USRE37952E1 - Grb3-3 cDNA and polypeptides - Google Patents
Grb3-3 cDNA and polypeptides Download PDFInfo
- Publication number
- USRE37952E1 USRE37952E1 US09/641,640 US64164000A USRE37952E US RE37952 E1 USRE37952 E1 US RE37952E1 US 64164000 A US64164000 A US 64164000A US RE37952 E USRE37952 E US RE37952E
- Authority
- US
- United States
- Prior art keywords
- host cell
- grb
- polynucleotide
- grb3
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 31
- 102000004196 processed proteins & peptides Human genes 0.000 title claims description 18
- 229920001184 polypeptide Polymers 0.000 title claims 16
- 239000002299 complementary DNA Substances 0.000 title description 3
- 239000013598 vector Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000000692 anti-sense effect Effects 0.000 claims abstract description 10
- 239000002773 nucleotide Substances 0.000 claims abstract description 7
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 56
- 101150098203 grb2 gene Proteins 0.000 claims description 40
- 101100015729 Drosophila melanogaster drk gene Proteins 0.000 claims description 33
- 241000700605 Viruses Species 0.000 claims description 19
- 230000014509 gene expression Effects 0.000 claims description 17
- 102000014400 SH2 domains Human genes 0.000 claims description 12
- 108050003452 SH2 domains Proteins 0.000 claims description 12
- 230000002950 deficient Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 241000701161 unidentified adenovirus Species 0.000 claims description 9
- 102000000395 SH3 domains Human genes 0.000 claims description 8
- 108050008861 SH3 domains Proteins 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 241000588724 Escherichia coli Species 0.000 claims description 6
- 230000001131 transforming effect Effects 0.000 claims description 5
- 241001430294 unidentified retrovirus Species 0.000 claims description 5
- 241000701022 Cytomegalovirus Species 0.000 claims description 3
- 241000702421 Dependoparvovirus Species 0.000 claims description 3
- 230000010076 replication Effects 0.000 claims description 3
- 229920002307 Dextran Polymers 0.000 claims description 2
- 102000007999 Nuclear Proteins Human genes 0.000 claims description 2
- 108010089610 Nuclear Proteins Proteins 0.000 claims description 2
- 241000700618 Vaccinia virus Species 0.000 claims description 2
- 150000002632 lipids Chemical class 0.000 claims description 2
- 239000002502 liposome Substances 0.000 claims description 2
- 241001529453 unidentified herpesvirus Species 0.000 claims description 2
- 239000013603 viral vector Substances 0.000 claims description 2
- 108091033319 polynucleotide Proteins 0.000 claims 18
- 239000002157 polynucleotide Substances 0.000 claims 18
- 102000040430 polynucleotide Human genes 0.000 claims 18
- 108020005544 Antisense RNA Proteins 0.000 claims 6
- 239000003184 complementary RNA Substances 0.000 claims 6
- 238000012258 culturing Methods 0.000 claims 4
- 210000001236 prokaryotic cell Anatomy 0.000 claims 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 2
- 210000003527 eukaryotic cell Anatomy 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 47
- 102000004169 proteins and genes Human genes 0.000 abstract description 26
- 230000030833 cell death Effects 0.000 abstract description 8
- 230000001939 inductive effect Effects 0.000 abstract description 6
- 150000007523 nucleic acids Chemical group 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 24
- 108091034117 Oligonucleotide Proteins 0.000 description 19
- 108020004707 nucleic acids Proteins 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 12
- 102000005720 Glutathione transferase Human genes 0.000 description 11
- 108010070675 Glutathione transferase Proteins 0.000 description 11
- 230000027455 binding Effects 0.000 description 10
- 102000001301 EGF receptor Human genes 0.000 description 9
- 108060006698 EGF receptor Proteins 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 102000016914 ras Proteins Human genes 0.000 description 6
- 108010014186 ras Proteins Proteins 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 108700042226 ras Genes Proteins 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 4
- 101000820462 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Suppressor protein STM1 Proteins 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000002374 tyrosine Nutrition 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 3
- 101710088675 Proline-rich peptide Proteins 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000001823 molecular biology technique Methods 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- ARNGIGOPGOEJCH-KKUMJFAQSA-N (3s)-3-[[2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-4-[[(1s)-1-carboxy-2-phenylethyl]amino]-4-oxobutanoic acid Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ARNGIGOPGOEJCH-KKUMJFAQSA-N 0.000 description 2
- LAGUSEHJTGJJRJ-UHFFFAOYSA-N 2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)-2-oxoethyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(C(=O)CNC(=O)C(CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC LAGUSEHJTGJJRJ-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- WXERCAHAIKMTKX-ZLUOBGJFSA-N Ala-Asp-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O WXERCAHAIKMTKX-ZLUOBGJFSA-N 0.000 description 2
- HXNNRBHASOSVPG-GUBZILKMSA-N Ala-Glu-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O HXNNRBHASOSVPG-GUBZILKMSA-N 0.000 description 2
- BLIMFWGRQKRCGT-YUMQZZPRSA-N Ala-Gly-Lys Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN BLIMFWGRQKRCGT-YUMQZZPRSA-N 0.000 description 2
- VHVVPYOJIIQCKS-QEJZJMRPSA-N Ala-Leu-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 VHVVPYOJIIQCKS-QEJZJMRPSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- KMSHNDWHPWXPEC-BQBZGAKWSA-N Arg-Asp-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KMSHNDWHPWXPEC-BQBZGAKWSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- XHFXZQHTLJVZBN-FXQIFTODSA-N Asn-Arg-Asn Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N XHFXZQHTLJVZBN-FXQIFTODSA-N 0.000 description 2
- OLVIPTLKNSAYRJ-YUMQZZPRSA-N Asn-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC(=O)N)N OLVIPTLKNSAYRJ-YUMQZZPRSA-N 0.000 description 2
- IPAQILGYEQFCFO-NYVOZVTQSA-N Asn-Trp-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CNC4=CC=CC=C43)C(=O)O)NC(=O)[C@H](CC(=O)N)N IPAQILGYEQFCFO-NYVOZVTQSA-N 0.000 description 2
- DPSUVAPLRQDWAO-YDHLFZDLSA-N Asn-Tyr-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(=O)N)N DPSUVAPLRQDWAO-YDHLFZDLSA-N 0.000 description 2
- KHGPWGKPYHPOIK-QWRGUYRKSA-N Asp-Gly-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O KHGPWGKPYHPOIK-QWRGUYRKSA-N 0.000 description 2
- HOBNTSHITVVNBN-ZPFDUUQYSA-N Asp-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CC(=O)O)N HOBNTSHITVVNBN-ZPFDUUQYSA-N 0.000 description 2
- WOPJVEMFXYHZEE-SRVKXCTJSA-N Asp-Phe-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O WOPJVEMFXYHZEE-SRVKXCTJSA-N 0.000 description 2
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- SBDVXRYCOIEYNV-YUMQZZPRSA-N Cys-His-Gly Chemical compound C1=C(NC=N1)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CS)N SBDVXRYCOIEYNV-YUMQZZPRSA-N 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 241000701533 Escherichia virus T4 Species 0.000 description 2
- AJDMYLOISOCHHC-YVNDNENWSA-N Gln-Gln-Ile Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O AJDMYLOISOCHHC-YVNDNENWSA-N 0.000 description 2
- UWMDGPFFTKDUIY-HJGDQZAQSA-N Gln-Pro-Thr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(O)=O UWMDGPFFTKDUIY-HJGDQZAQSA-N 0.000 description 2
- AIJAPFVDBFYNKN-WHFBIAKZSA-N Gly-Asn-Asp Chemical compound C([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)CN)C(=O)N AIJAPFVDBFYNKN-WHFBIAKZSA-N 0.000 description 2
- FXLVSYVJDPCIHH-STQMWFEESA-N Gly-Phe-Arg Chemical compound [H]NCC(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FXLVSYVJDPCIHH-STQMWFEESA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- PBVQWNDMFFCPIZ-ULQDDVLXSA-N His-Pro-Phe Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CN=CN1 PBVQWNDMFFCPIZ-ULQDDVLXSA-N 0.000 description 2
- RWIKBYVJQAJYDP-BJDJZHNGSA-N Ile-Ala-Lys Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCCN RWIKBYVJQAJYDP-BJDJZHNGSA-N 0.000 description 2
- LGMUPVWZEYYUMU-YVNDNENWSA-N Ile-Glu-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N LGMUPVWZEYYUMU-YVNDNENWSA-N 0.000 description 2
- APDIECQNNDGFPD-PYJNHQTQSA-N Ile-His-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](C(C)C)C(=O)O)N APDIECQNNDGFPD-PYJNHQTQSA-N 0.000 description 2
- XLXPYSDGMXTTNQ-UHFFFAOYSA-N Ile-Phe-Leu Natural products CCC(C)C(N)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=CC=C1 XLXPYSDGMXTTNQ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- REPPKAMYTOJTFC-DCAQKATOSA-N Leu-Arg-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O REPPKAMYTOJTFC-DCAQKATOSA-N 0.000 description 2
- KKXDHFKZWKLYGB-GUBZILKMSA-N Leu-Asn-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KKXDHFKZWKLYGB-GUBZILKMSA-N 0.000 description 2
- CGHXMODRYJISSK-NHCYSSNCSA-N Leu-Val-Asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(O)=O CGHXMODRYJISSK-NHCYSSNCSA-N 0.000 description 2
- KNKHAVVBVXKOGX-JXUBOQSCSA-N Lys-Ala-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KNKHAVVBVXKOGX-JXUBOQSCSA-N 0.000 description 2
- ITWQLSZTLBKWJM-YUMQZZPRSA-N Lys-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](N)CCCCN ITWQLSZTLBKWJM-YUMQZZPRSA-N 0.000 description 2
- DRRXXZBXDMLGFC-IHRRRGAJSA-N Lys-Val-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCCCN DRRXXZBXDMLGFC-IHRRRGAJSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- ZMYHJISLFYTQGK-FXQIFTODSA-N Met-Asp-Asn Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ZMYHJISLFYTQGK-FXQIFTODSA-N 0.000 description 2
- UYAKZHGIPRCGPF-CIUDSAMLSA-N Met-Glu-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCSC)N UYAKZHGIPRCGPF-CIUDSAMLSA-N 0.000 description 2
- IRVONVRHHJXWTK-RWMBFGLXSA-N Met-Lys-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@@H]1C(=O)O)N IRVONVRHHJXWTK-RWMBFGLXSA-N 0.000 description 2
- BQVUABVGYYSDCJ-UHFFFAOYSA-N Nalpha-L-Leucyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)CC(C)C)C(O)=O)=CNC2=C1 BQVUABVGYYSDCJ-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 101710176384 Peptide 1 Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- GHPQVUYZQQGEDA-BIIVOSGPSA-N Ser-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)N)C(=O)O GHPQVUYZQQGEDA-BIIVOSGPSA-N 0.000 description 2
