USRE38435E1 - Separating agent - Google Patents
Separating agent Download PDFInfo
- Publication number
- USRE38435E1 USRE38435E1 US08/934,791 US93479197A USRE38435E US RE38435 E1 USRE38435 E1 US RE38435E1 US 93479197 A US93479197 A US 93479197A US RE38435 E USRE38435 E US RE38435E
- Authority
- US
- United States
- Prior art keywords
- cellulose
- separating agent
- carrier
- group
- cellulose derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000001913 cellulose Substances 0.000 claims abstract description 128
- 229920002678 cellulose Polymers 0.000 claims abstract description 127
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 239000000126 substance Substances 0.000 claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 72
- 239000003795 chemical substances by application Substances 0.000 claims description 53
- 239000000243 solution Substances 0.000 claims description 37
- 239000002904 solvent Substances 0.000 claims description 35
- 239000000377 silicon dioxide Substances 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 239000000741 silica gel Substances 0.000 claims description 16
- 229910002027 silica gel Inorganic materials 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 14
- 239000007983 Tris buffer Substances 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- -1 cyano, hydroxyl Chemical class 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 125000002252 acyl group Chemical class 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 125000003178 carboxy group Chemical class [H]OC(*)=O 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- CXKCZFDUOYMOOP-UHFFFAOYSA-M 3,5-dichlorobenzoate Chemical compound [O-]C(=O)C1=CC(Cl)=CC(Cl)=C1 CXKCZFDUOYMOOP-UHFFFAOYSA-M 0.000 claims description 3
- LULAYUGMBFYYEX-UHFFFAOYSA-M 3-chlorobenzoate Chemical compound [O-]C(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-M 0.000 claims description 3
- XRHGYUZYPHTUJZ-UHFFFAOYSA-M 4-chlorobenzoate Chemical compound [O-]C(=O)C1=CC=C(Cl)C=C1 XRHGYUZYPHTUJZ-UHFFFAOYSA-M 0.000 claims description 3
- 239000005995 Aluminium silicate Substances 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000003545 alkoxy group Chemical class 0.000 claims description 3
- 125000004453 alkoxycarbonyl group Chemical class 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 235000012211 aluminium silicate Nutrition 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical group 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 125000000472 sulfonyl group Chemical class *S(*)(=O)=O 0.000 claims description 3
- 125000003396 thiol group Chemical class [H]S* 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 4
- 125000001309 chloro group Chemical group Cl* 0.000 claims 1
- 125000003118 aryl group Chemical group 0.000 abstract description 34
- 230000003287 optical effect Effects 0.000 abstract description 32
- 238000004587 chromatography analysis Methods 0.000 abstract description 3
- 229920000642 polymer Polymers 0.000 abstract description 2
- 239000004615 ingredient Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 79
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 66
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 60
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 53
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 48
- 230000015572 biosynthetic process Effects 0.000 description 47
- 238000003786 synthesis reaction Methods 0.000 description 47
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- 150000001875 compounds Chemical class 0.000 description 42
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 42
- 238000000034 method Methods 0.000 description 32
- 230000008569 process Effects 0.000 description 27
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 25
- 239000011324 bead Substances 0.000 description 24
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 229920002284 Cellulose triacetate Polymers 0.000 description 21
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 21
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 17
- 238000002329 infrared spectrum Methods 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 230000009102 absorption Effects 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000011541 reaction mixture Substances 0.000 description 13
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 12
- 150000004676 glycans Chemical class 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- 229920001282 polysaccharide Polymers 0.000 description 11
- 239000005017 polysaccharide Substances 0.000 description 11
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 10
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- SXPSZIHEWFTLEQ-UHFFFAOYSA-N tröger's base Chemical compound C12=CC=C(C)C=C2CN2C3=CC=C(C)C=C3CN1C2 SXPSZIHEWFTLEQ-UHFFFAOYSA-N 0.000 description 10
- 238000001291 vacuum drying Methods 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 239000003480 eluent Substances 0.000 description 8
- 238000005886 esterification reaction Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 238000000214 vapour pressure osmometry Methods 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 7
- 238000001226 reprecipitation Methods 0.000 description 7
- 239000011877 solvent mixture Substances 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- ARCJQKUWGAZPFX-UHFFFAOYSA-N c1ccc(C2OC2c2ccccc2)cc1 Chemical compound c1ccc(C2OC2c2ccccc2)cc1 ARCJQKUWGAZPFX-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- DRLVMOAWNVOSPE-UHFFFAOYSA-N 2-phenylcyclohexan-1-one Chemical compound O=C1CCCCC1C1=CC=CC=C1 DRLVMOAWNVOSPE-UHFFFAOYSA-N 0.000 description 5
- 230000021736 acetylation Effects 0.000 description 5
- 238000006640 acetylation reaction Methods 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 5
- 239000011654 magnesium acetate Substances 0.000 description 5
- 235000011285 magnesium acetate Nutrition 0.000 description 5
- 229940069446 magnesium acetate Drugs 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VKJLDXGFBJBTRQ-UHFFFAOYSA-N CC1CC1C Chemical compound CC1CC1C VKJLDXGFBJBTRQ-UHFFFAOYSA-N 0.000 description 4
- PQXKWPLDPFFDJP-UHFFFAOYSA-N CC1OC1C Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 4
- ARCJQKUWGAZPFX-KBPBESRZSA-N S-trans-stilbene oxide Chemical compound C1([C@H]2[C@@H](O2)C=2C=CC=CC=2)=CC=CC=C1 ARCJQKUWGAZPFX-KBPBESRZSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 4
- MAGPZHKLEZXLNU-UHFFFAOYSA-N mandelamide Chemical compound NC(=O)C(O)C1=CC=CC=C1 MAGPZHKLEZXLNU-UHFFFAOYSA-N 0.000 description 4
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- IVAGOJQDJFWIRT-UHFFFAOYSA-N CC1CCC1C Chemical compound CC1CCC1C IVAGOJQDJFWIRT-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 244000028419 Styrax benzoin Species 0.000 description 3
- 235000000126 Styrax benzoin Nutrition 0.000 description 3
- 235000008411 Sumatra benzointree Nutrition 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 229960002130 benzoin Drugs 0.000 description 3
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 3
- 150000001733 carboxylic acid esters Chemical class 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical class CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 3
- 125000004185 ester group Chemical group 0.000 description 3
- 235000019382 gum benzoic Nutrition 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- QERYCTSHXKAMIS-UHFFFAOYSA-M thiophene-2-carboxylate Chemical compound [O-]C(=O)C1=CC=CS1 QERYCTSHXKAMIS-UHFFFAOYSA-M 0.000 description 3
- SIOVKLKJSOKLIF-HJWRWDBZSA-N trimethylsilyl (1z)-n-trimethylsilylethanimidate Chemical compound C[Si](C)(C)OC(/C)=N\[Si](C)(C)C SIOVKLKJSOKLIF-HJWRWDBZSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- GGHLXLVPNZMBQR-UHFFFAOYSA-N 3,5-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=CC(Cl)=CC(Cl)=C1 GGHLXLVPNZMBQR-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N CC(=O)c1ccccc1 Chemical compound CC(=O)c1ccccc1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- GBGXVCNOKWAMIP-UHFFFAOYSA-N OC(Cc1ccccc1)c1ccccc1 Chemical compound OC(Cc1ccccc1)c1ccccc1 GBGXVCNOKWAMIP-UHFFFAOYSA-N 0.000 description 2
- PPTXVXKCQZKFBN-UHFFFAOYSA-N Oc1ccc2ccccc2c1-c1c(O)ccc2ccccc12 Chemical compound Oc1ccc2ccccc2c1-c1c(O)ccc2ccccc12 PPTXVXKCQZKFBN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000004093 cyano group Chemical class *C#N 0.000 description 2
- 239000012024 dehydrating agents Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000007613 slurry method Methods 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- VMZCDNSFRSVYKQ-UHFFFAOYSA-N 2-phenylacetyl chloride Chemical compound ClC(=O)CC1=CC=CC=C1 VMZCDNSFRSVYKQ-UHFFFAOYSA-N 0.000 description 1
- CXKCZFDUOYMOOP-UHFFFAOYSA-N 3,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC(Cl)=C1 CXKCZFDUOYMOOP-UHFFFAOYSA-N 0.000 description 1
- ZAMLGGRVTAXBHI-UHFFFAOYSA-N 3-(4-bromophenyl)-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NC(CC(O)=O)C1=CC=C(Br)C=C1 ZAMLGGRVTAXBHI-UHFFFAOYSA-N 0.000 description 1
- ZPZDIFSPRVHGIF-UHFFFAOYSA-N 3-aminopropylsilicon Chemical compound NCCC[Si] ZPZDIFSPRVHGIF-UHFFFAOYSA-N 0.000 description 1
- WHIHIKVIWVIIER-UHFFFAOYSA-N 3-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Cl)=C1 WHIHIKVIWVIIER-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- RKIDDEGICSMIJA-UHFFFAOYSA-N 4-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Cl)C=C1 RKIDDEGICSMIJA-UHFFFAOYSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- FZERHIULMFGESH-UHFFFAOYSA-N CC(=O)Nc1ccccc1 Chemical compound CC(=O)Nc1ccccc1 FZERHIULMFGESH-UHFFFAOYSA-N 0.000 description 1
- DFOXKPDFWGNLJU-UHFFFAOYSA-N CC(O)C(C)(C)C Chemical compound CC(O)C(C)(C)C DFOXKPDFWGNLJU-UHFFFAOYSA-N 0.000 description 1
- HBHZNNUKGBTORH-YZADPBESSA-N CC.CC.CC.CC(=O)Cc1ccc2ccccc2c1.CC(=O)Cc1ccccc1.CC(=O)Cc1ccccccccc1 Chemical compound CC.CC.CC.CC(=O)Cc1ccc2ccccc2c1.CC(=O)Cc1ccccc1.CC(=O)Cc1ccccccccc1 HBHZNNUKGBTORH-YZADPBESSA-N 0.000 description 1
- 0 CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CCC.CCC(=O)NC.CCC(C)=O.N.c1ccc2c(c1)N=Nc1ccccc1-2.c1ccc2ccccc2c1.c1ccc2nccc2c1.c1ccc2ncccc2c1.c1ccc2occc2c1.c1ccc2sccc2c1.c1ccncc1.c1ccnnc1.c1ccoc1.c1ccsc1.c1cnc2c(c1)ccc1cccnc12.c1cnccn1.c1cncn1.c1cncnc1.c1cocn1.c1cscn1.c1ncncn1 Chemical compound CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CCC.CCC(=O)NC.CCC(C)=O.N.c1ccc2c(c1)N=Nc1ccccc1-2.c1ccc2ccccc2c1.c1ccc2nccc2c1.c1ccc2ncccc2c1.c1ccc2occc2c1.c1ccc2sccc2c1.c1ccncc1.c1ccnnc1.c1ccoc1.c1ccsc1.c1cnc2c(c1)ccc1cccnc12.c1cnccn1.c1cncn1.c1cncnc1.c1cocn1.c1cscn1.c1ncncn1 0.000 description 1
- KAKOUNRRKSHVJO-UHFFFAOYSA-N CC.Cc1ccccc1 Chemical compound CC.Cc1ccccc1 KAKOUNRRKSHVJO-UHFFFAOYSA-N 0.000 description 1
- SGVUHPSBDNVHKL-UHFFFAOYSA-N CC1CCCC(C)C1 Chemical compound CC1CCCC(C)C1 SGVUHPSBDNVHKL-UHFFFAOYSA-N 0.000 description 1
- KVZJLSYJROEPSQ-UHFFFAOYSA-N CC1CCCCC1C Chemical compound CC1CCCCC1C KVZJLSYJROEPSQ-UHFFFAOYSA-N 0.000 description 1
- ADXKNQVTARQZPQ-UHFFFAOYSA-N CCC(=O)O.CCC(=O)O.CCC(=O)O.COCC(=O)O.O=C(O)C(c1ccccc1)c1ccccc1.O=C(O)C1c2ccccc2-c2ccccc21.O=C(O)CCc1ccccc1.O=C(O)COc1c2ccccc2cc2ccccc12.O=C(O)COc1ccccc1.O=C(O)Cc1ccccc1.O=C(O)Cc1ccccc1.c1ccc2c(c1)ccc1ccccc12.c1ccc2cc3ccccc3cc2c1.c1ccc2ccccc2c1.c1ccc2ccccc2c1 Chemical compound CCC(=O)O.CCC(=O)O.CCC(=O)O.COCC(=O)O.O=C(O)C(c1ccccc1)c1ccccc1.O=C(O)C1c2ccccc2-c2ccccc21.O=C(O)CCc1ccccc1.O=C(O)COc1c2ccccc2cc2ccccc12.O=C(O)COc1ccccc1.O=C(O)Cc1ccccc1.O=C(O)Cc1ccccc1.c1ccc2c(c1)ccc1ccccc12.c1ccc2cc3ccccc3cc2c1.c1ccc2ccccc2c1.c1ccc2ccccc2c1 ADXKNQVTARQZPQ-UHFFFAOYSA-N 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N CCC(C)O Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- NASOEJMYZRYPEK-UHFFFAOYSA-N CCCCCCCC(C)c1ccccc1 Chemical compound CCCCCCCC(C)c1ccccc1 NASOEJMYZRYPEK-UHFFFAOYSA-N 0.000 description 1
- CDKDZKXSXLNROY-UHFFFAOYSA-N CCCCCCCCc1ccccc1 Chemical compound CCCCCCCCc1ccccc1 CDKDZKXSXLNROY-UHFFFAOYSA-N 0.000 description 1
- UYXAWHWODHRRMR-UHFFFAOYSA-N CN1C(=O)NC(=O)C(C)(C2=CCCCC2)C1=O Chemical compound CN1C(=O)NC(=O)C(C)(C2=CCCCC2)C1=O UYXAWHWODHRRMR-UHFFFAOYSA-N 0.000 description 1
- DWNQOKWDJKLVEW-UHFFFAOYSA-N COC(=O)CS(C)=O Chemical compound COC(=O)CS(C)=O DWNQOKWDJKLVEW-UHFFFAOYSA-N 0.000 description 1
- DDIZAANNODHTRB-UHFFFAOYSA-N COC(=O)c1ccc(OC)cc1 Chemical compound COC(=O)c1ccc(OC)cc1 DDIZAANNODHTRB-UHFFFAOYSA-N 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N COc1ccccc1 Chemical compound COc1ccccc1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- SZBUJZVUQOCHLJ-UHFFFAOYSA-N Cc1cccc(O)c1-c1c(C)cccc1O Chemical compound Cc1cccc(O)c1-c1c(C)cccc1O SZBUJZVUQOCHLJ-UHFFFAOYSA-N 0.000 description 1
- UFWJYJCNLOWJCO-UHFFFAOYSA-N Cc1cccc([N+](=O)[O-])c1-c1c(C)cccc1[N+](=O)[O-] Chemical compound Cc1cccc([N+](=O)[O-])c1-c1c(C)cccc1[N+](=O)[O-] UFWJYJCNLOWJCO-UHFFFAOYSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical class C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N Fc1ccccc1 Chemical compound Fc1ccccc1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Nc1ccccc1 Chemical compound Nc1ccccc1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- CQPJACDXHQIKLZ-UHFFFAOYSA-N O=C1c2ccccc2CC12Cc1ccccc1C2=O Chemical compound O=C1c2ccccc2CC12Cc1ccccc1C2=O CQPJACDXHQIKLZ-UHFFFAOYSA-N 0.000 description 1
- LQNUZADURLCDLV-UHFFFAOYSA-N O=[N+]([O-])c1ccccc1 Chemical compound O=[N+]([O-])c1ccccc1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 1
- ICZHJFWIOPYQCA-UHFFFAOYSA-N OC(c1c2ccccc2cc2ccccc12)C(F)(F)F Chemical compound OC(c1c2ccccc2cc2ccccc12)C(F)(F)F ICZHJFWIOPYQCA-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Oc1ccccc1 Chemical compound Oc1ccccc1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 241000786363 Rhampholeon spectrum Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- TXKQAMNVQAHCHD-UHFFFAOYSA-N [H]N(C(=O)C1CCC1C(=O)N([H])c1ccccc1)c1ccccc1 Chemical compound [H]N(C(=O)C1CCC1C(=O)N([H])c1ccccc1)c1ccccc1 TXKQAMNVQAHCHD-UHFFFAOYSA-N 0.000 description 1
- HOBISYOKORMULS-UHFFFAOYSA-N [H]N(C(C)=O)c1ccccc1.[H]N(C(C)=O)c1ccccc1 Chemical compound [H]N(C(C)=O)c1ccccc1.[H]N(C(C)=O)c1ccccc1 HOBISYOKORMULS-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- MJSNUBOCVAKFIJ-LNTINUHCSA-N chromium;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Cr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MJSNUBOCVAKFIJ-LNTINUHCSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000001930 cyclobutanes Chemical class 0.000 description 1
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940083759 high-ceiling diuretics aryloxyacetic acid derivative Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-N propynoic acid Chemical class OC(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- QIQITDHWZYEEPA-UHFFFAOYSA-N thiophene-2-carbonyl chloride Chemical compound ClC(=O)C1=CC=CS1 QIQITDHWZYEEPA-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- KJAMZCVTJDTESW-UHFFFAOYSA-N tiracizine Chemical compound C1CC2=CC=CC=C2N(C(=O)CN(C)C)C2=CC(NC(=O)OCC)=CC=C21 KJAMZCVTJDTESW-UHFFFAOYSA-N 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 and B01D15/30 - B01D15/36, e.g. affinity, ligand exchange or chiral chromatography
- B01D15/3833—Chiral chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/321—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
- B01J20/3219—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3272—Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
- B01J20/3274—Proteins, nucleic acids, polysaccharides, antibodies or antigens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/328—Polymers on the carrier being further modified
- B01J20/3282—Crosslinked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3295—Coatings made of particles, nanoparticles, fibers, nanofibers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B57/00—Separation of optically-active compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
Definitions
- the invention relates to use of a cellulose derivative having a group containing an aromatic group as a separating agent for a chemical substance.
