salt content dependence and for charging of the electric double layer.
2. A coulometer cell for carrying out the process according to claim 1 for the coulometric determination of the content of a component dissolved in water, characterized in that it consists of an elongated central measuring cell which has both of its ends directly connected each to one of two elongated auxiliary cells, each of the measuring and auxiliary cells being provided with an anode and a cathode in the form of electrically conducting wires, said wires being parallel inter se and extending in the longitudinal direction of the respective cell elements.
3. A cell according to claim 2, characterized in that the cathode wires consist of platinum wires and that the anode wires consist of silver-plated platinum wires.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19782857029 DE2857029A1 (en) | 1977-09-14 | 1978-09-14 | A PROCESS AND A MEASURING CELL FOR THE COULOMETRIC DETERMINATION OF THE CONTENT OF A COMPONENT DISSOLVED IN WATER |
SG589/82A SG58982G (en) | 1977-09-14 | 1982-11-17 | A process and a measuring cell for the coulometric determination of the content of a component dissolved in water |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7710308A SE407983B (en) | 1977-09-14 | 1977-09-14 | PROCEDURE FOR COULOMETRIC DETERMINATION OF THE CONTENT OF A WATER-DISCONNECTED COMPONENT AND CELL FOR IMPLEMENTATION OF THE PROCEDURE |
SE7710308 | 1977-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1979000146A1 true WO1979000146A1 (en) | 1979-03-22 |
Family
ID=20332262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1978/000043 WO1979000146A1 (en) | 1977-09-14 | 1978-09-14 | A process and a measuring cell for the coulometric determination of the content of a component dissolved in water |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0006910A1 (en) |
FR (1) | FR2455280A1 (en) |
GB (1) | GB2023842B (en) |
HK (1) | HK28184A (en) |
SE (1) | SE407983B (en) |
SG (1) | SG58982G (en) |
WO (1) | WO1979000146A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2298047B (en) * | 1993-11-09 | 1998-06-10 | Wallace & Tiernan Ltd | Coulometric analysis |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2719679B2 (en) * | 1992-06-06 | 1998-02-25 | 呉羽化学工業株式会社 | Novel azole derivative, method for producing the same, and antifungal agent and anti-aromatase agent containing the derivative |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1623017A1 (en) * | 1964-11-10 | 1970-08-27 | Jungner Instrument Ab | Method for carrying out coulometric analyzes, and a specific cell for this |
GB1448469A (en) * | 1972-12-14 | 1976-09-08 | Mitsubishi Chem Ind | Analytical titration device |
-
1977
- 1977-09-14 SE SE7710308A patent/SE407983B/en unknown
-
1978
- 1978-09-14 GB GB7911769A patent/GB2023842B/en not_active Expired
- 1978-09-14 WO PCT/SE1978/000043 patent/WO1979000146A1/en unknown
-
1979
- 1979-03-27 EP EP78900118A patent/EP0006910A1/en not_active Withdrawn
-
1980
- 1980-01-21 FR FR8001480A patent/FR2455280A1/en not_active Withdrawn
-
1982
- 1982-11-17 SG SG589/82A patent/SG58982G/en unknown
-
1984
- 1984-03-29 HK HK281/84A patent/HK28184A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1623017A1 (en) * | 1964-11-10 | 1970-08-27 | Jungner Instrument Ab | Method for carrying out coulometric analyzes, and a specific cell for this |
GB1448469A (en) * | 1972-12-14 | 1976-09-08 | Mitsubishi Chem Ind | Analytical titration device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2298047B (en) * | 1993-11-09 | 1998-06-10 | Wallace & Tiernan Ltd | Coulometric analysis |
Also Published As
Publication number | Publication date |
---|---|
GB2023842A (en) | 1980-01-03 |
SG58982G (en) | 1984-07-27 |
GB2023842B (en) | 1982-05-19 |
SE407983B (en) | 1979-04-30 |
FR2455280A1 (en) | 1980-11-21 |
SE7710308L (en) | 1979-03-15 |
EP0006910A1 (en) | 1980-01-23 |
HK28184A (en) | 1984-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4003705A (en) | Analysis apparatus and method of measuring rate of change of electrolyte pH | |
Kolthoff et al. | The Fundamental Principles and Applications of Electrolysis with the Dropping Mercury Electrode and Heyrovský's Polarographic Method of Chemical Analysis. | |
US4889611A (en) | Flow cell | |
US4426621A (en) | Detection circuitry for electrochemical analysis | |
EP0114102B1 (en) | Apparatus for electrochemical detection and coulometric titration | |
Blaedel et al. | Submicromolar concentration measurements with tubular electrodes | |
GB1120364A (en) | Detection method and apparatus for chromatography | |
Jin et al. | Assay of glutathione in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection | |
US4211615A (en) | Process and a measuring cell for the coulometric determination of the content of a component dissolved in water | |
US3338812A (en) | Electrolytic titration apparatus | |
Müller et al. | A conductometric detector for capillary separations | |
WO1979000146A1 (en) | A process and a measuring cell for the coulometric determination of the content of a component dissolved in water | |
US4440619A (en) | Electro-analytical measuring equipment with measuring cell, comprising integral sensing element and several reference electrodes | |
Sheremet et al. | Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution | |
US3523872A (en) | Gas analysis | |
JPH07113620B2 (en) | Lithium / sodium ion concentration ratio measuring method and measuring device | |
JPS61176846A (en) | Ion sensor body | |
US4430164A (en) | Fault-compensating electro-analytical measuring process and equipment | |
Pita | Potentiometric determination of carbon dioxide partial pressure and pH in ultramicro volumes of biological fluids | |
Kemula | The application of stripping processes in voltammetry | |
IE913249A1 (en) | METHOD AND APPARATUS FOR DETERMINING THE pH of liquids | |
Torstensson | Controlled-potential back-titration with electrogenerated iodine as an intermediate: Application to the determination of thiols | |
Cukrowski et al. | Subtractive anodic stripping voltammetry at a blocked set of electrodes | |
CA1311521C (en) | Continuous electrochemical analyzer | |
Garvin | Picomolar quantitation of potassium using a continuous-flow apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CH DE GB LU SU US Designated state(s): CH DE GB LU SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): FR Designated state(s): FR |
|
CR1 | Correction of entry in section i | ||
RET | De translation (de og part 6b) |
Ref country code: DE Ref document number: 2857029 Date of ref document: 19810108 Format of ref document f/p: P |