- 108010059447 Son of Sevenless Proteins Proteins 0.000 description 2
- 102000005588 Son of Sevenless Proteins Human genes 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- YGCDFAJJCRVQKU-RCWTZXSCSA-N Thr-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O YGCDFAJJCRVQKU-RCWTZXSCSA-N 0.000 description 2
- WPVGRKLNHJJCEN-BZSNNMDCSA-N Tyr-Asp-Phe Chemical compound C([C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=C(O)C=C1 WPVGRKLNHJJCEN-BZSNNMDCSA-N 0.000 description 2
- ADECJAKCRKPSOR-ULQDDVLXSA-N Tyr-His-Arg Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N)O ADECJAKCRKPSOR-ULQDDVLXSA-N 0.000 description 2
- SCZJKZLFSSPJDP-ACRUOGEOSA-N Tyr-Phe-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O SCZJKZLFSSPJDP-ACRUOGEOSA-N 0.000 description 2
- KLOZTPOXVVRVAQ-DZKIICNBSA-N Tyr-Val-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 KLOZTPOXVVRVAQ-DZKIICNBSA-N 0.000 description 2
- GQMNEJMFMCJJTD-NHCYSSNCSA-N Val-Pro-Gln Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O GQMNEJMFMCJJTD-NHCYSSNCSA-N 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 108010057412 arginyl-glycyl-aspartyl-phenylalanine Proteins 0.000 description 2
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 2
- 108010093581 aspartyl-proline Proteins 0.000 description 2
- 108010068265 aspartyltyrosine Proteins 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 108010042598 glutamyl-aspartyl-glycine Proteins 0.000 description 2
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 108010034529 leucyl-lysine Proteins 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 108091005990 tyrosine-phosphorylated proteins Proteins 0.000 description 2
- NTUPOKHATNSWCY-PMPSAXMXSA-N (2s)-2-[[(2s)-1-[(2r)-2-amino-3-phenylpropanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C1=CC=CC=C1 NTUPOKHATNSWCY-PMPSAXMXSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 1
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 1
- 101100217475 Arabidopsis thaliana ACA1 gene Proteins 0.000 description 1
- BZMWJLLUAKSIMH-FXQIFTODSA-N Asn-Glu-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O BZMWJLLUAKSIMH-FXQIFTODSA-N 0.000 description 1
- LGCVSPFCFXWUEY-IHPCNDPISA-N Asn-Trp-Tyr Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CC=C(C=C3)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N LGCVSPFCFXWUEY-IHPCNDPISA-N 0.000 description 1
- BEHQTVDBCLSCBY-CFMVVWHZSA-N Asn-Tyr-Ile Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BEHQTVDBCLSCBY-CFMVVWHZSA-N 0.000 description 1
- WLKVEEODTPQPLI-ACZMJKKPSA-N Asp-Gln-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O WLKVEEODTPQPLI-ACZMJKKPSA-N 0.000 description 1
- VIRHEUMYXXLCBF-WDSKDSINSA-N Asp-Gly-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O VIRHEUMYXXLCBF-WDSKDSINSA-N 0.000 description 1
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 102100021277 Beta-secretase 2 Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 1
- 101100512078 Caenorhabditis elegans lys-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- FEJCUYOGOBCFOQ-ACZMJKKPSA-N Cys-Asp-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CS)N FEJCUYOGOBCFOQ-ACZMJKKPSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- CGVWDTRDPLOMHZ-FXQIFTODSA-N Gln-Glu-Asp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O CGVWDTRDPLOMHZ-FXQIFTODSA-N 0.000 description 1
- LKVCNGLNTAPMSZ-JYJNAYRXSA-N Gln-His-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CCC(=O)N)N LKVCNGLNTAPMSZ-JYJNAYRXSA-N 0.000 description 1
- ININBLZFFVOQIO-JHEQGTHGSA-N Gln-Thr-Gly Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CCC(=O)N)N)O ININBLZFFVOQIO-JHEQGTHGSA-N 0.000 description 1
- NUSWUSKZRCGFEX-FXQIFTODSA-N Glu-Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(O)=O NUSWUSKZRCGFEX-FXQIFTODSA-N 0.000 description 1
- RMWAOBGCZZSJHE-UMNHJUIQSA-N Glu-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N RMWAOBGCZZSJHE-UMNHJUIQSA-N 0.000 description 1
- YYPFZVIXAVDHIK-IUCAKERBSA-N Gly-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CN YYPFZVIXAVDHIK-IUCAKERBSA-N 0.000 description 1
- MYXNLWDWWOTERK-BHNWBGBOSA-N Gly-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN)O MYXNLWDWWOTERK-BHNWBGBOSA-N 0.000 description 1
- 101001077604 Homo sapiens Insulin receptor substrate 1 Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- NLZVTPYXYXMCIP-XUXIUFHCSA-N Ile-Pro-Lys Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O NLZVTPYXYXMCIP-XUXIUFHCSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100025087 Insulin receptor substrate 1 Human genes 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- HGCNKOLVKRAVHD-UHFFFAOYSA-N L-Met-L-Phe Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 HGCNKOLVKRAVHD-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- DPURXCQCHSQPAN-AVGNSLFASA-N Leu-Pro-Pro Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DPURXCQCHSQPAN-AVGNSLFASA-N 0.000 description 1
- IWMJFLJQHIDZQW-KKUMJFAQSA-N Leu-Ser-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IWMJFLJQHIDZQW-KKUMJFAQSA-N 0.000 description 1
- GAOJCVKPIGHTGO-UWVGGRQHSA-N Lys-Arg-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O GAOJCVKPIGHTGO-UWVGGRQHSA-N 0.000 description 1
- ODTZHNZPINULEU-KKUMJFAQSA-N Lys-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N ODTZHNZPINULEU-KKUMJFAQSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- NTYQUVLERIHPMU-HRCADAONSA-N Met-Phe-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N2CCC[C@@H]2C(=O)O)N NTYQUVLERIHPMU-HRCADAONSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- CDNPIRSCAFMMBE-SRVKXCTJSA-N Phe-Asn-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O CDNPIRSCAFMMBE-SRVKXCTJSA-N 0.000 description 1
- DMEYUTSDVRCWRS-ULQDDVLXSA-N Phe-Lys-Arg Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC1=CC=CC=C1 DMEYUTSDVRCWRS-ULQDDVLXSA-N 0.000 description 1
- GPSMLZQVIIYLDK-ULQDDVLXSA-N Phe-Lys-Val Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O GPSMLZQVIIYLDK-ULQDDVLXSA-N 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- LNLNHXIQPGKRJQ-SRVKXCTJSA-N Pro-Arg-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H]1CCCN1 LNLNHXIQPGKRJQ-SRVKXCTJSA-N 0.000 description 1
- UPJGUQPLYWTISV-GUBZILKMSA-N Pro-Gln-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UPJGUQPLYWTISV-GUBZILKMSA-N 0.000 description 1
- LXVLKXPFIDDHJG-CIUDSAMLSA-N Pro-Glu-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O LXVLKXPFIDDHJG-CIUDSAMLSA-N 0.000 description 1
- SXMSEHDMNIUTSP-DCAQKATOSA-N Pro-Lys-Asn Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O SXMSEHDMNIUTSP-DCAQKATOSA-N 0.000 description 1
- SBVPYBFMIGDIDX-SRVKXCTJSA-N Pro-Pro-Pro Chemical compound OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H]2NCCC2)CCC1 SBVPYBFMIGDIDX-SRVKXCTJSA-N 0.000 description 1
- ZMLRZBWCXPQADC-TUAOUCFPSA-N Pro-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 ZMLRZBWCXPQADC-TUAOUCFPSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 101150040459 RAS gene Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 101100533932 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SPA2 gene Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- FCRMLGJMPXCAHD-FXQIFTODSA-N Ser-Arg-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O FCRMLGJMPXCAHD-FXQIFTODSA-N 0.000 description 1
- SNXUIBACCONSOH-BWBBJGPYSA-N Ser-Thr-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CO)C(O)=O SNXUIBACCONSOH-BWBBJGPYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 108700025695 Suppressor Genes Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- UBDDORVPVLEECX-FJXKBIBVSA-N Thr-Gly-Met Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(O)=O UBDDORVPVLEECX-FJXKBIBVSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- YCQKQFKXBPJXRY-PMVMPFDFSA-N Trp-Tyr-Lys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CC=C(C=C3)O)C(=O)N[C@@H](CCCCN)C(=O)O)N YCQKQFKXBPJXRY-PMVMPFDFSA-N 0.000 description 1
- MXKUGFHWYYKVDV-SZMVWBNQSA-N Trp-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)Cc1c[nH]c2ccccc12)C(C)C)C(O)=O MXKUGFHWYYKVDV-SZMVWBNQSA-N 0.000 description 1
- 102100022563 Tubulin polymerization-promoting protein Human genes 0.000 description 1
- ILTXFANLDMJWPR-SIUGBPQLSA-N Tyr-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N ILTXFANLDMJWPR-SIUGBPQLSA-N 0.000 description 1
- IWZYXFRGWKEKBJ-GVXVVHGQSA-N Val-Gln-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N IWZYXFRGWKEKBJ-GVXVVHGQSA-N 0.000 description 1
- FEXILLGKGGTLRI-NHCYSSNCSA-N Val-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N FEXILLGKGGTLRI-NHCYSSNCSA-N 0.000 description 1
- DOFAQXCYFQKSHT-SRVKXCTJSA-N Val-Pro-Pro Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DOFAQXCYFQKSHT-SRVKXCTJSA-N 0.000 description 1
- AJNUKMZFHXUBMK-GUBZILKMSA-N Val-Ser-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N AJNUKMZFHXUBMK-GUBZILKMSA-N 0.000 description 1
- AOILQMZPNLUXCM-AVGNSLFASA-N Val-Val-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN AOILQMZPNLUXCM-AVGNSLFASA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 108010079547 glutamylmethionine Proteins 0.000 description 1
- 101150089730 gly-10 gene Proteins 0.000 description 1
- 108010092114 histidylphenylalanine Proteins 0.000 description 1
- 102000046752 human SOS1 Human genes 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 108010051673 leucyl-glycyl-phenylalanine Proteins 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 108010022588 methionyl-lysyl-proline Proteins 0.000 description 1
- 108010068488 methionylphenylalanine Proteins 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000006740 morphological transformation Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108010077112 prolyl-proline Proteins 0.000 description 1
- 108010004914 prolylarginine Proteins 0.000 description 1
- 108010070643 prolylglutamic acid Proteins 0.000 description 1
- 108010090894 prolylleucine Proteins 0.000 description 1
- 108010053725 prolylvaline Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4705—Regulators; Modulating activity stimulating, promoting or activating activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a new gene, designated Grb3-3, its variants, and their uses, especially in anti-cancer gene therapy.