- the invention method applies to separation of optical isomers, geometrical isomers and polymers having different molecular weight ranges from each other. They have not easily been separated in the state of prior arts.
- the physiological activity of a racemic compound often differs from that of an optically active compound.
- optical isomers for the purposes of preventing adverse reactions and improving the medicinal effects per unit dose.
- a mixture of optical isomers has been divided by a preferential crystallization process or diastereomer process.
- variaties of the compound which can be optically resolved by these processes are limited and most of these processes require a long time. Under these circumstances, development of a convenient chromatographic resolution process has eagerly been demanded.
- cellulose and a triacetate thereof have been successfully used as column-chromatographic resolving agents in optical resolution.
- the cellulose and cellulose triacetate are those belonging to cellulose I and cellulose triacetate I, respectively.
- substances which can be resolved by said cellulose or a derivative thereof are limited and the resolving ability of them is insufficient.
- a cellulose derivative having a group containing an aromatic ring has excellent ability in separation of chemical substances and isomers, in particular optical isomers.
- the invention has been completed on the basis of the finding.
- the invention relates to a method for separating a chemical substance from a mixture containing the same, which comprises the step of treating said mixture with a cellulose derivative having a group containing an aromatic ring, a separating agent comprising the cellulose derivative; particles of the separating agent; a packing material of the particles; and a chromatographic column filled with the agent.
- the cellulose derivative according to the invention is preferred to have a number-average degree of polymerization of 5 to 5000, preferably 10 to 1000, and particularly 10 to 500.
- the average degree of substitution of the cellulose derivatives having an aromatic ring of the present invention is 1 to 3.4, preferably 1.8 to 3.2.
- the unreacted hydroxyl groups in the aromatic cellulose derivative containing aromatic rings may further be esterified, carbamoylated or etherified so far as its capacity of resolving optical isomers is not damaged.
- the cellulose derivative of the invention may include those in which part or all of the hydrogen atoms of the hydroxyl groups have been replaced with an aromatic group or a group containing an aromatic group.
- a substituent may be attached to cellulose by way of an intermediate linkage such as an ester, an ether and an urethane.
- the term “aromatic group” includes that derived from an aromatic ring having 6 to 20 carbon atoms, an aralkyl group having 6 to 20 carbon atoms in the aryl portion and 1 to 4 carbon atoms in the alkyl portion and a heteroaromatic ring having 3 to 20 carbon atoms.
- the ring may further have a substituent thereon, such as an alkyl group, nitro group, a halogen, an amino group, an alkyl-substituted amino group, cyano group, hydroxyl group and carboxyl group.
- the cellulose derivatives substituted through an ester group include, cellulose benzoate for example.
- the esterification reaction to obtain them may be carried out by a known process, (See “Dai-Yuki Kagaku” 19, “Tennen Kobunshi Kagaku” I published by Asakura Book Store, p. 124).
- the esterifying agents include benzoyl derivatives having the following structures such as benzoyl chloride:
- the reaction solvent may be any solvent such as pyridine and quinoline, so far as it does not inhibit the esterification reaction. Frequently a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the reaction. Other aromatic derivatives may be obtained by the esterification reaction in the same manner as described above.
- the cellulose derivative substituted through an ether group may be obtained by a known process for etherifying cellulose. Generally, they are obtained by reacting cellulose with an aromatic derivative having a leaving group in the presence of a base. This process has been disclosed in, for example, N. M. Bikales, L. Segel, “Cellulose and Cellulose Derivatives” p. 807 and “Dai-Yuki Kagaku” 19 published by Asakura Book Store, p. 93. Processes for producing cellulose ethers having an aromatic ring of a high degree of substitution includes that of Husemann et al. (“Makromol. Chem,”, 176, 3269 (1975)) and that of Nakano et al. (“The Processings of ISWPC” #1983, Vol. 1, 33).
- the cellulose derivatives substituted through an urethane group may be produced by a conventional process wherein an isocyanate is reacted with an alcohol to form a urethane.
- these compounds may be produced by reacting an isocyanate having an aromatic ring with cellulose in the presence of a Lewis base catalyst such as a tertiary amine base or a Lewis acid catalyst such as a tin compound.
- a Lewis base catalyst such as a tertiary amine base or a Lewis acid catalyst such as a tin compound.
- the disubstituted urethanes may be synthesized in the same manner as in the above-mentioned esterification reaction using a disubstituted carbamoyl halide or the like.
- chromatographic methods include liquid, thin layer and gas chromatography.
- the separating agent of the present invention in the liquid or gas chromatography, there may be employed a method wherein the aromatic ring-containing cellulose derivative is packed into a column directly or in the form supported on a carrier or a method wherein a capillary column is coated with said cellulose derivative.
- the aromatic ring-containing cellulose derivative to be used as the resolving agent is preferably ground or shaped into beads.
- the particle size which varies depending on the size of a column or plate used is generally 1 ⁇ m to 10 mm, preferably 1 to 300 ⁇ m.
- the particles are preferably porous.
- the suitable size of the carrier which varies depending on the size of the column or plate used is generally 1 ⁇ m to 10 mm, preferably 1 to 300 ⁇ m.
- the carrier is preferably porous and has an average pore diameter of 10 ⁇ to 100 ⁇ m, preferably 50 to 50,000 ⁇ .
- the amount of said cellulose derivative to be supported is 1 to 100 wt. %, preferably 5 to 50 wt. %, based on the carrier.
- the carrier is preferred to have a ratio of the pore size to the particle size in the range of not larger than 0.1.
- the aromatic ring-containing cellulose derivative may be supported on the carrier by either chemical or physical means.
- the cellulose derivative is dissolved in a suitable solvent, then the solution is mixed uniformly with a carrier and the solvent is distilled off under a reduced pressure or by heating.
- the cellulose derivative is dissolved in a suitable solvent, the resulting solution is mixed homogeneously with a carrier and the mixture is dispersed in a liquid incompatible with said solvent by stirring to diffuse the solvent.
- the cellulose derivative thus supported on the carrier may be crystallized, if necessary, by heat treatment or the like. Further, the state of the supported cellulose derivative and accordingly its resolving power can be modified by adding a small amount of a solvent thereto to temporarily swell or dissolve it and then distilling the solvent off.
- porous organic and inorganic carriers may be used, though the latter is preferred.
- the suitable porous organic carriers are those comprising a high molecular substance such as polystyrene, polyacrylamide or polyacrylate.
- the suitable porous inorganic carriers are synthetic or natural products such as silica, alumina, magnesia, titanium oxide, glass, silicate or kaolin. They may be treated on the surface so as to improve the affinity with the separating agent of the invention. The surface-treatment may be conducted with use of an organosilane compound or by plasma polymerization.
- the resolving characteristics thereof may vary sometimes depending on the physical states thereof such as molecular weight, crystallinity and orientation, even though they are chemically similar. Therefore, the cellulose derivatives may be subjected to a physical or chemical treatment such as heat treatment or etching in the course of or after shaping them suitable for use.
- the developers for the liquid chromatography solvents in which the aromatic ring-containing cellulose derivative is soluble cannot be used.
- the developers are not particularly limited when the aromatic ring-containing cellulose derivative is chemically bound to the carrier or when it is cross-linked.
- a layer having a thickness of 0.1 to 100 mm and comprising the resolving agent in the form of particles of about 0.1 ⁇ m to 0.1 mm and a small amount of a binder is formed on a supporting plate.
- the aromatic ring-containing cellulose derivative may be spun into a hollow fiber in which an eluent containing the compound to be resolved is to flow so that the resolution is effected by virtue of the adsorption of the compound on the inner wall of the filament.
- the cellulose derivative is spun into an ordinary filament, which is then bundled in parallel and placed in a column so as to take advantage of the adsorption on the surface thereof.
- the resolving agent may be used in the form of a hollow fiber or film.
- the resolving agent of the present invention comprising the aromatic ring-containing cellulose derivative as a principal constituent is effective for the resolution of compounds. Particularly, it is quite effective for the resolution of optical isomers which are quite difficult to resolve in the prior art.
- the optical isomer mixture to be treated in the invention includes a compound having the asymmetric center and one having the molecular asymmetry such that either one of the optical isomers may be preferably adsorbed on the separating agent of the invention.
- heteromatic derivative of the invention. It preferably includes an ester between a cellulose and a carboxylic or carbamic acid having a heteroaromatic group or a substituted heteroaromatic group.
- the heteroaromatic group has 3 to 20 carbon atoms.
- an acyl group, a carbamoyl group and alkyl group are more preferable.
- Especially an acyl and carbamoyl are best. Embodiments are illustrated below.
- n being an integer of 0 to 5, preferably 0 or 1.
- substituted aromatic ester herein involves a carboxylic acid ester having an aromatic group wherein one or more hydrogen atom(s) is (are) replaced with one or more atom(s) or atomic group(s).
- the alcoholic moiety of the ester comprises the above-mentioned polysaccharide.
- the carboxylic acids have preferably acyl groups of the following formula:
- X, Y and Z each represents an alkyl group, alkenyl group, alkynyl group, nitro group, halogen atom, amino group, alkyl-substituted amino group, cyano group, hydroxyl group, alkoxy group, acyl group, thiol group, sulfonyl group, carboxyl group or alkoxycarbonyl group, l and m represent the numbers of X, Y and Z groups (l being an integer of 1 to 5, m being an integer of 1 to 7 and n being an integer of 0 to 5, preferably 0).
- the balance of the hydroxyl groups may be present in the form of free hydroxyl groups or they may be esterified, etherified or carbamoylated so far as the resolving capacity of the resolving agent is not damaged.
- a substituted benzoic ester may be produced by a known process (See, for example, “Dai-Yuki Kagaku” 19, ‘Tennen Kobunshi Kagaku I’ published by Asakura Book Store, p. 124).
- esterifying agents include benzoyl derivatives of the following formula, particularly, benzoyl chloride:
- Any solvent may be used in the reaction so far as it does not inhibit the esterification.
- Pyridine and quinoline are preferred.
- a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the reaction.
- esters may also be obtained by reacting the corresponding carboxylic anhydride or a combination of the carboxylic acid with a suitable dehydrating agent with the polysaccharide.
- ester derivatives of the present invention may be synthesized according to the above-mentioned process for the synthesis of the substituted benzoic esters.
