USRE39792E1 - Method for culturing Chinese hamster ovary cells - Google Patents
Method for culturing Chinese hamster ovary cells Download PDFInfo
- Publication number
- USRE39792E1 USRE39792E1 US10/995,010 US99501004A USRE39792E US RE39792 E1 USRE39792 E1 US RE39792E1 US 99501004 A US99501004 A US 99501004A US RE39792 E USRE39792 E US RE39792E
- Authority
- US
- United States
- Prior art keywords
- medium
- accordance
- culturing
- liter
- cho cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2893—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD52
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0043—Medium free of human- or animal-derived components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6456—Plasminogen activators
- C12N9/6459—Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21069—Protein C activated (3.4.21.69)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
- C12N2500/10—Metals; Metal chelators
- C12N2500/20—Transition metals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/32—Amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/36—Lipids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/38—Vitamins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/70—Undefined extracts
- C12N2500/74—Undefined extracts from fungi, e.g. yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/70—Undefined extracts
- C12N2500/76—Undefined extracts from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/135—Platelet-derived growth factor [PDGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/33—Insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
- C12N2501/392—Sexual steroids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/395—Thyroid hormones
Definitions
- the present invention relates to a biochemically defined culture medium for culturing Chinese hamster ovary (CHO) cell lines and cells adapted to grow in the culture medium.
- CHO Chinese hamster ovary
- CHO Chinese hamster ovary cells
- Puck J. Exp. Med. 108, 945, 1958
- CHO-K1 is proline-requiring and is diploid for the dihydrofolate reduotase (dhfr) gene.
- a dhfr ⁇ CHO cell line (CHO DUK B11) was developed (PNAS 77, 1980, 4216-4220) which is characterised by the loss of dhfr function as a consequence of a mutation in one dhfr gene and the subsequent loss of the other gene. These cells are functionally dhfr ⁇ .
- Other OHO DUK sub-lines have been derived which are also phenotypically dhfr ⁇ .
- CHO cells which are dhfr ⁇ cannot grow without nucleotide precursors such as thymidine, hypoxanthine, or the equivalent nucleosides.
- E. coli XGPRT gene J. Mol. App. Gen. 1981, 1, 165-175
- human tissue-type plasminogen activator Mol. & Cell Biol. 5, 170-1759, 1985
- human immune ( ⁇ ) interferon PNAS 80 pp 4654-4658
- human beta interferon Molecular and Cellular Biology 4, 166-172, 1984.
- a dhfr ⁇ CHO cell line is transfected with a product gene and a dhfr gene which enables selection of CHO cell transformants of the dhfr + phenotype.
- Selection is carried out by culturing the colonies in media devoid of thymidine and hypoxanthine, the absence of which prevents untransformed cells from growing.
- the transformants usually express low levels of the product gene by virtue of co-integration of both transfected genes.
- the expression levels for the product gene may be increased by amplification using methotrexate.
- This drug is a direct inhibitor of the dhfr enzyme and allows insolation of resistant colonies which have amplified their dhfr gene copy number sufficiently to survive under these conditions. Since the dhfr and product genes are usually closely linked in the original transformats, there is normally concomitant amplification resulting in increased expression of the desired produce gene.
- GS system glutamine synthetase selectable marker
- Msx methionine sulphoximine
- Engineered CHO cells are routinely grown in culture media containing serum. (References: J. Mol. App. Gen. 1981, 1, 165-175; Mol. & Cell Biol. 5, 1750-1759, 1985; PNAS 80 pp 4654-4658; Molecular and Cellular Biology 4, 166-172, 1984).
- Fetal bovine serum (FBS) is probably the most extensively utilised serum for mammalian cell culture, although other mammalian sera are used.
- FBS Fetal bovine serum
- Serum is an expensive commodity which is not readily available in amounts required for commercial production. It is also a biochemically undefined material.
- Serum is known to contain many major components including albumin and transferrin and also minor components many of which have not been fully identified nor their action determined, thus serum will differ from batch to batch possibly requiring testing to determine levels of the various components and their effect on the cells. Frequently, serum is contaminated with microorganisms such as viruses and mycoplasma many of which may be harmless but will represent an additional unknown factor. This problem has become more acute in recent years with the emergence of Bovine Spongiform Encephalopathy (BSE). Despite improvements in screening, regulatory authorities are likely to require the sourcing of bovine products from those areas which are free from (BSE) infections.
- BSE Bovine Spongiform Encephalopathy
- bovine serum albumin BSA
- bovine antibody from the medium prior to use is possible but this and the additional product testing required, adds greatly to the everall overall cost of production of the product. Consequently, there has been much research into finding a culture medium devoid of animal components which will support cellular growth, especially of CHO cells. Unfortunately, the problems associated with the provision of such a medium are themselves numerous. CHO cells do not readily grow in serum-free conditions. In addition, the removal of serum may also remove these components that provide cell protection and detoxifying activity.
- a culture medium which is serum-free but not free from animal components is described by Mendiaz et al (In Vitro Cellular & Development Biology Vol.22, No.2, 1986) for use in the culture of CHO K1 cells.
- the medium is a modification of the medium developed by Ham (Microbiology 53 1965 288-293) which is known as “Ham's F12”.
- Other examples of media have been based on Ham's F12 medium for example as disclosed in EPA390327 and EP325190. These media contain transferrin as the serum substitute, but transferrin is derived from an animal source, so the resulting media do not overcome the contamination problems associated with the use of serum.
- a further problem which arises with the use of serum-free media is that of supporting recombinant CHO cells to enable growth and expression of product.
- Media based on Ham's F12 which are not supplemented with serum are generally not rich enough to support full growth or expression.
- Engineered CHO cells are also difficult to grow in suspension. It is highly desirable to achieve growth in suspension when using the cells to express a product such as an antibody.
- a product such as an antibody.
- a suitable medium must be able to support the cells against sheer forces from blade impellers or turbines and from effects of sparging (ie: supplying air, oxygen and CO 2 in bubble form directly to the medium).
- the present invention therefore provides a biochemically defined culture medium for culturing engineered CHO cells which is essentially free from protein, lipid and carbohydrate isolated from an animal source, comprising water, an osmolality regulator, a buffer, an energy source, amino acids including L-glutamine, an inorganic or recombinant iron source and a recombinant or synthetic growth factor and optionally non-ferrous metal ions, vitamins and cofactors.
- the components of the medium are mostly inorganic, synthetic or recombinant and as such are not obtained directly from any animal source. Some components may be obtained from a plant or bacterial source. Recombinant components are prepared under highly pure conditions to minimise the risk of contamination from the parent tissue passing to the cells used to produce the components. Further purification steps may be employed to remove cell proteins. Thus, a medium which is essentially free from all protein, lipid and carbohydrate isolated from an animal source, can be achieved.
- the preferred culture medium of the invention contains no protein, lipid and carbohydrate isolated from an animal source.
- Osmolality regulators are generally salts. Those which may be used in the medium include NaCl, KCl, KNO 3 .
- Buffers of use in the medium include carbonates such as NaHCO 3 ; also chlorides, sulphates and phosphates such as CaCl 2 2H 2 O, MgSO 4 7H 2 O, NaH 2 PO 4 2H 2 O, or sodium pyruvate, such buffers are generally present in an amount 50-500 mg/liter.
- buffers such as N-[2-hydroxyethyl]piperazine-N′-[2-ethanesul-phonic acid] otherwise known as HEPES and 3-[N-Morpholino]-propanesul-fonic acid otherwise known as MOPS are generally present in an amount 1000-10,000 mg/liter.
- the energy source of use in the medium is generally present in an amount 1000-10,000 mg/liter and is preferably a monosaccharide such as manose, fructose, galactose or maltose most preferably glucose, particularly D-glucose.
- the non-ferous non-ferrous metal ions optionally of use in the medium include magnesium, copper and zinc; also sodium, potassium and selenium.
- the ions are generally added to the medium in the form of salts such as chlorides and sulphates. The amounts are typically similar to those provided in the ISCOVES medium set out in Table 1 but clearly may be varied.
- Vitamins and enzyme co-factor vitamins (co-factors) optionally of use in the medium include Vitamin B6 (pyridoxine), Vitamin B12 (cyanocobalamin) and Vitamin K, (biotin) present in an amount 0.01-0.5 mg/liter; Vitamin C (ascorbic acid) present in an amount 10-30 mg/liter, Vitamin B2 (riboflavin) present in an amount 0.1-1.0 mg/liter and Vitamin B1 (thiamine), nicotin amide, Vitamin B5 (D calcium pentothenate), folic acid, i-inositol generally present in an amount 0.2-8.0 mg/liter.
- Vitamin B6 pyridoxine
- Vitamin B12 cyanocobalamin
- Vitamin K biotin
- biotin present in an amount 0.01-0.5 mg/liter
- Vitamin C ascorbic acid
- Vitamin B2 riboflavin
- Vitamin B1 thiamine
- nicotin amide Vitamin B5 (D calcium pentothenate)
- folic acid i
- lipid factor such as choline chloride, lipoic acid, oleic acid, phosphatidylcholine or methyl lineoleate, generally in an amount 0.05-10 ml/liter.
- lipid factor such as choline chloride, lipoic acid, oleic acid, phosphatidylcholine or methyl lineoleate
- Compounds involved in lipid production for example alcoholamines such as ethanolamine may also be added.
- Amino Acid Preferred mg/liter L-Alanine 20-50 L-Arginine (HCl) 50-100 L-Asparagine (H 2 O) 20-50 L-Aspartic Acid 20-50 L-Cystine (disodium salt) 50-100 L-Glutamic acid 50-100 L-Glutamine 400-600 Glycine 20-50 L-Histidine (HCl•H 2 O) 30-60 L-Isoleucine 50-150 L-Leucine 50-150 L-Lysine (HCl) 100-200 L-Methionine 20-50 L-Phenylalanine 40-80 L-Proline 30-60 L-Serine 30-60 L-Threonine 50-120 L-Tryptophan 10-20 L-Tyrosine (disodium salt) 50-120 L-Valine 80-120 The bracketed forms are preferred.
- the amino acids are preferably of synthetic origin.
- the amounts which are usually included vary for each amino acid but are generally in the range 10-150 mg/ml.
- L-glutamine is generally present at much higher concentration preferably in the range 400-600 mg/ml.
- a pH indicator for example Phenol red sodium salt for example at 5-50 mg/liter.
- Medium A as set out in Table 1, is an example of a medium which provides the preferred quantities of water, osmolality regulator, buffer, energy source, amino acids, non-ferrous metal ions, vitamins and co-factors as a basis for a culture medium according to the invention.
- This medium does not contain any hypoxanthine or thymidine and is commercially available from GIBCO Ltd., Unit 4, Cowley Mill Td. Est., Uxbridge UB8 2YG. It is similar to a published culture medium (Iscoves and Melcher (1978) J. Exp. Med. 1, 47,923) but does not contain any bovine serum albumin, pure human transferrin or soyabean lecithin.
- selenium (optionally in the form of sodium selenite) generally in an amount 0.01-0.2 mg/liter or L-Ascorbic acid generally in an amount 20-50 mg/liter to help minimise the potential toxic effects of ferrous or ferric ions, and oxygen.
- chelating agents such as citrate or Ethylenediaminetetraacetic acid (EDTA) or a free radical scavenger such as ⁇ -Tocepherol (vitamin E) are advantageous in reducing free radical damage.
- Antibiotics such as polymyxin, neomycin, penicillin or streptomycin may be added to-the medium to prevent bacterial contamination. These are usually included in an amount 10,000-100,000 Iu/liter.
- Growth factors which may be added to the basal medium are synthetic or recombinant and include insulin.
- Other factors such as platelet-derived growth factor (PDGF), thyroxtne thyroxine T 3 , thrombin, interleukins such as IL2 and IL6, progesterone, hydrocortisone and vitamin E may be included.
- Folic acid, vitamin B6 and vitamin B12 which are involved in the folate pathway may be added to enhance the growth of cells.
- the peptide hormone insulin (which in the present context includes analogues thereof such as Nucellin® (recombinant insulin, Eli Lilly) is advantageously obtained by recombinant DNA techniques but is not isolated from an animal source. It is preferably added to the medium in an amount 5 ⁇ g-5 mg/liter. Nucellin is the preferred form of insulin for use in the invention.
- the non-animal derived iron source to supplement the medium is preferably inorganic and present in an amount 0.25-5 mg/liter.
- examples include ferric and ferrous salts such as ferric citrate or ferrous sulphate.
- the chelated salts such as ferric citrate and ferric ammonium citrate are preferred.
- any iron source may be used which is not isolated from an animal source, for example, chemical iron chelators or recombinant protein iron carriers.
- the concentration of ferric or ferrous ions should be carefully controlled as these may help generate superoxides and free radicals in the medium, which may damage not only the cells themselves, but medium components and the desired end product.
- putrescine advantageously as a salt such as HCl, which is known to play a role in maintaining the structure of the endoplasmic reticulum and to be required by certain CHO cell lines to support growth.
- Putrescine or a salt thereof is preferably added in an amount 0.01-1.0 mg/liter.
- Serum-free media disclosed to date contain hypoxanthine or thymidine. This could bypass the selection pressure placed on the dhfr selection and amplification system as previously disclosed. The result may be loss of genetic material specifying the product and the dhfr genes. Therefore, in another aspect of the invention there is provided a culture medium for the growth of engineered dhfr ⁇ CHO cells in accordance with the invention, essentially free from hypoxanthine and/or thymidine.
- the culture medium of the present invention supports CHO cell growth and when supplemented with an appropriate agent such as methotrexate for the dhfr system usually in an amount 0.1-5.0 ⁇ M, (or MSX for the GS system), allow full selection pressure to be exerted on the cells.
- an appropriate agent such as methotrexate for the dhfr system usually in an amount 0.1-5.0 ⁇ M, (or MSX for the GS system)
- hypoxanthine and thymidine at concentrations which are insufficient to bypass selection of the dhfr system may be present in the medium, but the presence of these two nucleotide precursors is not preferred for use with the present invention.
- mammalian cells are particularly susceptible to sheer forces arising from the sparging of the vessel with gases and the mixing with the impeller.
- a cell protectant such as polyethylene glycol, polyvinyl alcohols or pluronic polyols.
- Pluronic® polyol, BASF Wyandotte Corp.
- polyol F68 is preferred since unlike polyvinyl alcohols this is a non-toxic substance and unlike polyethylene glycols does not interfere with downstream purification.
- a peptide digest such as Tryprone, casein hydrolysate, yeast extract, or preferably papain digested soya peptone.
- the preferred amounts are 1%-0.025% w/v, most preferably 0.25% w/v.
- the media of the invention for culturing recombinant CHO cells are capable of supporting the growth and secretion of product from such cells in suspension in small and large scale fermenters fermentors, static cultures and/or spinners.
- the culture medium according to the invention is also capable of supporting growth of cells at high cell density namely greater than 1 ⁇ 10 5 cells/ml up to or greater than 1.5 ⁇ 10 6 cells/ml and product secretion of 30 mg/l up to greater than 150 mg/l.
- the medium according to the invention is also capable of supporting this growth and product secretion over multiple passages lasting up to or greater than 6 months.
- the medium is preferred for the production of all types of antibodies natural and altered.
- the invention therefore includes production of human antibodies wherein the amino acid sequences of the heavy and light chains are homologous with those sequences of antibodies produced by human lymphocytes in vivo or in vitro by hybridomas.
- hybrid antibodies in which the heavy and light chains are homologous to a natural antibody but are combined in a way that would not occur naturally.
- a bispecific antibody has antigen binding sites specific to more than one antigen.
- the constant region of the antibody may relate to one or other of the antigen binding regions or may be from a further antibody.
- Altered antibodies, for example chimaeric antibodies have variable regions from one antibody and constant regions from another.
- chimaeric antibodies may be species/species chimaeras or class/class chimaeras. Such chimaeric antibodies may have one or more further modifications to improve antigen binding ability or to alter effector functioning.
- Humanised or CDR-grafted antibodies (EP 239400) are embraced within the invention, in particular Campath 1H (EP328404) (Campath is a TM of The Wellcome Foundation) also composite antibodies, wherein parts of the hypervariable regions in addition to the CDRs are tranferred transferred to the human framework. Additional amino acids in the framework or constant regions of such antibodies may be altered.