- oncogenes and suppressor genes are involved in the control of cell division.
- the ras genes and their products generally designated p21 proteins, play a key role in the control of cell proliferation in all eukaryotic organisms where they have been searched out.
- certain specific modifications of these proteins cause them to lose their normal control and lead them to become oncogenic.
- a large number of human tumours have been associated with the presence of modified ras genes.
- an overexpression of these p21 proteins can lead to a deregulation of cell proliferation.
- An understanding of the exact role of these p21 proteins in cells, of their mode of operation and their characteristics therefore constitutes a major stake for the understanding and the therapeutic approach to carcinogenesis.
- Grb2 gene which encodes a protein of 23-25 kDa having a SH3-SH2-SH3 structure
- the product of the Grb2 gene appears to interact with the tyrosine phosphorylated proteins via its SH2 domain, and with a factor for exchange of GDP of the SOS class via its SH3 domain (Egan et al., Nature 363 (1993) 45). It would thus be one of the components of the transformant activity of the product of the ras gene.
- the present invention derives from the demonstration of the cloning and characterization of an isoform of the Grb2 gene, designated Grb3-3, possessing a deletion in the SH2 domain.
- This gene is expressed in adult tissues: the corresponding mRNA is present in the form of a single band of 1.5 kb, and is translated into a 19 kDa protein.
- the product of the Grb3-3 gene is no longer capable of interacting with the tyrosine phosphorylated proteins (phosphorylated EGF receptor), but it retains the capacity to interact with the proline-rich domains of the SOS proteins. Because of its deletion, the product of the Grb3-3 gene is thus capable of preventing the cellular effects of the product of the Grb2 gene.
- the transfer of this gene in vivo, or of variants thereof, including antisense sequences therefore makes it possible to interfere with the processes of proliferation, differentiation and/or cell death.
- a first subject of the invention therefore relates to a nucleotide sequence comprising all or part of the Grb3-3 gene (sequence SEQ ID No. 1).
- Another subject of the invention relates to a nucleotide sequence derived from the sequence SEQ ID No. 1 and capable of inhibiting, at least partially, the expression of the Grb2 or Grb3-3 protein.
- the invention relates to the antisense sequences whose expression in a target cell makes it possible to control the transcription of cellular mRNAs.
- Such sequences can for example be transcribed, in the target cell, into RNAs complementary to the cellular mRNAs Grb2 or Grb3-3 and thus block their translation into protein, according to the technique described in patent EP 140 308.
- Such sequences may consist of all or part of the nucleic sequence SEQ ID No. 1, transcribed in the reverse orientation.
- Grb2 is a protein which is at least bifunctional, and which is anchored via its SH2 domain to specific sequences phosphorylated at the tyrosine, and via its two SH3 domains, to the exchange factors of the SOS family.
- Grb3-3 having lost its capacity to associate with proteins phosphorylated at the tyrosine can therefore only form a complex with the SOS proteins.
- Grb3-3 can therefore prevent the recruitment of the Grb2-SOS complex by the receptors of the self-phosphorylated growth factors or by associated proteins which are also phosphorylated at the tyrosine such as HSC or IRS1.
- Grb3-3 being capable of blocking this recruitment, it is capable of blocking mytogenic pathways and of inducing cell death.
- Grb3-3 protein was expressed during certain physiological processes such as for example the maturation of the thymus in rats.
- the Applicant has also shown that Grb3-3 is capable of inducing cell death by apoptosis of various cell types. It was possible to detect these completely advantageous properties (i) by injecting recombinant protein into the 3T3 fibroblasts and (ii) by transferring the sequence encoding Grb3-3 into the 3T3 cells (Example 4).
- Grb3-3 is therefore capable of inducing the cellular death of viable cells such as immortalized, cancer or embryonic cells.
- Grb2 is capable of preventing the effects of Grb3-3.
- the invention also relates to the use of compounds capable of eliminating or blocking, at least partially, the cellular effects of Grb3-3 for the preparation of a pharmaceutical composition intended for the treatment of AIDS. More particularly, the compounds used may be:
- oligonucleotides specific to Grb3-3 modified or otherwise for better stability or bioavailability (phosphorothioates, intercalating agents and the like). They may be preferably oligonucleotides covering the coding sequence localized between the N-terminal SH3 domain and the residual SH2 domain,
- the nucleic acid sequences according to the invention can be used as such, for example after injection into man or animals, to induce a protection or to treat cancers.
- they can be injected in the form of naked DNA according to the technique described in application WO 90/11092.
- They can also be administered in complexed form, for example with DEAE-dextran (Pagano et al., J. Virol. 1 (1967) 891), with nuclear proteins (Kaneda et al., Science 243 (1989) 375), with lipids (Felgner et al., PNAS 84 (1987) 7413), in the form of liposomes (Fraley et al., J. Biol. Chem. 255 (1980) 10431), and the like.
- the nucleic acid sequences according to the invention form part of a vector.
- a vector indeed makes it possible to improve the administration of the nucleic acid into the cells to be treated, and also to increase its stability in the said cells, which makes it possible to obtain a durable therapeutic effect.
- the vector used may be of diverse origin, as long as it is capable of transforming animal cells, preferably human tumour cells.
- a viral vector is used which can be chosen from adenoviruses, retroviruses, adeno-associated viruses (AAV), herpes virus, cytomegalovirus (CMV), vaccinia virus and the like.
- Vectors derived from adenoviruses, retroviruses or AAVs incorporating heterologous nucleic acid sequences have been described in the literature [Akli et al., Nature Genetics 3 (1993) 224; Stratford-Perricaudet et al., Human Gene Therapy 1 (1990) 241; EP 185 573, Levrero et al., Gene 101 (1991) 195; Le Gal la Salle et al., Science 259 (1993) 988; Roemer and Friedmann, Eur. J. Biochem. 208 (1992) 211; Dobson et al., Neuron 5 (1990) 353; Chiocca et al., New Biol. 2 (1990) 739; Miyanohara et al., New Biol. 4 (1992) 238; WO91/18088].
- the present invention therefore also relates to any recombinant virus comprising, inserted into its genome, a nucleic acid sequence as defined before.
- the recombinant virus according to the invention is a defective virus.
- the term “defective virus” designates a virus incapable of replicating in the target cell.
- the genome of the defective viruses used within the framework of the present invention is therefore devoid of at least the sequences necessary for the replication of the said virus in the infected cell. These regions can either be removed (completely or partially), or rendered non-functional, or substituted by other sequences and especially by the nucleic acid of the invention.
- the defective virus nevertheless conserves the sequences of its genome which are necessary for the encapsulation of the viral particles.
- nucleic acid sequences of the invention in a form incorporated in an adenovirus, an AAV or a defective recombinant retrovirus.
- adenoviruses various serotypes exist whose structure and properties vary somewhat, but which are not pathogenic for man, and especially non-immunosuppressed individuals. Moreover, these viruses do not integrate into the genome of the cells which they infect, and can incorporate large fragments of exogenous DNA.
- Ad2 or Ad5 adenoviruses Ad2 or Ad5
- Ad5 adenoviruses the sequences necessary for the replication are the E1A and E1B regions.
- the defective recombinant viruses of the invention can be prepared by homologous recombination between a defective virus and a plasmid carrying, inter alia, the nucleotide sequence as defined above (Levrero et al., Gene 101 (1991) 195; Graham, EMBO J. 3(12)(1984) 2917).
- the homologous recombination is produced after co-transfection of the said viruses and plasmid into an appropriate cell line.
- the cell line used should preferably (i) be transformable by the said elements, and (ii), contain sequences capable of complementing the part of the genome of the defective virus, preferably in integrated form so as to avoid the risks of recombination.
- a line which can be used for the preparation of defective recombinant adenoviruses there may be mentioned the human embryonic kidney line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59) which contains especially, integrated into its genome, the left part of the genome of an Ad5 adenovirus (12%).
- the CRIP line Danos and Mulligan, PNAS 85 (1988) 6460.
- viruses which have multiplied are recovered and purified according to conventional molecular biology techniques.
- the subject of the present invention is also a pharmaceutical composition containing at last one recombinant virus or a nucleotide sequence as defined above.
- compositions of the invention can be formulated for a topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous or intraocular administration and the like.
- the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected, optionally directly into the tumour to be treated.
- vehicles which are pharmaceutically acceptable for a formulation capable of being injected, optionally directly into the tumour to be treated.
- These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- the doses of nucleic acids (sequence or vector) used for the administration can be adapted as a function of various parameters, and in particular as a function of the mode of administration used, of the relevant pathology, of the nucleic acid to be expressed, or alternatively of the desired duration of treatment.
- the latter are formulated and administered in the form of doses of between 10 4 and 10 14 pfu/ml, and preferably 10 6 to 10 10 pfu/ml.
- the term pfu (“plaque forming unit”) corresponds to the infectivity of a virus solution, and is determined by infecting an appropriate cell culture and measuring, generally after 48 hours, the number of plaques of infected cells. The techniques for determining the pfu titer of a viral solution are well documented in the literature.
- compositions can be used in man, for the treatment and/or prevention of cancer.
- the products of the invention are capable of modulating the activity of ras proteins, they make it possible to intervene in the cancer development process, and in particular, they can inhibit the activity of oncogenes whose transformant activity depends on a p21-functional GAP interaction. Numerous cancers have indeed been associated with the presence of oncogenic ras proteins.
- adenocarcinomas of the pancreas of which 90% have a Ki-ras oncogene mutated on the twelfth codon (Almoguera et coll., Cell 53 (1988) 549), adenocarcinomas of the colon and cancers of the thyroid (50%), or carcinomas of the lung and myeloid leukaemias (30%, Bos, J. L. Cancer Res. 49 (1989) 4682).
- compositions according to the invention can be used for treating any type of pathology in which an abnormal cell proliferation is observed, by inducing apoptosis, as well as any pathology characterized by a cell death by apoptosis (AIDS, Huntington's chorea, Parkinson), by means of compounds which block the effects of Grb3-3 (antisense in particular).
- FIG. 1 schematic representation of the structural domains of Grb2 and Grb3-3.
- FIG. 2 study of the binding of Grb3-3 to the EGF receptor (FIG. 2a) and to proline-rich peptides (FIG. 2 b).
- FIG. 3 effect of Grb3-3 on the transactivation, by ras, of an RRE derived from the polyoma virus enhancer.
- FIG. 4 demonstration of Grb3-3-induced cell death on 3T3 fibroblasts.
- FIG. 5 demonstration of the expression of Grb3-3 in cells infected with the HIV virus.
- the pBR322 and pUC type plasmids and the phages of the M13 series are of commercial origin (Bethesda Research Laboratories).