- the resolving agent of the present invention containing the substituted aromatic ester as the effective component is effective for the resolution of various compounds. Particularly, it is quite effective for the resolution of optical isomers which are quite difficult to resolve. Either one of the optical isomers to be resolved is selectively adsorbed on the resolving agent.
- the resolving and adsorbing properties of a resolving agent are varied by introducing a substituent therein to improve the intended resolving effects, particularly, optical resolving effects.
- a substituent for example, the effects of cellulose tribenzoate will be compared with those of a chlorine-substitured derivative thereof.
- a Tröger's base which can not be optically resolved by the tribenzoate can be resolved by tris-4-chlorobenzoate with an ⁇ -value of 1.25.
- Benzoin which is resolved by the tribenzoate with an ⁇ -value of 1.14 exhibits an ⁇ -value of 1.26 in the resolution by the tris-3-chlorobenzoate.
- benzoin, 2-phenylcyclohexanone and mandelamide are optically resolved with the tris-3,5-dichlorobenzoate far more easily than with the tribenzoate.
- the change might be caused by a complicated combination of factors such as influence of a substituent on the shape of the molecule, physico-chemical properties, such as polarizability, hydrogen bonding ability and polarity, of the substituent and electronic effects of the substituent on the ⁇ -electron system of the aromatic ring.
- the asymmetrical structure of the polysaccharide is further developed to obtain a higher capacity of resolving the optical isomers.
- the resolving agent of the present invention exhibits preferably different absorbing capacities on respective optical isomers of a compound.
- aralkylcarboxylic acids herein involves substitution derivatives of acetic acid and they include aliphatic carboxylic acids having an aromatic substituent in the molecule and various substitution derivatives of them, preferably arylacetic acid and aryloxyacetic acid derivatives. Acrylic acid derivatives, benzoic acid derivatives and propiolic acid derivatives must be excluded even if they contain an aromatic ring.
- the aromatic rings include, for example, phenyl, naphthyl, phenanthryl and anthryl rings. They may be bonded with the skeleton in any manner.
- Examples of these compounds include the following compounds:
- the aromatic ring may have various substituents so far as the effecs of the present invention are not damaged.
- the hydroxyl groups of the polysaccharides forming the polysaccharide/aralkylcarboxylic ester of the present invention should be esterified with the carboxylic acid.
- the balance of the hydroxyl groups may be present in the form of free hydroxyl groups of they may be esterified, etherified or carbamoylated so far as the resolving capacity of the resolving agent is not damaged.
- the esterification for forming the compounds used in the present invention may be conducted by a known process for the esterification of cellulose or amylose (see, for example, “Dai-Yuki Kagaku” 19, ‘Tennen Kobunshi Kagaku I’ published by Asakura Book Store, p. 124, reference 1).
- Common esterifying agents are anhydrides and halides of the corresponding carboxylic acids, particularly acid chlorides.
- a tertiary amine base or a Lewis acid as a catalyst.
- Any reaction solvent may be used so far as it does not inhibit the reaction.
- pyridine or quinoline which acts also as the base is used frequently.
- a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the invention.
- the corresponding carboxylic acid in combination with a suitable dehydrating agent may be reacted with the polysaccharide.
- the polysaccharides used as the starting material have a low reactivity, it is preferred that they are activated by dissolution/reprecipitation or dissolution/freeze-drying treatment or by using a reaction solvent in which the polysaccharides are soluble.
- FIGS. 1 and 2 are charts showing the results of the optical resolution effected by using packings of the present invention for the optical resolution.
- the precipitate was filtered through a G3 glass filter, dispersed in 1 l of water, further filtered and dried under vacuum.
- the obtained product was dissolved in methylene chloride and reprecipitated from 2-propanol. The dissolution and reprecipitation were repeated twice to purify the product, which was then dried.
- the number-average molecular weight of the product was 7900 (the degree of polymerization: 27) according to vapor pressure osmometry (Corona 117; chloroform/1% ethanol).
- the low-molecular weight cellulose obtained as above was dispersed in a mixture of 50 ml of pyridine and 21 ml of triethylamine. 200 mg of 4-(dimethylamino)pyridine as catalyst was added to the dispersion. 11.6 ml of benzoyl chloride was added dropwise slowly to the mixture under stirring. The resulting mixture was left to stand at room temperature for 3 h and then kept at 120° C. for 10 h to complete the reaction. The resulting pyridine solution was added to a large excess of methanol. A precipitate thus formed was filtered and washed with methanol. The product was dissolved in methylene chloride and reprecipitated from ethanol. This purification process was repeated three times.
- silica beads (Lichrospher SI 1000: a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, the pressure was returned to atmospheric pressure, the temperature was lowered to room temperature and N 2 was introduced therein. 100 ml of toluene which had been preliminarily distilled was added to the dry silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h.
- KBM 202 diphenyldimethoxysilane
- reaction mixture was filtered through a G-4 glass filter, washed with toluene and dried under vacuum for about 4 h.
- the silica gel packing coated with cellulose benzoate obtained in Synthesis Example 2 was packed in a stainless steel column having an inner diameter of 0.46 cm and a length of 25 cm by a slurry method (solvent: methanol).
- Various racemic compounds were optically resolved according to high-performance liquid chromatography using this column to obtain the results shown in FIGS. 1 and 2 and Table 1.
- FIG. 1 is an optical resolution chart of trans-stilbene oxide
- FIG. 2 is an optical resolution chart of a cyclobutane derivative
- the reaction mixture was cooled with ice/water and sulfuric acid was neutralized with 86.8 g of 26% aqueous magnesium acetate solution.
- a solution thus obtained was added to a solvent mixture of water/2-propanol to precipitate cellulose acetate which was then filtered and dried.
- the obtained cellulose acetate was dissolved in acetone. An insoluble matter was filtered out under pressure. Water was added to the residue in such an amount that no precipitate would be formed.
- the solvent was distilled off with a rotary evaporator. A white powder thus obtained was dried under reduced pressure.
- Cellulose triacetate having a number-average degree of polymerization of 110 and a degree acetylation of 2.94 was dissolved in 1 l of acetic acid. 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction mixture was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G3), it was dispersed in 1 l of water.
- G3 glass filter
- the obtained product was dissolved in methylene chloride and reprecipitation from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification.
- the product was dried. According to the IR and NMR spectra, the product was identified as cellulose triacetate.
- the number-average molecular weight of the product as determined by vapor pressure osmometry was 7900, which corresponded to the number-average degree of polymerization of 27.
- the vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
- silica beads (LiChrospher SI 1000; a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, N 2 was introduced therein. 100 ml of toluene which had been preliminarily distilled in the presence of CaH 2 was added to the silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h.
- KBM 202 diphenyldimethoxysilane
- silica beads were placed in the 200 ml round-bottom flask with a side arm. After vacuum drying at 100° C. for 3 h, the pressure was returned to the atmospheric pressure and the mixture was cooled to room temperature. Then, N 2 was introduced therein. 100 ml of distilled toluene was added to the dried silica beads. 1 ml of N,O-bis(trimethylsilyl)acetamide (a trimethylsilylating agent) was added thereto and the mixture was stirred to effect the reaction at 115° C. for 3 h. The reaction mixture was filtered through a glass filter, washed with toluene and dried under vacuum for about 4 h.
- Tribenzylcellulose obtained in Synthesis Example 3 was dissolved in chloroform. Methanol in an amount four times as much as chloroform was added to the solution to divide it into a soluble part and an insoluble part. 1.2 g of the soluble part was dissolved in a solvent mixture of methylene chloride and benzene (5 ml:2.5 ml). 6 ml of the resulting solution was mixed with 3.2 g of silane-treated silica gel. The solvent was distilled off under reduced pressure. The resulting silica beads were used as a packing for use in the optical resolution.
- the silica beads carrying tribenzylcellulose obtained in Synthesis Example 4 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process.
- the high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector used was Uvidec-V.
- the flow rate was 0.2 ml/min and ethanol was used as the solvent.
- Table 2 The results of resolution of various racemic compounds are shown in Table 2.
- the product was substantially completely soluble in chloroform, methylene chloride and dioxane.
- the product was identified with cellulose trisphenylcarbamate according to the IR and NMR spectra.
- the degree of polymerization as determined according to GPC was 200.
- silica gel (Lichrospher SI 4000; a product of Merck & Co.) was dried at 180° C. for 2 h and then dispersed in a mixture of 600 ml of dry benzene, 6 ml of pyridine and 20 ml of 3-aminopropyltriethoxysilane to effect the reaction under reflux for 16 h. After the completion of the reaction, the reaction mixture was poured into 2 l of methanol and the modified silica gel was filtered.
- the carrying silica gel prepared in Synthesis Example 6 was packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process.
- the high-performance liquid chromatograph used was Trirotar-II (a product of Nihon Bunko Kogyo Co., Ltd.) and detector used as Uvidec-III and DIP-181 polarimeter.
- the solvents used were (1) hexane/2-propanol (mixing volume ratio: 90/10), (2) hexane/2-propanol (80:20), (3) hexane/2-propanol/diethylamine (80:20:0.001), (4) ethanol/water (50:50) and (5) ethanol/water (70:30).
- the flow rate was 0.5 ml/min and column temperature was 25° C. in all the cases.
- the molecular weight was determined by GPC method using a calibration curve of standard polystyrene.
- the GPC column used was Shodex A 80M and the solvent was tetrahydrofuran.
- Cellulose triacetate having a number-average degree of polymerization of 110 and a degree of acetylation of 2.49 was dissolved in 1 l of acetic acid. 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction liquid was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G 3), it was dispersed in 1 l of water.
- the obtained product was dissolved in methylene chloride and then reprecipitated from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification.
- the product was dried. According to the IR and NMR spectra, the product was identified with cellulose triacetate.
- the number-average molecular weight of the product as determined by vapor pressure osmometry was 7900 which corresponded to the number-average degree of polymerization of 27.
- the vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
- a by-product insoluble in methylene chloride was filtered out through a glass filter (G 3) and a soluble matter was fractionated with 2-propanol.
- the 2-propanol-insoluble product was obtained in an amount of 5.67 g as a light yellow solid. According to the IR and NMR spectra, the product was identified as cellulose trisphenylcarbamate.
- Silica gel (Lichrospher SI 1000, a product of Merck & Co.) was dried by heating to 120° to 150° C. in dry nitrogen stream for 2 to 10 h. 20 g of the dried silica gel was suspended in 100 ml of anhydrous benzene. 6 g of 3-aminopropyltrimethoxysilane was added thereto and the mixture was heated under reflux in dry nitrogen stream. While removing formed methanol from the reaction system, the reaction was carried out for 5 to 10 h. After the completion of the reaction, the reaction mixture was cooled to room temperature and filtered through a glass filter. The resulting modified silica gel was washed with anhydrous benzene and dried at 40° C. in vacuum.
- the silica gel carrying cellulose trisphenylcarbamate obtained in Synthesis Example 8 was packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry method.
- the high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector used was Uvidec-V.
- the flow rate was 0.2 ml/min and hexane/2-propanol (9:1) was used as the solvent.
- the results of resolution of various racemic compounds are shown in Table 5.
- silica beads (Lichrospher SI 1000; a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, N 2 was introduced therein. 100 ml of toluene which had been preliminarily distilled in the presence of CaH 2 was added to the silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h.
- KBM 202 diphenyldimethoxysilane
- silica beads were placed in the 200 ml round-bottom flask with a side arm. After vacuum drying at 100° C. for 3 h, the pressure was returned to the atmospheric pressure and the mixture was cooled to room temperature. Then, N 2 was introduced therein. 100 ml of distilled toluene was added to the dried silica beads. 1 ml of N,O-bis(trimethylsilyl)acetamide (a trimethylsilylating agent) was added thereto and the mixture was stirred to effect the reaction at 115° C. for 3 h. The reaction mixture was filtered through a glass filter, washed with toluene and dried under vacuum for about 4 h.
- Cellulose triacetate (a product of Daicel Ltd.) having a number-average degree of polymerization of 110 and a degree of substitution of 2.97 was dissolved in 1 l of acetic acid (a product of Kanto Kagaku Co.). 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction mixture was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G3), it was dispersed in 1 l of water.
- acetic acid a product of Kanto Kagaku Co.
- the obtained product was dissolved in methylene chloride and reprecipitated from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification.
- the product was dried. According to the IR and NMR spectra, the product was identified with cellulose triacetate.
- the number-average molecular weight of the product as determined by vapor pressure osmometry was 7900, which corresponded to the number-average degree of polymerization of 27.
- the vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
- the product was dissolved in methylene chloride and the solution was applied on a sodium chloride tablet and dried.
- the infrared absorption spectrum of the product had the following characteristic absorption bands:
- the ratio of the thiophene ring proton to the cellulose proton was about 9:7, which coincided with that of the trisubstituted compound.
- the sulfur content thereof was 19.40% which suggested that the product substantially comprised a trisubstituted compound.
- the silica beads carrying cellulose tris(thiophene-2-carboxylate) obtained in Example 5 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process.
- the high-performance liquid chromatograph used was Trirostar-RS (a product of Nihon Bunko Kogyo Co., Ltd.) and the polarimeter detector was DIP-181 (a product of Nihon Bunko Kogyo Co., Ltd.).
- the results of the resolution of trans-stilbene oxide are shown in Table 6.
- the silica beads carrying cellulose tris(3-chlorobenzoate) obtained in Example 6 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process.
- the high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was UVIDEC-V.
- Various racemic compounds were resolved to obtain the results shown in Table 7.
- the silica beads carrying cellulose tris(3,5-dichlorobenzoate) obtained in Example 7 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process.
- the high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was Uvidec-V.
- Trirotar-SR a product of Nihon Bunko Kogyo Co., Ltd.
- the silica beads carrying cellulose tris(4-chlorobenzoate) obtained in Example 8 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process.
- the high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was Uvidec-V.
- Trirotar-SR a product of Nihon Bunko Kogyo Co., Ltd.
- the product was dissolved in methylene chloride and the solution was applied on a plate of common salt and dried.
- the I.R. absorption spectrum of the product had the following characteristic absorption bands:
- the silica beads carrying cellulose trisphenylacetate obtained in Example 9 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process.