- the invention further includes the production of Feb Fab fragments which are roughly equivalent to the Y branch portions of the heavy and light chains; this includes incomplete fragments or fragments including part of the Fc region.
- an engineered CHO cell adapted to grow in a medium according to the invention.
- a CHO cell engineered to express proteins such as tissue plasminogen activator or antibodies as defined above.
- the invention provides a dhfr ⁇ CHO cell line transfected with a gene encoding a biologically active protein and a dhfr selectable marker gene, adapted to grow in a culture medium according to the invention.
- the protein is preferably an antibody as defined above.
- the ingredients of the culture medium may be added in any order but it is preferable to add the iron source and when used, tyrosine, last to avoid precipitation.
- FIG. 1 shows growth of C1H 3D11* 44 in WCM5 (protein-free medium) in a 1 liter fermenterfermentor measured as cell count/ml over 90 days.
- FIG. 2 shows antibody production from C1H 3D11 *44 cells in WCM5 in a 1 liter formenterfermentor measured as micrograms of antibody/ml over 80 days.
- This medium does not contain hypoxanthine, thymidine or folinic acid which can bypass methotrexate selection.
- the medium does contain glycine which cannot by itself bypass selection. Therefore, this medium maintains full selection for methotrexate resistance.
- MedmiumMedium A (Iscoves modification of DMEM without BSA, transferrin or lecithin).
- C1H 3D11* cells are genetically engineered CHO DUK B11 cells (Urlaub and Chasin (1980) PNAS 77, 7 pp 4216-4220). CHO DUK B11 cells cannot produce dihydrofolate reductase (dhfr). These cells were engineered to produce a humanised IgG antibody, Campath 1H (Winter et al., Nature, 1988, 322, 323-327), using plasmid constructs to express heavy and light antibody chains and the mouse dhfr. Expression is amplified and maintained using the folate antagonist methotrate methotrexate.
- dhfr dihydrofolate reductase
- H hypoxanthine
- T thymidine
- HT methotrexate
- the flasks were pooled and added to an equal volume of WCM4+MTX without peptone or PEG, and were transferred to a 75 cm 2 flask.
- these cells produced antibody in excess of 70 ⁇ g/ml and regularly achieved levels of 100 ⁇ g/ml or more.
- the cells are denoted C1H 3D11* 44.
- C1H 3D11*44 cells from Example 3 which had been growing serum-free for over 2 months were transferred to a SGi 1 liter fermenter fermentor with a stainless steel angled paddle turning at 70 rpm.
- the temperature was set at 37° C., dO 2 at 10% and pH control to 7-7.2.
- the fermenter fermentor was seeded on day 0 with 0.22 ⁇ 10 6 cells/ml in WCM4 (Example 1) with 0.1% polyethylene glycol (PEG) 10,000 and 0.25% soy peptone, and was top gassed with O 2 .
- the cells were routinely passaged using fresh medium and a split rate typically between 1 or 2 and 1 to 4.
- WCM5 (Example 2) was used together with peptone and PEG instead of WCM4.
- Chinese hamster ovary cells CHO AJ19 MCB1, derived from CHO DUK cells, (Urlaub & Chasin PNAS, 77, 7, pp4216-4220, 1980), were genetically engineered to produce tPA under methotrexate selection.
- This cell line had been routinely grown in a fermenter fermentor as a suspension culture using normal growth medium consisting of RPMI 1640 medium (GIBCO), 2.5% acid hydrolysed adult bovine serum (Imperial), 0.5% Tryptone, 50 IU/ml polymycin, 20 IU/ml neomycin, 500 nM methotrexate (MTX).
- the yeast extract, Peptone and PEG were made up as 10% w/v solutions with water (Wellcome media production unit) and filtered through a 0.2 um disposable filter (Gelman, Supor Vac), then diluted for use.
- the cells were incubated at 37° C. in a humidified incubator containing 5% CO 2 .
- CHO AJ19 MCBI in WCM4 cells growing in normal growth medium were pelleted and washed as in Example 5 and were resuspended at 7 ⁇ 10 4 /ml in 500 ml of medium 46B. These cells were transferred to a Techne spinner flask and incubated, as above, stirring at 40 rpm. At various time intervals the cells were counted and subcultured using the same medium. A sample was taken for tPA assay and treated as in Example 5.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Materials For Medical Uses (AREA)
- Liquid Crystal (AREA)
Abstract
A biochemically defined culture medium for culturing engineered Chinese hamster ovary (CHO) cell lines, which is essentially free from protein, lipid and carbohydrate isolated from an animal source, having water, an osmolality regulator, a buffer, an energy source, amino acids including L-glutamine, an inorganic or recombinant iron source, and a synthetic or recombinant growth factor, and optionally non-ferrous metal ions vitamins and cofactors. Also cells adapted to grow in such a culture medium.
REEXAMINATION RESULTS
The questions raised in reexamination request no. 90/006656, filed Jun. 2, 2003 have been considered and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e), for ex parte reexaminations, or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.
Description
This is a continuation of application Ser. No. 07.991,717 filed Dec. 18, 1992, now U.S. Pat. No. 5,316,938 which is a continuation of Ser. No. 07/777,729, filed Oct. 16, 1991, now abandoned.
The present invention relates to a biochemically defined culture medium for culturing Chinese hamster ovary (CHO) cell lines and cells adapted to grow in the culture medium.
Chinese hamster ovary cells (CHO) were first cultured by Puck (J. Exp. Med. 108, 945, 1958) from a biopsy of an ovary from a female Chinese hamster. From these original cells various workers have cloned a number of sub-lines with various deficiencies, one of which, CHO-K1, is proline-requiring and is diploid for the dihydrofolate reduotase (dhfr) gene. From this cell line a dhfr− CHO cell line (CHO DUK B11) was developed (PNAS 77, 1980, 4216-4220) which is characterised by the loss of dhfr function as a consequence of a mutation in one dhfr gene and the subsequent loss of the other gene. These cells are functionally dhfr−. Other OHO DUK sub-lines have been derived which are also phenotypically dhfr−. CHO cells which are dhfr− cannot grow without nucleotide precursors such as thymidine, hypoxanthine, or the equivalent nucleosides.
Various proteins have been expressed in such CHO cells including E. coli XGPRT gene (J. Mol. App. Gen. 1981, 1, 165-175), human tissue-type plasminogen activator (Mol. & Cell Biol. 5, 170-1759, 1985), human immune (γ) interferon (PNAS 80 pp 4654-4658), and human beta interferon (Molecular and Cellular Biology 4, 166-172, 1984). A dhfr− CHO cell line is transfected with a product gene and a dhfr gene which enables selection of CHO cell transformants of the dhfr+ phenotype. Selection is carried out by culturing the colonies in media devoid of thymidine and hypoxanthine, the absence of which prevents untransformed cells from growing. The transformants usually express low levels of the product gene by virtue of co-integration of both transfected genes. The expression levels for the product gene may be increased by amplification using methotrexate. This drug is a direct inhibitor of the dhfr enzyme and allows insolation of resistant colonies which have amplified their dhfr gene copy number sufficiently to survive under these conditions. Since the dhfr and product genes are usually closely linked in the original transformats, there is normally concomitant amplification resulting in increased expression of the desired produce gene.
A different system of selection and amplification is provided by the glutamine synthetase selectable marker (or GS system) which is described in WO87/04462. CHO cells which have been successfully transfected with the gene encoding the GS enzyme and the desired antibody gene can be selected by culturing colonies in media devoid of glutamine and amplifying by the addition of methionine sulphoximine (Msx) as described in PCT published application number WO87/04462.
Engineered CHO cells (those in which a CHO cell line is transfected with a product gene and a selectable marker gene) are routinely grown in culture media containing serum. (References: J. Mol. App. Gen. 1981, 1, 165-175; Mol. & Cell Biol. 5, 1750-1759, 1985; PNAS 80 pp 4654-4658; Molecular and Cellular Biology 4, 166-172, 1984). Fetal bovine serum (FBS) is probably the most extensively utilised serum for mammalian cell culture, although other mammalian sera are used. However, the use of serum poses a number of problems. Serum is an expensive commodity which is not readily available in amounts required for commercial production. It is also a biochemically undefined material. Serum is known to contain many major components including albumin and transferrin and also minor components many of which have not been fully identified nor their action determined, thus serum will differ from batch to batch possibly requiring testing to determine levels of the various components and their effect on the cells. Frequently, serum is contaminated with microorganisms such as viruses and mycoplasma many of which may be harmless but will represent an additional unknown factor. This problem has become more acute in recent years with the emergence of Bovine Spongiform Encephalopathy (BSE). Despite improvements in screening, regulatory authorities are likely to require the sourcing of bovine products from those areas which are free from (BSE) infections. Furthermore, the presence of animal proteins in culture media can require lengthy purification procedures, in particular the presence of bovine antibodies in bovine serum albumin (BSA) makes purification of the desired antibodies expressed by the recombinant CHO cell line, extremely difficult. Removal of bovine antibody from the medium prior to use is possible but this and the additional product testing required, adds greatly to the everall overall cost of production of the product. Consequently, there has been much research into finding a culture medium devoid of animal components which will support cellular growth, especially of CHO cells. Unfortunately, the problems associated with the provision of such a medium are themselves numerous. CHO cells do not readily grow in serum-free conditions. In addition, the removal of serum may also remove these components that provide cell protection and detoxifying activity.
A culture medium which is serum-free but not free from animal components is described by Mendiaz et al (In Vitro Cellular & Development Biology Vol.22, No.2, 1986) for use in the culture of CHO K1 cells. The medium is a modification of the medium developed by Ham (Microbiology 53 1965 288-293) which is known as “Ham's F12”. Other examples of media have been based on Ham's F12 medium for example as disclosed in EPA390327 and EP325190. These media contain transferrin as the serum substitute, but transferrin is derived from an animal source, so the resulting media do not overcome the contamination problems associated with the use of serum.
A further problem which arises with the use of serum-free media is that of supporting recombinant CHO cells to enable growth and expression of product. Media based on Ham's F12 which are not supplemented with serum are generally not rich enough to support full growth or expression.
Engineered CHO cells are also difficult to grow in suspension. It is highly desirable to achieve growth in suspension when using the cells to express a product such as an antibody. For production of a biological protein on a commercial scale it is preferable to be able to support growth in fermenters fermentors which range from 1 liter glass vessels to multi-thousand liter stainless steel tanks. A suitable medium must be able to support the cells against sheer forces from blade impellers or turbines and from effects of sparging (ie: supplying air, oxygen and CO2 in bubble form directly to the medium).
The present invention therefore provides a biochemically defined culture medium for culturing engineered CHO cells which is essentially free from protein, lipid and carbohydrate isolated from an animal source, comprising water, an osmolality regulator, a buffer, an energy source, amino acids including L-glutamine, an inorganic or recombinant iron source and a recombinant or synthetic growth factor and optionally non-ferrous metal ions, vitamins and cofactors.
The components of the medium are mostly inorganic, synthetic or recombinant and as such are not obtained directly from any animal source. Some components may be obtained from a plant or bacterial source. Recombinant components are prepared under highly pure conditions to minimise the risk of contamination from the parent tissue passing to the cells used to produce the components. Further purification steps may be employed to remove cell proteins. Thus, a medium which is essentially free from all protein, lipid and carbohydrate isolated from an animal source, can be achieved. The preferred culture medium of the invention contains no protein, lipid and carbohydrate isolated from an animal source.
It is advantageous to maintain osmolality in the range 200-30 milli-Osmols (mOsm) preferably in the range 290-350 mOsm. Osmolality regulators are generally salts. Those which may be used in the medium include NaCl, KCl, KNO3.
Buffers of use in the medium to maintain the pH in the range 6.5-7.5 most preferably around pH 7.0. Buffers of use in the medium include carbonates such as NaHCO3; also chlorides, sulphates and phosphates such as CaCl22H2O, MgSO47H2O, NaH2PO42H2O, or sodium pyruvate, such buffers are generally present in an amount 50-500 mg/liter. Other buffers, such as N-[2-hydroxyethyl]piperazine-N′-[2-ethanesul-phonic acid] otherwise known as HEPES and 3-[N-Morpholino]-propanesul-fonic acid otherwise known as MOPS are generally present in an amount 1000-10,000 mg/liter.
The energy source of use in the medium is generally present in an amount 1000-10,000 mg/liter and is preferably a monosaccharide such as manose, fructose, galactose or maltose most preferably glucose, particularly D-glucose.
The non-ferous non-ferrous metal ions optionally of use in the medium include magnesium, copper and zinc; also sodium, potassium and selenium. The ions are generally added to the medium in the form of salts such as chlorides and sulphates. The amounts are typically similar to those provided in the ISCOVES medium set out in Table 1 but clearly may be varied.
Vitamins and enzyme co-factor vitamins (co-factors) optionally of use in the medium include Vitamin B6 (pyridoxine), Vitamin B12 (cyanocobalamin) and Vitamin K, (biotin) present in an amount 0.01-0.5 mg/liter; Vitamin C (ascorbic acid) present in an amount 10-30 mg/liter, Vitamin B2 (riboflavin) present in an amount 0.1-1.0 mg/liter and Vitamin B1 (thiamine), nicotin amide, Vitamin B5 (D calcium pentothenate), folic acid, i-inositol generally present in an amount 0.2-8.0 mg/liter.
It is preferable to include in the basal medium a lipid factor such as choline chloride, lipoic acid, oleic acid, phosphatidylcholine or methyl lineoleate, generally in an amount 0.05-10 ml/liter. Compounds involved in lipid production for example alcoholamines such as ethanolamine may also be added.
It is preferable to include additional amino acids in the medium selected from:
Amino Acid | Preferred mg/liter | ||
L-Alanine | 20-50 | ||
L-Arginine (HCl) | 50-100 | ||
L-Asparagine (H2O) | 20-50 | ||
L-Aspartic Acid | 20-50 | ||
L-Cystine (disodium salt) | 50-100 | ||
L-Glutamic acid | 50-100 | ||
L-Glutamine | 400-600 | ||
Glycine | 20-50 | ||
L-Histidine (HCl•H2O) | 30-60 | ||
L-Isoleucine | 50-150 | ||
L-Leucine | 50-150 | ||
L-Lysine (HCl) | 100-200 | ||
L-Methionine | 20-50 | ||
L-Phenylalanine | 40-80 | ||
L-Proline | 30-60 | ||
L-Serine | 30-60 | ||
L-Threonine | 50-120 | ||
L-Tryptophan | 10-20 | ||
L-Tyrosine (disodium salt) | 50-120 | ||
L-Valine | 80-120 | ||
The bracketed forms are preferred.
The amino acids are preferably of synthetic origin. The amounts which are usually included vary for each amino acid but are generally in the range 10-150 mg/ml. However, L-glutamine is generally present at much higher concentration preferably in the range 400-600 mg/ml.
It may be advantageous to include in the medium a pH indicator for example Phenol red sodium salt for example at 5-50 mg/liter.
Medium A as set out in Table 1, is an example of a medium which provides the preferred quantities of water, osmolality regulator, buffer, energy source, amino acids, non-ferrous metal ions, vitamins and co-factors as a basis for a culture medium according to the invention. This medium does not contain any hypoxanthine or thymidine and is commercially available from GIBCO Ltd., Unit 4, Cowley Mill Td. Est., Uxbridge UB8 2YG. It is similar to a published culture medium (Iscoves and Melcher (1978) J. Exp. Med. 1, 47,923) but does not contain any bovine serum albumin, pure human transferrin or soyabean lecithin.
TABLE 1 |
Medium A (modification of Iscoves' DMEM lacking albumin, |
transferrin and lecithin) |
Ingredient | mg/liter | ||
L-Alanine | 25.00 | ||
L-Arginine HCl | 84.00 | ||
L-Asparagine H2O | 28.40 | ||
L-Aspartic Acid | 30.00 | ||
L-Cystine | 70.00 | ||
L-Glutamic acid | 75.00 | ||
L-Glutamine | 584.00 | ||
Glycine | 30.00 | ||
L-Histidine HCl•H2O | 42.00 | ||
L-Isoleucine | 105.00 | ||
L-Leucine | 105.00 | ||
L-Lysine HCl | 146.00 | ||
L-Methionine | 30.00 | ||
L-Phenylalanine | 66.00 | ||
L-Proline | 40.00 | ||
L-Serine | 42.00 | ||
L-Threonine | 95.00 | ||
L-Tryptophan | 16.00 | ||
L-Tyrosine disodium salt | 104.20 | ||
L-Valine | 94.00 | ||
Biotin | 0.013 | ||
D.Calcium Pantothenate | 4.00 | ||
Choline chloride | 4.00 | ||
Folic acid | 4.00 | ||
i-Inositol | 7.20 | ||
Nicotinamide | 4.00 | ||
Pyridoxal HCl | 4.00 | ||
Riboflavin | 0.40 | ||
Thiamin HCl | 4.00 | ||
Vitamin B 12 | 0.013 | ||
CaCl22H2O | 219.00 | ||
KCl | 330.00 | ||
KNO3 | 0.076 | ||
MgSO47H2O | 200.00 | ||
NaCl | 4505.00 | ||
NaHCO3 | 3024.00 | ||
NaH2PO42H2O | 141.30 | ||
D-Glucose | 4500.00 | ||
HEPES | 5958.00 | ||
Phenol red sodium salt | 15.00 | ||
Sodium pyruvate | 110.00 | ||
Sodium selenite | 0.017 | ||
DMEM modification of Iscoves N and Melcher (1978), J. Exp. Med. 1, 47, 923.
It is preferable to add to the medium, selenium (optionally in the form of sodium selenite) generally in an amount 0.01-0.2 mg/liter or L-Ascorbic acid generally in an amount 20-50 mg/liter to help minimise the potential toxic effects of ferrous or ferric ions, and oxygen. Further use of chelating agents such as citrate or Ethylenediaminetetraacetic acid (EDTA) or a free radical scavenger such as α-Tocepherol (vitamin E) are advantageous in reducing free radical damage.
Antibiotics such as polymyxin, neomycin, penicillin or streptomycin may be added to-the medium to prevent bacterial contamination. These are usually included in an amount 10,000-100,000 Iu/liter.
Growth factors which may be added to the basal medium are synthetic or recombinant and include insulin. Other factors such as platelet-derived growth factor (PDGF), thyroxtne thyroxine T3, thrombin, interleukins such as IL2 and IL6, progesterone, hydrocortisone and vitamin E may be included. Folic acid, vitamin B6 and vitamin B12 which are involved in the folate pathway may be added to enhance the growth of cells.
The peptide hormone insulin (which in the present context includes analogues thereof such as Nucellin® (recombinant insulin, Eli Lilly) is advantageously obtained by recombinant DNA techniques but is not isolated from an animal source. It is preferably added to the medium in an amount 5 μg-5 mg/liter. Nucellin is the preferred form of insulin for use in the invention.
The non-animal derived iron source to supplement the medium, is preferably inorganic and present in an amount 0.25-5 mg/liter. Examples include ferric and ferrous salts such as ferric citrate or ferrous sulphate. The chelated salts such as ferric citrate and ferric ammonium citrate are preferred. However, any iron source may be used which is not isolated from an animal source, for example, chemical iron chelators or recombinant protein iron carriers.
The concentration of ferric or ferrous ions should be carefully controlled as these may help generate superoxides and free radicals in the medium, which may damage not only the cells themselves, but medium components and the desired end product.
It is also preferable to add to the medium, a compound such as putrescine, advantageously as a salt such as HCl, which is known to play a role in maintaining the structure of the endoplasmic reticulum and to be required by certain CHO cell lines to support growth. Putrescine or a salt thereof is preferably added in an amount 0.01-1.0 mg/liter.
Serum-free media disclosed to date contain hypoxanthine or thymidine. This could bypass the selection pressure placed on the dhfr selection and amplification system as previously disclosed. The result may be loss of genetic material specifying the product and the dhfr genes. Therefore, In another aspect of the invention there is provided a culture medium for the growth of engineered dhfr− CHO cells in accordance with the invention, essentially free from hypoxanthine and/or thymidine.
The culture medium of the present invention supports CHO cell growth and when supplemented with an appropriate agent such as methotrexate for the dhfr system usually in an amount 0.1-5.0 μM, (or MSX for the GS system), allow full selection pressure to be exerted on the cells. It will be understood that hypoxanthine and thymidine at concentrations which are insufficient to bypass selection of the dhfr system may be present in the medium, but the presence of these two nucleotide precursors is not preferred for use with the present invention.
In large scale fermentera fermentation, mammalian cells are particularly susceptible to sheer forces arising from the sparging of the vessel with gases and the mixing with the impeller. To minimise the occurrence of cellular damage it is advantageous for the medium to contain a cell protectant such as polyethylene glycol, polyvinyl alcohols or pluronic polyols. Of these, Pluronic® (polyol, BASF Wyandotte Corp.) polyol F68 is preferred since unlike polyvinyl alcohols this is a non-toxic substance and unlike polyethylene glycols does not interfere with downstream purification.
Further improvements in CHO cell growth may be obtained by supplementing the medium with a peptide digest, hydrolysates or extracts, such as Tryprone, casein hydrolysate, yeast extract, or preferably papain digested soya peptone. The preferred amounts are 1%-0.025% w/v, most preferably 0.25% w/v.
The media of the invention for culturing recombinant CHO cells are capable of supporting the growth and secretion of product from such cells in suspension in small and large scale fermenters fermentors, static cultures and/or spinners. The culture medium according to the invention is also capable of supporting growth of cells at high cell density namely greater than 1×105 cells/ml up to or greater than 1.5×106 cells/ml and product secretion of 30 mg/l up to greater than 150 mg/l. The medium according to the invention is also capable of supporting this growth and product secretion over multiple passages lasting up to or greater than 6 months.
The medium is preferred for the production of all types of antibodies natural and altered. The invention therefore includes production of human antibodies wherein the amino acid sequences of the heavy and light chains are homologous with those sequences of antibodies produced by human lymphocytes in vivo or in vitro by hybridomas. Also provided are hybrid antibodies in which the heavy and light chains are homologous to a natural antibody but are combined in a way that would not occur naturally. For example, a bispecific antibody has antigen binding sites specific to more than one antigen. The constant region of the antibody may relate to one or other of the antigen binding regions or may be from a further antibody. Altered antibodies, for example chimaeric antibodies have variable regions from one antibody and constant regions from another. Thus, chimaeric antibodies may be species/species chimaeras or class/class chimaeras. Such chimaeric antibodies may have one or more further modifications to improve antigen binding ability or to alter effector functioning. Humanised or CDR-grafted antibodies (EP 239400) are embraced within the invention, in particular Campath 1H (EP328404) (Campath is a TM of The Wellcome Foundation) also composite antibodies, wherein parts of the hypervariable regions in addition to the CDRs are tranferred transferred to the human framework. Additional amino acids in the framework or constant regions of such antibodies may be altered. The invention further includes the production of Feb Fab fragments which are roughly equivalent to the Y branch portions of the heavy and light chains; this includes incomplete fragments or fragments including part of the Fc region.
In a further aspect of the invention there is provided an engineered CHO cell adapted to grow in a medium according to the invention. In particular a CHO cell engineered to express proteins such as tissue plasminogen activator or antibodies as defined above. In particular the invention provides a dhfr− CHO cell line transfected with a gene encoding a biologically active protein and a dhfr selectable marker gene, adapted to grow in a culture medium according to the invention. The protein is preferably an antibody as defined above.
The ingredients of the culture medium may be added in any order but it is preferable to add the iron source and when used, tyrosine, last to avoid precipitation.
Accompanying Figures are for illustration only.
Formulation for medium WCM4.
Medium A: (Iscoves modification of DMEM without BSA, transferrin and lecithin as set out in Table 1).
5 ml/liter+5 ml/ |
200 mM L glutamine | ||
+50 mg/liter | L proline | ||
+50 mg/liter | L theonine | ||
+50 mg/liter | L methionine | ||
+50 mg/liter | L cysteine | ||
+50 mg/liter | L tyrosine | ||
+25 mg · liter | ascorbic acid | ||
+0.062 mg · liter | vitamin B6 | ||
+1.36 mg · liter | vitamin B12 | ||
+0.2 mg/liter | lipoic acid | ||
+0.088 mg/liter | methyl linoleate | ||
+1μM | methotrexate | ||
+1 mg/liter | FeSO4 | ||
+1 mg/liter | ZnSO4 | ||
+0.0025 mg/liter | CuSO4 | ||
+5 mg/liter | recombinant insulin (Nucellin) | ||
+50,000 lu/liter | polymyxin | ||
+20,000 lu/liter | neomycin | ||
+0.16 mg/liter | putrescine-2 HCL | ||
This medium does not contain hypoxanthine, thymidine or folinic acid which can bypass methotrexate selection. The medium does contain glycine which cannot by itself bypass selection. Therefore, this medium maintains full selection for methotrexate resistance.
Formulation for Medium WGM5 WCM5
MedmiumMedium A: (Iscoves modification of DMEM without BSA, transferrin or lecithin).
+ | 5 ml/ |
200 mM L glutamine | ||
+ | 50 mg/liter | L proline | ||
+ | 50 mg/liter | L threonine | ||
+ | 50 mg/liter | L methionine | ||
+ | 50 mg/liter | L cysteine | ||
+ | 50 mg/liter | L tyrosine | ||
+ | 25 mg/liter | L ascorbic acid | ||
+ | 0.062 mg · liter | Vitamin B6 | ||
+ | 1.36 mg · liter | Vitamin B12 | ||
+ | 2 mg/liter | Ferric citrate | ||
+ | 1 mg/liter | Zinc sulphate | ||
+ | 0.0025 mg · lit | Copper sulphate | ||
+ | 50,000 IU/liter | Polymyxin | ||
+ | 20,000 IU/liter | Neomycin | ||
+ | 3 μl/liter | Ethanolamine | ||
+ | 0.16 mg/liter | Putrescine | ||
+ | 5 mg/liter | Recombinant Insulin (Nucellin ®) | ||
Growth of and Production from C1H 3D11* 44 in WCM4
C1H 3D11* cells are genetically engineered CHO DUK B11 cells (Urlaub and Chasin (1980) PNAS 77, 7 pp 4216-4220). CHO DUK B11 cells cannot produce dihydrofolate reductase (dhfr). These cells were engineered to produce a humanised IgG antibody, Campath 1H (Winter et al., Nature, 1988, 322, 323-327), using plasmid constructs to express heavy and light antibody chains and the mouse dhfr. Expression is amplified and maintained using the folate antagonist methotrate methotrexate. C1H 3D11* cells growing as a monolayer in Isover+10% FBS Flow, non-essential amino acids, 10−6M Methotrexate and antibiotics were approximately 90% confluent. These cells were removed from the plastic with trypsin/versene, washed in Iscoves medium without supplements, centrifuged and resuspended at 5×104/ml in WCM4 medium+0.25% peptone+0.1% polyethylene glycol (PEG) 10,000+0.5% fetal bovine serum (FBS) without methotrexate (MTX). Three 25 cm2 flasks were set up with 10 ml of cell suspension+hypoxanthine (H),thymidine (T) or HT. These flasks were incubated at 36.5° C. in 5% CO2 incubator.
After six days, the flasks were pooled and added to an equal volume of WCM4+MTX without peptone or PEG, and were transferred to a 75 cm2 flask.
These cells were used to seed a 500 ml Techner spinner, incubated at 36.5° C. spinning at 40 rpm. Cells continued growing serum free for a period of over five months and although it was-found that the cells needed a period of adaptation, the growth rate and viability steadily improved. The population doubling time was calculated to be 73.1 hours over approximately 7 weeks; this decreased to 47.4 hours over the subsequent 20 days then stabilised. Antibody secretion remained high at levels in excess of 60 μg/ml. It was determined that the gene copy number in these cells did not decrease according to band intensity using Northern blot analysis.
In fermenters fermentors, these cells produced antibody in excess of 70 μg/ml and regularly achieved levels of 100 μg/ml or more. The cells are denoted C1H 3D11* 44.
Growth and Production of CIH 3D11* 44 in WCM5 in a 1 liter fermenter fermentor.
C1H 3D11*44 cells from Example 3 which had been growing serum-free for over 2 months were transferred to a SGi 1 liter fermenter fermentor with a stainless steel angled paddle turning at 70 rpm. The temperature was set at 37° C., dO2 at 10% and pH control to 7-7.2. The fermenter fermentor was seeded on day 0 with 0.22×106 cells/ml in WCM4 (Example 1) with 0.1% polyethylene glycol (PEG) 10,000 and 0.25% soy peptone, and was top gassed with O2. The cells were routinely passaged using fresh medium and a split rate typically between 1 or 2 and 1 to 4.
On day 33 the top gassing was replaced with deep sparging which is can be expected to cause more physical damage to the cells.
On day 50 onwards WCM5 (Example 2) was used together with peptone and PEG instead of WCM4.
On day 53 the PEG was replaced with 0.1% Pluronic F68. The resulting growth and antibody levels achieved are shown the the attached graphs (FIGS. 1 and 2), and demonstrate the capacity of the invention to allow protein-free production of antibody in excess of 100 μg/ml in fermenters fermentors.
Growth of CHO AJ19 MCB1 in WCM4 and compared to CHO AJ19 MCB1 grown in serum containing medium
Chinese hamster ovary cells, CHO AJ19 MCB1, derived from CHO DUK cells, (Urlaub & Chasin PNAS, 77, 7, pp4216-4220, 1980), were genetically engineered to produce tPA under methotrexate selection. This cell line had been routinely grown in a fermenter fermentor as a suspension culture using normal growth medium consisting of RPMI 1640 medium (GIBCO), 2.5% acid hydrolysed adult bovine serum (Imperial), 0.5% Tryptone, 50 IU/ml polymycin, 20 IU/ml neomycin, 500 nM methotrexate (MTX).
Medium WCM4 was formulated to which was added:
-
- 46B 0.25% w/v N-Z Soy Peptone (Sigma P1265), 0.1% w/v Polyethylene glycol (PEG) 20,000 (Serva, Carbowax® 20M), 1 μM MTX.
- 46C 0.25% w/v Yeast extract (Sigma Y0500), 0.1% w/v PEG 20,000 1 μM MTX. In this medium the Iscoves' in CM4 was replaced by RPMI 1640 medium (ICN FLOW).
- 46D 0.25% w/v Yeast extract, 0.1% w/v PEG 20,000, 1 μM MTX.
- 46E 0.25% w/v Yeast extract, 0.1% w/v PEG 20,000, 0.25% Fetal bovine serum (Imperial), 1 μM MTX.
The yeast extract, Peptone and PEG were made up as 10% w/v solutions with water (Wellcome media production unit) and filtered through a 0.2 um disposable filter (Gelman, Supor Vac), then diluted for use. The cells were incubated at 37° C. in a humidified incubator containing 5% CO2.
Cells growing in normal growth medium were pelleted by centrifugation at 1200 g +4° C. for 5 minutes, were washed in RPMI 1640 without supplements and pelleted again. The cells were then resuspended at 105 cell/ml in normal growth medium (46A) and the other media (46B, 46C, 46D or 46E), 24 well plates (Costar 16 mm wells) were seeded with 1 ml/well and incubated, at 37° C. in an incubator containing 5% CO2. On days 3, 4, 5 and 6 one well of each was counted using a haemcytometer and trypan blue exclusion. Two further wells of each were harvested, pooled and pelleted at 1200 g +4° C. 5 minutes. The supernatant was separated and stored at −20° C. These samples were subsequently assayed for tPA. On day 6 samples from 46A and 46D only were harvested.
tPA specific activities in various crude harvests
Crude material produced in the five different media were tested using a QA validated ELISA assay to measure the tPA antigen concentrations μg/ml using binding to a polyclonal antibody against tPA, and clot lysis assay to measure tPA activity in IU/ml. From these results (Table 2), the specific activities were calculated.
TABLE 2 | ||||||
MEAN tPA | MEAN tPA | |||||
DAYS | ACTIVITY | CONTENT | SPECIFIC | |||
IN | CELLCOUNT ×10−6 | IU/ml | ug/ml | ACTIVITY |
EXPERIMENT | CULTURE | VIABLE | NONVIABLE | (n = 3) | (n = 3) | MegIU/mg |
46A | 3 | 3.5 | 0.1 | 3051 | 10.51 | 0.290 |
46A | 4 | 3.7 | 0.3 | 4841 | 14.85 | 0.326 |
46A | 5 | 4.1 | 0.2 | 5306 | 15.52 | 0.335 |
46A | 6 | 5.8 | 0.5 | 8235 | 23.22 | 0.355 |
46B | 3 | 5.2 | 0.1 | 2552 | 10.44 | 0.244 |
46B | 4 | 7.2 | 0.3 | 5310 | 18.58 | 0.286 |
46B | 5 | 7.8 | 0.2 | 6230 | 22.19 | 0.281 |
46C | 3 | 3.8 | 0.2 | 2779 | 9.61 | 0.289 |
46C | 4 | 4.9 | 0.3 | 3536 | 16.54 | 0.214 |
46C | 5 | 5.6 | 0.3 | 4639 | 19.88 | 0.233 |
46D | 3 | 7.5 | 0.2 | 4650 | 17.66 | 0.263 |
46D | 4 | 8.3 | 0.8 | 7369 | 25.99 | 0.285 |
46D | 5 | 7.4 | 1.0 | 7882 | 24.26 | 0.325 |
46D | 6 | 6.1 | 2.0 | 8095 | 27.06 | 0.299 |
46E | 3 | 6.4 | 0.1 | 6262 | 23.85 | 0.263 |
46E | 4 | 7.3 | 0.5 | 10180 | 29.70 | 0.343 |
46E | 5 | 6.1 | 1.3 | 9080 | 34.25 | 0.265 |
From the above table there was no change of the specific activity in the five different crudes. The yield of tPA from protein free medium B, C and D was nearly equal to the yield of tPA from standard growth medium in group A and E.
Example 6 Continuous growth of CHO AJ19 MCBI in WCM4
CHO AJ19 MCBI in WCM4 cells growing in normal growth medium were pelleted and washed as in Example 5 and were resuspended at 7×104/ml in 500 ml of medium 46B. These cells were transferred to a Techne spinner flask and incubated, as above, stirring at 40 rpm. At various time intervals the cells were counted and subcultured using the same medium. A sample was taken for tPA assay and treated as in Example 5.
The specific activity of tPA in various cell subcultures
The specific activity of supernatants from differing pass levels of cells grown in WCM4 with peptone and 0.1% PEG 20K were measured by a combination of ELISA and clot lysis assay. The specific activities of different cell passages are summarised in Table 3.
TABLE 3 | ||
tPA present in supernatant |
tPA | |||||
conc. | ACTIVITY | SPECIFIC | |||
CELLCOUNT ×10−5 | SPLIT | ug/ml | IU/ml | ACTIVITY |
DAYS | PASS | VIABLE | NONVIABLE | RATE | (n = 3) | (n = 3) | Meg. U/mg |
7 | 1 | 9.75 | 0.65 | 1-10 | ND | ND | ND |
10 | 2 | 4.95 | 0.01 | 1-5 | ND | ND | ND |
13 | 3 | 6.35 | 0.0 | 1-10 | 22.2 | 8865 | 0.399 |
16 | 4 | 3.8 | 0.0 | 1-10 | 7.25 | 1914 | 0.264 |
21 | 5 | 7.2 | 0.8 | 1-10 | 15.08 | 4331 | 0.287 |
24 | 6 | 4.1 | 0.3 | 1-10 | 8.28 | 2040 | 0.246 |
30 | 7 | 5.3 | 0.4 | 1-6 | 7.30 | 2052 | 0.281 |
34 | 8 | 5.2 | 0.32 | — | 13.65 | 3518 | 0.258 |
36 | 8 | 7.95 | 0.10 | 1-8 | 18.60 | 5327 | 0.286 |
37 | 8 | ND | ND | — | 20.68 | 5526 | 0.267 |
38 | 8 | 100% | — | 19.10 | 5474 | 0.287 | |
38 | 9 | 12.00 | 0.5 | 1-5 | 20.85 | 8348 | 0.400 |
43 | 10 | 5.5 | 0.12 | 1-5 | 7.38 | 1888 | 0.256 |
48 | 11 | 4.4 | 0.19 | 1-6 | 13.4 | 3143 | 0.235 |
12 | Experiment terminated | |||
ND = not done. |
Over a 48 day period, base on the above split rate, one cell could have divided to give 3.77×108 cells. This is equivalent to 31.8 population doublings with a doubling time of 36 hours.
The results of the experiments conducted in Examples 5 and 6 demonstrate that the serum free media of the present invention is capable of supporting cell growth and tPA yield comparable to that achieved in serum containing media.
Claims (18)
1. A method for growing CHO cells which comprises culturing CHO cells under cell growing conditions in the absence of serum in a medium comprising water, an osmolality regulator, a buffer, an energy source, L-glutamine and at least one additional amino acid, an inorganic, organic or recombinant iron source and a recombinant or synthetic growth factor wherein each component of said medium is obtained from a source other than directly from an animal source.
2. A method for culturing CHO cells in accordance with claim 1 wherein the medium further comprises non-ferrous metals, vitamins or cofactors.
3. A method for culturing CHO cells in accordance with claim 1 , wherein the osmolality regulator maintains the medium at 200-350 mOsm.
4. A method for culturing CHO cells in accordance with claim 1 , wherein the medium is maintained at a pH in the range of about 6.5 to about 7.5 by the buffer.
5. A method for culturing CHO cells in accordance with claim 1 , wherein the concentration of the energy source is within the range of 1000-10,000 mg/liter.
6. A method for culturing CHO cells in accordance with claim 5 , wherein the energy source is a monosaccharide.
7. A method for culturing CHO cells in accordance with claim 1 , wherein the additional amino acids are selected from the group consisting of L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine.
8. A method for culturing CHO cells in accordance with claim 1 , wherein the concentration of L-glutamine is within the range of 400-600 mg/liter.
9. A method for culturing CHO cells in accordance with claim 2 , wherein the medium comprises a lipid factor in an amount of 0.05-10 mg/liter.
10. A method for culturing CHO cells in accordance with claim 1 , wherein the iron source is an inorganic ferric or ferrous salt which is provided in a concentration of from 0.25-5 mg/liter.
11. A method for culturing CHO cells in accordance with claim 1 , wherein the growth factor comprises recombinant or synthetic insulin, platelet derived growth factor, thyroxine T3, thrombin, interleukin, progesterone, hydrocortisone or vitamin E.
12. A method for culturing CHO cells in accordance with claim 11 , wherein the growth factor is recombinant or synthetic insulin.
13. A method for culturing cells in accordance with claim 1 , wherein the medium further comprises a peptide digest, hydrolysate or extract.
14. A method for culturing cells in accordance with claim 1 , wherein the medium is essentially free of hypoxanthine and thymidine.
15. A method for culturing cells in accordance with claim 14 , wherein the medium further comprises methotrexate.
16. A method for culturing CHO cells which comprises culturing and growing Chinese hamster ovary cells in the absence of serum in a medium comprising
an osmolality regulator to maintain the osmolality of the medium within the range of about 200-350 mOsm,
a buffer to maintain the pH of the medium within the range of about 6.5 to 7.5,
about 1000-10,000 mg of a monosaccharide,
about 400-600 mg of L-glutamine,
about 10-200 mg of at least one amino acid selected from the group consisting of L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine,
about 0.25-5 mg of an inorganic or recombinant iron source,
about 5 μg-5 mg of a recombinant or synthetic insulin and sufficient water to provide one liter of medium.
17. A method for culturing genetically engineered CHO cells in suspension which comprises culturing and growing Chinese hamster ovary cells in the absence of serum in a medium comprising
a base medium containing the amino acids, non-ferrous metal ions, vitamins and cofactors essentially as set forth in Table 1,
an osmolality regulator selected from NaCl, KCl, and KNO3 in an amount sufficient to maintain the osmolality of the medium within the range of about 200-350 mOsm,
at least one buffer selected from CaCl2.2H2O, MgSO4.7H2O, NaH2PO4.2H2O, sodium pyruvate, N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulphonic acid] (HEPES) and 3-[N-morpholino]-propanesulfonic acid (MOPS) in an amount sufficient to maintain the medium within the pH range of about 6.5-7.5,
about 1000-10,000 mg of mannose, fructose, glucose or maltose, ;
about 5 ml of 200 mM L-glutamine, ;
about 50 mg each of L-proline, L-threonine, L-methionine, L-cysteine and L-tyrosine, ;
about 20-50 mg of L-ascorbic acid, or about 0.01-0.2 mg of sodium selenite;
about 0.01-0.5 mg each of Vitamin B6 and Vitamin B12, ;
about 0.25-5 mg of a ferric or ferrous salt, ;
about 1 mg of zinc sulfate, ;
about 2.5 μg of copper sulfate, ;
about 10,000-100,000 IU of at least one antibiotic selected from the group consisting of polymyxin, neomycin, penicillin and streptomycin, ;
about 3 μl of ethanolamine, ;
about 0.01-1.0 mg of putrescine, ;
about 5 μg-5 mg of recombinant insulinand sufficient water to comprise one liter of medium; wherein each component of said medium is obtained from a source other than directly from an animal source. ;
a base medium containing
L-Alanine 20-50 mg/L
L-Arginine (HCl) 50-100 mg/L
L-Asparagine (H 2 O) 20-50 mg/L
L-Aspartic Acid 20-50 mg/L;
L-Cystine (disodium salt) 50-100 mg/L;
L-Glutamic acid 50-100 mg/L;
L-Glutamine 400-600 mg/L;
Glycine 20-50 mg/L;
L-Histidine (HCl•H 2 O) 30-60 mg/L;
L-Isoleucine 50-150 mg/L;
L-Leucine 50-150 mg/L;
L-Lysine (HCl) 100-200 mg/L;
L-Methionine 20-50 mg/L;
L-Phenylalanine 40-80 mg/L;
L-Proline 30-60 mg/L;
L-Serine 30-60 mg/L;
L-Threonine 50-120 mg/L;
L-Tryptophan 10-20 mg/L;
L-Tyrosine (disodium salt) 50-120 mg/L;
L-Valine 80-120 mg/L;
Biotin 0.01-0.5 mg/L;
D Calcium Pantothenate 0.2-8 mg/L;
Folic acid 0.2-8 mg/L;
i-Inositol 0.2-8 mg/L;
Nicotinamide 0.2-8 mg/L;
Pyridoxal HCL about 4 mg/L;
Riboflavin 0.1-1 mg/L;
Thiamin HCl 0.2-8 mg/L;
Vitamin B12 0.1-0.5 mg/L;
an osmolality regulator selected from NaCl, KCl, and KNO3 in an amount sufficient to maintain the osmolality of the medium within the range of about 200-350 mOsm;
at least one buffer selected from CaCl 2 2H 2 O, MgSO 4 7H 2 O, NaH 2 PO 4 2H 2 O, sodium pyruvate, N-[2 -hydroxyethyl]piperazine-N′-[2 -ethanesulphonic acid] (HEPES), 3 -[N-morpholino]-propanesulfonic acid (MOPS), and NaHCO 3 in an amount sufficient to maintain the medium within the pH range of about 6.5-7.5; and
sufficient water to comprise one liter of medium; wherein each component of said medium is obtained from a source other than directly from an animal source.
18. A method in accordance with claim 1 , wherein each component of the medium is selected from an inorganic, synthetic, recombinant, plant or bacterial source.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/995,010 USRE39792E1 (en) | 1990-10-17 | 2004-11-22 | Method for culturing Chinese hamster ovary cells |
US11/640,428 USRE41974E1 (en) | 1990-10-17 | 2006-12-15 | Method for culturing Chinese hamster ovary cells |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9022545A GB9022545D0 (en) | 1990-10-17 | 1990-10-17 | Culture medium |
US77772991A | 1991-10-16 | 1991-10-16 | |
US07/991,717 US5316938A (en) | 1990-10-17 | 1992-12-18 | Defined media for serum-free tissue culture |
US08/205,379 US5633162A (en) | 1990-10-17 | 1994-03-04 | Method for culturing Chinese hamster ovary cells |
US10/995,010 USRE39792E1 (en) | 1990-10-17 | 2004-11-22 | Method for culturing Chinese hamster ovary cells |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/991,717 Continuation US5316938A (en) | 1990-10-17 | 1992-12-18 | Defined media for serum-free tissue culture |
US08/205,379 Reissue US5633162A (en) | 1990-10-17 | 1994-03-04 | Method for culturing Chinese hamster ovary cells |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/205,379 Continuation US5633162A (en) | 1990-10-17 | 1994-03-04 | Method for culturing Chinese hamster ovary cells |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39792E1 true USRE39792E1 (en) | 2007-08-21 |
Family
ID=10683864
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/991,717 Expired - Lifetime US5316938A (en) | 1990-10-17 | 1992-12-18 | Defined media for serum-free tissue culture |
US08/205,379 Ceased US5633162A (en) | 1990-10-17 | 1994-03-04 | Method for culturing Chinese hamster ovary cells |
US10/995,010 Expired - Lifetime USRE39792E1 (en) | 1990-10-17 | 2004-11-22 | Method for culturing Chinese hamster ovary cells |
US11/640,428 Expired - Lifetime USRE41974E1 (en) | 1990-10-17 | 2006-12-15 | Method for culturing Chinese hamster ovary cells |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/991,717 Expired - Lifetime US5316938A (en) | 1990-10-17 | 1992-12-18 | Defined media for serum-free tissue culture |
US08/205,379 Ceased US5633162A (en) | 1990-10-17 | 1994-03-04 | Method for culturing Chinese hamster ovary cells |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/640,428 Expired - Lifetime USRE41974E1 (en) | 1990-10-17 | 2006-12-15 | Method for culturing Chinese hamster ovary cells |
Country Status (13)
Country | Link |
---|---|
US (4) | US5316938A (en) |
EP (3) | EP1221476B1 (en) |
JP (1) | JP2625302B2 (en) |
AT (2) | ATE382680T1 (en) |
AU (1) | AU645615B2 (en) |
CA (1) | CA2053586C (en) |
DE (2) | DE69133589T2 (en) |
DK (2) | DK1221476T3 (en) |
ES (2) | ES2298301T3 (en) |
GB (1) | GB9022545D0 (en) |
IE (1) | IE913559A1 (en) |
NZ (1) | NZ240248A (en) |
ZA (1) | ZA918249B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110008464A1 (en) * | 2009-07-10 | 2011-01-13 | Scott Iii Linzy O | Methods and compositions for treating thyroid-related medical conditions with reduced folates |
US20110250644A1 (en) * | 2008-12-19 | 2011-10-13 | Schering Corporation | Feed supplement for mammalian cell culture and methods of use |
US10703800B2 (en) * | 2016-04-26 | 2020-07-07 | La Jolla Biologics, Inc. | Cell culture medium |
Families Citing this family (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292655A (en) * | 1990-01-29 | 1994-03-08 | Wille Jr John J | Method for the formation of a histologically-complete skin substitute |
GB9022543D0 (en) * | 1990-10-17 | 1990-11-28 | Wellcome Found | Antibody production |
GB9022545D0 (en) | 1990-10-17 | 1990-11-28 | Wellcome Found | Culture medium |
JPH0789908B2 (en) * | 1991-02-28 | 1995-10-04 | 倉敷紡績株式会社 | Serum-free medium for animal cell culture |
DE4115722A1 (en) * | 1991-05-14 | 1992-11-19 | Boehringer Mannheim Gmbh | SERUM-FREE MEDIUM FOR CULTIVATING SUGAR CELLS |
GB9118664D0 (en) * | 1991-08-30 | 1991-10-16 | Celltech Ltd | Cell culture |
US6231881B1 (en) * | 1992-02-24 | 2001-05-15 | Anton-Lewis Usala | Medium and matrix for long-term proliferation of cells |
US6352707B1 (en) | 1992-02-24 | 2002-03-05 | Anton-Lewis Usala | Transplant encapsulation in a hydrogel matrix to obscure immune recognition |
IL102929A (en) * | 1992-08-24 | 1996-11-14 | Interpharm Lab Ltd | Serum-free medium for mammalian cells |
DE4313620A1 (en) * | 1993-04-26 | 1994-10-27 | Biotechnolog Forschung Gmbh | Hamster cell lines and methods for glycoprotein recovery |
USH1532H (en) * | 1993-11-03 | 1996-05-07 | Genetics Institute, Inc. | Adaption of mammalian cell lines to high cell densities |
EP0653487A1 (en) * | 1993-11-07 | 1995-05-17 | Ferruccio Dr. Messi | Serum and protein-free growing cells |
US5856179A (en) | 1994-03-10 | 1999-01-05 | Genentech, Inc. | Polypeptide production in animal cell culture |
US5512477A (en) * | 1994-04-21 | 1996-04-30 | Genzyme Corporation | Serum-free medium supplement |
US5698433A (en) * | 1994-11-10 | 1997-12-16 | Immuno Ag | Method for producing influenza virus and vaccine |
US5753489A (en) * | 1994-11-10 | 1998-05-19 | Immuno Ag | Method for producing viruses and vaccines in serum-free culture |
US6146873A (en) * | 1994-11-10 | 2000-11-14 | Baxter Aktiengesellschaft | Production of orthomyxoviruses in monkey kidney cells using protein-free media |
US5756341A (en) * | 1994-11-10 | 1998-05-26 | Immuno Ag | Method for controlling the infectivity of viruses |
US5721121A (en) * | 1995-06-06 | 1998-02-24 | Genentech, Inc. | Mammalian cell culture process for producing a tumor necrosis factor receptor immunoglobulin chimeric protein |
US6656466B1 (en) * | 1995-06-06 | 2003-12-02 | Genetech, Inc. | Human tumor necrosis factor—immunoglobulin(TNFR1-IgG1) chimera composition |
US5705364A (en) * | 1995-06-06 | 1998-01-06 | Genentech, Inc. | Mammalian cell culture process |
CA2248142A1 (en) * | 1996-03-12 | 1997-09-18 | Life Technologies, Inc. | Hematopoietic cell culture nutrient supplement |
WO1997038090A1 (en) * | 1996-04-09 | 1997-10-16 | Board Of The Trustees Of Southern Illinois University | A cultural medium for maintaining neural cells in ambient atmosphere |
JP2000517188A (en) | 1996-08-30 | 2000-12-26 | ライフ テクノロジーズ,インコーポレイテッド | Serum-free mammalian cell culture medium and uses thereof |
EP0954563B1 (en) * | 1996-10-10 | 2008-07-02 | Invitrogen Corporation | Animal cell culture media comprising plant-derived nutrients |
US20040171152A1 (en) * | 1996-10-10 | 2004-09-02 | Invitrogen Corporation | Animal cell culture media comprising non-animal or plant-derived nutrients |
US6692961B1 (en) * | 1996-10-11 | 2004-02-17 | Invitrogen Corporation | Defined systems for epithelial cell culture and use thereof |
US20020012991A1 (en) * | 1997-04-07 | 2002-01-31 | Florence Chua Nee Ho Kit Fong | Cell culture media for enhanced protein production |
US6475725B1 (en) * | 1997-06-20 | 2002-11-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
US6566118B1 (en) * | 1997-09-05 | 2003-05-20 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
US6989264B2 (en) | 1997-09-05 | 2006-01-24 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
WO1999057246A1 (en) * | 1998-05-01 | 1999-11-11 | Life Technologies, Inc. | Animal cell culture media comprising non-animal or plant-derived nutrients |
US6528286B1 (en) * | 1998-05-29 | 2003-03-04 | Genentech, Inc. | Mammalian cell culture process for producing glycoproteins |
US6406909B1 (en) * | 1998-07-10 | 2002-06-18 | Chugai Seiyaku Kabushiki Kaisha | Serum-free medium for culturing animal cells |
US7294481B1 (en) * | 1999-01-05 | 2007-11-13 | Immunex Corporation | Method for producing recombinant proteins |
ES2571230T3 (en) | 1999-04-09 | 2016-05-24 | Kyowa Hakko Kirin Co Ltd | Procedure to control the activity of an immunofunctional molecule |
US20060286668A1 (en) * | 1999-04-30 | 2006-12-21 | Invitrogen Corporation | Animal-cell culture media comprising non-animal or plant-derived nutrients |
AT409379B (en) | 1999-06-02 | 2002-07-25 | Baxter Ag | MEDIUM FOR PROTEIN- AND SERUM-FREE CELL CULTURE |
PE20010288A1 (en) | 1999-07-02 | 2001-03-07 | Hoffmann La Roche | ERYTHROPOYETIN DERIVATIVES |
DE59913565D1 (en) * | 1999-08-05 | 2006-07-27 | Baxter Ag | RECOMBINANT STABLE CELL CLONE, ITS MANUFACTURE AND USE |
US7504256B1 (en) | 1999-10-19 | 2009-03-17 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing polypeptide |
KR20010056451A (en) * | 1999-12-15 | 2001-07-04 | 윤재승 | Arginine-enriched medium used for mass-producing recombinant protein in animal cell culture |
US6811776B2 (en) | 2000-12-27 | 2004-11-02 | The Regents Of The University Of Michigan | Process for ex vivo formation of mammalian bone and uses thereof |
US20020099183A1 (en) * | 2000-08-23 | 2002-07-25 | Pluschkell Stefanie Beate | Process for the preparation of neutrophil inhibitory factor |
CA2420071A1 (en) * | 2000-08-23 | 2002-02-28 | Pfizer Products Inc. | Process for the preparation of neutrophil inhibitory factor |
US6946292B2 (en) | 2000-10-06 | 2005-09-20 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions with increased antibody dependent cytotoxic activity |
BR0116381A (en) | 2000-12-20 | 2004-02-25 | Hoffmann La Roche | Conjugate, pharmaceutical composition comprising the same and its use, process for the prophylactic and / or therapeutic treatment of disorders, process for the preparation of an erythropoietin conjugate, compounds and glycoproteins |
US6506576B2 (en) | 2001-03-14 | 2003-01-14 | Board Of Trustees Of The University Of Arkansas | Serum-and steroid-free culture media for cerebellar granule neurons |
CN1596302A (en) * | 2001-11-28 | 2005-03-16 | 桑多斯有限公司 | Cell culture process |
US7317091B2 (en) * | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
US8188231B2 (en) | 2002-09-27 | 2012-05-29 | Xencor, Inc. | Optimized FC variants |
US20080260731A1 (en) * | 2002-03-01 | 2008-10-23 | Bernett Matthew J | Optimized antibodies that target cd19 |
US20070148171A1 (en) * | 2002-09-27 | 2007-06-28 | Xencor, Inc. | Optimized anti-CD30 antibodies |
US20040132101A1 (en) * | 2002-09-27 | 2004-07-08 | Xencor | Optimized Fc variants and methods for their generation |
US20080254027A1 (en) * | 2002-03-01 | 2008-10-16 | Bernett Matthew J | Optimized CD5 antibodies and methods of using the same |
US7662925B2 (en) * | 2002-03-01 | 2010-02-16 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
EP1500400A4 (en) | 2002-04-09 | 2006-10-11 | Kyowa Hakko Kogyo Kk | Drug containing antibody composition |
NZ538094A (en) | 2002-07-09 | 2007-01-26 | Baxter Int | Serum free and animal protein free culture medium for cultivation of cells |
US7067279B1 (en) * | 2002-08-23 | 2006-06-27 | Immunex Corporation | Cell culture performance with betaine |
US20060235208A1 (en) * | 2002-09-27 | 2006-10-19 | Xencor, Inc. | Fc variants with optimized properties |
CA2502414A1 (en) | 2002-10-15 | 2004-04-29 | Intercell Ag | Nucleic acids coding for adhesion factor of group b streptococcus, adhesion factors of group b streptococcus and further uses thereof |
DE10255508A1 (en) * | 2002-11-27 | 2004-06-17 | Forschungszentrum Jülich GmbH | Process for cultivating cells for the production of substances |
DE60335024D1 (en) † | 2002-12-23 | 2010-12-30 | Bristol Myers Squibb Co | PRODUCT QUALITY IMPROVEMENT IN MAMMALIAN CELL CULTURE PROCESS FOR PROTEIN PRODUCTION |
US20070275460A1 (en) * | 2003-03-03 | 2007-11-29 | Xencor.Inc. | Fc Variants With Optimized Fc Receptor Binding Properties |
US8388955B2 (en) | 2003-03-03 | 2013-03-05 | Xencor, Inc. | Fc variants |
GB0304799D0 (en) | 2003-03-03 | 2003-04-09 | Glaxosmithkline Biolog Sa | Novel method |
US20090010920A1 (en) * | 2003-03-03 | 2009-01-08 | Xencor, Inc. | Fc Variants Having Decreased Affinity for FcyRIIb |
US8084582B2 (en) | 2003-03-03 | 2011-12-27 | Xencor, Inc. | Optimized anti-CD20 monoclonal antibodies having Fc variants |
EP1622941A2 (en) * | 2003-03-20 | 2006-02-08 | ImClone Systems Incorporated | Method of producing an antibody to epidermal growth factor receptor |
US9051373B2 (en) | 2003-05-02 | 2015-06-09 | Xencor, Inc. | Optimized Fc variants |
GB2404665B (en) * | 2003-08-08 | 2005-07-06 | Cambridge Antibody Tech | Cell culture |
PT1651754E (en) * | 2003-08-08 | 2007-07-06 | Cambridge Antibody Tech | Myeloma cell culture in transferrin-free low iron medium |
KR20060076781A (en) * | 2003-09-18 | 2006-07-04 | 레이븐 바이오테크놀로지스, 인코퍼레이티드 | Cell culture medium |
US9714282B2 (en) | 2003-09-26 | 2017-07-25 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
US8101720B2 (en) * | 2004-10-21 | 2012-01-24 | Xencor, Inc. | Immunoglobulin insertions, deletions and substitutions |
CA2542121A1 (en) * | 2003-10-09 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | Genomically modified cell neutralized to serum-free system |
AU2003271194A1 (en) * | 2003-10-09 | 2005-04-21 | Daewoong Co., Ltd. | Process for purifying human thrombopoietin with high content of sialic acid |
BRPI0415887B1 (en) * | 2003-10-27 | 2021-01-26 | Wyeth | methods for removing high molecular weight aggregates using hydroxyapatite chromatography |
EP1697520A2 (en) * | 2003-12-22 | 2006-09-06 | Xencor, Inc. | Fc polypeptides with novel fc ligand binding sites |
US7255288B2 (en) * | 2004-03-08 | 2007-08-14 | Wan Shan Chan | Aroma therapy for fountain |
WO2005092925A2 (en) * | 2004-03-24 | 2005-10-06 | Xencor, Inc. | Immunoglobulin variants outside the fc region |
US20150010550A1 (en) | 2004-07-15 | 2015-01-08 | Xencor, Inc. | OPTIMIZED Fc VARIANTS |
TWI364458B (en) | 2004-08-27 | 2012-05-21 | Wyeth Res Ireland Ltd | Production of tnfr-lg |
US7294484B2 (en) | 2004-08-27 | 2007-11-13 | Wyeth Research Ireland Limited | Production of polypeptides |
US7335491B2 (en) | 2004-08-27 | 2008-02-26 | Wyeth Research Ireland Limited | Production of anti-abeta |
WO2006031994A2 (en) * | 2004-09-14 | 2006-03-23 | Xencor, Inc. | Monomeric immunoglobulin fc domains |
AU2011221414B2 (en) * | 2004-10-29 | 2012-09-20 | Takeda Pharmaceutical Company Limited | Animal Protein-Free Media for Cultivation of Cells |
US20060094104A1 (en) * | 2004-10-29 | 2006-05-04 | Leopold Grillberger | Animal protein-free media for cultivation of cells |
US8273553B2 (en) * | 2004-11-02 | 2012-09-25 | Ares Trading S.A. | Production of growth hormone in serum-free cell culture medium for mammalian cells |
MX2007005210A (en) * | 2004-11-02 | 2007-05-11 | Ares Trading Sa | Serum-free cell culture medium for mammalian cells. |
EP1807504B1 (en) * | 2004-11-02 | 2011-02-23 | Ares Trading S.A. | Serum-free cell culture medium for mammalian cells |
US20070135620A1 (en) * | 2004-11-12 | 2007-06-14 | Xencor, Inc. | Fc variants with altered binding to FcRn |
US8802820B2 (en) * | 2004-11-12 | 2014-08-12 | Xencor, Inc. | Fc variants with altered binding to FcRn |
KR101019525B1 (en) | 2004-11-12 | 2011-03-07 | 젠코어 인코포레이티드 | Fc VARIANTS WITH ALTERED BINDING TO FcRn |
US8546543B2 (en) | 2004-11-12 | 2013-10-01 | Xencor, Inc. | Fc variants that extend antibody half-life |
US8367805B2 (en) | 2004-11-12 | 2013-02-05 | Xencor, Inc. | Fc variants with altered binding to FcRn |
CA2595169A1 (en) * | 2005-01-12 | 2006-07-20 | Xencor, Inc. | Antibodies and fc fusion proteins with altered immunogenicity |
JP5523674B2 (en) * | 2005-02-11 | 2014-06-18 | ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト | Production of polypeptides in serum-free cell culture media containing plant protein hydrolysates |
JP2006310392A (en) * | 2005-04-26 | 2006-11-09 | Toshiba Corp | Method and apparatus of electron beam lithography |
AU2006254217A1 (en) * | 2005-06-03 | 2006-12-07 | Biovitrum Ab (Publ) | Process for cultivating animal cells comprising the feeding of plant-derived peptones |
TWI369401B (en) * | 2005-07-05 | 2012-08-01 | Ares Trading Sa | Serum-free culture medium for the production of recombinant gonadotropins |
WO2007041635A2 (en) * | 2005-10-03 | 2007-04-12 | Xencor, Inc. | Fc variants with optimized fc receptor binding properties |
US7973136B2 (en) * | 2005-10-06 | 2011-07-05 | Xencor, Inc. | Optimized anti-CD30 antibodies |
PT2522717E (en) * | 2006-01-04 | 2014-05-15 | Baxter Healthcare Sa | Oligopeptide-free cell culture media |
US20070190057A1 (en) | 2006-01-23 | 2007-08-16 | Jian Wu | Methods for modulating mannose content of recombinant proteins |
ES2440487T3 (en) | 2006-07-13 | 2014-01-29 | Wyeth Llc | Glycoprotein production |
KR101304081B1 (en) | 2006-08-04 | 2013-09-05 | 프로롱 파마슈티컬스, 엘엘씨 | Modified erythropoietin |
ME01786B (en) * | 2006-08-14 | 2014-09-20 | Xencor Inc | Optimized antibodies that target cd19 |
EP2500416A1 (en) * | 2006-09-13 | 2012-09-19 | Abbott Laboratories | Cell culture improvements |
US8911964B2 (en) | 2006-09-13 | 2014-12-16 | Abbvie Inc. | Fed-batch method of making human anti-TNF-alpha antibody |
AU2007294731B2 (en) * | 2006-09-13 | 2014-04-17 | Abbvie Inc. | Cell culture improvements |
CA2660795C (en) | 2006-09-18 | 2014-11-18 | Xencor, Inc. | Optimized antibodies that target hm1.24 |
WO2008128222A1 (en) * | 2007-04-16 | 2008-10-23 | Momenta Pharmaceuticals, Inc. | Analysis of phosphorylated glycans, glycopeptides or glycoproteins by imac |
WO2008128219A1 (en) | 2007-04-16 | 2008-10-23 | Momenta Pharmaceuticals, Inc. | Comparative analysis of protein conformations by using 2d noesy nmr spectra |
ES2399940T3 (en) * | 2007-04-16 | 2013-04-04 | Momenta Pharmaceuticals, Inc. | Methods related to cell surface glycosylation |
TW200902708A (en) | 2007-04-23 | 2009-01-16 | Wyeth Corp | Methods of protein production using anti-senescence compounds |
CN101663391A (en) * | 2007-04-26 | 2010-03-03 | 中外制药株式会社 | Cell culture method using amino acid-enriched medium |
GB0710614D0 (en) * | 2007-06-04 | 2007-07-11 | Lonza Biologics Plc | Mammalian expression vector with a highly efficient secretory signal sequence |
CN101319200B (en) * | 2007-06-08 | 2010-05-19 | 中国科学院大连化学物理研究所 | A serum-free medium suitable for microencapsulated CHO cells and its application |
US20100221823A1 (en) * | 2007-06-11 | 2010-09-02 | Amgen Inc. | Method for culturing mammalian cells to improve recombinant protein production |
US7580304B2 (en) * | 2007-06-15 | 2009-08-25 | United Memories, Inc. | Multiple bus charge sharing |
ES2657055T3 (en) * | 2007-08-09 | 2018-03-01 | Wyeth Llc | Use of perfusion to improve the production of a batch-fed cell culture in bioreactors |
CN101815786A (en) * | 2007-10-12 | 2010-08-25 | 弗·哈夫曼-拉罗切有限公司 | Protein expression from multiple nucleic acids |
EP4269443A3 (en) | 2007-12-26 | 2023-12-27 | Xencor, Inc. | Fc variants with altered binding to fcrn |
BR122019022434B8 (en) * | 2007-12-27 | 2021-07-27 | Baxalta GmbH | method for culturing mammalian cells that secrete heterologous protein in a cell culture supernatant |
EP2250251B1 (en) * | 2008-01-09 | 2017-11-22 | Sartorius Stedim Cellca GmbH | Improved culture media additive and process for using it |
JP2011512877A (en) * | 2008-03-12 | 2011-04-28 | ワイス・エルエルシー | Methods for identifying cells suitable for large-scale production of recombinant proteins |
WO2009127098A1 (en) * | 2008-04-18 | 2009-10-22 | 上海中信国健药业有限公司 | A concentrated culture solution and application method thereof |
DE102008002210A1 (en) | 2008-06-04 | 2009-12-10 | Evonik Degussa Gmbh | Process for the fermentative production of erythropoietin |
EP2350130B1 (en) * | 2008-10-31 | 2018-10-03 | Wyeth LLC | Purification of acidic proteins using ceramic hydroxyapatite chromatography |
CA2742107A1 (en) * | 2008-11-12 | 2010-05-20 | Baxter International Inc. | Method of producing serum-free insulin-free factor vii |
RU2526250C2 (en) | 2008-12-19 | 2014-08-20 | Момента Фармасьютикалз, Инк. | Methods relating to modified glycans |
EP2373783B1 (en) | 2008-12-30 | 2017-11-01 | Baxalta GmbH | Method of enhancing cell growth using alkyl-amine-n-oxide (aanox) |
MX2011009023A (en) * | 2009-02-27 | 2011-09-28 | Novartis Ag | Methods for selecting eukaryotic cells expressing a heterologous protein. |
CA2756247C (en) | 2009-04-09 | 2015-05-26 | Cellca Gmbh | Method for improved single cell cloning |
US8313926B2 (en) | 2009-07-31 | 2012-11-20 | Baxter International Inc. | Methods for expressing ADAMTS proteins in cell culture medium supplemented with zinc |
US9493578B2 (en) | 2009-09-02 | 2016-11-15 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
AU2010297530B2 (en) | 2009-09-23 | 2013-12-19 | Ratiopharm Gmbh | Process for the purification of recombinant human erythropoietin (EPO), EPO thus purified and pharmaceutical compositions comprising same |
SI2493922T1 (en) | 2009-10-26 | 2017-06-30 | F. Hoffmann-La Roche Ag | Method for the production of a glycosylated immunoglobulin |
WO2011079004A1 (en) * | 2009-12-23 | 2011-06-30 | Schering Corporation | Cell line 3m |
US8362210B2 (en) | 2010-01-19 | 2013-01-29 | Xencor, Inc. | Antibody variants with enhanced complement activity |
ES2870469T3 (en) | 2010-04-26 | 2021-10-27 | Novartis | Procedure for the culture of CHO cells. |
RU2644651C2 (en) | 2010-04-26 | 2018-02-13 | Новартис Аг | Medium for cells cultivation |
CN102234627B (en) * | 2010-04-30 | 2015-06-03 | 中国科学院广州生物医药与健康研究院 | Culture medium additive and application thereof |
EA029503B1 (en) | 2010-07-08 | 2018-04-30 | Баксалта Инкорпорейтид | Method of producing recombinant adamts13 in cell culture |
SG187198A1 (en) | 2010-08-05 | 2013-03-28 | Amgen Inc | Dipeptides to enhance yield and viability from cell cultures |
EP3147355B1 (en) * | 2010-12-27 | 2020-07-22 | Kyowa Kirin Co., Ltd. | Method for preparing aqueous solution containing culture medium and chelating agent |
WO2012145682A1 (en) * | 2011-04-21 | 2012-10-26 | Amgen Inc. | A method for culturing mammalian cells to improve recombinant protein production |
EP2702077A2 (en) | 2011-04-27 | 2014-03-05 | AbbVie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
DK2702164T3 (en) | 2011-04-29 | 2016-02-01 | Biocon Res Ltd | METHOD FOR REDUCING heterogeneity OF ANTIBODIES AND METHOD OF PRODUCING THESE ANTIBODIES |
CA2841822C (en) | 2011-07-12 | 2016-08-16 | Foodchek Systems Inc. | Culture medium, method for culturing salmonella and e. coli and method for detecting salmonella and e. coli |
DK2732024T3 (en) * | 2011-07-13 | 2017-05-22 | Foodchek Systems Inc | CULTURE MEDIUM, METHOD FOR CULTIVATING LISTERIA, AND METHOD FOR DETERMINING LISTERIA |
KR20140077977A (en) | 2011-10-21 | 2014-06-24 | 화이자 인코포레이티드 | Addition of iron to improve cell culture |
CA2864702A1 (en) | 2012-02-22 | 2013-08-29 | Amgen Inc. | Autologous mammalian models derived from induced pluripotent stem cells and related methods |
US9505833B2 (en) | 2012-04-20 | 2016-11-29 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
WO2013158273A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Methods to modulate c-terminal lysine variant distribution |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9334319B2 (en) | 2012-04-20 | 2016-05-10 | Abbvie Inc. | Low acidic species compositions |
US9249182B2 (en) | 2012-05-24 | 2016-02-02 | Abbvie, Inc. | Purification of antibodies using hydrophobic interaction chromatography |
WO2014035475A1 (en) | 2012-09-02 | 2014-03-06 | Abbvie Inc. | Methods to control protein heterogeneity |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
ES2540753T3 (en) | 2012-09-24 | 2015-07-13 | Lonza Biologics Plc. | Expression vectors comprising cytomegalovirus promoter and amplifier chimeric sequences |
US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
US8921526B2 (en) | 2013-03-14 | 2014-12-30 | Abbvie, Inc. | Mutated anti-TNFα antibodies and methods of their use |
US9217168B2 (en) | 2013-03-14 | 2015-12-22 | Momenta Pharmaceuticals, Inc. | Methods of cell culture |
ITTO20130493A1 (en) * | 2013-06-14 | 2014-12-15 | Determinants Of Metabolism Res Lab S R L | COMPOSITION FOR THE ELIMINATION OF MANY ANIMALS |
JP6195191B2 (en) * | 2013-08-08 | 2017-09-13 | 極東製薬工業株式会社 | Method for producing recombinant protein using cell line conditioned in protein-free and lipid-free medium |
JP6190205B2 (en) * | 2013-08-08 | 2017-08-30 | 極東製薬工業株式会社 | Protein-free and lipid-free medium conditioned cell line, its production method and medium |
US11078464B2 (en) | 2013-08-30 | 2021-08-03 | Amgen Inc. | High titer recombinant AAV vector production in adherent and suspension cells |
US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US8946395B1 (en) | 2013-10-18 | 2015-02-03 | Abbvie Inc. | Purification of proteins using hydrophobic interaction chromatography |
US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US20150139988A1 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
US10908149B2 (en) | 2014-09-24 | 2021-02-02 | Triad National Security, Llc | Devices for fluid management |
ES2962385T3 (en) | 2014-10-15 | 2024-03-18 | Amgen Inc | Promoter and regulatory elements to improve the expression of heterologous genes in host cells |
JP6432774B2 (en) * | 2014-12-25 | 2018-12-05 | 江南化工株式会社 | Cell activator |
CN108700568A (en) | 2016-01-06 | 2018-10-23 | 隆扎有限公司 | Protein degradation inhibitors for improved production |
US10119117B2 (en) | 2016-01-28 | 2018-11-06 | Nanogen Pharmaceutical Biotechnology Co., Ltd | Universal, glycosylation enhancer, completely chemically defined medium formulation |
US20190055513A1 (en) * | 2016-02-22 | 2019-02-21 | Agency For Science, Technology And Research | Cell culture medium |
US10689873B2 (en) | 2016-03-10 | 2020-06-23 | Lonza Ltd | Customizable facility |
EA201892029A1 (en) | 2016-03-10 | 2019-03-29 | Лонца Лтд. | REVEALABLE EQUIPMENT |
SG11201808992UA (en) | 2016-04-14 | 2018-11-29 | Lonza Ag | Compositions and methods for the detection of host cell proteins |
JP6959942B2 (en) | 2016-05-03 | 2021-11-05 | ロンザ リミテッドLonza Limited | Modulation of lipid metabolism for protein production |
BR112018075548A2 (en) | 2016-06-10 | 2019-04-09 | Lonza Ltd | method to stabilize proteins |
EP3478821A1 (en) | 2016-08-02 | 2019-05-08 | Lonza Ltd | Customizable facility |
KR20190038896A (en) | 2016-08-12 | 2019-04-09 | 론자 리미티드 | Proteomic analysis of host cell proteins |
CA3036965A1 (en) | 2016-09-16 | 2018-03-22 | Leukocare Ag | A method for stabilization of a biopharmaceutical drug product during processing |
CN106635958A (en) * | 2016-12-24 | 2017-05-10 | 严志海 | CHO (Chinese Hamster Ovary) cell culture medium |
CA3052357A1 (en) | 2017-03-10 | 2018-09-13 | F. Hoffmann-La Roche Ag | Method for producing multispecific antibodies |
JP2020523990A (en) | 2017-06-16 | 2020-08-13 | ロンザ リミテッドLonza Limited | Universal autoregulatory mammalian cell line platform for biopharmaceutical manufacturing |
WO2019055796A1 (en) | 2017-09-15 | 2019-03-21 | Bristol-Myers Squibb Company | Online biomass capacitance monitoring during large scale production of polypeptides of interest |
JP2021509007A (en) | 2017-12-05 | 2021-03-18 | ロンザ リミテッドLonza Limited | How to assay tropolone |
WO2019152876A2 (en) | 2018-02-02 | 2019-08-08 | Lonza Ltd | Methods of cell selection and modifying cell metabolism |
US20210010055A1 (en) | 2018-03-16 | 2021-01-14 | Bristol-Myers Squibb Company | Metabolic enzyme activity and disulfide bond reduction during protein production |
US12071607B2 (en) | 2018-06-01 | 2024-08-27 | Lonza Ltd. | Midscale model for organic growth and phasing |
EP3807399A1 (en) | 2018-07-13 | 2021-04-21 | Lonza Ltd. | Methods for improving production of biological products by reducing the level of endogenous protein |
WO2020028616A1 (en) | 2018-08-02 | 2020-02-06 | Lonza Ltd | Methods for manufacturing recombinant protein comprising a disulfide bond |
CN110343666B (en) * | 2019-07-10 | 2023-05-30 | 通化东宝药业股份有限公司 | Feed supplement culture medium for CHO cell culture and preparation method and application thereof |
WO2021094461A1 (en) | 2019-11-14 | 2021-05-20 | Lonza Ltd | Methods of cell selection |
SG11202110968VA (en) | 2019-12-06 | 2021-10-28 | Regeneron Pharma | Anti-vegf protein compositions and methods for producing the same |
WO2021193748A1 (en) * | 2020-03-25 | 2021-09-30 | 味の素株式会社 | Hepes-containing medium |
CA3182893A1 (en) | 2020-05-08 | 2021-11-11 | Regeneron Pharmaceuticals, Inc. | Vegf traps and mini-traps and methods for treating ocular disorders and cancer |
WO2022140389A1 (en) | 2020-12-22 | 2022-06-30 | Amgen Inc. | Cell culture method |
WO2023045140A1 (en) * | 2021-09-26 | 2023-03-30 | 上海迈泰君奥生物技术有限公司 | Method for increasing expression quantity of antibody in host cell |
CN113846051B (en) * | 2021-09-28 | 2023-12-01 | 无锡多宁生物科技有限公司 | Universal chemical composition limiting CHO cell subculture medium and application thereof |
WO2024192171A1 (en) | 2023-03-14 | 2024-09-19 | Sonnet BioTherapeutics, Inc. | Methods of making recombinant il-12 albumin binding domain fusion proteins |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE65933C (en) | Rheinische Gesellschaft für metall | Valve device for alcohol stoves | ||
US4205126A (en) | 1978-01-01 | 1980-05-27 | Cartaya Oscar A | Serum-free cell culture media |
FR2543158A1 (en) | 1983-03-24 | 1984-09-28 | Inst Nat Sante Rech Med | CULTURE MEDIUM OF ANIMAL CELLS WITHOUT SERUM, WITHOUT HORMONES AND WITHOUT GROWTH FACTORS AND METHODS OF PRIMARY CULTURE AND OBTAINING CELL LINES USING THE SAME |
JPS6125480A (en) | 1984-07-13 | 1986-02-04 | Nitsusui Seiyaku Kk | Serum-free synthetic medium for cell culture |
WO1987001131A1 (en) | 1985-08-19 | 1987-02-26 | Gene Labs, Inc. | Non-human primate monoclonal antibodies and methods |
US4657866A (en) | 1982-12-21 | 1987-04-14 | Sudhir Kumar | Serum-free, synthetic, completely chemically defined tissue culture media |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
JPS637780A (en) | 1986-06-28 | 1988-01-13 | Nippon Zenyaku Kogyo Kk | Feeding method for iron to cell and serum-free synthetic culture medium used thereof |
WO1988000967A1 (en) | 1986-08-04 | 1988-02-11 | The University Of New South Wales | Serum free tissue culture medium containing polymeric cell-protective agent |
GB2196348A (en) | 1986-10-03 | 1988-04-27 | Ceskoslovenska Akademie Ved | Synthetic medium for hybridoma and myeloma cell cultivation |
US4767704A (en) | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
WO1989000999A1 (en) | 1987-07-24 | 1989-02-09 | International Genetic Engineering, Inc. | Modular assembly of antibody genes, antibodies prepared thereby and use |
EP0307247A2 (en) | 1987-09-11 | 1989-03-15 | Genentech, Inc. | A method for culturing recombinant cells |
EP0314161A1 (en) | 1987-10-28 | 1989-05-03 | Bristol-Myers Squibb Company | Human immunoglobulines produced by recombinant DNA techniques |
EP0316068A1 (en) | 1987-10-09 | 1989-05-17 | Collaborative Research Inc. | Modified low molecular weight plasminogen activator and method of preparation |
EP0325190A2 (en) | 1988-01-18 | 1989-07-26 | Roche Diagnostics GmbH | Pentosansulfate medium |
EP0328404A1 (en) | 1988-02-12 | 1989-08-16 | Btg International Limited | Modified antibodies |
US4929706A (en) | 1988-11-02 | 1990-05-29 | W. R. Grace & Co.-Conn. | Cell growth enhancers and/or antibody production stimulators comprising chemically modified hydrophilic polyurea-urethane prepolymers and polymers |
EP0388151A1 (en) | 1989-03-13 | 1990-09-19 | Celltech Limited | Modified antibodies |
EP0389786A1 (en) | 1989-03-03 | 1990-10-03 | W.R. Grace & Co.-Conn. | Very low protein nutrient medium for cell culture |
EP0390327A2 (en) | 1989-02-27 | 1990-10-03 | Eli Lilly And Company | improved tissue culture method |
EP0404003A2 (en) | 1989-06-19 | 1990-12-27 | Xoma Corporation | Chimeric mouse-human KM10 antibody with specificity to a human tumor cell antigen |
WO1991004336A1 (en) | 1989-09-19 | 1991-04-04 | Centocor, Inc. | Method for improving human monoclonal antibody production |
WO1991010722A2 (en) | 1989-12-27 | 1991-07-25 | Centocor, Inc. | Chimeric immunoglobulin for cd4 receptors |
US5045468A (en) | 1986-12-12 | 1991-09-03 | Cell Enterprises, Inc. | Protein-free culture medium which promotes hybridoma growth |
WO1992007084A1 (en) | 1990-10-17 | 1992-04-30 | The Wellcome Foundation Limited | Purified cdw52-specific antibodies |
US5122469A (en) * | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
EP0513738A2 (en) | 1991-05-14 | 1992-11-19 | Roche Diagnostics GmbH | Serum-free medium for mammalian cells cultivation |
WO1993002108A1 (en) | 1991-07-25 | 1993-02-04 | Idec Pharmaceuticals Corporation | Recombinant antibodies for human therapy |
WO1993007899A1 (en) | 1991-10-15 | 1993-04-29 | The Wellcome Foundation Limited | CDw52 - SPECIFIC ANTIBODY FOR TREATMENT OF T-CELL MEDIATED INFLAMMATION OF THE JOINTS |
US5316938A (en) | 1990-10-17 | 1994-05-31 | Burroughs Wellcome Co. | Defined media for serum-free tissue culture |
US5545404A (en) | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from a T-cell medicated disorder with a CHO-Glycosylated antibody |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US5846534A (en) | 1988-02-12 | 1998-12-08 | British Technology Group Limited | Antibodies to the antigen campath-1 |
US5876961A (en) | 1991-07-15 | 1999-03-02 | Glaxo Wellcome Inc. | Production of antibodies |
WO2001051615A1 (en) | 2000-01-12 | 2001-07-19 | Hypoxi Co. Ltd. | Method for increasing survival rate of cells in animal cell culture under hypoxia condition |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR840004781A (en) * | 1982-05-05 | 1984-10-24 | 월터 에이치·드레거 | Human tissue plasminogen activator |
EP0164813B1 (en) | 1984-06-14 | 1991-10-09 | Teijin Limited | Method of cultivating animal or plant cells |
GB8516415D0 (en) | 1985-06-28 | 1985-07-31 | Celltech Ltd | Culture of animal cells |
GB8531925D0 (en) | 1985-12-31 | 1986-02-05 | Bass Plc | Propagation of yeast |
CA1297434C (en) | 1986-04-14 | 1992-03-17 | Kenji Murakami | Method of producing peptides, recombinant plasmid for use in the same and animal cells transformed with the same |
US4677704A (en) * | 1986-04-22 | 1987-07-07 | Huggins Richard A | Cleaning system for static charged semiconductor wafer surface |
DE3785086T2 (en) | 1986-06-04 | 1993-07-08 | Agency Ind Science Techn | PREPARATION FOR CELL CULTURE AND THEIR USE. |
IL85035A0 (en) | 1987-01-08 | 1988-06-30 | Int Genetic Eng | Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same |
JP2749011B2 (en) | 1987-02-05 | 1998-05-13 | 鐘淵化学工業 株式会社 | Cells that can be subcultured in serum-free medium and method for obtaining the same |
JPS63196268A (en) * | 1987-02-10 | 1988-08-15 | Kanegafuchi Chem Ind Co Ltd | Transformant cell capable of being subjected to passage multiplication in serum-free medium, breeding thereof and production of protein by said cell |
DE3871206D1 (en) | 1987-03-24 | 1992-06-25 | Grace W R & Co | BASIC MEDIUM FOR A CELL CULTURE. |
AU612404B2 (en) | 1987-09-11 | 1991-07-11 | Genentech Inc. | Method for increasing the expression of polypeptides in recombinant cell culture |
CA1341552C (en) | 1988-09-23 | 2007-10-02 | Kenneth Alonso | Method of producing human-human hybridomas, the production of monoclonal and polyclonal antibodies therefrom, and therapeutic use thereof |
WO1990003429A1 (en) | 1988-09-23 | 1990-04-05 | Cetus Corporation | Lipid microemulsions for culture media |
JPH0322972A (en) * | 1989-01-12 | 1991-01-31 | Ajinomoto Co Inc | Serum-free culture medium |
US5429746A (en) | 1994-02-22 | 1995-07-04 | Smith Kline Beecham Corporation | Antibody purification |
AT407255B (en) | 1997-06-20 | 2001-02-26 | Immuno Ag | RECOMBINANT CELL CLONE WITH INCREASED STABILITY IN SERUM- AND PROTEIN-FREE MEDIUM AND METHOD FOR OBTAINING THE STABLE CELL CLONE |
US7157443B2 (en) | 2001-12-11 | 2007-01-02 | Merck & Co., Inc. | Staphylococcus aureus exopolysaccharide and process |
-
1990
- 1990-10-17 GB GB9022545A patent/GB9022545D0/en active Pending
-
1991
- 1991-10-16 AU AU85915/91A patent/AU645615B2/en not_active Expired
- 1991-10-16 NZ NZ240248A patent/NZ240248A/en not_active IP Right Cessation
- 1991-10-16 ZA ZA918249A patent/ZA918249B/en unknown
- 1991-10-16 CA CA 2053586 patent/CA2053586C/en not_active Expired - Lifetime
- 1991-10-16 JP JP33299891A patent/JP2625302B2/en not_active Expired - Lifetime
- 1991-10-16 IE IE355991A patent/IE913559A1/en not_active IP Right Cessation
- 1991-10-17 DK DK02003143T patent/DK1221476T3/en active
- 1991-10-17 AT AT02003143T patent/ATE382680T1/en not_active IP Right Cessation
- 1991-10-17 DK DK91309596T patent/DK0481791T3/en active
- 1991-10-17 EP EP20020003143 patent/EP1221476B1/en not_active Revoked
- 1991-10-17 AT AT91309596T patent/ATE248217T1/en not_active IP Right Cessation
- 1991-10-17 ES ES02003143T patent/ES2298301T3/en not_active Expired - Lifetime
- 1991-10-17 EP EP19910309596 patent/EP0481791B1/en not_active Revoked
- 1991-10-17 DE DE1991633589 patent/DE69133589T2/en not_active Expired - Lifetime
- 1991-10-17 ES ES91309596T patent/ES2204885T3/en not_active Expired - Lifetime
- 1991-10-17 EP EP20070114585 patent/EP1849862A3/en not_active Withdrawn
- 1991-10-17 DE DE1991633303 patent/DE69133303T2/en not_active Revoked
-
1992
- 1992-12-18 US US07/991,717 patent/US5316938A/en not_active Expired - Lifetime
-
1994
- 1994-03-04 US US08/205,379 patent/US5633162A/en not_active Ceased
-
2004
- 2004-11-22 US US10/995,010 patent/USRE39792E1/en not_active Expired - Lifetime
-
2006
- 2006-12-15 US US11/640,428 patent/USRE41974E1/en not_active Expired - Lifetime
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE65933C (en) | Rheinische Gesellschaft für metall | Valve device for alcohol stoves | ||
US4205126A (en) | 1978-01-01 | 1980-05-27 | Cartaya Oscar A | Serum-free cell culture media |
US4657866A (en) | 1982-12-21 | 1987-04-14 | Sudhir Kumar | Serum-free, synthetic, completely chemically defined tissue culture media |
FR2543158A1 (en) | 1983-03-24 | 1984-09-28 | Inst Nat Sante Rech Med | CULTURE MEDIUM OF ANIMAL CELLS WITHOUT SERUM, WITHOUT HORMONES AND WITHOUT GROWTH FACTORS AND METHODS OF PRIMARY CULTURE AND OBTAINING CELL LINES USING THE SAME |
US4767704A (en) | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
JPS6125480A (en) | 1984-07-13 | 1986-02-04 | Nitsusui Seiyaku Kk | Serum-free synthetic medium for cell culture |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
WO1987001131A1 (en) | 1985-08-19 | 1987-02-26 | Gene Labs, Inc. | Non-human primate monoclonal antibodies and methods |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
JPS637780A (en) | 1986-06-28 | 1988-01-13 | Nippon Zenyaku Kogyo Kk | Feeding method for iron to cell and serum-free synthetic culture medium used thereof |
WO1988000967A1 (en) | 1986-08-04 | 1988-02-11 | The University Of New South Wales | Serum free tissue culture medium containing polymeric cell-protective agent |
GB2196348A (en) | 1986-10-03 | 1988-04-27 | Ceskoslovenska Akademie Ved | Synthetic medium for hybridoma and myeloma cell cultivation |
US5045468A (en) | 1986-12-12 | 1991-09-03 | Cell Enterprises, Inc. | Protein-free culture medium which promotes hybridoma growth |
WO1989000999A1 (en) | 1987-07-24 | 1989-02-09 | International Genetic Engineering, Inc. | Modular assembly of antibody genes, antibodies prepared thereby and use |
EP0307247A2 (en) | 1987-09-11 | 1989-03-15 | Genentech, Inc. | A method for culturing recombinant cells |
EP0316068A1 (en) | 1987-10-09 | 1989-05-17 | Collaborative Research Inc. | Modified low molecular weight plasminogen activator and method of preparation |
EP0314161A1 (en) | 1987-10-28 | 1989-05-03 | Bristol-Myers Squibb Company | Human immunoglobulines produced by recombinant DNA techniques |
EP0325190A2 (en) | 1988-01-18 | 1989-07-26 | Roche Diagnostics GmbH | Pentosansulfate medium |
US5063157A (en) | 1988-01-18 | 1991-11-05 | Boehringer Mannheim Gmbh | Serum-free culture medium for mammalian cells |
US5846534A (en) | 1988-02-12 | 1998-12-08 | British Technology Group Limited | Antibodies to the antigen campath-1 |
EP0328404A1 (en) | 1988-02-12 | 1989-08-16 | Btg International Limited | Modified antibodies |
US4929706A (en) | 1988-11-02 | 1990-05-29 | W. R. Grace & Co.-Conn. | Cell growth enhancers and/or antibody production stimulators comprising chemically modified hydrophilic polyurea-urethane prepolymers and polymers |
EP0390327A2 (en) | 1989-02-27 | 1990-10-03 | Eli Lilly And Company | improved tissue culture method |
US5135866A (en) | 1989-03-03 | 1992-08-04 | W. R. Grace & Co.-Conn. | Very low protein nutrient medium for cell culture |
EP0389786A1 (en) | 1989-03-03 | 1990-10-03 | W.R. Grace & Co.-Conn. | Very low protein nutrient medium for cell culture |
EP0388151A1 (en) | 1989-03-13 | 1990-09-19 | Celltech Limited | Modified antibodies |
EP0404003A2 (en) | 1989-06-19 | 1990-12-27 | Xoma Corporation | Chimeric mouse-human KM10 antibody with specificity to a human tumor cell antigen |
WO1991004336A1 (en) | 1989-09-19 | 1991-04-04 | Centocor, Inc. | Method for improving human monoclonal antibody production |
WO1991010722A2 (en) | 1989-12-27 | 1991-07-25 | Centocor, Inc. | Chimeric immunoglobulin for cd4 receptors |
US5122469A (en) * | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
US5545403A (en) | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal by administering a CHO-glycosylated antibody |
US5316938A (en) | 1990-10-17 | 1994-05-31 | Burroughs Wellcome Co. | Defined media for serum-free tissue culture |
US5545404A (en) | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from a T-cell medicated disorder with a CHO-Glycosylated antibody |
US5545405A (en) | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from cancer with a cho-glycosylated antibody |
WO1992007084A1 (en) | 1990-10-17 | 1992-04-30 | The Wellcome Foundation Limited | Purified cdw52-specific antibodies |
EP0513738A2 (en) | 1991-05-14 | 1992-11-19 | Roche Diagnostics GmbH | Serum-free medium for mammalian cells cultivation |
US5876961A (en) | 1991-07-15 | 1999-03-02 | Glaxo Wellcome Inc. | Production of antibodies |
WO1993002108A1 (en) | 1991-07-25 | 1993-02-04 | Idec Pharmaceuticals Corporation | Recombinant antibodies for human therapy |
WO1993007899A1 (en) | 1991-10-15 | 1993-04-29 | The Wellcome Foundation Limited | CDw52 - SPECIFIC ANTIBODY FOR TREATMENT OF T-CELL MEDIATED INFLAMMATION OF THE JOINTS |
EP0610447A1 (en) | 1991-10-15 | 1994-08-17 | The Wellcome Foundation Limited | CDw52 - SPECIFIC ANTIBODY FOR TREATMENT OF T-CELL MEDIATED INFLAMMATION OF THE JOINTS |
WO2001051615A1 (en) | 2000-01-12 | 2001-07-19 | Hypoxi Co. Ltd. | Method for increasing survival rate of cells in animal cell culture under hypoxia condition |
Non-Patent Citations (147)
Title |
---|
1990 GIBCO BRL Catalogue & Refernce Guide (confirmation of availability attached). |
Abstract of the USPTO trademark database regarding the trademark for NUCELLIN of Eli Lilly. |
Adair, John, Executed Declaration of Dr. Adair, Mar. 24, 2004. |
Ahmed, S. (2001) "Eating Human Hair by Another Name?," <www.albalagh.net/halal/col2.shtml. |
Ahrens, et al., Post Graduate Medicine vol. 80, pp. 181-187 (1988). |
Anthony Lubinieki, ESACT 9<SUP>th </SUP>Meeting, Editors Spier R.E. et al., pp. 85-92 (1989). |
Anthony Lubinieki, ESACT 9th Meeting, Editors Spier R.E. et al., pp. 85-92 (1989). |
Bebbington et al., Methods: A companion to Methods in Enzymology, vol. 2(2) pp. 136-145 (1991) Abstract. |
Bebbington, et al., Biotechnology, vol. 10 pp. 169-175 (1992). |
Blech Z., reprinted with permission from MK News and Views, vol. IV (6) 2003. |
Brogden, et al., Drugs, vol. 34 pp. 350-371 (1987). |
Brown et al., Emerging Infectious Diseases, vol. 7 (1) pp. 6-16 (2001). |
C6852, Biochemicals and Reagents for Life Science Research, p. 600 (2002-2003) Sigma-Aldrich Company (Current website information also included). |
C7880, Biochemicals and Reagents for Life Science Research, p. 600 (2002-2003) Sigma-Aldrich Company (Current website information also included). |
C8503, Biochemicals and Reagents for Life Science Research, p. 508 (2002-2003) Sigma-Aldrich Company (Current website information also included). |
Carter et al., PNAS, vol. 89 pp. 4285-4289 (May 1992). |
Colcher et al., Cancer Research, vol. 49 pp. 1738-1745 (1989). |
Dafler, F., In Vitro Cell Dev. Bio., vol. 26 pp. 769-778 (1990). |
Darfler, In Vitro Cell. Dev. Bio., Vo. 26 pp. 779-783 (1990). |
Declaration of Dr. B. Szperalski (2001). |
DeCourcy, et al., Experimental Cell Research, vol. 192 pp. 52-60 (1991). |
DeWaele et al., European Journal of Biochemistry, vol. 176 (2-3) pp. 287-295 (1988). |
Dickman, Nature, vol. 329 p. 93 (1987). |
Dulbecco and Freeman, Virology, vol. 8 pp. 396-397 (1959) [composition of DMEM attached]. |
Dyer et al., Blood, vol. 73 pp. 1431-1439 (1989). |
Eagle, Science, vol. 130 pp. 432-437 (1959) [composition of MEM attached]. |
Ebert, Expression of Antibody C-DNA in CHO ("Chinese hamster ovary") Cells, Dissertation Completed at the Institute for Applied Microbiology University for Soil Cultivation , Feb. 1991 (with Translation). |
Ehrlich et al, Molecular Immunology, vol. 28(4-5) pp. 319-322 (1991). |
Ehrlich et al., Human Antibod. Hybridomas, vol. 1(1) pp. 23-26 (1990). |
Feldman, G., (Oct. 2001). "Amino Acid Production and the Associated Theoretical Risk of BSE Transmission from their Use in the Production of Biologicals, Drugs, and Medical Devices," FDA TSA Advisory Committee Meeting <www.fda.gov/Ohrms/dockets/ac/01/slides/. |
Feys et al., International Journal of Cancer, vol. 2 pp. 26-27 (1988). |
Feys, et al., Chemical Abstracts, vol. 108 (23) p. 514 (1988). |
Fouser, et al., Biotechnology, vol. 10 pp. 1121-1127 (1992). |
Freshney, Culture of Animal Cells, Second Edition, Wiley-Liss pp. 70-84 (1989). |
Gaboriau, et al., Biochemical Pharmacology, vol. 67 pp. 1627-1637 (2004). |
Gasser et al., In Vitro Cellular Development Biology, vol. 21 (10) pp. 588-592 (1985). |
Gasser, Long-term Multiplication of the Chinese Hamster Ovary (CHO) Cell Line In a Serum-Free Medium, In Vitro Cellular & Developmental Biology, Oct. 1985, pp. 588-592, vol. 21, cited during prosecution of the '162 patent. |
Gillies et al., Biotechnology, vol. 7 pp. 799-804 (1989). |
Gillies et al., J Imminological Methods, vol. 125 pp. 191-202 (1989). |
Goeddel et al., Proceedings of the National Academy of Sciences USA, vol. 76(1) pp. 106-110 (1979). |
Grady, et al., Journal of Biological Chemistry, vol. 284(34) pp. 20221-20229 (1989). |
Hale et al., Journal of Immunological Methods, vol. 103 pp. 59-67 (1987). |
Hale et al., Mol. Biol. Med., vol. 1 pp. 305-319 (1983). |
Hale et al., The Lancet, vol. 2 pp. 1394-1399 (1988). |
Hale et al., Tissue Antigens, vol. 35 pp. 118-127 (1990). |
Hale et al., Transplantation, vol. 45 pp. 753-759 (1988). |
Ham, Proceedings of the National Academy of Sciences, vol. 53 pp. 288-293 (1965) [composition of F12 attached]. |
Hamilton and Ham, Clonal Growth of Chinese Hamster Cell Lines in Protein-Free Media, In Vitro, Nov. 9, 1997, pp. 537-547, vol. 13. |
Hamilton et al., In Vitro, vol. 13 (9) pga 537-547 (1977). |
Handa-Corrigan et al., Enzyme Microbial Technology, vol. 11 pp. 230-235 (1989). |
Higuchi, K., Advances Applied Microbiology, vol. 16 pp. 111-136 (1973). |
Holtta et al., Biochemica et Biophysica Acta, vol. 721 pp. 321-327 (1982). |
I5500, Biochemicals and Reagents for Life Science Research, p. 1147 (2002-2003) Sigma-Aldrich Company (Current website information also included). |
Isaacs et al., The Lancet, vol., 340 (8822) pp. 748-752 (1992). |
Iscove and Melchers, The Journal of Experimental Medicine, vol. 147 pp. 923-933 (1978). |
K. Loren, Vibrant Life, vol. 2 (1) 13 pgs (1999). |
Kaqawa et al., Journal of Biochemistry, vol. 68 pp. 133-136 (1970). |
Katsua & Takaoka, Methods of Cell Biology, vol. 6 pp. 1-42 (1973). |
Katsuta and Takaoka, Journal of Experimental Medicine, vol. 30 pp. 235-259 (1960). |
Katsuta and Takaoka, Methods of Cell Biology, vol. 6 pp. 1-42 (1973). |
Kaufman et al., Molec. Cell Biol., vol. 5(7) pp. 1750-1759 (1985). |
Keay, Biotechnology and Bioengineering, vol. XVIII pp. 363-382 (1976). |
K�hrle, J., Biochimie, vol. 81 pp. 527-533 (1999). |
Kim, et al., In Vitro Cell Dev. Biology, vol. 38 pp. 314-319 (2002). |
King et al, Biochem Journal, vol. 281 pp. 317-323 (1992). |
Knight et al., Human Antibody Hybridomas, vol. 3 pp. 129-136 (1992). |
Köhrle, J., Biochimie, vol. 81 pp. 527-533 (1999). |
Kulhavy, Sava, Observation by a third party according to Art. 115 of EPC to the Opposition Procedure relating the European Patent No. 0 481 791 B1, Dipl. Ing. S.V. Ku;havy & Co. Oct. 18, 2005. |
Kurano, et al., Journal of Biotechnology, vol. 15 pp. 101-112 (1990). |
Kyle et al., Journal of Rheumatology, vol. 18 (11) pp. 1737-1738 (1991). |
Larrick, et al., Biotechnology, vol. 7 pp. 934-938 (1989). |
Levy et al., Gene, vol. 54 pp. 167-173 (1987). |
Lewis et al., Human Antibody Hybridomas, vol. 3 pp. 146-152 (1992). |
Liu et al., J. Immunology, vol. 13(10) pp. 3521-3528 (1987). |
Liu, et al., Gene, vol. 54(1) pp. 33-40 (1987). |
Liu, et al., PNAS, vol. 84(10) pp. 3439-3433 (1987). |
Luff, cited in "The BSE Inquiry," established fot the British Government. |
Marquis et al., Cytotechnology vol. 2 pp. 163-170 (1989). |
Mather, et al., Methods of Enzymology, vol. 185 pp. 567-577 (1995). |
McCormick et al., Molec. Cell Biol., vol. 4 (1) pp. 166-172 (1984). |
McKeehan et al., Proceedings of the National Academy of Sciences USA, vol. 73 pp. 2023-2027 (1976). |
Mendiaz et al., In Vitro Cell Dev. Biol., vol. 22 pp. 66-74 (1986). |
Mengas, et al., Notice of Opposition of EP 0 481 791 The Wellcome Foundation Ltd. Patentee, Amgen Inc. Opponent, May 26, 2004. |
Merten et al., Production of biologicals from animal cells in culture research, development, and achievements, 10<SUP>th </SUP>Mtg., Avignon, France (1990). |
Merten et al., Production of biologicals from animal cells in culture research, development, and achievements, 10th Mtg., Avignon, France (1990). |
Merten, Production of Biologicals from Animals Cells in Culture Research, Development and Achievements, ESACT, Palais Des Papaes, May 7-11, 1990, p. 151, The 10th Meeting, Avignon, France. |
Morrison et al., PNAS, vol. 81 pp. 6851-6855 (1984). |
Mountain and Adair, Biotechnology and Genetic Engineering Reviews, vol. 10 pp. 1-142 (1992). |
Murphy, Science, vol. 273 (5276 pp. 746-747 (1996). |
Nakamori et al., Applied and Environmental Microbiology, vol. 64 (5) pp. 1607-1611 (1998). |
Neuberger et al., Nucleic Acids Research, vol. 16(14) pp. 6713-6724 (1988). |
Newman, et al., Biotechnology, vol. 10 pp. 1455-1460 (1992). |
Nippon Zenyaku Industries, Reply of Applicant concerning EP92306420.8, May 28, 1998. |
Nishinaga, Model Reactions for the Biosynthesis of Thyroxine, Biochemistry, 1968, pp. 388-197, vol. 7, No. 1. |
Noda et al., Chem. Abs., vol. 110 (19) Abstract p. 652 (1988). |
Ogata et al., Applied Mcrobiology Biotechnology, vol. 38 (4) pp. 520-525 (1993). |
Oka et al., Bioprogress Technol., vol. 10 pp. 72-92 (1990). |
Organic Chemistry, John Wiley & Sons Inc, vol. II Second Edition pp. 1129-1130 and 1136-1138 (1943). |
Page and Sydenham, Biotechnology, vol. 21 (10) pp. 64-68 (1991). |
Page et al., Biotechnology, vol. 9 pp. 64-68 (1991). |
Pearson, et al., The 19th Meeting of the European Society for Animal Cell Technology, pp. 1-11 (2005). |
Persson et al. PNAS, vol. 88 pp. 2432-2436 (1991). |
Phillpotts, Cytotechnology, vol. 2 pp. 161-162 (1989). |
R.H. Kimberlin, Symposium of Virological Aspects of the Safety of Biological Products London, England 1990, Develop. Biol. Standard, vol. 75 pp. 75-82 (1991). |
Rabbi S. Emanuel, MK Vaad Hair, vol. IV (7) 9 pgs (2003) <www.mk.ca/page6_11.php>. |
Regamey, et al., Proceeding of the Second General Meeting of ESACT, vol. 42, pp. 37-45 (1978). |
Regenstein et al., E-Journal <www.Kashrut.com>, Kosher Issues for Today's Dairy Industry, 2002. |
Riechmann et al., Nature, vol. 322 pp. 323-327 (1988). |
Robinson et al., Human Antibody Hybridomas, vol. 2 pp. 84-92 (1991). |
Rose et al., Molecular Immunology, vol. 29(1) pp. 131-144 (1992). |
Rüker, et al., Annals New York Acad. Sci., pp. 212-219 (1991). |
Saban, T., (2004) "Food Additives From Islamic Perspective," Version 1.3 <wwwsrv1.mycity.at/privat.9704236/Im/LM-en.html>. |
Sakar, et al., Proceedings of the National Academy of Science, vol. 92 pp. 3323-3327 (1995). |
Salahuddin et al., Journal of Experimental Medicine, vol. 155 pp. 1842-1857 (1982). |
Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition pp. 8.8-8.9 (1989). |
Sano et al., Cell Struct. Funct., vol. 13 (2) pp. 142-159 (1988). |
Sano et al., Cell Structure and Function, vol. 13 (2) pp. 143-159 (1988). |
Scanhill et al., Proceedings of the National Academy of Sciences, vol. 80 pp. 4654-4658. |
Schneider & Laviox, Journal of Immunological Methods, vol. 129 pp. 251-268 (1990). |
Schnider, Journal of Immunological Methods, vol. 116 pp. 65-77 (1989). |
Sertich, et al., Journal of Cellular Physiology, vol. 127 pp. 114-120 (1986). |
Sigma-Aldrich Company Search Criteria/Results, <www.sigma-aldrich.com>. |
Spira et al., Trends in Animal Cell Culture Technology, Proc. Ann. Meeting Jpn. Tech., pp. 67-73 (1990) [Reporting conference meeting in 1989]. |
Takagi, et al., Journal of Bioscience and Bioengineering, vol. 90(5) pp. 509-514 (2001). |
Taylor et al., Mutation Research, vol. 67 pp. 65-80 (1979). |
Thilly, et al., Mammalian Cell Technology, pp. 26-29 (1986). |
Tibetch, Guidelines on the Production and Quality Control of Monoclonal Antibodies of Murine Origin Intended for Use in Man, Jan. 1988, vol. 6. |
Titeux et al., Journal of Cellular Physiology, vol. 121 pp. 251-256 (1984). |
Tsujimoto et al., Journal of Biochemistry, vol. 106 pp. 23-28 (1989). |
U.S. Appl. No. 10/145,712, filed May 16, 2002, Page et al. |
U.S. Appl. No. 10/145,992, filed May 16, 2002, Page et al. |
U.S. Appl. No. 10/765,067, filed Jan. 28, 2004, Page et al. |
U.S. Appl. No. 90/006,997, filed Apr. 5, 2004, Crowe et al. |
Ungemach et al., The 50<SUP>th </SUP>Meeting of the joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization, 1998. |
Ungemach et al., The 50th Meeting of the joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization, 1998. |
Urblan & Chasin, Proceedings of the National Academy of Sciences, vol. 77(7) pp. 4216-4220 (1980). |
Weber et al., Journal of Neuroimmunology, vol. 22 pp. 1 to 9 (1989). |
Weidle et al., Gene, vol. 51 pp. 21-29 (1987). |
Weidle et al., Gene, vol. 60 pp. 205-216 (1987). |
Whitaker et al., Biopharm, vol. 3 (8) p. 5 (Sep. 1990). |
Whittle et al., Protein Eng., vol. 1 pp. 499-505 (1987). |
Wiebe, et al., ESACT 9<SUP>th </SUP>Meeting, Editors Spier R.E. et al., pp. 68-71 (1989). |
Wiebe, et al., ESACT 9th Meeting, Editors Spier R.E. et al., pp. 68-71 (1989). |
Wood, et al, Journal of Immunology, vol. 145 pp. 3011-3016 (1990). |
Yang et al., Proceedings of the National Academy of Sciences USA, vol. 81 pp. 2752-2756 (1984). |
Zekauskas et al., J Okla. State Med. Assoc. vol. 83 pp. 447-448 (1990). |
Zettlemeissl et al., Biotechnology , vol. 5 pp. 720-725 (1987). |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110250644A1 (en) * | 2008-12-19 | 2011-10-13 | Schering Corporation | Feed supplement for mammalian cell culture and methods of use |
US20110008464A1 (en) * | 2009-07-10 | 2011-01-13 | Scott Iii Linzy O | Methods and compositions for treating thyroid-related medical conditions with reduced folates |
US8343974B2 (en) | 2009-07-10 | 2013-01-01 | Scott Iii Linzy O | Methods and compositions for treating thyroid-related medical conditions with reduced folates |
US8575171B2 (en) | 2009-07-10 | 2013-11-05 | Linzy O. Scott, III | Methods and compositions for treating thyroid-related medical conditions with reduced folates |
US9248130B2 (en) | 2009-07-10 | 2016-02-02 | Linzy O. Scott, III | Methods and compositions for treating thyroid-related medical conditions with reduced folates |
US10703800B2 (en) * | 2016-04-26 | 2020-07-07 | La Jolla Biologics, Inc. | Cell culture medium |
US12173049B2 (en) | 2016-04-26 | 2024-12-24 | La Jolla Biologics, Inc. | Cell culture medium |
Also Published As
Publication number | Publication date |
---|---|
US5633162A (en) | 1997-05-27 |
EP1849862A2 (en) | 2007-10-31 |
EP0481791A2 (en) | 1992-04-22 |
DE69133303D1 (en) | 2003-10-02 |
ES2204885T3 (en) | 2004-05-01 |
CA2053586C (en) | 2003-07-29 |
DE69133303T2 (en) | 2004-06-24 |
GB9022545D0 (en) | 1990-11-28 |
ES2298301T3 (en) | 2008-05-16 |
DK1221476T3 (en) | 2008-05-13 |
DE69133589T2 (en) | 2009-01-08 |
EP1221476A3 (en) | 2003-09-17 |
US5316938A (en) | 1994-05-31 |
CA2053586A1 (en) | 1992-04-18 |
DK0481791T3 (en) | 2003-12-08 |
EP1221476A2 (en) | 2002-07-10 |
AU8591591A (en) | 1992-05-07 |
DE69133589D1 (en) | 2008-02-14 |
USRE41974E1 (en) | 2010-11-30 |
EP1849862A3 (en) | 2008-02-13 |
JP2625302B2 (en) | 1997-07-02 |
EP0481791A3 (en) | 1992-07-08 |
AU645615B2 (en) | 1994-01-20 |
ATE248217T1 (en) | 2003-09-15 |
EP1221476B1 (en) | 2008-01-02 |
NZ240248A (en) | 1994-11-25 |
JPH0670757A (en) | 1994-03-15 |
ZA918249B (en) | 1993-04-16 |
ATE382680T1 (en) | 2008-01-15 |
IE913559A1 (en) | 1992-04-22 |
EP0481791B1 (en) | 2003-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39792E1 (en) | Method for culturing Chinese hamster ovary cells | |
IE84174B1 (en) | Culture medium for CHO cells and adapted CHO cells | |
US5232848A (en) | Basal nutrient medium for cell culture | |
EP1992697B1 (en) | Production of TNFR-Fc | |
US9982286B2 (en) | Medium for the protein-free and serum-free cultivation of cells | |
EP2357250B1 (en) | Production of TNFR-Ig | |
EP1781803B1 (en) | Production of anti-amyloid beta antibodies | |
US20060115901A1 (en) | Method and media for single cell serum-free culture of CHO cells | |
US5122469A (en) | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins | |
Schröder et al. | Serum-and protein-free media formulations for the Chinese hamster ovary cell line DUKXB11 | |
WO2000003000A2 (en) | Serum-free medium for culturing animal cells | |
CN112795531A (en) | CHO cell serum-free and protein-free culture medium and application thereof | |
Kim et al. | Development of a serum-free medium for the production of humanized antibody from Chinese hamster ovary cells using a statistical design | |
JPH09512171A (en) | Serum-free medium additive | |
JPH03180176A (en) | Nutrient medium for cell culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: GLAXOSMITHKLINE LLC, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:SMITHKLINE BEECHAM CORPORATION;REEL/FRAME:023660/0882 Effective date: 20091027 |