- the DNA fragments can be separated according to their size by agarose or acrylamide gel electrophoresis, extracted with phenol or with a phenol/chloroform mixture, precipitated with ethanol and then incubated in the presence of phage T4 DNA ligase (Biolabs) according to the recommendations of the supplier.
- the filling of the protruding 5′ ends can be carried out by the Klenow fragment of DNA polymerase I of E. coli (Biolabs) according to the specifications of the supplier.
- the destruction of the protruding 3′ ends is carried out in the presence of phage T4 DNA polymerase (Biolabs) used according to the recommendations of the manufacturer.
- the destruction of the protruding 5′ ends is carried out by a controlled treatment with S1 nuclease.
- the site-directed mutagenesis in vitro with synthetic oligodeoxynucleotides can be carried out according to the method developed by Taylor et al. [Nucleic Acids Res. 13 (1985) 8749-8764] using the kit distributed by Amersham.
- the verification of the nucleotide sequences can be carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] using the kit distributed by Amersham.
- the Grb3-3 gene was isolated by screening a human DNA library by means of a probe derived from the sequence of the Grb2 gene.
- 500,000 lambda gt11 recombinant phages carrying DNA fragments derived from a human placenta library were screened by means of a probe derived from the sequence of the Grb2 gene.
- the probe used corresponds to the first 8 amino acids of the Grb2 protein, and has the following sequence:
- the Grb2 protein is the mediator of the interaction between the phosphorylated growth factor receptors and the SOS factors.
- This example demonstrates that the Grb3-3 protein is incapable of interacting with the phosphorylated EGF receptor but that it conserves its capacity to interact with a proline-rich peptide derived from the sequence of the human SOS1 factor.
- Grb3-3 The binding capacity of Grb3-3 was studied using biotinylated Glutathione-S-transferase (GST) fusion proteins. This type of fusion permits a rapid and efficient purification of the recombinant products.
- GST biotinylated Glutathione-S-transferase
- the sequences of the invention were expressed in the E. coli GT1 strain in the form of fusion proteins with GST according to the technique described by Smith and Johnson [Gene 67 (1988) 31]. Briefly, the Grb2 and Grb3-3 genes were first modified by introducing a BamHI site on either side of the start and stop codons. For that, the open reading frames of these genes were amplified by PCR by means of the following oligonucleotides:
- Oligonucleotide I (5′)(SEQ ID NO. 4): GAATTCGGATCCATGGAAGCCATCGCCAAATATGACTTC
- Oligonucleotide II (3′)(SEQ ID NO. 5): GAATTCGGATCCTTAGACGTTCCGGTTCACGGGGGTGAC
- the underlined part corresponds to the BamHI site created, followed or preceded by the start and stop codons.
- the genes thus amplified were then cloned in the form of BamHI fragments into the vector pGEX 2T (Pharmacia) linearized by the same enzyme, in 3′ and in frame in a cDNA encoding GST.
- the vectors thus obtained were then used to transform the E. coli TG1 strain.
- the cells thus transformed were precultured overnight at 37° C., diluted 1/10 in LB medium, supplemented with IPTG in order to induce the expression (2 hours, 25° C.) and then cultured for about 21 hours at 25° C.
- the cells were then lysed, and the fusion proteins produced affinity-purified on an agarose-GHS column.
- the bacterial lysate is incubated in the presence of the gel (prepared and equilibrated with lysis buffer) for 15 minutes at 4° C. After 3 washes with Tris-HCl buffer pH 7.4, the proteins are eluted in the presence of a tris-HCl buffer pH 7.7 containing an excess of GST. The supernatent is harvested and centrifuged.
- Grb2G203R a mutant of Grb2 in which the glycine 203 is replaced by an arginine
- Grb3-3G162R a Grb3-3 mutant in which the glycine 162 is replaced by an arginine
- the Grb2G203R mutant has been described as no longer having any activity in a test of reinitiation of DNA synthesis (Lowenstein et al., previously cited).
- the Grb3-3G162R mutant carries the same mutation in the same position, and should therefore also be inactive.
- Oligonucleotide III (3′) (SEQ ID No. 6):
- the fragments thus amplified were then eluted, reamplified by PCR by means of the oligonucleotides I and II, and then cloned into the vector pGEX 2T.
- the mutants were then produced as described above.
- GST fusion proteins (GST-Grb2, GST-Grb3-3, GST-Grb3-3G162R and GST) were then biotinylated by conventional techniques known to persons skilled in the art (cf. general molecular biology techniques as well as Mayer et al., PNAS 88 (1991) 627), and used as probes to determine the binding to the immobilized phosphorylated EGF receptor (2.1.) and then to a peptide derived from hSOS1 (2.2.).
- the samples are then deposited on a 4-20% SDS-PAGE gel and then transferred onto polyvinylidene difluoride membranes (PVDF).
- PVDF polyvinylidene difluoride membranes
- the blots were then incubated in the presence of various biotinylated GST fusions (2 ⁇ g/ml) and then revealed by means of alkaline-phosphatase coupled streptavidin (Promega).
- the EGF receptors were also subjected to an immunoblotting in the presence of anti-phosphotyrosine antibodies (anti-PY) in order to verify that the receptors have indeed been phosphorylated.
- anti-PY anti-phosphotyrosine antibodies
- results are presented in FIG. 2 a. They show, as expected, that the Grb2 protein interacts with the EGF receptor in phosphorylated form alone. They also show that the Grb3-3 protein does not bind the EGF receptor, regardless of its degree of phosphorylation.
- hSOS1 Peptide GTPEVPVPPPVPPRRRPESA: This peptide corresponds to residues 1143 to 1162 of the hSOS1 protein (Li et al., Nature 363 (1993) 83) responsible for the interaction between Grb2 and hSOS1 (SEQ ID No. 7).
- 3BP1 Peptide PPPLPPLV: This peptide is derived from the 3BP1 protein, which is known to efficiently bind the SH3 domain of Ab1 and Src (Cicchetti et al., Science 257 (1992) 803)(SEQ ID No. 8).
- Each of these peptides (1 ⁇ l, 10 mg/ml) was immobilized on nitrocellulose membrane.
- the membranes were then incubated overnight at 4° C. in the presence of the various biotinylated GST fusions (4 ⁇ g/ml) and then revealed by means of alkaline phosphatase-coupled streptavidin (Promega).
- results are presented in FIG. 2 b. They show that Grb3-3, like Grb2, is capable of binding the hSOS1 peptide. They also show that this interaction is specific since no binding is observed with the 3BP1 peptide. Moreover, the results also show that the Grb3-3G162R mutant is no longer capable of binding the hSOS1 peptide, which confirms the importance of this residue and the functional role of this interaction.
- the activity of the Grb3-3 protein was studied by determining its capacity to cooperate with ras for the transactivation of a promoter possessing ras response elements (RRE) and governing the expression of a reporter gene.
- RRE ras response elements
- the promoter used is a synthetic promoter composed of the murine promoter of the thymidine kinase gene and 4 repeated PEA1 elements derived from the polyoma enhancer (Wasylyk et al., EMBO J. 7 (1988) 2475): Py-TK promoter.
- This promoter directs the expression of the reporter gene, in this case of the bacterial gene for chloramphenicol acetyl transferase (CAT): Py-TK-CAT vector.
- the vectors for expressing the tested genes were constructed by inserting the said genes, in the form of BamHI fragments, into the BglII site of the plasmid pSV2. This site makes it possible to place the genes under the control of the early SV40 promoter.
- ER22 cells which are 40% confluent were transfected with 0.5 ⁇ g of the vector Py-TK-CAT alone (Py) or in the presence of the expression vector carrying, under the control of the early SV40 promoter, the gene: Grb2, 2 ⁇ g, Grb3-3, 2 ⁇ g, Grb2(G203R) 2 ⁇ g, Grb3-3(G162R) 2 ⁇ g, or Grb3-3, 2 ⁇ g+Grb2, 2 ⁇ g.
- the total quantity of DNA was adjusted to 5 ⁇ g with an expression vector without insert.
- the transfection was carried out in the presence of lipospermine (Transfectam, IBF-Sepracor).
- the cells were maintained for 48 hours in culture in a DMEM medium supplemented with 0.5% foetal calf serum.
- the CAT activity was then determined as described by Wasylyk et al. (PNAS 85 (1988) 7952).
- This example demonstrates the direct involvement of Grb3-3 in cellular apoptosis. This property offers particularly advantageous applications for the treatment of pathologies resulting from a cellular proliferation (cancers, restenosis, and the like).
- the recombinant Grb3-3 protein was prepared in the form of fusion protein with GST according to the procedure described in Example 2.
- the fusion protein was then treated with thrombin (0.25%, Sigma) in order to separate the GST part, and then purified by ion-exchange chromatography on a monoQ column.
- the fractions containing the recombinant protein were then concentrated by means of Microsep microconcentrators (Filtron) in a 20 mM phosphate buffer (pH 7) containing 100 mM NaCl.
- the purified protein thus obtained was injected (1 to 3 mg/ml) into cultured 3T3 cells by means of an automatic Eppendorf microinjector. The cells were then incubated at 34° C.
- a plasmid was constructed comprising the sequence SEQ ID No. 1 encoding the Grb3-3 protein under the control of the early promoter of the SV40 virus.
- the 3T3 fibroblasts which are 40% confluent were transfected in the presence of lipospermine (Transfectam, IBF-Sepracor) with 0.5 or 2 ⁇ g of this expression plasmid. 48 hours after the transfection, 50% of the cells were in suspension in the medium, and the remaining cells, adhering to the wall, exhibited very substantial morphological changes (FIG. 4 ). Analysis by agarose gel electrophoresis showed, moreover, that the cells had an oligo-nucleosomal DNA fragmentation pattern characteristic of dead cells (FIG. 4 ).
- the cells transfected under the same conditions with a Grb2, Grb3-3 (G162R) or Grb2 (G203R) expression plasmid retain a normal morphology, are always viable and show no DNA fragmentation.
- the co-expression of Grb2 makes it possible to prevent the effects of Grb3-3.
- Grb3-3 constitutes a killer gene capable of inducing cellular apoptosis. As indicated above, this property offers particularly advantageous applications for the treatment of pathologies resulting from a cellular proliferation such as especially cancers, restenosis and the like.
- This example shows that, during the cycle for infection of the T lymphocytes by the HIV virus, the relative proportion of the Grb2 and Grb3-3 mRNAs is modified, and that the Grb3-3 messenger is overexpressed at the time of massive viral production and cell death.
- Peripheral blood lymphocytes were infected with the HIV-1 virus at two dilutions (1/10 and 1/100) for 1, 4 or 7 days.