- the high-performance liquid chromatograph used was Trirotar-RS (a product of Nihon Bunko Koguo Co., Ltd.) and the detector was Uvidec-V.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A mixture of chemical substances such as optical isomers, geometrical isomers and polymers having different molecular weight ranges is separated to each ingredient by use of a cellulose derivative having an aromatic ring in the chromatographic method.
Description
This application is a continuation of U.S. Ser. No. 684,565, filed Dec. 21, 1984, now abandoned.This application is a reissue continuation of U.S. Ser. No. 08/509,947, filed Aug. 1, 1995, now abandoned, which is a reissue continuation of U.S. Ser. No. 08/087,200, filed Jul. 2, 1993, now abandoned, which is a reissue divisional of reissue application Ser. No. 07/982,029, filed Nov. 24, 1992, now U.S. Reissue Pat. No. 34,457, issued on Nov. 30, 1993, which is a reissue continuation application of reissue application Ser. No. 07/635,954, filed Dec. 28, 1990, now abandoned, which is a reissue application of Ser. No. 07/144,628 filed Jan. 11, 1998, now U.S. Pat. No. 4,818,394, issued on Apr. 4, 1989, which is a continuation of application Ser. No. 06/684,565, filed Dec. 21, 1984, now abandoned.
The invention relates to use of a cellulose derivative having a group containing an aromatic group as a separating agent for a chemical substance. The invention method applies to separation of optical isomers, geometrical isomers and polymers having different molecular weight ranges from each other. They have not easily been separated in the state of prior arts.
Generally, the physiological activity of a racemic compound often differs from that of an optically active compound. For example, in the field of medicines, pesticides or the like, it is sometimes necessary to resolve optical isomers for the purposes of preventing adverse reactions and improving the medicinal effects per unit dose. A mixture of optical isomers has been divided by a preferential crystallization process or diastereomer process. However, variaties of the compound which can be optically resolved by these processes are limited and most of these processes require a long time. Under these circumstances, development of a convenient chromatographic resolution process has eagerly been demanded.
The chromatographic resolution of optical isomers has been investigated from old times. For instance, cellulose and a triacetate thereof have been successfully used as column-chromatographic resolving agents in optical resolution. The cellulose and cellulose triacetate are those belonging to cellulose I and cellulose triacetate I, respectively. However, substances which can be resolved by said cellulose or a derivative thereof are limited and the resolving ability of them is insufficient.
After intensive investigations, the inventors have found surprisingly that a cellulose derivative having a group containing an aromatic ring has excellent ability in separation of chemical substances and isomers, in particular optical isomers. The invention has been completed on the basis of the finding.
The invention relates to a method for separating a chemical substance from a mixture containing the same, which comprises the step of treating said mixture with a cellulose derivative having a group containing an aromatic ring, a separating agent comprising the cellulose derivative; particles of the separating agent; a packing material of the particles; and a chromatographic column filled with the agent.
Though the reasons why the cellulose derivatives having an aromatic ring used in the present invention have excellent effects for resolving the optical isomers have not been elucidated yet, it may be considered that the ordered asymmetic structure of cellulose and the aromaticity and rigidity of the aromatic group exert a great influence on the resolution of the optical isomers.
The cellulose derivative according to the invention is preferred to have a number-average degree of polymerization of 5 to 5000, preferably 10 to 1000, and particularly 10 to 500. The average degree of substitution of the cellulose derivative having an aromatic ring is defined by the following formula:
The average degree of substitution of the cellulose derivatives having an aromatic ring of the present invention is 1 to 3.4, preferably 1.8 to 3.2.
The unreacted hydroxyl groups in the aromatic cellulose derivative containing aromatic rings may further be esterified, carbamoylated or etherified so far as its capacity of resolving optical isomers is not damaged.
The cellulose derivative of the invention may include those in which part or all of the hydrogen atoms of the hydroxyl groups have been replaced with an aromatic group or a group containing an aromatic group. A substituent may be attached to cellulose by way of an intermediate linkage such as an ester, an ether and an urethane. The term “aromatic group” includes that derived from an aromatic ring having 6 to 20 carbon atoms, an aralkyl group having 6 to 20 carbon atoms in the aryl portion and 1 to 4 carbon atoms in the alkyl portion and a heteroaromatic ring having 3 to 20 carbon atoms. The ring may further have a substituent thereon, such as an alkyl group, nitro group, a halogen, an amino group, an alkyl-substituted amino group, cyano group, hydroxyl group and carboxyl group.
Now, the description will be made on processes for the production of the substances of the present invention. The cellulose derivatives substituted through an ester group include, cellulose benzoate for example. The esterification reaction to obtain them may be carried out by a known process, (See “Dai-Yuki Kagaku” 19, “Tennen Kobunshi Kagaku” I published by Asakura Book Store, p. 124). Examples of the esterifying agents include benzoyl derivatives having the following structures such as benzoyl chloride:
The reaction solvent may be any solvent such as pyridine and quinoline, so far as it does not inhibit the esterification reaction. Frequently a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the reaction. Other aromatic derivatives may be obtained by the esterification reaction in the same manner as described above.
The cellulose derivative substituted through an ether group may be obtained by a known process for etherifying cellulose. Generally, they are obtained by reacting cellulose with an aromatic derivative having a leaving group in the presence of a base. This process has been disclosed in, for example, N. M. Bikales, L. Segel, “Cellulose and Cellulose Derivatives” p. 807 and “Dai-Yuki Kagaku” 19 published by Asakura Book Store, p. 93. Processes for producing cellulose ethers having an aromatic ring of a high degree of substitution includes that of Husemann et al. (“Makromol. Chem,”, 176, 3269 (1975)) and that of Nakano et al. (“The Processings of ISWPC” #1983, Vol. 1, 33).
The cellulose derivatives substituted through an urethane group may be produced by a conventional process wherein an isocyanate is reacted with an alcohol to form a urethane.
For example, these compounds may be produced by reacting an isocyanate having an aromatic ring with cellulose in the presence of a Lewis base catalyst such as a tertiary amine base or a Lewis acid catalyst such as a tin compound.
The disubstituted urethanes may be synthesized in the same manner as in the above-mentioned esterification reaction using a disubstituted carbamoyl halide or the like.
In using the resolving agent of the present invention containing the cellulose derivatives having an aromatic ring as the principal component for the purpose of resolution, it is preferred to employ a chromatographic method. The preferred chromatographic methods include liquid, thin layer and gas chromatography.
In using the separating agent of the present invention in the liquid or gas chromatography, there may be employed a method wherein the aromatic ring-containing cellulose derivative is packed into a column directly or in the form supported on a carrier or a method wherein a capillary column is coated with said cellulose derivative.
Since the chromatographic separating agent is preferably in the form of granules, the aromatic ring-containing cellulose derivative to be used as the resolving agent is preferably ground or shaped into beads. The particle size which varies depending on the size of a column or plate used is generally 1 μm to 10 mm, preferably 1 to 300 μm. The particles are preferably porous.
It is preferred to support the aromatic ring-containing cellulose derivative on a carrier so as to improve the resistance thereof to pressure, to prevent swelling or shrinkage thereof due to solvent exchange or to reduce the number of theoretical plates. The suitable size of the carrier which varies depending on the size of the column or plate used is generally 1 μm to 10 mm, preferably 1 to 300 μm. The carrier is preferably porous and has an average pore diameter of 10 Å to 100 μm, preferably 50 to 50,000 Å. The amount of said cellulose derivative to be supported is 1 to 100 wt. %, preferably 5 to 50 wt. %, based on the carrier. The carrier is preferred to have a ratio of the pore size to the particle size in the range of not larger than 0.1.
The aromatic ring-containing cellulose derivative may be supported on the carrier by either chemical or physical means. For example, the cellulose derivative is dissolved in a suitable solvent, then the solution is mixed uniformly with a carrier and the solvent is distilled off under a reduced pressure or by heating. Alternatively, the cellulose derivative is dissolved in a suitable solvent, the resulting solution is mixed homogeneously with a carrier and the mixture is dispersed in a liquid incompatible with said solvent by stirring to diffuse the solvent. The cellulose derivative thus supported on the carrier may be crystallized, if necessary, by heat treatment or the like. Further, the state of the supported cellulose derivative and accordingly its resolving power can be modified by adding a small amount of a solvent thereto to temporarily swell or dissolve it and then distilling the solvent off.
Both porous organic and inorganic carriers may be used, though the latter is preferred. The suitable porous organic carriers are those comprising a high molecular substance such as polystyrene, polyacrylamide or polyacrylate. The suitable porous inorganic carriers are synthetic or natural products such as silica, alumina, magnesia, titanium oxide, glass, silicate or kaolin. They may be treated on the surface so as to improve the affinity with the separating agent of the invention. The surface-treatment may be conducted with use of an organosilane compound or by plasma polymerization.
In using the cellulose derivatives in the optical resolution, the resolving characteristics thereof may vary sometimes depending on the physical states thereof such as molecular weight, crystallinity and orientation, even though they are chemically similar. Therefore, the cellulose derivatives may be subjected to a physical or chemical treatment such as heat treatment or etching in the course of or after shaping them suitable for use.
As to the developers for the liquid chromatography, solvents in which the aromatic ring-containing cellulose derivative is soluble cannot be used. However, the developers are not particularly limited when the aromatic ring-containing cellulose derivative is chemically bound to the carrier or when it is cross-linked.
In the thin layer chromatography, a layer having a thickness of 0.1 to 100 mm and comprising the resolving agent in the form of particles of about 0.1 μm to 0.1 mm and a small amount of a binder is formed on a supporting plate.
The aromatic ring-containing cellulose derivative may be spun into a hollow fiber in which an eluent containing the compound to be resolved is to flow so that the resolution is effected by virtue of the adsorption of the compound on the inner wall of the filament. In another embodiment, the cellulose derivative is spun into an ordinary filament, which is then bundled in parallel and placed in a column so as to take advantage of the adsorption on the surface thereof. In the membrane resolution process, the resolving agent may be used in the form of a hollow fiber or film.
The resolving agent of the present invention comprising the aromatic ring-containing cellulose derivative as a principal constituent is effective for the resolution of compounds. Particularly, it is quite effective for the resolution of optical isomers which are quite difficult to resolve in the prior art. This way the optical isomer mixture to be treated in the invention includes a compound having the asymmetric center and one having the molecular asymmetry such that either one of the optical isomers may be preferably adsorbed on the separating agent of the invention.
We explain the term, “heteroaromatic derivative” of the invention. It preferably includes an ester between a cellulose and a carboxylic or carbamic acid having a heteroaromatic group or a substituted heteroaromatic group. The heteroaromatic group has 3 to 20 carbon atoms. Among them, an acyl group, a carbamoyl group and alkyl group are more preferable. Especially an acyl and carbamoyl are best. Embodiments are illustrated below.
n being an integer of 0 to 5, preferably 0 or 1.
The term “substituted aromatic ester” herein involves a carboxylic acid ester having an aromatic group wherein one or more hydrogen atom(s) is (are) replaced with one or more atom(s) or atomic group(s). The alcoholic moiety of the ester comprises the above-mentioned polysaccharide. The carboxylic acids have preferably acyl groups of the following formula:
wherein X, Y and Z each represents an alkyl group, alkenyl group, alkynyl group, nitro group, halogen atom, amino group, alkyl-substituted amino group, cyano group, hydroxyl group, alkoxy group, acyl group, thiol group, sulfonyl group, carboxyl group or alkoxycarbonyl group, l and m represent the numbers of X, Y and Z groups (l being an integer of 1 to 5, m being an integer of 1 to 7 and n being an integer of 0 to 5, preferably 0).
30 to 100%, preferably 85 to 100%, on average of the hydroxyl groups of the polysaccharide moiety in the aromatic ester should be esterified with the carboxylic acid.
The balance of the hydroxyl groups may be present in the form of free hydroxyl groups or they may be esterified, etherified or carbamoylated so far as the resolving capacity of the resolving agent is not damaged.
Now, the description will be made on the process for the esterification to form a cellulose derivative to be used in the present invention. A substituted benzoic ester may be produced by a known process (See, for example, “Dai-Yuki Kagaku” 19, ‘Tennen Kobunshi Kagaku I’ published by Asakura Book Store, p. 124). Examples of the esterifying agents include benzoyl derivatives of the following formula, particularly, benzoyl chloride:
Any solvent may be used in the reaction so far as it does not inhibit the esterification. Pyridine and quinoline are preferred. Frequently, a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the reaction.
The esters may also be obtained by reacting the corresponding carboxylic anhydride or a combination of the carboxylic acid with a suitable dehydrating agent with the polysaccharide.
Other ester derivatives of the present invention may be synthesized according to the above-mentioned process for the synthesis of the substituted benzoic esters.
The resolving agent of the present invention containing the substituted aromatic ester as the effective component is effective for the resolution of various compounds. Particularly, it is quite effective for the resolution of optical isomers which are quite difficult to resolve. Either one of the optical isomers to be resolved is selectively adsorbed on the resolving agent.
Particularly, according to the present invention, the resolving and adsorbing properties of a resolving agent are varied by introducing a substituent therein to improve the intended resolving effects, particularly, optical resolving effects. For example, the effects of cellulose tribenzoate will be compared with those of a chlorine-substitured derivative thereof. A Tröger's base which can not be optically resolved by the tribenzoate can be resolved by tris-4-chlorobenzoate with an α-value of 1.25. Benzoin which is resolved by the tribenzoate with an α-value of 1.14 exhibits an α-value of 1.26 in the resolution by the tris-3-chlorobenzoate. Similarly, benzoin, 2-phenylcyclohexanone and mandelamide are optically resolved with the tris-3,5-dichlorobenzoate far more easily than with the tribenzoate. Though the relationship between the remarkable change in resolving characteristics and the substitution has not fully been elucidated, the change might be caused by a complicated combination of factors such as influence of a substituent on the shape of the molecule, physico-chemical properties, such as polarizability, hydrogen bonding ability and polarity, of the substituent and electronic effects of the substituent on the π-electron system of the aromatic ring.
It is thus apparent from the present invention that the substituent has a quite effective influence on the modification of the resolving characteristics of the resolving agent and the development of resolving agents having various characteristics has been made possible. These effects are expected also in various other resolving agents have polysaccharides other than cellulose as the skeleton.
Particularly, by modifying the polysaccharides with the substituent having a sufficient length, the asymmetrical structure of the polysaccharide is further developed to obtain a higher capacity of resolving the optical isomers.