- the mRNAs from the cells were then analysed by inverse-PCR by means of oligonucleotides specific for Grb2 and Grb3-3 in order to determine the relative proportion of the Grb2 and Grb3-3 messengers.
- the Grb3-3-specific oligonucleotides used are the following:
- Oligonucleotide IV (3′): ATCGTTTCCAAACGGATGTGGTTT (SEQ ID NO. 9)
- Oligonucleotide V (5′): ATAGAAATGAAACCACATCCGTTT (SEQ ID NO. 10)
- results obtained are presented in FIG. 5 . They show clearly that 7 days after the infection with the HIV virus, the Grb3-3 MRNA is overexpressed. As shown by assaying the p24 protein and the virus reverse transcriptase, day 7 also corresponds to the period during which a massive viral production is observed.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Engineering & Computer Science (AREA)
- AIDS & HIV (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The present invention relates to the Grb3-3 protein, nucleotide sequence encoding this protein, and variants thereof, such as antisense sequences. The invention further relates to vectors comprising these sequences and to methods for inducing cell death.
Description
This application is a reissue application of U.S. application Ser. No. 08/612,857, filed Mar. 13, 1996, which is a §371 national stage filing of PCT/FR94/00542, filed May 9, 1994.
This application is a reissue application of U.S. application Ser. No. 08/612,857, filed Mar. 13, 1996, which is a §371 national stage filing of PCT/FR94/00542, filed May 9, 1994.
This application is a reissue application of U.S. application Ser. No. 08/612,857, filed Mar. 13, 1996, which is a §371 national stage filing of PCT/FR94/00542, filed May 9, 1994.
The present invention relates to a new gene, designated Grb3-3, its variants, and their uses, especially in anti-cancer gene therapy.
Various genes, called oncogenes and suppressor genes, are involved in the control of cell division. Among them, the ras genes and their products generally designated p21 proteins, play a key role in the control of cell proliferation in all eukaryotic organisms where they have been searched out. In particular, it has been shown that certain specific modifications of these proteins cause them to lose their normal control and lead them to become oncogenic. Thus, a large number of human tumours have been associated with the presence of modified ras genes. Likewise, an overexpression of these p21 proteins can lead to a deregulation of cell proliferation. An understanding of the exact role of these p21 proteins in cells, of their mode of operation and their characteristics therefore constitutes a major stake for the understanding and the therapeutic approach to carcinogenesis.
Various factors involved in the ras-dependent signalling pathway have been identified. Among these are the Grb2 gene which encodes a protein of 23-25 kDa having a SH3-SH2-SH3 structure (Lowenstein et al., Cell 70 (1992) 431; Matuoka et al., PNAS 89 (1992) 9015). The product of the Grb2 gene appears to interact with the tyrosine phosphorylated proteins via its SH2 domain, and with a factor for exchange of GDP of the SOS class via its SH3 domain (Egan et al., Nature 363 (1993) 45). It would thus be one of the components of the transformant activity of the product of the ras gene. The present invention derives from the demonstration of the cloning and characterization of an isoform of the Grb2 gene, designated Grb3-3, possessing a deletion in the SH2 domain. This gene is expressed in adult tissues: the corresponding mRNA is present in the form of a single band of 1.5 kb, and is translated into a 19 kDa protein. Because of its deletion in the SH2 domain, the product of the Grb3-3 gene is no longer capable of interacting with the tyrosine phosphorylated proteins (phosphorylated EGF receptor), but it retains the capacity to interact with the proline-rich domains of the SOS proteins. Because of its deletion, the product of the Grb3-3 gene is thus capable of preventing the cellular effects of the product of the Grb2 gene. The transfer of this gene in vivo, or of variants thereof, including antisense sequences, therefore makes it possible to interfere with the processes of proliferation, differentiation and/or cell death.
A first subject of the invention therefore relates to a nucleotide sequence comprising all or part of the Grb3-3 gene (sequence SEQ ID No. 1).
Another subject of the invention relates to a nucleotide sequence derived from the sequence SEQ ID No. 1 and capable of inhibiting, at least partially, the expression of the Grb2 or Grb3-3 protein. In particular, the invention relates to the antisense sequences whose expression in a target cell makes it possible to control the transcription of cellular mRNAs. Such sequences can for example be transcribed, in the target cell, into RNAs complementary to the cellular mRNAs Grb2 or Grb3-3 and thus block their translation into protein, according to the technique described in patent EP 140 308. Such sequences may consist of all or part of the nucleic sequence SEQ ID No. 1, transcribed in the reverse orientation.
As indicated above, Grb2 is a protein which is at least bifunctional, and which is anchored via its SH2 domain to specific sequences phosphorylated at the tyrosine, and via its two SH3 domains, to the exchange factors of the SOS family. Grb3-3 having lost its capacity to associate with proteins phosphorylated at the tyrosine can therefore only form a complex with the SOS proteins. Grb3-3 can therefore prevent the recruitment of the Grb2-SOS complex by the receptors of the self-phosphorylated growth factors or by associated proteins which are also phosphorylated at the tyrosine such as HSC or IRS1. Grb3-3 being capable of blocking this recruitment, it is capable of blocking mytogenic pathways and of inducing cell death. The Applicant has indeed demonstrated that the Grb3-3 protein was expressed during certain physiological processes such as for example the maturation of the thymus in rats. The Applicant has also shown that Grb3-3 is capable of inducing cell death by apoptosis of various cell types. It was possible to detect these completely advantageous properties (i) by injecting recombinant protein into the 3T3 fibroblasts and (ii) by transferring the sequence encoding Grb3-3 into the 3T3 cells (Example 4). Grb3-3 is therefore capable of inducing the cellular death of viable cells such as immortalized, cancer or embryonic cells. As shown in the examples, Grb2 is capable of preventing the effects of Grb3-3.
Moreover, a search for the expression of Grb3-3 carried out during the infection of lymphocytic cells by the HIV virus made it possible to show that the massive viral production observed 7 days after the infection is correlated with an overexpression of the Grb3-3 mRNA by the infected cells (Example 5). This experiment shows that eliminating or blocking the cellular effects of Grb3-3 can also make it possible to maintain alive cells infected especially with HIV, and thus allow the T4 lymphocytes to continue to play a role of immune defence. In this respect, the invention also relates to the use of compounds capable of eliminating or blocking, at least partially, the cellular effects of Grb3-3 for the preparation of a pharmaceutical composition intended for the treatment of AIDS. More particularly, the compounds used may be:
genetic antisense sequences such as those defined above,
oligonucleotides specific to Grb3-3, modified or otherwise for better stability or bioavailability (phosphorothioates, intercalating agents and the like). They may be preferably oligonucleotides covering the coding sequence localized between the N-terminal SH3 domain and the residual SH2 domain,
any sequence whose transfer into the infected cells induces an overexpression of Grb2.
The nucleic acid sequences according to the invention can be used as such, for example after injection into man or animals, to induce a protection or to treat cancers. In particular, they can be injected in the form of naked DNA according to the technique described in application WO 90/11092. They can also be administered in complexed form, for example with DEAE-dextran (Pagano et al., J. Virol. 1 (1967) 891), with nuclear proteins (Kaneda et al., Science 243 (1989) 375), with lipids (Felgner et al., PNAS 84 (1987) 7413), in the form of liposomes (Fraley et al., J. Biol. Chem. 255 (1980) 10431), and the like.
Preferably, the nucleic acid sequences according to the invention form part of a vector. The use of such a vector indeed makes it possible to improve the administration of the nucleic acid into the cells to be treated, and also to increase its stability in the said cells, which makes it possible to obtain a durable therapeutic effect. Furthermore, it is possible to introduce several nucleic acid sequences into the same vector, which also increases the efficacy of the treatment.
The vector used may be of diverse origin, as long as it is capable of transforming animal cells, preferably human tumour cells. In a preferred embodiment of the invention, a viral vector is used which can be chosen from adenoviruses, retroviruses, adeno-associated viruses (AAV), herpes virus, cytomegalovirus (CMV), vaccinia virus and the like. Vectors derived from adenoviruses, retroviruses or AAVs incorporating heterologous nucleic acid sequences have been described in the literature [Akli et al., Nature Genetics 3 (1993) 224; Stratford-Perricaudet et al., Human Gene Therapy 1 (1990) 241; EP 185 573, Levrero et al., Gene 101 (1991) 195; Le Gal la Salle et al., Science 259 (1993) 988; Roemer and Friedmann, Eur. J. Biochem. 208 (1992) 211; Dobson et al., Neuron 5 (1990) 353; Chiocca et al., New Biol. 2 (1990) 739; Miyanohara et al., New Biol. 4 (1992) 238; WO91/18088].
The present invention therefore also relates to any recombinant virus comprising, inserted into its genome, a nucleic acid sequence as defined before.
Advantageously, the recombinant virus according to the invention is a defective virus. The term “defective virus” designates a virus incapable of replicating in the target cell. Generally, the genome of the defective viruses used within the framework of the present invention is therefore devoid of at least the sequences necessary for the replication of the said virus in the infected cell. These regions can either be removed (completely or partially), or rendered non-functional, or substituted by other sequences and especially by the nucleic acid of the invention. Preferably, the defective virus nevertheless conserves the sequences of its genome which are necessary for the encapsulation of the viral particles.
It is particularly advantageous to use the nucleic acid sequences of the invention in a form incorporated in an adenovirus, an AAV or a defective recombinant retrovirus.
As regards adenoviruses, various serotypes exist whose structure and properties vary somewhat, but which are not pathogenic for man, and especially non-immunosuppressed individuals. Moreover, these viruses do not integrate into the genome of the cells which they infect, and can incorporate large fragments of exogenous DNA. Among the various serotypes, the use of the type 2 or 5 adenoviruses (Ad2 or Ad5) is preferred within the framework of the present invention. In the case of the Ad5 adenoviruses, the sequences necessary for the replication are the E1A and E1B regions.
The defective recombinant viruses of the invention can be prepared by homologous recombination between a defective virus and a plasmid carrying, inter alia, the nucleotide sequence as defined above (Levrero et al., Gene 101 (1991) 195; Graham, EMBO J. 3(12)(1984) 2917). The homologous recombination is produced after co-transfection of the said viruses and plasmid into an appropriate cell line. The cell line used should preferably (i) be transformable by the said elements, and (ii), contain sequences capable of complementing the part of the genome of the defective virus, preferably in integrated form so as to avoid the risks of recombination. As example of a line which can be used for the preparation of defective recombinant adenoviruses, there may be mentioned the human embryonic kidney line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59) which contains especially, integrated into its genome, the left part of the genome of an Ad5 adenovirus (12%). As example of a line which can be used for the preparation of defective recombinant retroviruses, there may be mentioned the CRIP line (Danos and Mulligan, PNAS 85 (1988) 6460).
Then the viruses which have multiplied are recovered and purified according to conventional molecular biology techniques.
The subject of the present invention is also a pharmaceutical composition containing at last one recombinant virus or a nucleotide sequence as defined above.
The pharmaceutical compositions of the invention can be formulated for a topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous or intraocular administration and the like.
Preferably, the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected, optionally directly into the tumour to be treated. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
The doses of nucleic acids (sequence or vector) used for the administration can be adapted as a function of various parameters, and in particular as a function of the mode of administration used, of the relevant pathology, of the nucleic acid to be expressed, or alternatively of the desired duration of treatment. Generally, with regard to the recombinant viruses according to the invention, the latter are formulated and administered in the form of doses of between 104 and 1014 pfu/ml, and preferably 106 to 1010 pfu/ml. The term pfu (“plaque forming unit”) corresponds to the infectivity of a virus solution, and is determined by infecting an appropriate cell culture and measuring, generally after 48 hours, the number of plaques of infected cells. The techniques for determining the pfu titer of a viral solution are well documented in the literature.
Such pharmaceutical compositions can be used in man, for the treatment and/or prevention of cancer. In particular the products of the invention are capable of modulating the activity of ras proteins, they make it possible to intervene in the cancer development process, and in particular, they can inhibit the activity of oncogenes whose transformant activity depends on a p21-functional GAP interaction. Numerous cancers have indeed been associated with the presence of oncogenic ras proteins. Among the cancers most often containing mutated ras genes, there may be mentioned especially adenocarcinomas of the pancreas, of which 90% have a Ki-ras oncogene mutated on the twelfth codon (Almoguera et coll., Cell 53 (1988) 549), adenocarcinomas of the colon and cancers of the thyroid (50%), or carcinomas of the lung and myeloid leukaemias (30%, Bos, J. L. Cancer Res. 49 (1989) 4682). More generally, the compositions according to the invention can be used for treating any type of pathology in which an abnormal cell proliferation is observed, by inducing apoptosis, as well as any pathology characterized by a cell death by apoptosis (AIDS, Huntington's chorea, Parkinson), by means of compounds which block the effects of Grb3-3 (antisense in particular).
The present invention will be more fully described with the aid of the following examples which should be considered as illustrative and non-limiting.
FIG. 1: schematic representation of the structural domains of Grb2 and Grb3-3.
FIG. 2: study of the binding of Grb3-3 to the EGF receptor (FIG. 2a) and to proline-rich peptides (FIG. 2b).
FIG. 3: effect of Grb3-3 on the transactivation, by ras, of an RRE derived from the polyoma virus enhancer.
FIG. 4: demonstration of Grb3-3-induced cell death on 3T3 fibroblasts.
FIG. 5: demonstration of the expression of Grb3-3 in cells infected with the HIV virus.
The methods conventionally used in molecular biology, such as preparative extractions of plasmid DNA, centrifugation of plasmid DNA in caesium chloride gradient, electrophoresis on agarose or acrylamide gels, purification of DNA fragments by electroelution, extraction of proteins with phenol or phenolchloroform, DNA precipitation in saline medium with ethanol or isopropanol, transformation in Escherichia coli, and the like are well known to persons skilled in the art and are abundantly described in the literature [Maniatis T. et al., “Molecular Cloning, a Laboratory Manual”, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F. M. et al. (eds), “Current Protocols in Molecular Biology”, John Wiley & Sons, New York, 1987].
The pBR322 and pUC type plasmids and the phages of the M13 series are of commercial origin (Bethesda Research Laboratories).
For the ligations, the DNA fragments can be separated according to their size by agarose or acrylamide gel electrophoresis, extracted with phenol or with a phenol/chloroform mixture, precipitated with ethanol and then incubated in the presence of phage T4 DNA ligase (Biolabs) according to the recommendations of the supplier.
The filling of the protruding 5′ ends can be carried out by the Klenow fragment of DNA polymerase I of E. coli (Biolabs) according to the specifications of the supplier. The destruction of the protruding 3′ ends is carried out in the presence of phage T4 DNA polymerase (Biolabs) used according to the recommendations of the manufacturer. The destruction of the protruding 5′ ends is carried out by a controlled treatment with S1 nuclease.
The site-directed mutagenesis in vitro with synthetic oligodeoxynucleotides can be carried out according to the method developed by Taylor et al. [Nucleic Acids Res. 13 (1985) 8749-8764] using the kit distributed by Amersham.
The enzymatic amplification of DNA fragments by the so-called PCR technique [Polymerase-catalyzed Chain Reaction, Saiki R. K. et a.l, Science 230 (1985) 1350-1354; Mullis K. B. et Faloona F. A., Meth. Enzym. 155 (1987) 335-350] can be carried out using a “DNA thermal cycler” (Perkin Elmer Cetus) according to the specifications of the manufacturer.
The verification of the nucleotide sequences can be carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] using the kit distributed by Amersham.
1. Isolation of the Grb3-3 gene
The Grb3-3 gene was isolated by screening a human DNA library by means of a probe derived from the sequence of the Grb2 gene.
500,000 lambda gt11 recombinant phages carrying DNA fragments derived from a human placenta library (Clontech) were screened by means of a probe derived from the sequence of the Grb2 gene. The probe used corresponds to the first 8 amino acids of the Grb2 protein, and has the following sequence:
ATGGAAGCCATCGCCAAATATGAC (SEQ ID No. 3)
10 positive clones were thus identified. The insert of these 10 clones was isolated in the form of EcoRI fragments, cloned into the plasmid M13mp18 and sequenced. Among these 10 clones, 9 carried inserts identical to the Grb2 sequence. Only one of them carried an insert of a size smaller than the Grb2 gene, because of a deletion in the SH2 domain (FIG. 1). Analysis of the remaining sequence revealed a perfect identity with the corresponding regions of Grb2, including in the non-coding 5′ and 3′ regions. The open reading frame of this clone encodes a protein of 177 amino acids (SEQ ID No. 2), containing 2 SH3 domains bordering an incomplete SH2 domain (FIG. 1). The amino acids deleted in the SH2 domain (residues 60 to 100 of the Grb2 protein) correspond to the residues involved in the binding of Grb2 to the peptides containing phosphorylated tyrosines.
2. Binding activity of the Grb3-3 protein
As indicated above, the Grb2 protein is the mediator of the interaction between the phosphorylated growth factor receptors and the SOS factors. This example demonstrates that the Grb3-3 protein is incapable of interacting with the phosphorylated EGF receptor but that it conserves its capacity to interact with a proline-rich peptide derived from the sequence of the human SOS1 factor.
The binding capacity of Grb3-3 was studied using biotinylated Glutathione-S-transferase (GST) fusion proteins. This type of fusion permits a rapid and efficient purification of the recombinant products. For that, the sequences of the invention were expressed in the E. coli GT1 strain in the form of fusion proteins with GST according to the technique described by Smith and Johnson [Gene 67 (1988) 31]. Briefly, the Grb2 and Grb3-3 genes were first modified by introducing a BamHI site on either side of the start and stop codons. For that, the open reading frames of these genes were amplified by PCR by means of the following oligonucleotides:
Oligonucleotide I (5′)(SEQ ID NO. 4): | |
GAATTCGGATCCATGGAAGCCATCGCCAAATATGACTTC | |
Oligonucleotide II (3′)(SEQ ID NO. 5): | |
GAATTCGGATCCTTAGACGTTCCGGTTCACGGGGGTGAC |
The underlined part corresponds to the BamHI site created, followed or preceded by the start and stop codons.
The genes thus amplified were then cloned in the form of BamHI fragments into the vector pGEX 2T (Pharmacia) linearized by the same enzyme, in 3′ and in frame in a cDNA encoding GST. The vectors thus obtained were then used to transform the E. coli TG1 strain. The cells thus transformed were precultured overnight at 37° C., diluted 1/10 in LB medium, supplemented with IPTG in order to induce the expression (2 hours, 25° C.) and then cultured for about 21 hours at 25° C. The cells were then lysed, and the fusion proteins produced affinity-purified on an agarose-GHS column. For that, the bacterial lysate is incubated in the presence of the gel (prepared and equilibrated with lysis buffer) for 15 minutes at 4° C. After 3 washes with Tris-HCl buffer pH 7.4, the proteins are eluted in the presence of a tris-HCl buffer pH 7.7 containing an excess of GST. The supernatent is harvested and centrifuged.
The same procedure was used to prepare a mutant of Grb2 in which the glycine 203 is replaced by an arginine (Grb2G203R) and a Grb3-3 mutant in which the glycine 162 is replaced by an arginine (Grb3-3G162R). The Grb2G203R mutant has been described as no longer having any activity in a test of reinitiation of DNA synthesis (Lowenstein et al., previously cited). The Grb3-3G162R mutant carries the same mutation in the same position, and should therefore also be inactive.
These mutants were prepared by mutagenesis by PCR on the Grb2 and Grb3-3 genes using, in 5′, the oligonucleotide I described above, and in 3′, the following oligonucleotide III in which the mutated codon is underlined:
Oligonucleotide III (3′) (SEQ ID No. 6):
GACGTTCCGGTTCACGGGGGTGACATAATTGCGGGGAAACATGCGGGTC
The fragments thus amplified were then eluted, reamplified by PCR by means of the oligonucleotides I and II, and then cloned into the vector pGEX 2T. The mutants were then produced as described above.
The GST fusion proteins (GST-Grb2, GST-Grb3-3, GST-Grb3-3G162R and GST) were then biotinylated by conventional techniques known to persons skilled in the art (cf. general molecular biology techniques as well as Mayer et al., PNAS 88 (1991) 627), and used as probes to determine the binding to the immobilized phosphorylated EGF receptor (2.1.) and then to a peptide derived from hSOS1 (2.2.).
2.1. Binding to the phosphorylated EGF receptor
Procedure: The EGF receptor used was purified from A431 cells by immobilization on WGA-sepharose according to the technique described by Duchesne et al., (Science 259 (1993) 525). 2 μg of this receptor were first stimulated by 1 μM EGF, 10 min at 22° C., and then incubated, with or without cold ATP (10 μM) in the presence of 2.5 mM MnCl2 in HNTG buffer (20 mM Hepes, 150 mM NaCl, 0.1% Triton, 10% glycerol, pH=7.5) at 4° C. for 2 min. The phosphorylation of the receptor is then stopped by adding a degradation buffer. The samples are then deposited on a 4-20% SDS-PAGE gel and then transferred onto polyvinylidene difluoride membranes (PVDF). The blots were then incubated in the presence of various biotinylated GST fusions (2 μg/ml) and then revealed by means of alkaline-phosphatase coupled streptavidin (Promega). The EGF receptors were also subjected to an immunoblotting in the presence of anti-phosphotyrosine antibodies (anti-PY) in order to verify that the receptors have indeed been phosphorylated.