The above-mentioned objects of the present invention can be attained with the resolving agent containing an aralkylcarboxylic ester of a polysaccharide as the effective component.
The resolving agent of the present invention exhibits preferably different absorbing capacities on respective optical isomers of a compound.
The term “aralkylcarboxylic acids” herein involves substitution derivatives of acetic acid and they include aliphatic carboxylic acids having an aromatic substituent in the molecule and various substitution derivatives of them, preferably arylacetic acid and aryloxyacetic acid derivatives. Acrylic acid derivatives, benzoic acid derivatives and propiolic acid derivatives must be excluded even if they contain an aromatic ring. The aromatic rings include, for example, phenyl, naphthyl, phenanthryl and anthryl rings. They may be bonded with the skeleton in any manner.
The aromatic ring may have various substituents so far as the effecs of the present invention are not damaged.
30 to 100%, preferably 85 to 100%, on average of the hydroxyl groups of the polysaccharides forming the polysaccharide/aralkylcarboxylic ester of the present invention should be esterified with the carboxylic acid. The balance of the hydroxyl groups may be present in the form of free hydroxyl groups of they may be esterified, etherified or carbamoylated so far as the resolving capacity of the resolving agent is not damaged.
The esterification for forming the compounds used in the present invention may be conducted by a known process for the esterification of cellulose or amylose (see, for example, “Dai-Yuki Kagaku” 19, ‘Tennen Kobunshi Kagaku I’ published by Asakura Book Store, p. 124, reference 1). Common esterifying agents are anhydrides and halides of the corresponding carboxylic acids, particularly acid chlorides.
It is preferred to use a tertiary amine base or a Lewis acid as a catalyst. Any reaction solvent may be used so far as it does not inhibit the reaction. For example, pyridine or quinoline which acts also as the base is used frequently. Further, a catalyst such as 4-(N,N-dimethylamino)pyridine is effective in accelerating the invention.
The corresponding carboxylic acid in combination with a suitable dehydrating agent may be reacted with the polysaccharide.
Since most of the polysaccharides used as the starting material have a low reactivity, it is preferred that they are activated by dissolution/reprecipitation or dissolution/freeze-drying treatment or by using a reaction solvent in which the polysaccharides are soluble.
FIGS. 1 and 2 are charts showing the results of the optical resolution effected by using packings of the present invention for the optical resolution.
The invention will be illustrated below in reference to synthesis examples, examples and application examples. Each of the particular terms is defined below.
{circle around (1)} Synthesis of low-molecular weight cellulose triacetate:
100 g of cellulose triacetate having a number-average degree of polymerization of 110 and a degree of acetylation of 2.94 was dissolved in 100 ml of acetic acid. 5.2 ml of water and 5 ml of concentrated sulfuric acid were added to the solution and the mixture was maintained at 80° C. for 3 h to effect the reaction for obtaining a product of a lower molecular weight. After the completion of the reaction, the reaction mixture was cooled and sulfuric acid was neutralized with excess aqueous magnesium acetate solution. The solution was added to 3 l of water to precipitate cellulose triacetate of a low molecular weight. The precipitate was filtered through a G3 glass filter, dispersed in 1 l of water, further filtered and dried under vacuum. The obtained product was dissolved in methylene chloride and reprecipitated from 2-propanol. The dissolution and reprecipitation were repeated twice to purify the product, which was then dried.
From the IR and NMR spectra of the product, it was identified with cellulose triacetate. The number-average molecular weight of the product was 7900 (the degree of polymerization: 27) according to vapor pressure osmometry (Corona 117; chloroform/1% ethanol).
{circle around (2)} Synthesis of cellulose having a low molecular weight:
5.0 g of the low-molecular weight cellulose triacetate prepared as above was dissolved in 50 ml of pyridine. 4.0 ml of 100% hydrazine hydrate was added to the solution. The mixture was left to stand at room temperature for 1 h and then heated to 90° to 100° C. A precipitate thus formed was filtered through a glass filter and washed with pyridine. The product containing pyridine was used in the subsequent reaction.
{circle around (3)} Synthesis of low-molecular weight cellulose tribenzoate:
The low-molecular weight cellulose obtained as above was dispersed in a mixture of 50 ml of pyridine and 21 ml of triethylamine. 200 mg of 4-(dimethylamino)pyridine as catalyst was added to the dispersion. 11.6 ml of benzoyl chloride was added dropwise slowly to the mixture under stirring. The resulting mixture was left to stand at room temperature for 3 h and then kept at 120° C. for 10 h to complete the reaction. The resulting pyridine solution was added to a large excess of methanol. A precipitate thus formed was filtered and washed with methanol. The product was dissolved in methylene chloride and reprecipitated from ethanol. This purification process was repeated three times.
From the IR and NMR spectra of the product, it was identified with cellulose tribenzoate. From the fact that no occurrence of acetylation was recognized in the NMR spectra after treating the product with acetic anhydride in pyridine, it may be concluded that the hydroxyl groups had been esterified into benzoate groups without leaving any free hydroxyl group intact.
{circle around (1)} Treatment of silica gel with silane:
10 g of silica beads (Lichrospher SI 1000: a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, the pressure was returned to atmospheric pressure, the temperature was lowered to room temperature and N2 was introduced therein. 100 ml of toluene which had been preliminarily distilled was added to the dry silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h. After distilling off 3 to 5 ml of toluene, the reaction was carried out at 120° C. for 2 h. The mixture was filtered under suction through a glass filter (G-4), washed with 50 ml of toluene three times and then with 50 ml of methanol three times and dried in vacuum at 40° C. for 1 h.
About 10 g of the silica beads treated as above were placed in the 200 ml round-bottom flask with a side arm. After vacuum drying at 100° C. for 3 h, the pressure was returned to the atmospheric pressure and the mixture was cooled to room temperature. Then, N2 was introduced therein.
100 ml of distilled toluene was added to the dried silica beads. 1 ml of N,O-bis(trimethylsilyl)acetamide (a trimethylsilylating agent) was added thereto and the mixture was stirred to effect the reaction at 115° C. for 3 h.
The reaction mixture was filtered through a G-4 glass filter, washed with toluene and dried under vacuum for about 4 h.
{circle around (2)} Coating
1.6 g of the cellulose benzoate obtained in Synthesis Example 1 was dissolved in 10.0 ml of methylene chloride and the solution was filtered through a G-3 glass filter.
3.5 g of the silica gel treated with silane was mixed with 7.5 ml of said cellulose benzoate solution and the solvent was distilled off under reduced pressure.
The silica gel packing coated with cellulose benzoate obtained in Synthesis Example 2 was packed in a stainless steel column having an inner diameter of 0.46 cm and a length of 25 cm by a slurry method (solvent: methanol). Various racemic compounds were optically resolved according to high-performance liquid chromatography using this column to obtain the results shown in FIGS. 1 and 2 and Table 1.
The symbols (+ and −) in the figures and the table refer to the signs of optical rotation at 365 nm.
TABLE 1 |
Optical resolution of racemic compounds |
Volume | Rate of | ||
ratio | Separation | separation |
Racemic compounds | k′1 | k′2 | factor α | (Rs) |
trans-stilbene oxide | 0.71 | 1.00 | 1.4 | 2.2 |
|
(+) | (−) | ||
2-phenylcyclohexane | 0.99 | 1.14 | 1.2 | 0.98 |
|
(−) | (+) | ||
cyclobutane derivative | 0.42 | 0.64 | 1.5 | 0.97 |
|
(+) | (−) | ||
benzoin | 0.53 | 0.58 | 1.1 | — |
|
(+) | (−) | ||
(Notes) | ||||
Column: 25 cm × 0.46 cm | ||||
Flow rate: 0.2 ml/min. solvent: ethanol. |
140 g of cellulose triacetate produced by an ordinary homogeneous acetylation process (number-average degree of polymerization as determined by vapor pressure osmometry: 110; molecular weight distribution {overscore (Mw)}/{overscore (Mn)}=2.45, free hydroxyl group content: 0.35%) was swollen in 1.4 l of acetic acid (a guaranteed reagent of Kanto Kagaku Co.). 23.2 ml of acetic anhydride, 7.0 ml of sulfuric acid and 8.4 ml of water were added thereto and the reaction was carried out at 80° C. for 3 h. The reaction mixture was cooled with ice/water and sulfuric acid was neutralized with 86.8 g of 26% aqueous magnesium acetate solution. A solution thus obtained was added to a solvent mixture of water/2-propanol to precipitate cellulose acetate which was then filtered and dried. The obtained cellulose acetate was dissolved in acetone. An insoluble matter was filtered out under pressure. Water was added to the residue in such an amount that no precipitate would be formed. The solvent was distilled off with a rotary evaporator. A white powder thus obtained was dried under reduced pressure.
From the results of X-ray diffractometry, it was found that the resulting crystalline cellulose acetate had a crystallinity of 46% and a half width of 0.58°. The average degree of polymerization determined based on the viscosity in a solvent mixture of methanol/methylene chloride (1:1) was 23. The free hydroxyl group content of the product was 0.8%. According to electron microscope observation, the product was in the form of porous particles having a diameter of 1 to 10μ. The resolution was effected in the same manner as in Example 1 except that the triacetylcellulose was packed by slurry process using methanol as the solvent. Trans-stilbene oxide had a resolution factor α of 1.34 and a rate of separation (Rs) of 0.91. No peak separation was observed with 2-phenylcyclohexanone and benzoin.
Cellulose triacetate having a number-average degree of polymerization of 110 and a degree acetylation of 2.94 was dissolved in 1 l of acetic acid. 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction mixture was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G3), it was dispersed in 1 l of water. After filtration followed by vacuum drying, the obtained product was dissolved in methylene chloride and reprecipitation from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification. The product was dried. According to the IR and NMR spectra, the product was identified as cellulose triacetate. The number-average molecular weight of the product as determined by vapor pressure osmometry was 7900, which corresponded to the number-average degree of polymerization of 27. The vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
10.0 g of the resulting low-molecular weight cellulose triacetate was dissolved in 100 ml of pyridine. 8.0 ml of 100% hydrazine hydrate was added to the solution. The mixture was left to stand at room temperature for 1 h and then heated to 90° to 100° C. A precipitate thus formed was filtered through a glass filter and washed with pyridine. According to the IR spectrum, the resulting product was identified as cellulose.
Cellulose tribenzyl ether was synthesized from the resulting low-molecular weight cellulose by successive processes of Husemann et al. [Markromol. Chem., 176, 3269 (1975)]. The product was identified according to NMR and IR spectra. In the IR spectrum, no absorption due to the hydroxyl group was recognized at all. This fact suggested that the degree of substitution was about 3.
NMR (CDCl3): δ7.1 (multiplets) 15H δ5.3˜2.8 (multiplets) 13H.
IR (KBr disc.): 1950(w), 1870(w), 1805(w), 1740(w), 1605(m), 1500(m), 740(s), 700(s) all due to the substituted benzene ring. 1050˜1100(vs) due to the glycoside bond
10 g of silica beads (LiChrospher SI 1000; a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, N2 was introduced therein. 100 ml of toluene which had been preliminarily distilled in the presence of CaH2 was added to the silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h. After distilling off 3 to 5 ml of toluene, the reaction was carried out at 120° C. for 2 h. The mixture was filtered through a glass filter, washed with 50 ml of toluene three times and then with 50 ml of methanol three times and dried in vacuum at 40° C. for 1 h.
About 10 g of the silica beads were placed in the 200 ml round-bottom flask with a side arm. After vacuum drying at 100° C. for 3 h, the pressure was returned to the atmospheric pressure and the mixture was cooled to room temperature. Then, N2 was introduced therein. 100 ml of distilled toluene was added to the dried silica beads. 1 ml of N,O-bis(trimethylsilyl)acetamide (a trimethylsilylating agent) was added thereto and the mixture was stirred to effect the reaction at 115° C. for 3 h. The reaction mixture was filtered through a glass filter, washed with toluene and dried under vacuum for about 4 h.
Tribenzylcellulose obtained in Synthesis Example 3 was dissolved in chloroform. Methanol in an amount four times as much as chloroform was added to the solution to divide it into a soluble part and an insoluble part. 1.2 g of the soluble part was dissolved in a solvent mixture of methylene chloride and benzene (5 ml:2.5 ml). 6 ml of the resulting solution was mixed with 3.2 g of silane-treated silica gel. The solvent was distilled off under reduced pressure. The resulting silica beads were used as a packing for use in the optical resolution.
The silica beads carrying tribenzylcellulose obtained in Synthesis Example 4 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process. The high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector used was Uvidec-V. The flow rate was 0.2 ml/min and ethanol was used as the solvent. The results of resolution of various racemic compounds are shown in Table 2.
TABLE 2 |
Optical resolution of racemic modifications |
Volume | Rate of | ||
ratio | Separation | separation |
Racemic compound | k′1 | k′2 | factor α | (Rs) |
|
0.75 | 0.99 | 1.32 | 1.50 |
|
0.66 | 0.99 | 1.46 | 1.12 |
1 g of cellulose (cellulose for column chromatography; a product of Merck & Co.) was dispersed in 50 ml of dry pyridine. 8 ml of phenyl isocyanate was added to the dispersion and the mixture was kept stirred at 110° C. After 16 h, the reaction mixture was poured into 1 l of methanol. A white solid thus formed was filtered and dried at room temperature for 2 h and then at 60° C. for 3 h under reduced pressure. Yield: 1.45 g.
The product was substantially completely soluble in chloroform, methylene chloride and dioxane. The product was identified with cellulose trisphenylcarbamate according to the IR and NMR spectra. The degree of polymerization as determined according to GPC was 200.
Elementary analysis: C, 60.93%; H, 4.68%; N, 7.93%; calculated for (C27H25N3O8)n: C, 62.42%; H, 4.85%; N, 8.09%.
102 g of silica gel (Lichrospher SI 4000; a product of Merck & Co.) was dried at 180° C. for 2 h and then dispersed in a mixture of 600 ml of dry benzene, 6 ml of pyridine and 20 ml of 3-aminopropyltriethoxysilane to effect the reaction under reflux for 16 h. After the completion of the reaction, the reaction mixture was poured into 2 l of methanol and the modified silica gel was filtered.
0.76 g of the cellulose trisphenylcarbamate obtained in Synthesis Example 5 was dissolved in a solvent mixture of 10 ml of dioxane and 5 ml of ethanol. After removing a very small amount of an insoluble matter, 3.0 g of the modified silica gel was mixed with 5 ml of the solution and the solvent was distilled off under reduced pressure. This carrying process was repeated further twice to obtain cellulose trisphenylcarbamate-carrying silica gel.
The carrying silica gel prepared in Synthesis Example 6 was packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process. The high-performance liquid chromatograph used was Trirotar-II (a product of Nihon Bunko Kogyo Co., Ltd.) and detector used as Uvidec-III and DIP-181 polarimeter. The solvents used were (1) hexane/2-propanol (mixing volume ratio: 90/10), (2) hexane/2-propanol (80:20), (3) hexane/2-propanol/diethylamine (80:20:0.001), (4) ethanol/water (50:50) and (5) ethanol/water (70:30). The flow rate was 0.5 ml/min and column temperature was 25° C. in all the cases.
The results of the resolution of various racemic compounds are shown in Tables 3-1 to 3-4 and those of the separation of achiral compounds are shown in Table 4.
The molecular weight was determined by GPC method using a calibration curve of standard polystyrene. The GPC column used was Shodex A 80M and the solvent was tetrahydrofuran.
TABLE 3 |
Optical resolution with cellulose |
trisphenylcarbamate |
k′1 (optical | ||||
rotatory | ||||
Racemic compound | Eluenta | power)b | α | RS |
|
1 | 1.92 | 1.46 | 1.27 |
|
1 | 3.64 | 1.20 | — |
|
1 | 0.65 | 1.88 | 1.06 |
|
1 | 2.39 | 1.23 | 0.77 |
|
1 | 1.32 | 1.13 | 0.58 |
|
1 | 1.42 | 1.47 | 1.38 |
|
1 | 6.38 | 1.19 | 0.97 |
|
1 | 5.92 | 1.95 | 3.36 |
|
1 | 0.58(+) | 1.53 | 2.00 |
|
1 | 1.02 | 1.39 | 1.73 |
|
1 | 2.06(−) | 1.68 | 2.56 |
|
1 | 3.67(−) | 1.52 | 3.50 |
Cr(acac)3 | 1 | 2.00(−) | 1.48 | 1.14 |
Co(acac)3 | 1 | 2.24(+) | 1.31 | 0.75 |
|
1 | 0.50(+) | 3.09 | 2.26 |
|
2 | 1.07(+) | 1.08 | 0.53 |
|
3 | 6.38(−) | 1.24 | 1.07 |
|
4 | 4.27(−) | 1.22 | 0.86 |
|
4 | 5.35(+) | 1.12 | — |
|
4 | 11.3(+) | 1.36 | 1.74 |
|
4 | 6.70(+) | 1.17 | 0.85 |
|
5 | 0.49(−) | 1.13 | — |
|
5 | 1.85(+) | 1.31 | 1.58 |
|
5 | 1.30(+) | 1.21 | 0.9 |
|
5 | 0.85(+) | 1.27 | 0.68 |
aeluent 1: hexanes/2-propanol (90/10) | ||||
eluent 2: hexanes/2-propanol (80/20) | ||||
eluent 3: hexanes/2-propanol/diethylamine (80:20:0.001) | ||||
eluent 4: ethanol/water(50:50) | ||||
eluent 5: ethanol/water(70:30) | ||||
bwavelength: 365 am |
TABLE 4 |
Separation of achiral compounds |
with cellulose trisphenylcarbamatea |
Retention time | |||
Compound | (min) | ||
|
6.30 | ||
|
6.80 | ||
|
6.90 | ||
|
7.60 | ||
|
8.33 | ||
|
8.65 | ||
|
8.95 | ||
|
10.05 | ||
|
15.25 | ||
|
16.30 | ||
CH3COOC2H5 | 8.85 | ||
CH3COCH3 | 9.75 | ||
Et3N | 6.75 | ||
Et3NH | 7.70 | ||
aeluent: hexane/2-propanol (80:20) |
Cellulose triacetate having a number-average degree of polymerization of 110 and a degree of acetylation of 2.49 was dissolved in 1 l of acetic acid. 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction liquid was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G 3), it was dispersed in 1 l of water. After filtration followed by vacuum drying, the obtained product was dissolved in methylene chloride and then reprecipitated from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification. The product was dried. According to the IR and NMR spectra, the product was identified with cellulose triacetate. The number-average molecular weight of the product as determined by vapor pressure osmometry was 7900 which corresponded to the number-average degree of polymerization of 27. The vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
10.0 g of the resulting low-molecular weight cellulose triacetate was dissolved in 100 ml of pyridine. 8.0 ml of 100% hydrazine hydrate was added to the solution. The mixture was left to stand at room temperature for 1 h and then heated to 90° to 100° C. A precipitate thus formed was filtered through a glass filter and washed with pyridine. According to the IR spectrum, the obtained product was identified with cellulose.
100 ml of dry pyridine was added to a mixture of 5 g of the resulting low molecular weight cellulose and a small amount of pyridine to obtain a dispersion. 100 ml of benzene was added to the dispersion to remove water. After distillation through a rectifier tube, the remaining suspension of the low molecular weight cellulose in pyridine was heated to 60° to 70° C. 16.3 ml of phenyl isocyanate was added dropwise to the suspension under stirring. The mixture was kept at 100° to 105° C. for 3 h 35 min. Pyridine and phenyl isocyanate were distilled off under reduced pressure and the reaction mixture was dissolved in methylene chloride. A by-product insoluble in methylene chloride was filtered out through a glass filter (G 3) and a soluble matter was fractionated with 2-propanol. The 2-propanol-insoluble product was obtained in an amount of 5.67 g as a light yellow solid. According to the IR and NMR spectra, the product was identified as cellulose trisphenylcarbamate.
IR spectrum: 3500 cm−1(νNH), 3300−1cm(νNH), 1700 cm−1(νc=0), 1530 cm−1(νNH),
NMR spectrum: 18 H Broad singlet centered at δ7 7 H multiplets δ6.0˜3.0.
Silica gel (Lichrospher SI 1000, a product of Merck & Co.) was dried by heating to 120° to 150° C. in dry nitrogen stream for 2 to 10 h. 20 g of the dried silica gel was suspended in 100 ml of anhydrous benzene. 6 g of 3-aminopropyltrimethoxysilane was added thereto and the mixture was heated under reflux in dry nitrogen stream. While removing formed methanol from the reaction system, the reaction was carried out for 5 to 10 h. After the completion of the reaction, the reaction mixture was cooled to room temperature and filtered through a glass filter. The resulting modified silica gel was washed with anhydrous benzene and dried at 40° C. in vacuum.
6 g of the silica gel treated with the aminopropylsilane was dried at 80° C. under reduced pressure for 2 h and then dispersed in 50 ml of dry methylene chloride. 2 ml of triethylamine and 1 ml of phenyl isocyanate were added to the dispersion and mixed well. The mixture was left to stand for one day and then heated to 40° C. for 1 h. The solvent was removed by decantation and the residue was washed with methylene chloride, ethanol and acetone and dried.
0.9 g of cellulose trisphenylcarbamate obtained in Synthesis Example 7 was dissolved in 4.5 ml of methylene chloride. The resulting solution was mixed with 3.5 g of the modified silica gel. The solvent was distilled off under reduced pressure to obtain a cellulose trisphenylcarbamate-carrying silica gel.
The silica gel carrying cellulose trisphenylcarbamate obtained in Synthesis Example 8 was packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry method. The high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector used was Uvidec-V. The flow rate was 0.2 ml/min and hexane/2-propanol (9:1) was used as the solvent. The results of resolution of various racemic compounds are shown in Table 5.
TABLE 5 |
Optical resolution of racemic compounds |
Volume | Resolution | Rate of | |
ratio | factor | separation |
Racemic compound | k′1 | k′2 | α | Rs |
|
1.13 | 1.39 | 1.23 | 1.89 |
|
2.18 | 2.60 | 1.19 | 1.30 |
|
4.50 | 5.60 | 1.24 | 0.90 |
|
2.33 | 2.70 | 1.16 | 0.5 |
|
11.9 | 13.3 | 1.12 | — |
10 g of silica beads (Lichrospher SI 1000; a product of Merck & Co.) was placed in a 200 ml round-bottom flask with a side arm. After vacuum-drying in an oil bath at 120° C. for 3 h, N2 was introduced therein. 100 ml of toluene which had been preliminarily distilled in the presence of CaH2 was added to the silica beads. 3 ml of diphenyldimethoxysilane (KBM 202; a product of Shin'etsu Kagaku Co., Ltd.) was added to the mixture and they were stirred together and then reacted at 120° C. for 1 h. After distilling off 3 to 5 ml of toluene, the reaction was carried out at 120° C. for 2 h. The mixture was filtered through a glass filter, washed with 50 ml of toluene three times and then with 50 ml of methanol three times and dried in vacuum at 40° C. for 1 h.
About 10 g of the silica beads were placed in the 200 ml round-bottom flask with a side arm. After vacuum drying at 100° C. for 3 h, the pressure was returned to the atmospheric pressure and the mixture was cooled to room temperature. Then, N2 was introduced therein. 100 ml of distilled toluene was added to the dried silica beads. 1 ml of N,O-bis(trimethylsilyl)acetamide (a trimethylsilylating agent) was added thereto and the mixture was stirred to effect the reaction at 115° C. for 3 h. The reaction mixture was filtered through a glass filter, washed with toluene and dried under vacuum for about 4 h.
Cellulose triacetate (a product of Daicel Ltd.) having a number-average degree of polymerization of 110 and a degree of substitution of 2.97 was dissolved in 1 l of acetic acid (a product of Kanto Kagaku Co.). 5.2 ml of water and 5 ml of conc. sulfuric acid were added to the resulting solution and the reaction was carried out at 80° C. for 3 h. The reaction mixture was cooled and sulfuric acid was neutralized with an excess amount of an aqueous magnesium acetate solution. The resulting solution was added to 3 l of water to precipitate cellulose triacetate having a reduced molecular weight. After filtration through a glass filter (G3), it was dispersed in 1 l of water. After filtration followed by vacuum drying, the obtained product was dissolved in methylene chloride and reprecipitated from 2-propanol. The dissolution and the reprecipitation were repeated twice to effect the purification. The product was dried. According to the IR and NMR spectra, the product was identified with cellulose triacetate. The number-average molecular weight of the product as determined by vapor pressure osmometry was 7900, which corresponded to the number-average degree of polymerization of 27. The vapor pressure osmometry was conducted with a vapor pressure osmometer Corona 117 using a solvent mixture of chloroform/1% ethanol.
60 g of the obtained cellulose triacetate was dispersed in 200 ml of 2-propanol. 60 ml of 100% hydrazine hydrate (a product of Nakai Kagaku Co.) was added dropwise slowly to the dispersion under gentle stirring. The suspension was maintained at 60° C. for 3 h and the resulting cellulose was filtered through a glass filter, washed with acetone repeatedly and vacuumdried at 60° C. In the IR spectrum of the product, no absorption band due to the carbonyl group at around 1720 cm−1 was observed and the IR spectrum coincided with that of cellulose.
70 ml of dehydrated pyridine, 7.7 ml of dehydrated triethylamine and 50 mg of 4-dimethylaminopyridine were added to 1.5 g of the cellulose obtained in Synthesis Example 10. 12.2 g of thiophene-2-carbonyl chloride was added to the mixture under stirring. The mixture was stirred at 100° C. for 5 h to carry out the reaction. After cooling, the product was added to 400 ml of ethanol under stirring to form precipitates, which were filtered through a glass filter and then washed thoroughly with ethanol. After vacuum drying, the product was dissolved in 30 ml of methylene chloride. An insoluble matter was removed and the product was reprecipitated from 400 ml of ethanol. The precipitate was filtered and washed with ethanol. After removing the liquid, the product was dried.
Thus, 3.9 g of cellulose thiophene-2-carboxylate was obtained.
The product was dissolved in methylene chloride and the solution was applied on a sodium chloride tablet and dried. The infrared absorption spectrum of the product had the following characteristic absorption bands:
3100 cm−1: stretching vibration of aroamtic C—H,
1720 cm−1: stretching vibration of C═O of carboxylic acid ester
1360, 1420, 1520 cm−1: stretching vibration of thiophene ring,
1260 cm−1: stretching vibration of C—O of ester,
1060 to 1160 cm−1: stretching vibration of C—O—C of cellulose, and
860 cm−1: out-of-plane deformation vibration of disubstituted thiophene.
Substantially no absorption at around 3450 cm−1 due to OH of cellulose was observed. This fact suggested that the product substantially comprised a trisubstituted compound. In the proton NMR spectrum determined in CDCl3, the characteristic absorptions were as follows:
6.8 to 7.8 ppm: proton of thiophene ring,
2.8 to 5.4 ppm: protons of the cellulose ring and methylene in position 6.
The ratio of the thiophene ring proton to the cellulose proton was about 9:7, which coincided with that of the trisubstituted compound.
According to elementary analysis of the product, the sulfur content thereof was 19.40% which suggested that the product substantially comprised a trisubstituted compound.
1.2 g of cellulose tris(thiophene-2-carboxylate) obtained in Synthesis Example 11 was dissolved in 7.5 ml of dichloromethane. The solution was filtered. The silica gel particles obtained in Synthesis Example 9 were impregnated with 7.5 ml of the resulting solution. The solvent was distilled off under reduced pressure to obtain powdery, supported material.
The silica beads carrying cellulose tris(thiophene-2-carboxylate) obtained in Example 5 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by slurry process. The high-performance liquid chromatograph used was Trirostar-RS (a product of Nihon Bunko Kogyo Co., Ltd.) and the polarimeter detector was DIP-181 (a product of Nihon Bunko Kogyo Co., Ltd.). The results of the resolution of trans-stilbene oxide are shown in Table 6.
In the determination effected by using the polarimeter as the detector of the high-performance chromatograph, the terms were defined as follows:
TABLE 6 | ||||||
Flow rate | ||||||
Racemic compound | I1′ | I2′ | β | ml/min | ||
|
1.88 | 2.28 | 1.21 | 1.0 | ||
Solvent: hexane/2-propanol (9:1) |
3.0 g of cellulose obtained in Synthesis Example 10 and 0.05 g of 4-dimethylaminopyridine (a product of Aldrich Chemical Company) were suspended in a liquid mixture of 50 ml of pyridine and 15 ml of triethylamine. 25 g of m-chlorobenzoyl chloride (a product of Aldrich Chemical Company) was added to the suspension and the mixture was kept at 100° C. for 6 h. The reaction mixture was added to ethanol and the resulting precipitate was filtered, washed with ethanol repeatedly and vacuum-dried to obtain 9.1 g of a product. In the IR spectrum of the product, an absorption due to the ester bond (1740 cm−1 and 1250 cm−1) were remarkable but no absorption due to the O—H stretching vibration was recognized. This fact suggested that the product was a trisubstituted compound.
49.4 g of thionyl chloride and 0.21 g of pyridine were added to 20 g of 3,5-dichlorobenzoic acid and the mixture was refluxed for 20 hours. Excessive thionyl chloride was removed by distillation. Dry hexane was added to the residue and an insoluble matter was filtered out of the resulting solution and hexane was removed under reduced pressure. The remaining solution was crystallized. 3,5-Dichlorobenzoyl chloride was obtained quantitatively.
1.0 g of the cellulose obtained in Synthesis Example 10 was reacted with 11.6 g of 3,5-dichlorobenzoyl chloride in a mixture of 25 ml of pyridine, 4.3 ml of triethylamine and 50 mg of 4-dimethylaminopyridine at 100° C. for 5 h. The reaction mixture was added to ethanol and the precipitated cellulose tris-3,5-dichlorobenzoate was filtered, washed with ethanol and vacuum-dried. In the IR spectrum of the product, an absorption characteristic to the ester group was recognized but no absorption at around 3500 cm−1 due to free hydroxy group was recognized. It was thus concluded that the product was a trisubstituted compound.
2.43 g of the cellulose obtained in Synthesis Example 10 was reacted with 15.75 g of 4-chlorobenzoyl chloride in a mixture of 50 ml of pyridine, 20 ml of triethylamine and 200 mg of 4-dimethylaminophridine under stirring at 110° C. for 8 h. The product was added to 500 ml of methanol and the resulting precipitate was filtered, washed with water and then methanol and dissolved in benzene. The resulting solution was added to ethanol to purify the product by reprecipitation. The product was filtered and vacuum-dried. In the I.R. spectrum of the product, an absorption characteristic to the ester linkage was recognized but no absorption due to free hydroxyl group at around 3500 cm−1 was recognized. It was thus considered that the product was a trisubstituted compound.
1.2 g of cellulose tris(3-chlorobenzoate) obtained in Synthesis Example 12 was dissolved in 7.5 ml of dichloromethane. The silica beads obtained in Synthesis Example 9 were impregnated with 7.5 ml of the resulting solution. The solvent was removed under reduced pressure to obtain a powdery, supported material.
1.2 g of cellulose tris(3,5-dichlorobenzoate) obtained in Synthesis Example 13 was dissolved in 7.5 ml of dichloromethane. 3.2 g of silica beads obtained in Synthesis Example 9 were impregnated with 7.5 ml of the resulting solution. The solvent was removed under reduced pressure to obtain a powdery, supported material.
Cellulose tris(4-chlorobenzoate) obtained in Synthesis Example 14 was supported on silica beads in the same manner as in Example 7 to obtain a powdery material.
The silica beads carrying cellulose tris(3-chlorobenzoate) obtained in Example 6 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process. The high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was UVIDEC-V. Various racemic compounds were resolved to obtain the results shown in Table 7.
TABLE 7 | ||||
Resolu- | Rate of | Flow | ||
Volume | tion | separa- | rate | |
Racemic | ratio | factor | tion | (ml/ |
compound | k1′ | k2′ | (α) | (Rs) | min) |
|
1.48 | 1.96 | 1.33 | 1.24 | 0.5 |
|
5.97 | 7.50 | 1.26 | 1.05 | 0.5 |
|
4.8 | 5.14 | 1.07 | — | 0.5 |
|
10.9 | 12.0 | 1.10 | — | 0.5 |
Solvent: hexane/2-propanol (9:1) |
The silica beads carrying cellulose tris(3,5-dichlorobenzoate) obtained in Example 7 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process. The high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was Uvidec-V. Various racemic compounds were resolved to obtain the results shown in Table 8.
TABLE 8 | ||||
Resolu- | Rate of | Flow | ||
Volume | tion | separa- | rate | |
Racemic | ratio | factor | tion | (ml/ |
compound | k1′ | k2′ | (α) | (Rs) | min) |
|
1.91 | 2.31 | 1.21 | 1.22 | 0.5 |
|
5.36 | 7.16 | 1.33 | 1.71 | 0.5 |
|
2.84 | 3.96 | 1.39 | 1.33 | 0.5 |
|
5.99 | 7.37 | 1.23 | 1.54 | 0.5 |
Solvent: hexane/2-propanol (9:1) |
The silica beads carrying cellulose tris(4-chlorobenzoate) obtained in Example 8 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process. The high-performance liquid chromatograph used was Trirotar-SR (a product of Nihon Bunko Kogyo Co., Ltd.) and the detector was Uvidec-V. Various racemic compounds were resolved to obtain the results shown in Table 9.
TABLE 9 | ||||
Resolu- | Rate of | Flow | ||
Volume | tion | separa- | rate | |
Racemic | ratio | factor | tion | (ml/ |
compound | k1′ | k2′ | (α) | (Rs) | min) |
|
1.69 | 2.11 | 1.25 | 0.6 | 0.5 |
|
1.61 | 2.03 | 1.27 | 0.6 | 0.5 |
Solvent: hexane/2-propanol (9:1) |
70 ml of dry pyridine, 7.7 ml of dry triethylamine and 50 mg of 4-dimethylaminopyridine were added to 1.5 g of the cellulose obtained in Synthesis Example 10. 12.9 g of phenylacetyl chloride was added to the mixture under stirring and the reaction was carried out at 100° C. for 5 h. After cooling, the product was added to 400 ml of ethanol under stirring to form a precipitate, which was filtered through a glass filter and washed thoroughly with ethanol. After drying in vacuum, the product was dissolved in 30 ml of methylene chloride to remove an insoluble matter and reprecipitated with 400 ml of ethanol. The precipitate was filtered and washed with ethanol. After dehydration followed by drying, 4.3 g of cellulose phenylacetate was obtained.
The product was dissolved in methylene chloride and the solution was applied on a plate of common salt and dried. The I.R. absorption spectrum of the product had the following characteristic absorption bands:
3050 cm−1: C—H stretching vibration of the aromatic ring
1750 cm−1: C═O stretching vibration of the carboxylic ester group
1610 cm−1, 1500 cm−1, 1460 cm−1: skeletal vibration due to the C—C stretching of the benzene ring carbon atoms
1250 cm−1: C—O stretching vibration of the ester group
1030˜1160 cm−1: C—O—C stretching vibration of cellulose
690˜900 cm−1: out-of-plane deformation vibration of the benzene ring
Substantially no absorption due to OH of the cellulose at around 3450 cm−1 was recognized. The product was substantially a trisubstituted compound. Its proton NMR spectrum in CDCl3 had the following characteristic resonances:
6.0 to 7.8 ppm: proton of the benzene ring
3 to 4 ppm: methylene proton of the phenylacetyl acid group
3 to 5.4 ppm: protons of the cellulose ring and methylene on position 6.
1.2 g of the product obtained in Synthesis Example 15 was dissolved in 7.5 ml of dichloromethane. The silica gel beads obtained in Synthesis Example 9 were impregnated with 7.5 ml of the resulting solution. The solvent was distilled off under reduced pressure to obtain a powdery, supported material.
The silica beads carrying cellulose trisphenylacetate obtained in Example 9 were packed in a stainless steel column having a length of 25 cm and an inner diameter of 0.46 cm by a slurry process. The high-performance liquid chromatograph used was Trirotar-RS (a product of Nihon Bunko Koguo Co., Ltd.) and the detector was Uvidec-V.
Tr/öger's base was resolved to obtain the results shown in Table 10.
Claims (28)
1. A separating agent which comprises a cellulose derivative selected from the group consisting of cellulose tribenzoate and cellulose tribenzoate ring-substituted with alkyl, alkenyl, alkynyl, nitro, halogen, amino, alkyl-substituted amino, cyano, hydroxyl, alkoxy, acyl, thiol, sulfonyl, carboxyl or alkoxy carbonyl, said cellulose derivative being supported on a porous carrier having a particle size of from 1 micron to 10 millimeters and a pore size of from 10 Angstrom units to 100 microns.
2. A separating agent as claimed in claim 1 in which said cellulose derivative is cellulose tribenzoate.
3. A separating agent as claimed in claim 1 , wherein the amount of said cellulose derivative supported on said carrier is from 1-100 wt.% based on the weight of the carrier.
4. A separating agent as claimed in claim 1 , wherein the ratio of pore size to particle size of said carrier is not larger than 0.1:1.
5. A separating agent as claimed in claim 1 , wherein said carrier is an inorganic substance selected from the group consisting of silica, alumina, magnesia, titanium oxide, glass, silicate and kaolin.
6. A separating agent as claimed in claim 1 , wherein said carrier is an organic substance selected from the group consisting of polystyrene, polyacrylamide and polyacrylate.
7. A separating agent as claimed in claim 1 in which said cellulose derivative is coated on said carrier and has been prepared by mixing said carrier with a solution of said cellulose derivative in a solvent therefor, and then removing said solvent.
8. A separating agent as claimed in claim 1 , in which said carrier is an inorganic substance.
9. A separating agent as claimed in claim 8 , in which said inorganic substance is silica gel.
10. A chromatographic isomer separating agent comprising a derivative of cellulose selected from the group consisting of cellulose tribenzoate and cellulose tribenzoate ring-substituted with alkyl, alkenyl, alkynyl, nitro, halogen, amino, alkyl-substituted amino, cyano, hydroxyl, alkoxy, acyl, thiol, sulfonyl, carboxyl or alkoxy carbonyl having a number average degree of polymerization in the range of 5-5000 supported on a solid carrier having a particle size of from 1 micron to 10 millimeters.
11. A chromagraphic isomer separating agent as claimed in claim 10 in which said cellulose derivative is cellulose tribenzoate.
12. A chromagraphic isomer separating agent as claimed in claim 10 in which said cellulose derivative is cellulose tris(3-chlorobenzoate).
13. A chromagraphic isomer separating agent as claimed in claim 10 in which said cellulose derivative is cellulose tris(3,5-dichlorobenzoate).
14. A chromagraphic isomer separating agent as claimed in claim 10 in which said cellulose derivative is cellulose tris(4-chlorobenzoate).
15. A chromatographic isomer separating agent as claimed in claim 10 , wherein said cellulose derivative is immobilized on solid carrier particles, wherein said carrier particles are from 1 μm-10 mm in diameter and the amount of said cellulose derivative supported is from 1-100 wt.% based on the weight of the carrier particles.
16. A chromatographic isomer separating agent as claimed in claim 15 wherein said carrier particles are porous and have pore diameters of from 10 Å-100 μm.
17. A chromatographic isomer separating agent as claimed in claim 16 , wherein said carrier particles have an approximate pore size to particle size ratio of no greater than 0.1:1.
18. A chromatographic isomer separating agent as claimed in claim 15 , wherein said carrier is an inorganic substance selected from among silica, alumina, magnesia, titanium oxide, glass, silicate and kaolin.
19. A chromatographic isomer separating agent as claimed in claim 15 , wherein said carrier is silica gel.
20. A chromatographic isomer separating agent as claimed in claim 15 , wherein said carrier is an organic substance selected from the group consisting of polystyrene, polyacrylamide and polyacrylate.
21. In a chromatographic column used in the chiral separation of a chemical substance from a mixture containing the same, the improvement comprising said column containing a porous carrier having a pore size of 50 to 50,000 Å and supported thereon a cellulose derivative separating agent consisting of cellulose having a ring-substituted or unsubstituted phenyl group attached thereto through a urethane group, the separating agent being in a dissolved state during the supporting thereof on the carrier.
22. The column of claim 21 , wherein said carrier has a particle size of about 1 μm to about 10 mm.
23. The column of claim 21 , wherein said separating agent is cellulose trisphenylcarbamate.
24. The column of claim 21 , wherein said phenyl group is ring-substituted with a group selected from among an alkyl group and a halogen group.
25. The column of claim 24 , wherein said phenyl group is ring-substituted with an alkyl group.
26. The column of claim 24 , wherein said phenyl group is ring-substituted with a halogen group.
27. The column of claim 26 , wherein said halogen group is chloro.
28. The column of claim 21 , wherein said porous carrier is silica.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/934,791 USRE38435E1 (en) | 1983-12-28 | 1997-09-22 | Separating agent |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58-245667 | 1983-12-28 | ||
JP58245667A JPS60142930A (en) | 1983-12-28 | 1983-12-28 | Resolving agent |
US68456584A | 1984-12-21 | 1984-12-21 | |
US07/144,628 US4818394A (en) | 1983-12-28 | 1988-01-11 | Separating agent |
US63595490A | 1990-12-28 | 1990-12-28 | |
US8720093A | 1993-07-02 | 1993-07-02 | |
US50994795A | 1995-08-01 | 1995-08-01 | |
US08/934,791 USRE38435E1 (en) | 1983-12-28 | 1997-09-22 | Separating agent |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/144,628 Reissue US4818394A (en) | 1983-12-28 | 1988-01-11 | Separating agent |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE38435E1 true USRE38435E1 (en) | 2004-02-24 |
Family
ID=31499674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/934,791 Expired - Lifetime USRE38435E1 (en) | 1983-12-28 | 1997-09-22 | Separating agent |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE38435E1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080314835A1 (en) * | 2007-01-16 | 2008-12-25 | Regina Valluzzi | Chiral separating agents with active support |
US20100041878A1 (en) * | 2007-02-23 | 2010-02-18 | Atsushi Ohnishi | Optical Isomer separating filler |
US20100099861A1 (en) * | 2007-05-07 | 2010-04-22 | Yoshio Okamoto | Separating agent for optical isomer |
US11591410B2 (en) * | 2014-10-07 | 2023-02-28 | Nec Corporation | Cellulose derivative and resin composition for molding |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3416993A (en) * | 1964-10-24 | 1968-12-17 | Merck Ag E | Use of cellulose ethers in preparative layer chromatography |
US3562289A (en) * | 1965-05-12 | 1971-02-09 | Fmc Corp | Chromatographic separation process by means of cellulose crystallite aggregates derivatives |
US3570673A (en) * | 1968-09-07 | 1971-03-16 | Jenaer Glaswerk Schott & Gen | Separation column for liquid chromatography |
US3597350A (en) * | 1968-11-12 | 1971-08-03 | Pharmacia Fine Chemicals Ab | Gel filtration process |
US3664967A (en) * | 1970-02-11 | 1972-05-23 | Dow Chemical Co | Pellicular column packing for liquid chromatography |
US3808125A (en) * | 1972-08-25 | 1974-04-30 | Phillips Petroleum Co | Chromatographic apparatus |
US3869409A (en) * | 1972-06-08 | 1975-03-04 | Natalya Karlovna Bebris | Process for preparing a wide-pore adsorbent for use in chromatography |
US3878092A (en) * | 1973-03-12 | 1975-04-15 | Phillips Petroleum Co | Chromatographic colums |
US3892678A (en) * | 1972-07-27 | 1975-07-01 | Istvan Halasz | Porous silicon dioxide-based adsorbents for chromatography and processes for their manufacture |
US3947352A (en) * | 1974-05-31 | 1976-03-30 | Pedro Cuatrecasas | Polysaccharide matrices for use as adsorbents in affinity chromatography techniques |
US3950282A (en) * | 1974-12-06 | 1976-04-13 | Gilbert Richard D | Polyanhydroglucose biodegradable polymers and process of preparation |
US3960720A (en) * | 1973-03-23 | 1976-06-01 | Exploaterings Aktiebolaget T.B.F. | Gel product for separation purposes and method of using the product for hydrophobic salting out adsorption |
US3975293A (en) * | 1970-06-04 | 1976-08-17 | Produits Chimiques Pechiney-Saint Gobain | Bodies of siliceous gels having large pores and process for preparing same |
US4111838A (en) * | 1977-09-09 | 1978-09-05 | Eastman Kodak Company | Composition for chromatography |
US4272503A (en) * | 1978-05-25 | 1981-06-09 | New England Nuclear Corporation | Reductant composition for technetium-99m and method for making technetium-99m labelled ligands |
US4293415A (en) * | 1979-04-27 | 1981-10-06 | Hewlett-Packard Company | Silica chromatographic column |
US4303529A (en) * | 1980-09-08 | 1981-12-01 | The United States Of America As Represented By The Secretary Of The Interior | Multi-chromatographic materials |
US4322310A (en) * | 1980-06-12 | 1982-03-30 | Uop Inc. | Chiral supports for resolution of racemates |
US4324681A (en) * | 1980-06-12 | 1982-04-13 | Uop Inc. | Chiral supports for resolution of racemates |
US4330440A (en) * | 1977-02-08 | 1982-05-18 | Development Finance Corporation Of New Zealand | Activated matrix and method of activation |
US4335017A (en) * | 1975-12-15 | 1982-06-15 | United Kingdom Atomic Energy Authority | Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography |
EP0064833A2 (en) * | 1981-04-27 | 1982-11-17 | The Public Health Laboratory Service Board | High pressure liquid affinity chromatography |
US4375495A (en) * | 1980-02-19 | 1983-03-01 | Daicel Chemical Industries, Ltd. | Novel optically active polymer preparation and use |
US4431546A (en) * | 1981-04-27 | 1984-02-14 | The Public Health Laboratory Services Board | Affinity chromatography using metal ions |
US4443366A (en) * | 1979-07-20 | 1984-04-17 | Kureha Kagaku Kogyo Kabushiki Kaisha | Gel chromatography material |
US4451374A (en) * | 1980-09-02 | 1984-05-29 | The Dow Chemical Company | Liquid chromatographic method and post-column effluent treatment for detection and separation at optimized pH |
US4509964A (en) * | 1984-01-04 | 1985-04-09 | The Foxboro Company | Fused silica capillary column |
US4512896A (en) * | 1983-02-07 | 1985-04-23 | Yale University | Transfer of macromolecules from a chromatographic substrate to an immobilizing matrix |
US4517241A (en) * | 1982-12-02 | 1985-05-14 | Alpert Andrew J | Chromatographic support material |
US4529521A (en) * | 1983-08-26 | 1985-07-16 | The Dow Chemical Company | Method and apparatus for analyzing latexes |
US4544485A (en) * | 1984-08-31 | 1985-10-01 | Purdue Research Foundation | Chromatographic method and means |
US4549965A (en) * | 1980-09-02 | 1985-10-29 | The Dow Chemical Company | Liquid chromatographic method and apparatus with membrane for post-column derivatization |
US4565832A (en) * | 1984-02-08 | 1986-01-21 | Japan Exlan Company Limited | Process for producing packing material for use in liquid chromatography |
-
1997
- 1997-09-22 US US08/934,791 patent/USRE38435E1/en not_active Expired - Lifetime
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3416993A (en) * | 1964-10-24 | 1968-12-17 | Merck Ag E | Use of cellulose ethers in preparative layer chromatography |
US3562289A (en) * | 1965-05-12 | 1971-02-09 | Fmc Corp | Chromatographic separation process by means of cellulose crystallite aggregates derivatives |
US3570673A (en) * | 1968-09-07 | 1971-03-16 | Jenaer Glaswerk Schott & Gen | Separation column for liquid chromatography |
US3597350A (en) * | 1968-11-12 | 1971-08-03 | Pharmacia Fine Chemicals Ab | Gel filtration process |
US3664967A (en) * | 1970-02-11 | 1972-05-23 | Dow Chemical Co | Pellicular column packing for liquid chromatography |
US3975293A (en) * | 1970-06-04 | 1976-08-17 | Produits Chimiques Pechiney-Saint Gobain | Bodies of siliceous gels having large pores and process for preparing same |
US3869409A (en) * | 1972-06-08 | 1975-03-04 | Natalya Karlovna Bebris | Process for preparing a wide-pore adsorbent for use in chromatography |
US3892678A (en) * | 1972-07-27 | 1975-07-01 | Istvan Halasz | Porous silicon dioxide-based adsorbents for chromatography and processes for their manufacture |
US3808125A (en) * | 1972-08-25 | 1974-04-30 | Phillips Petroleum Co | Chromatographic apparatus |
US3878092A (en) * | 1973-03-12 | 1975-04-15 | Phillips Petroleum Co | Chromatographic colums |
US3960720A (en) * | 1973-03-23 | 1976-06-01 | Exploaterings Aktiebolaget T.B.F. | Gel product for separation purposes and method of using the product for hydrophobic salting out adsorption |
US3947352A (en) * | 1974-05-31 | 1976-03-30 | Pedro Cuatrecasas | Polysaccharide matrices for use as adsorbents in affinity chromatography techniques |
US3950282A (en) * | 1974-12-06 | 1976-04-13 | Gilbert Richard D | Polyanhydroglucose biodegradable polymers and process of preparation |
US4336161A (en) * | 1975-12-15 | 1982-06-22 | United Kingdom Atomic Energy Authority | Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography |
US4335017A (en) * | 1975-12-15 | 1982-06-15 | United Kingdom Atomic Energy Authority | Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography |
US4330440A (en) * | 1977-02-08 | 1982-05-18 | Development Finance Corporation Of New Zealand | Activated matrix and method of activation |
US4111838A (en) * | 1977-09-09 | 1978-09-05 | Eastman Kodak Company | Composition for chromatography |
US4272503A (en) * | 1978-05-25 | 1981-06-09 | New England Nuclear Corporation | Reductant composition for technetium-99m and method for making technetium-99m labelled ligands |
US4293415A (en) * | 1979-04-27 | 1981-10-06 | Hewlett-Packard Company | Silica chromatographic column |
US4443366A (en) * | 1979-07-20 | 1984-04-17 | Kureha Kagaku Kogyo Kabushiki Kaisha | Gel chromatography material |
US4375495A (en) * | 1980-02-19 | 1983-03-01 | Daicel Chemical Industries, Ltd. | Novel optically active polymer preparation and use |
US4322310A (en) * | 1980-06-12 | 1982-03-30 | Uop Inc. | Chiral supports for resolution of racemates |
US4324681A (en) * | 1980-06-12 | 1982-04-13 | Uop Inc. | Chiral supports for resolution of racemates |
US4549965A (en) * | 1980-09-02 | 1985-10-29 | The Dow Chemical Company | Liquid chromatographic method and apparatus with membrane for post-column derivatization |
US4451374A (en) * | 1980-09-02 | 1984-05-29 | The Dow Chemical Company | Liquid chromatographic method and post-column effluent treatment for detection and separation at optimized pH |
US4303529A (en) * | 1980-09-08 | 1981-12-01 | The United States Of America As Represented By The Secretary Of The Interior | Multi-chromatographic materials |
US4431546A (en) * | 1981-04-27 | 1984-02-14 | The Public Health Laboratory Services Board | Affinity chromatography using metal ions |
US4431544A (en) * | 1981-04-27 | 1984-02-14 | The Public Health Laboratory Service Board | High pressure liquid affinity chromatography |
EP0064833A2 (en) * | 1981-04-27 | 1982-11-17 | The Public Health Laboratory Service Board | High pressure liquid affinity chromatography |
US4517241A (en) * | 1982-12-02 | 1985-05-14 | Alpert Andrew J | Chromatographic support material |
US4512896A (en) * | 1983-02-07 | 1985-04-23 | Yale University | Transfer of macromolecules from a chromatographic substrate to an immobilizing matrix |
US4529521A (en) * | 1983-08-26 | 1985-07-16 | The Dow Chemical Company | Method and apparatus for analyzing latexes |
US4509964A (en) * | 1984-01-04 | 1985-04-09 | The Foxboro Company | Fused silica capillary column |
US4565832A (en) * | 1984-02-08 | 1986-01-21 | Japan Exlan Company Limited | Process for producing packing material for use in liquid chromatography |
US4544485A (en) * | 1984-08-31 | 1985-10-01 | Purdue Research Foundation | Chromatographic method and means |
Non-Patent Citations (8)
Title |
---|
"Dai-Yuki Kagaku" 19, Tennen Kobunshi Kagaku I published by Asakura Book Store, pp. 124 and 93. Husemann et al., "Makromol. Chem", 176, 3269 (1975).* * |
1983 International Symposium on Wood and Pulping Chemistry, vol. 1, "Preparation of Cellulose Derivatives by the Use of Non-Aqueous Cellulose Solvents", by J. Nakano et al, pp. 70-75. |
1983 International Symposium on Wood and Pulping Chemistry, vol. 1, "Preparation of Cellulose Derivatives by the Use of Non-Aqueous Cellulose Solvents", by J. Nakano et al., pp. 70-75.* * |
Hagel, Chromatographische Racemattrennung An Cellulosetriacetat, 1976, pp. 134 and 135.* * |
Hesse, Die Chromatographische Racemattrennung , Lie bigs Ann. Chem. 1976, p. 996-1000.* * |
Mikes Laboratory Handbook of Chromatographic and Allied Methods, John Wiley and Sons, New York, 1979, p. 479, 480, 540, and 541.* * |
N. M. Bikales, L. Segel, "Cellulose and Cellulose Derivatives", pp. 807-809. |
Optical Resolution on Polymers by Yoshio Okamoto-A publication presented at the 49th Spring Meeting of the Chemical Society of Japan Mar. 10, 1984 (entire document).* * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080314835A1 (en) * | 2007-01-16 | 2008-12-25 | Regina Valluzzi | Chiral separating agents with active support |
US20100041878A1 (en) * | 2007-02-23 | 2010-02-18 | Atsushi Ohnishi | Optical Isomer separating filler |
US8153551B2 (en) | 2007-02-23 | 2012-04-10 | Daicel Chemical Industries, Ltd. | Optical isomer separating filler |
US20100099861A1 (en) * | 2007-05-07 | 2010-04-22 | Yoshio Okamoto | Separating agent for optical isomer |
US10836834B2 (en) | 2007-05-07 | 2020-11-17 | Daicel Corporation | Separating agent for optical isomer |
US11591410B2 (en) * | 2014-10-07 | 2023-02-28 | Nec Corporation | Cellulose derivative and resin composition for molding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4818394A (en) | Separating agent | |
US5089138A (en) | Separating with an agent comprising an aliphatic ester of a polysaccharide | |
EP0156382B1 (en) | Separation agent comprising acyl-or carbamoyl-substituted polysaccharide | |
US5415780A (en) | Separation agent comprising acyl- or carbamoyl-substituted polysaccharide | |
EP0157365A2 (en) | Separation agent comprising polysaccharide carbamate | |
USRE34457E (en) | Separating agent | |
EP0147804B2 (en) | Method of separating optical isomers and geometrical isomers | |
JPH0475214B2 (en) | ||
USRE38435E1 (en) | Separating agent | |
US4714555A (en) | Agent for separation | |
US5032277A (en) | Optical resolution with β-1,4-mannan tribenzoate | |
JPH0430376B2 (en) | ||
US5489387A (en) | Separation agent comprising acyl- or carbamoyl-substituted polysaccharide | |
EP0157364B1 (en) | Separation agent comprising aliphatic or aromatic ester of polysaccharide | |
JPH0442371B2 (en) | ||
JPH0429649B2 (en) | ||
US5192444A (en) | Separating with an agent comprising an aliphatic ester of a polysaccharide | |
JPH02289601A (en) | New polysaccharide and separating agent | |
JPH0475217B2 (en) | ||
JPS6082858A (en) | Adsorbent for optical splitting | |
US5135653A (en) | Optical resolution with β-1,4-xylan dibenzoate | |
US5229002A (en) | Separation agent comprising acyl- or carbamoyl-substituted polysaccharide | |
US5268098A (en) | Separation agent comprising aliphatic or aromatic ester of polysaccharide | |
US5368737A (en) | Separation agent comprising acyl-or carbamoyl-substituted polysaccharide | |
JPH0475216B2 (en) |