Results: The results obtained are presented in FIG. 2a. They show, as expected, that the Grb2 protein interacts with the EGF receptor in phosphorylated form alone. They also show that the Grb3-3 protein does not bind the EGF receptor, regardless of its degree of phosphorylation.
2.2. Binding to a peptide derived from hSOS1
Procedure: the following two proline-rich peptides were synthesized:
hSOS1 Peptide: GTPEVPVPPPVPPRRRPESA: This peptide corresponds to residues 1143 to 1162 of the hSOS1 protein (Li et al., Nature 363 (1993) 83) responsible for the interaction between Grb2 and hSOS1 (SEQ ID No. 7).
3BP1 Peptide: PPPLPPLV: This peptide is derived from the 3BP1 protein, which is known to efficiently bind the SH3 domain of Ab1 and Src (Cicchetti et al., Science 257 (1992) 803)(SEQ ID No. 8).
Each of these peptides (1 μl, 10 mg/ml) was immobilized on nitrocellulose membrane. The membranes were then incubated in a blocking buffer (20 mM Tris pH=7.6, 150 mM NaCl, 0.1% Tween, 3% bovine albumin). The membranes were then incubated overnight at 4° C. in the presence of the various biotinylated GST fusions (4 μg/ml) and then revealed by means of alkaline phosphatase-coupled streptavidin (Promega).
Results: The results obtained are presented in FIG. 2b. They show that Grb3-3, like Grb2, is capable of binding the hSOS1 peptide. They also show that this interaction is specific since no binding is observed with the 3BP1 peptide. Moreover, the results also show that the Grb3-3G162R mutant is no longer capable of binding the hSOS1 peptide, which confirms the importance of this residue and the functional role of this interaction.
3. Activity of the Grb3-3 protein
This example demonstrates that, in spite of its deletion in the SH2 domain, the Grb3-3 protein has a functional effect.
The activity of the Grb3-3 protein was studied by determining its capacity to cooperate with ras for the transactivation of a promoter possessing ras response elements (RRE) and governing the expression of a reporter gene.
The procedure used has been described for example in Schweighoffer et al., Science 256 (1992) 825. Briefly, the promoter used is a synthetic promoter composed of the murine promoter of the thymidine kinase gene and 4 repeated PEA1 elements derived from the polyoma enhancer (Wasylyk et al., EMBO J. 7 (1988) 2475): Py-TK promoter. This promoter directs the expression of the reporter gene, in this case of the bacterial gene for chloramphenicol acetyl transferase (CAT): Py-TK-CAT vector. The vectors for expressing the tested genes were constructed by inserting the said genes, in the form of BamHI fragments, into the BglII site of the plasmid pSV2. This site makes it possible to place the genes under the control of the early SV40 promoter.
ER22 cells which are 40% confluent were transfected with 0.5 μg of the vector Py-TK-CAT alone (Py) or in the presence of the expression vector carrying, under the control of the early SV40 promoter, the gene: Grb2, 2 μg, Grb3-3, 2 μg, Grb2(G203R) 2 μg, Grb3-3(G162R) 2 μg, or Grb3-3, 2 μg+Grb2, 2 μg. In each case, the total quantity of DNA was adjusted to 5 μg with an expression vector without insert. The transfection was carried out in the presence of lipospermine (Transfectam, IBF-Sepracor). The cells were maintained for 48 hours in culture in a DMEM medium supplemented with 0.5% foetal calf serum. The CAT activity (transactivation of the RER) was then determined as described by Wasylyk et al. (PNAS 85 (1988) 7952).
The results obtained are presented in FIG. 3. They show clearly that the expression of the Grb3-3 protein prevents the effects of the activation of a growth factor receptor. They also show that Grb2 in excess prevents the effects of Grb3-3 on the response to the growth factor.
4. Grb3-3 induces cellular apoptosis
This example demonstrates the direct involvement of Grb3-3 in cellular apoptosis. This property offers particularly advantageous applications for the treatment of pathologies resulting from a cellular proliferation (cancers, restenosis, and the like).
The induction of cellular apoptosis by Grb3-3 was demonstrated (i) by injecting recombinant protein into 3T3 fibroblasts and (ii) by transferring the Grb3-3 encoding sequence into the 3T3 cells.
(i) Injection of the recombinant protein
The recombinant Grb3-3 protein was prepared in the form of fusion protein with GST according to the procedure described in Example 2. The fusion protein was then treated with thrombin (0.25%, Sigma) in order to separate the GST part, and then purified by ion-exchange chromatography on a monoQ column. The fractions containing the recombinant protein were then concentrated by means of Microsep microconcentrators (Filtron) in a 20 mM phosphate buffer (pH 7) containing 100 mM NaCl. The purified protein thus obtained was injected (1 to 3 mg/ml) into cultured 3T3 cells by means of an automatic Eppendorf microinjector. The cells were then incubated at 34° C. and photographed at regular intervals in order to follow the morphological transformations. The results obtained show that 5 hours after the injection of Grb3-3, most of the cells were dead whereas the injection under the same conditions of Grb2 or of the Grb3-3 mutant (G162R) had no effect on the viability of the cells.
(ii) Transfer of the sequence encoding the recombinant protein
A plasmid was constructed comprising the sequence SEQ ID No. 1 encoding the Grb3-3 protein under the control of the early promoter of the SV40 virus.
The 3T3 fibroblasts which are 40% confluent were transfected in the presence of lipospermine (Transfectam, IBF-Sepracor) with 0.5 or 2 μg of this expression plasmid. 48 hours after the transfection, 50% of the cells were in suspension in the medium, and the remaining cells, adhering to the wall, exhibited very substantial morphological changes (FIG. 4). Analysis by agarose gel electrophoresis showed, moreover, that the cells had an oligo-nucleosomal DNA fragmentation pattern characteristic of dead cells (FIG. 4). In contrast, the cells transfected under the same conditions with a Grb2, Grb3-3 (G162R) or Grb2 (G203R) expression plasmid retain a normal morphology, are always viable and show no DNA fragmentation. As shown in FIG. 4, the co-expression of Grb2 makes it possible to prevent the effects of Grb3-3.
These results therefore clearly show that Grb3-3 constitutes a killer gene capable of inducing cellular apoptosis. As indicated above, this property offers particularly advantageous applications for the treatment of pathologies resulting from a cellular proliferation such as especially cancers, restenosis and the like.
5. Demonstration of the expression of Grb3-3 in lymphocytes infected by the HIV virus
This example shows that, during the cycle for infection of the T lymphocytes by the HIV virus, the relative proportion of the Grb2 and Grb3-3 mRNAs is modified, and that the Grb3-3 messenger is overexpressed at the time of massive viral production and cell death.
Peripheral blood lymphocytes were infected with the HIV-1 virus at two dilutions (1/10 and 1/100) for 1, 4 or 7 days. The mRNAs from the cells were then analysed by inverse-PCR by means of oligonucleotides specific for Grb2 and Grb3-3 in order to determine the relative proportion of the Grb2 and Grb3-3 messengers. The Grb3-3-specific oligonucleotides used are the following:
Oligonucleotide IV (3′): | |
ATCGTTTCCAAACGGATGTGGTTT (SEQ ID NO. 9) | |
Oligonucleotide V (5′): | |
ATAGAAATGAAACCACATCCGTTT (SEQ ID NO. 10) |
The results obtained are presented in FIG. 5. They show clearly that 7 days after the infection with the HIV virus, the Grb3-3 MRNA is overexpressed. As shown by assaying the p24 protein and the virus reverse transcriptase, day 7 also corresponds to the period during which a massive viral production is observed.
Claims (31)
1. An isolated polynucleotide selected from the group consisting of:
a) a polynucleotide which encodes a polypeptide comprising the uninterrupted sequence SEQ ID NO: 2, and
b) the complementary strand of a polynucleotide as defined in a).
2. The polynucleotide of claim 1 , comprising nucleotides 37-564 of SEQ ID NO: 1 or the complementary strand of nucleotides 37-564 of SEQ ID NO: 1.
3. The polynucleotide of claim 1 comprising the sequence SEQ ID NO: 1 or the complementary strand of SEQ ID NO:1.
4. An antisense polynucleotide comprising a polynucleotide of claim 1 , part b, wherein said antisense polynucleotide inhibits the expression of Grb2 and Grb3-3.
5. An antisense polynucleotide comprising all or part of the polynucleotide of claim 1 , part b, wherein said antisense polynucleotide specifically inhibits the expression of Grb3-3.
6. A vector comprising a polynucleotide according to claim 1 .
7. A vector according to claim 6 , wherein said vector is a viral vector.
8. A vector according to claim 7 , selected from the group consisting of adenoviruses, retroviruses, adeno-associated viruses, herpes virus, cytomegalovirus and vaccinia virus.
9. A vector according to claim 8 , wherein the virus is defective for replication.
10. A composition comprising a vector according to claim 6 in a pharmaceutically acceptable carrier.
11. A composition comprising a polynucleotide according to claim 1 complexed with DEAE-dextran, nuclear proteins or lipids, or incorporated into liposomes.
12. An isolated polypeptide having the sequence SEQ ID NO: 2.
13. A composition comprising a polypeptide according to claim 12 in a pharmaceutically acceptable carrier.
14. An antisense polynucleotide according to claim 5 , and comprising wherein the polynucleotide comprises the complementary strand of the sequence joining the N-terminal SH3 domain and the residual SH2 domain of Grb3-3.
15. An antisense RNA comprising a sequence complementary to all or part of a polynucleotide of claim 1 , part a, wherein said antisense RNA specifically inhibits the expression of Grb3-3.
16. An antisense RNA according to claim 15 , and comprising the sequence joining the N-terminal SH3 domain and the residual SH2 domain of Grb3-3.
17. An antisense RNA comprising a polynucleotide of claim 1 , part b, wherein said antisense RNA inhibits the expression of Grb2 and Grb3-3.
18. A process for expressing Grb3- 3 in a host cell, comprising introducing the vector according to claim 6 into the host cell.
19. A process for expressing Grb3- 3 in a host cell, comprising introducing the vector according to claim 7 into the host cell.
20. A process for expressing Grb3- 3 in a host cell, comprising introducing the vector according to claim 8 into the host cell.
21. A process for expressing Grb3- 3 in a host cell, comprising introducing the vector according to claim 9 into the host cell.
22. The process according to claim 18 , wherein the host cell is a prokaryotic cell.
23. The process according to claim 22 , wherein the prokaryotic cell is E. coli.
24. The process according to claim 18 , wherein the host cell is a eukaryotic cell.
25. A process for preparing a Grb3- 3 polypeptide, comprising transforming a host cell with a vector according to claim 6 , culturing the host cell under conditions permitting expression of the Grb3 - 3 polypeptide, and recovering the Grb3 - 3 polypeptide.
26. A process for preparing a Grb3- 3 polypeptide, comprising transforming a host cell with a vector according to claim 7 , culturing the host cell under conditions permitting expression of the Grb3 - 3 polypeptide, and recovering the Grb3 - 3 polypeptide.
27. A process for preparing a Grb3- 3 polypeptide, comprising transforming a host cell with a vector according to claim 8 , culturing the host cell under conditions permitting expression of the Grb3 - 3 polypeptide, and recovering the Grb3 - 3 polypeptide.
28. A process for preparing a Grb3- 3 polypeptide, comprising transforming a host cell with a vector according to claim 9 , culturing the host cell under conditions permitting expression of the Grb3 - 3 polypeptide, and recovering the Grb3 - 3 polypeptide.
29. The process according to claim 25 , wherein the host cell is a prokaryotic cell.
30. The process according to claim 29 , wherein the prokaryotic cell is E. coli.
31. An antisense RNA according to claim 15 , wherein the polynucleotide comprises the complementary strand of the sequence joining the N-terminal SH3 domain and the residual SH2 domain of Grb3 - 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/641,640 USRE37952E1 (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9310971A FR2710074B1 (en) | 1993-09-15 | 1993-09-15 | GRB3-3 gene, its variants and their uses. |
FR9310971 | 1993-09-15 | ||
PCT/FR1994/000542 WO1995007981A1 (en) | 1993-09-15 | 1994-05-09 | Grb3-3 gene, variants and uses thereof |
US09/641,640 USRE37952E1 (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
US08/612,857 US5831048A (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/612,857 Reissue US5831048A (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37952E1 true USRE37952E1 (en) | 2002-12-31 |
Family
ID=9450882
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/612,857 Ceased US5831048A (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
US09/641,640 Expired - Fee Related USRE37952E1 (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/612,857 Ceased US5831048A (en) | 1993-09-15 | 1994-05-09 | Grb3-3 cDNA and polypeptides |
Country Status (27)
Country | Link |
---|---|
US (2) | US5831048A (en) |
EP (1) | EP0719328B1 (en) |
JP (1) | JP3794697B2 (en) |
KR (1) | KR100330477B1 (en) |
CN (1) | CN1098930C (en) |
AT (1) | ATE196926T1 (en) |
AU (1) | AU698819B2 (en) |
BR (1) | BR9407693A (en) |
CA (1) | CA2169938A1 (en) |
CZ (1) | CZ288882B6 (en) |
DE (1) | DE69426121T2 (en) |
DK (1) | DK0719328T3 (en) |
ES (1) | ES2152313T3 (en) |
FI (1) | FI120499B (en) |
FR (1) | FR2710074B1 (en) |
GR (1) | GR3034600T3 (en) |
HU (1) | HU221516B (en) |
IL (2) | IL110942A (en) |
NO (1) | NO319144B1 (en) |
NZ (1) | NZ266162A (en) |
PL (1) | PL178402B1 (en) |
PT (1) | PT719328E (en) |
RU (1) | RU2159815C2 (en) |
SK (1) | SK281123B6 (en) |
UA (1) | UA46715C2 (en) |
WO (1) | WO1995007981A1 (en) |
ZA (1) | ZA947059B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2732348B1 (en) * | 1995-03-31 | 1997-04-30 | Rhone Poulenc Rorer Sa | CONDITIONAL EXPRESSION SYSTEM |
US6171800B1 (en) | 1995-06-07 | 2001-01-09 | Biogen, Inc. | Method of making and binding CAIP polypeptides |
US5837844A (en) * | 1995-06-07 | 1998-11-17 | Biogen, Inc. | CAIP-like gene family |
US6423824B1 (en) | 1995-06-07 | 2002-07-23 | Biogen, Inc. | CAIP-like gene family |
US5855911A (en) * | 1995-08-29 | 1999-01-05 | Board Of Regents, The University Of Texas System | Liposomal phosphodiester, phosphorothioate, and P-ethoxy oligonucleotides |
WO1997049808A1 (en) * | 1996-06-27 | 1997-12-31 | Biogen, Inc. | The caip-like gene family |
US7309692B1 (en) | 1996-07-08 | 2007-12-18 | Board Of Regents, The University Of Texas System | Inhibition of chronic myelogenous leukemic cell growth by liposomal-antisense oligodeoxy-nucleotides targeting to GRB2 or CRK1 |
US6977244B2 (en) | 1996-10-04 | 2005-12-20 | Board Of Regents, The University Of Texas Systems | Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides |
US7285288B1 (en) | 1997-10-03 | 2007-10-23 | Board Of Regents, The University Of Texas System | Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides |
US7704962B1 (en) | 1997-10-03 | 2010-04-27 | Board Of Regents, The University Of Texas System | Small oligonucleotides with anti-tumor activity |
EP0998945A1 (en) * | 1998-09-30 | 2000-05-10 | Transgene S.A. | Use of magnesium (Mg2+) for the enhancement of gene delivery in gene therapy |
IL151928A0 (en) | 2000-03-30 | 2003-04-10 | Whitehead Biomedical Inst | Rna sequence-specific mediators of rna interference |
KR100872437B1 (en) | 2000-12-01 | 2008-12-05 | 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. | Small RNA molecules that mediate JR interference |
WO2003061386A1 (en) * | 2002-01-03 | 2003-07-31 | Board Of Regents, The University Of Texas System | Wt1 antisense oligos for the inhibition of breast cancer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994007913A1 (en) | 1992-09-25 | 1994-04-14 | Warner-Lambert Company | Peptide antagonists of sh2 binding and therapeutic uses thereof |
US5434064A (en) | 1991-01-18 | 1995-07-18 | New York University | Expression-cloning method for identifying target proteins for eukaryotic tyrosine kinases and novel target proteins |
-
1993
- 1993-09-15 FR FR9310971A patent/FR2710074B1/en not_active Expired - Fee Related
-
1994
- 1994-05-09 CA CA002169938A patent/CA2169938A1/en not_active Abandoned
- 1994-05-09 BR BR9407693A patent/BR9407693A/en not_active Application Discontinuation
- 1994-05-09 AT AT94915598T patent/ATE196926T1/en not_active IP Right Cessation
- 1994-05-09 AU AU67247/94A patent/AU698819B2/en not_active Ceased
- 1994-05-09 DE DE69426121T patent/DE69426121T2/en not_active Expired - Fee Related
- 1994-05-09 PL PL94313445A patent/PL178402B1/en not_active IP Right Cessation
- 1994-05-09 PT PT94915598T patent/PT719328E/en unknown
- 1994-05-09 JP JP50901595A patent/JP3794697B2/en not_active Expired - Fee Related
- 1994-05-09 US US08/612,857 patent/US5831048A/en not_active Ceased
- 1994-05-09 DK DK94915598T patent/DK0719328T3/en active
- 1994-05-09 CN CN94193814A patent/CN1098930C/en not_active Expired - Fee Related
- 1994-05-09 ES ES94915598T patent/ES2152313T3/en not_active Expired - Lifetime
- 1994-05-09 US US09/641,640 patent/USRE37952E1/en not_active Expired - Fee Related
- 1994-05-09 NZ NZ266162A patent/NZ266162A/en not_active IP Right Cessation
- 1994-05-09 EP EP94915598A patent/EP0719328B1/en not_active Expired - Lifetime
- 1994-05-09 HU HU9600668A patent/HU221516B/en not_active IP Right Cessation
- 1994-05-09 SK SK345-96A patent/SK281123B6/en not_active IP Right Cessation
- 1994-05-09 UA UA96030994A patent/UA46715C2/en unknown
- 1994-05-09 KR KR1019960701323A patent/KR100330477B1/en not_active Expired - Fee Related
- 1994-05-09 RU RU96107888/13A patent/RU2159815C2/en active
- 1994-05-09 WO PCT/FR1994/000542 patent/WO1995007981A1/en active IP Right Grant
- 1994-05-09 CZ CZ1996758A patent/CZ288882B6/en not_active IP Right Cessation
- 1994-09-12 IL IL11094294A patent/IL110942A/en not_active IP Right Cessation
- 1994-09-12 IL IL126756A patent/IL126756A/en not_active IP Right Cessation
- 1994-09-13 ZA ZA947059A patent/ZA947059B/en unknown
-
1996
- 1996-03-08 NO NO19960965A patent/NO319144B1/en not_active IP Right Cessation
- 1996-03-14 FI FI961202A patent/FI120499B/en active IP Right Grant
-
2000
- 2000-10-12 GR GR20000401514T patent/GR3034600T3/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434064A (en) | 1991-01-18 | 1995-07-18 | New York University | Expression-cloning method for identifying target proteins for eukaryotic tyrosine kinases and novel target proteins |
WO1994007913A1 (en) | 1992-09-25 | 1994-04-14 | Warner-Lambert Company | Peptide antagonists of sh2 binding and therapeutic uses thereof |
Non-Patent Citations (5)
Title |
---|
Lowenstein et al., "The SH2 and SH3 Domain-containing Protein GRB2 Links Receptor Tyrosine Kinases to Ras Signaling," Cell., vol. 70, pp. 431-442 (1992). |
Matuoka et al., "Cloning of ASH, a Ubiquitous Protein Composed of One Src Homology Region (SH) 2 and Two SH3 Domains, From Human and Rat cDNA Libraries," Proc. Nat'l. Acad. Sci., USA, vol. 89, pp. 9015-9019 (1992). |
Rey et al., "A Role for Grb2 in Apoptosis?" Cell Death and Diff., vol. 2, pp. 105-111 (1995). |
Suen et al., "Molecular Cloning of the Mouse Grb2 Gene: Differential Interaction of the Grb2 Adaptor Protein with Epidermal Growth Factor and Nerve Growth Factor Receptors," Mol. Cell. Biol., vol. 13, pp. 5500-5512 (1993). |
Watanabe et al., "Splicing Isoforms of Rat Ash/Grb2. Isolation and Characterization of the cDNA and genomic DNA Clones and Implications for the Physiological Roles of the Isoforms," J. Biol. Chem., vol. 270, pp. 13733-13739 (1995). |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37952E1 (en) | Grb3-3 cDNA and polypeptides | |
US6468985B1 (en) | Retinoblastoma protein-interacting zinc finger proteins | |
US6368829B1 (en) | Smad2 phosphorylation and interaction with Smad4 | |
CA2370098C (en) | Human beta-trcp protein | |
US6323335B1 (en) | Retinoblastoma protein-interacting zinc finger proteins | |
AU722973B2 (en) | Grb3-3 gene, variants and uses thereof | |
US8088892B2 (en) | Inhibitors of proteins from the Rho-GEF family | |
AU741708B2 (en) | A new cytokine family and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |