USRE37670E1 - Antiproliferative and neurotrophic molecules - Google Patents
Antiproliferative and neurotrophic molecules Download PDFInfo
- Publication number
- USRE37670E1 USRE37670E1 US09/250,001 US25000199A USRE37670E US RE37670 E1 USRE37670 E1 US RE37670E1 US 25000199 A US25000199 A US 25000199A US RE37670 E USRE37670 E US RE37670E
- Authority
- US
- United States
- Prior art keywords
- pentynoic acid
- enyl
- acid
- pentynoic
- methylpent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000508 neurotrophic effect Effects 0.000 title abstract description 20
- 230000001028 anti-proliverative effect Effects 0.000 title abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims description 28
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 23
- ZZDSHRABQMWUNE-UHFFFAOYSA-N 2-prop-2-ynylheptanoic acid Chemical compound CCCCCC(C(O)=O)CC#C ZZDSHRABQMWUNE-UHFFFAOYSA-N 0.000 claims description 15
- DUQSBRQHALCSLC-UHFFFAOYSA-N 2-prop-2-ynyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CC#C DUQSBRQHALCSLC-UHFFFAOYSA-N 0.000 claims description 12
- KWBNQXQUIZBELR-UHFFFAOYSA-N 2-propylpent-4-ynoic acid Chemical compound CCCC(C(O)=O)CC#C KWBNQXQUIZBELR-UHFFFAOYSA-N 0.000 claims description 12
- -1 2-i-propyl-4-pentynoic acid 2-i-propenyl-4-pentynoic acid Chemical compound 0.000 claims description 11
- OGVYHEDNPFAOPJ-UHFFFAOYSA-N 2-prop-2-ynylhexanoic acid Chemical compound CCCCC(C(O)=O)CC#C OGVYHEDNPFAOPJ-UHFFFAOYSA-N 0.000 claims description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 11
- 150000004820 halides Chemical class 0.000 claims description 11
- 229920006395 saturated elastomer Polymers 0.000 claims description 11
- UMYDNZXEHYSVFY-UHFFFAOYSA-N 2-n-Propyl-4-pentenoic acid Chemical compound CCCC(C(O)=O)CC=C UMYDNZXEHYSVFY-UHFFFAOYSA-N 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 229910052751 metal Chemical group 0.000 claims description 8
- 239000002184 metal Chemical group 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 4
- KWGUKRIKZAZNQA-UHFFFAOYSA-N 2-prop-2-ynylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CC#C KWGUKRIKZAZNQA-UHFFFAOYSA-N 0.000 claims description 3
- 230000000911 decarboxylating effect Effects 0.000 claims 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 2
- VXOWGOAKTRJAMM-UHFFFAOYSA-N 2-benzylpentanoic acid Chemical compound CCCC(C(O)=O)CC1=CC=CC=C1 VXOWGOAKTRJAMM-UHFFFAOYSA-N 0.000 claims 1
- OKJQSUPURXTNME-UHFFFAOYSA-N 2-prop-2-enylpent-4-enoic acid Chemical compound C=CCC(C(=O)O)CC=C OKJQSUPURXTNME-UHFFFAOYSA-N 0.000 claims 1
- WRJOVXQJFNLWGZ-UHFFFAOYSA-N 2-propylpent-4-ynoic acid 2-prop-2-ynylhexanoic acid 2-prop-2-ynylpent-3-enoic acid Chemical compound C(CCC)C(C(=O)O)CC#C.C(=CC)C(C(=O)O)CC#C.C(CC)C(C(=O)O)CC#C WRJOVXQJFNLWGZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- MLBYLEUJXUBIJJ-UHFFFAOYSA-N pent-4-ynoic acid Chemical compound OC(=O)CCC#C MLBYLEUJXUBIJJ-UHFFFAOYSA-N 0.000 claims 1
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 abstract description 31
- 229940102566 valproate Drugs 0.000 abstract description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 18
- 208000015122 neurodegenerative disease Diseases 0.000 abstract description 17
- 230000001737 promoting effect Effects 0.000 abstract description 11
- 230000003955 neuronal function Effects 0.000 abstract description 10
- 201000010099 disease Diseases 0.000 abstract description 8
- 239000001961 anticonvulsive agent Substances 0.000 abstract description 7
- 230000001613 neoplastic effect Effects 0.000 abstract description 6
- 229960003965 antiepileptics Drugs 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 81
- 239000000203 mixture Substances 0.000 description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 23
- 102000001068 Neural Cell Adhesion Molecules Human genes 0.000 description 21
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 21
- 210000002569 neuron Anatomy 0.000 description 20
- 230000003390 teratogenic effect Effects 0.000 description 19
- 238000011282 treatment Methods 0.000 description 16
- 206010029260 Neuroblastoma Diseases 0.000 description 13
- 231100000378 teratogenic Toxicity 0.000 description 13
- 0 *OC(=O)C(C)CC Chemical compound *OC(=O)C(C)CC 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 108010025020 Nerve Growth Factor Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 230000002062 proliferating effect Effects 0.000 description 10
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 9
- 230000014511 neuron projection development Effects 0.000 description 9
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 235000019441 ethanol Nutrition 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000011278 mitosis Effects 0.000 description 8
- 230000004770 neurodegeneration Effects 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- 229960000604 valproic acid Drugs 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- 102000015336 Nerve Growth Factor Human genes 0.000 description 7
- 230000002927 anti-mitotic effect Effects 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010166 immunofluorescence Methods 0.000 description 7
- 230000001537 neural effect Effects 0.000 description 7
- 230000036515 potency Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 201000010193 neural tube defect Diseases 0.000 description 5
- 230000000626 neurodegenerative effect Effects 0.000 description 5
- 230000000324 neuroprotective effect Effects 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 208000035581 susceptibility to neural tube defects Diseases 0.000 description 5
- 231100000462 teratogen Toxicity 0.000 description 5
- 239000003439 teratogenic agent Substances 0.000 description 5
- 208000024827 Alzheimer disease Diseases 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 4
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical class CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 102000007072 Nerve Growth Factors Human genes 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 230000001773 anti-convulsant effect Effects 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000022131 cell cycle Effects 0.000 description 4
- 230000007850 degeneration Effects 0.000 description 4
- 150000005690 diesters Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 210000002241 neurite Anatomy 0.000 description 4
- 210000004498 neuroglial cell Anatomy 0.000 description 4
- 239000003900 neurotrophic factor Substances 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 210000000225 synapse Anatomy 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000000044 Amnesia Diseases 0.000 description 3
- 208000031091 Amnestic disease Diseases 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000001350 alkyl halides Chemical class 0.000 description 3
- 230000006986 amnesia Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 210000003050 axon Anatomy 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 210000000653 nervous system Anatomy 0.000 description 3
- 210000003061 neural cell Anatomy 0.000 description 3
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 3
- 239000012285 osmium tetroxide Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000000979 retarding effect Effects 0.000 description 3
- 230000009450 sialylation Effects 0.000 description 3
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- PCSWIYVEVMQCSM-UHFFFAOYSA-N 2-prop-1-ynylheptanoic acid Chemical compound CCCCCC(C(O)=O)C#CC PCSWIYVEVMQCSM-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 230000010190 G1 phase Effects 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 231100000357 carcinogen Toxicity 0.000 description 2
- 239000003183 carcinogenic agent Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000002932 cholinergic neuron Anatomy 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940093499 ethyl acetate Drugs 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000002518 glial effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000002161 motor neuron Anatomy 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 231100000707 mutagenic chemical Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 230000027498 negative regulation of mitosis Effects 0.000 description 2
- 210000005170 neoplastic cell Anatomy 0.000 description 2
- 230000004031 neuronal differentiation Effects 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 208000028591 pheochromocytoma Diseases 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- YORCIIVHUBAYBQ-UHFFFAOYSA-N propargyl bromide Chemical compound BrCC#C YORCIIVHUBAYBQ-UHFFFAOYSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004621 scanning probe microscopy Methods 0.000 description 2
- 230000001624 sedative effect Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- KWBNQXQUIZBELR-SSDOTTSWSA-N (2s)-2-propylpent-4-ynoic acid Chemical compound CCC[C@H](C(O)=O)CC#C KWBNQXQUIZBELR-SSDOTTSWSA-N 0.000 description 1
- LRBPFPZTIZSOGG-UHFFFAOYSA-N *.COC(=O)C(C)C(=O)OC Chemical compound *.COC(=O)C(C)C(=O)OC LRBPFPZTIZSOGG-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- KQYRYPXQPKPVSP-UHFFFAOYSA-N 2-butylhexanoic acid Chemical compound CCCCC(C(O)=O)CCCC KQYRYPXQPKPVSP-UHFFFAOYSA-N 0.000 description 1
- QAGLHLFAVYUTII-UHFFFAOYSA-N 2-prop-2-ynylpent-3-enoic acid Chemical compound CC=CC(C(O)=O)CC#C QAGLHLFAVYUTII-UHFFFAOYSA-N 0.000 description 1
- HWXRWNDOEKHFTL-UHFFFAOYSA-N 2-propylhexanoic acid Chemical compound CCCCC(C(O)=O)CCC HWXRWNDOEKHFTL-UHFFFAOYSA-N 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 241000237967 Aplysia Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- IDHQQFLFKNWCAW-UHFFFAOYSA-N C#CCC(C)(C(=O)OC)C(=O)OC Chemical compound C#CCC(C)(C(=O)OC)C(=O)OC IDHQQFLFKNWCAW-UHFFFAOYSA-N 0.000 description 1
- CIPDGBZQHUXNFQ-UHFFFAOYSA-N C#CCC(CC(C)C)C(=O)O Chemical compound C#CCC(CC(C)C)C(=O)O CIPDGBZQHUXNFQ-UHFFFAOYSA-N 0.000 description 1
- CSRAMMGOBQVDMO-XACDHJJSSA-L C/C=C\CC(CCC)C(=O)O.CC#CCC(CCC)C(=O)O.CC/C=C(\CCC)C(=O)O.[V].[V]I.[V]I Chemical compound C/C=C\CC(CCC)C(=O)O.CC#CCC(CCC)C(=O)O.CC/C=C(\CCC)C(=O)O.[V].[V]I.[V]I CSRAMMGOBQVDMO-XACDHJJSSA-L 0.000 description 1
- DYPABUQDNJSQTJ-UHFFFAOYSA-N C=CCC(C)(C(=O)OC)C(=O)OC Chemical compound C=CCC(C)(C(=O)OC)C(=O)OC DYPABUQDNJSQTJ-UHFFFAOYSA-N 0.000 description 1
- SAMDDFSEIHPCID-UHFFFAOYSA-N CCCC(C)(C(=O)OC)C(=O)OC Chemical compound CCCC(C)(C(=O)OC)C(=O)OC SAMDDFSEIHPCID-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 208000006264 Korsakoff syndrome Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- GMZVRMREEHBGGF-UHFFFAOYSA-N Piracetam Chemical compound NC(=O)CN1CCCC1=O GMZVRMREEHBGGF-UHFFFAOYSA-N 0.000 description 1
- 208000037169 Retrograde Degeneration Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 208000031320 Teratogenesis Diseases 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 201000008485 Wernicke-Korsakoff syndrome Diseases 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004903 cardiac system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- RPNFNBGRHCUORR-UHFFFAOYSA-N diethyl 2-butylpropanedioate Chemical compound CCCCC(C(=O)OCC)C(=O)OCC RPNFNBGRHCUORR-UHFFFAOYSA-N 0.000 description 1
- OQFYXOBMUBGANU-UHFFFAOYSA-N diethyl 2-pentylpropanedioate Chemical compound CCCCCC(C(=O)OCC)C(=O)OCC OQFYXOBMUBGANU-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 210000005064 dopaminergic neuron Anatomy 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 231100000334 hepatotoxic Toxicity 0.000 description 1
- 230000003082 hepatotoxic effect Effects 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 210000000691 mamillary body Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000001073 mediodorsal thalamic nucleus Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000000933 neural crest Anatomy 0.000 description 1
- 210000000276 neural tube Anatomy 0.000 description 1
- 230000001474 neuritogenic effect Effects 0.000 description 1
- 210000003757 neuroblast Anatomy 0.000 description 1
- 230000004766 neurogenesis Effects 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 230000009207 neuronal maturation Effects 0.000 description 1
- 230000007996 neuronal plasticity Effects 0.000 description 1
- 230000006576 neuronal survival Effects 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000003182 parenteral nutrition solution Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- MINRDQDGBLQBGD-UHFFFAOYSA-N pent-2-ynoic acid Chemical compound CCC#CC(O)=O MINRDQDGBLQBGD-UHFFFAOYSA-N 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229960004526 piracetam Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000005227 renal system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 210000004116 schwann cell Anatomy 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229940084026 sodium valproate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 208000023531 spina bifida aperta Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- OMOMUFTZPTXCHP-UHFFFAOYSA-N valpromide Chemical class CCCC(C(N)=O)CCC OMOMUFTZPTXCHP-UHFFFAOYSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/18—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon triple bonds as unsaturation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/377—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
- C07C51/38—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by decarboxylation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/126—Acids containing more than four carbon atoms
- C07C53/128—Acids containing more than four carbon atoms the carboxylic group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo-acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
Definitions
- This invention provides methods and compositions useful for the prevention and/or treatment of neurodegenerative and proliferative diseases.
- the compositions of the invention promote neuronal cell maturation and retard their proliferation.
- this invention relates to nonprotein neurotrophic molecules capable of passing the blood brain barrier to provide therapeutic effects.
- Proper function of the nervous system requires the maturation and maintenance of neuronal cells. In addition, the establishment of proper synaptic connections allows for the communication between different neurons. Defects in the survival of neurons, or the ability to maintain synaptic connections is associated with neurodegenerative disorders including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, stroke and degeneration of neurons due to diabetic neuropathy and trauma.
- ALS amyotrophic lateral sclerosis
- Parkinson's disease stroke and degeneration of neurons due to diabetic neuropathy and trauma.
- Parkinson's disease dopaminergic neurons of the substantia nigra degenerate. Whereas ALS is associated with the loss of motor neurons. Wernicke-Korsakoff syndrome, commonly associated with chronic alcoholism, causes amnesia due to damage to the mammillary bodies and medial dorsal nucleus of the thalamus. Butters N., Seminar Neurol. (1984) 4:226-244. Alzheimer's disease appears to be associated with the degeneration of certain cholinergic neurons. The severance of axons as a result of trauma may cause retrograde degeneration and neuronal death.
- neurotrophic agents capable of retarding, preventing, or reversing such neurodegeneration.
- much emphasis in this area has focused on the identification and characterization of neurotrophic polypeptides.
- attention has been given to studying the effects of nerve growth factor (NFG), ciliary neurotrophic factor (CNTF), brain drive neurotrophic factor (BDNF) and others.
- NGF nerve growth factor
- CNTF ciliary neurotrophic factor
- BDNF brain drive neurotrophic factor
- the general neurotrophic effect of CNTF and, in particular, its trophic action on motor neurons has led to its investigation as a useful agent in the treatment of ALS and other neurodegenerative disorders. See, for example, Collins et al. U.S. Pat. No.
- NGF which has been shown to promote neuronal outgrowth from central cholinergic neurons has been suggested as a useful agent in the treatment of Alzheimer's disease.
- Most of the neurotrophic polypeptides identified to date are active on relatively restricted populations of neuronal cells. Whereas others such as CNTF are active on a greater number of neuronal cell types.
- neoplastic diseases For example, neuroblastoma and pheochromocytoma are believed to arise from cells having an origin in the neural crest.
- Non-neuronal cells of the nervous system including glial cells, astrocytes and Schwann cells also give rise to different types of tumors.
- Most present agents used for chemotherapy involving neuronal cells are cytotoxic and have relatively poor specificity and penetrability. Treatment of neoplastic disease through agents causing maturation has been a long sought for goal. Aaronson, S. A. Science (1991) 254:1146-1153.
- neurotrophic polypeptides may eventually prove useful for treating certain neurodegenerative, and proliferative disorders, they are characterized by poor bio-availability resulting from their relatively large size making them resistant to passing through the blood brain barrier. This poor penetration into the relevant target tissue raises substantial difficulties in their use for treating neurodegenerative disorders and neoplastic disease of the central nervous system.
- the anticonvulsant sodium valproate is a branched chain carboxylic acid effective in the treatment of primary generalized seizures, especially those of the absence type. Pinder, R. M. et al., Drugs (1977) 13:81-12. Recently, VPA has been reported to be a teratogen and has been suggested as potentially causing neural tube defects in 1% to 2% of exposed fetuses (Robert E. and Rosa F. W., “Maternal valproic acid and neural tube defects,” Lancet (1982) 2:937). In addition, a number of other defects are also induced by valproic acid treatment during pregnancy (Nau et al. J. Pharmacol. Exp. Ther.
- valproate to potently inhibit the rate of neural derived cell proliferation at concentrations within its therapeutic plasma level (Regan, C., Brain Res. (1985) 347:394-398). This antiproliferative action of valproate is restricted to a defined point in the G 1 phase of the cell cycle. Martin M. and Regan C., Brain Res. (1991) 554:223-228. In the presence of valproate, cells assume a differentiated phenotype as judged by morphology, increased cell-substratum adhesivity and decreased affinity for concanavalin A lectin coated surfaces (Martin et al., Toxic in Vitro (1988) 2:43-48; Martin et al., Brain Res.
- valproate has been shown to increase the incidence of neural tube defects and sequester specifically into the neuroephithelium where it generates cellular disarray (Dencker et al., Teratology (1990) 41:699-706; Ehlers et al., Teratology (1992) 45:145-151; Ehlers et al., Teratology (1992) 46:117-130; Kao et al., Teratogen. Mutagen, Carcinogen. (1981) 1:367-382; Turner et al., Teratology (1990) 41:421-442.
- Hyperthermia which induces neural tube defects (Chernoff and Golden, Teratology (1988) 37:37-42; Edwards, Teratogen. Mutagen. Carcinogen. (1986) 6:563-582; Shiota, Am J. Med. Genet. (1982) 12:281-288; Finnell et al., Teratology (1986) 33:247-252), also arrests neural cells in the G 1 phase of the cell cycle both in vivo and in vitro (martin et al. Brain Res. (1991) 554:223-228; Walsh and Morris, Teratology (1989) 40:583-592); and produces similar pro-differentiative effects to those observed with valproate (Martin and Regan, Brain Res.
- a coincident anti-proliferative and pro-differentiative action may identify agents which are capable of inducing neural tube defects yet provide a basis for the development of compounds useful for treatment or prevention of neurodegenerative diseases.
- Valproate's antimitotic activity has been suggested as being related to its teratogenic potential rather than as a potential therapeutic asset, as the non-teratogenic valpromide analogue is not antiproliferative (Regan et al., Toxic in Vitro (1991) 5:77-82).
- Teratogenic analogs of valproate have been synthesized to date for the purpose of producing more desirable antiepileptic agents having fewer or no side effects and have not been suggested as being useful in their own right for other therapeutic purposes.
- This invention provides compounds, pharmaceutical compositions and methods useful for promoting neuronal function and inhibiting cell mitosis. Accordingly, this invention also provides methods of preventing and treating neurodegenerative and proliferative disorders.
- R 1 is —C ⁇ CH, —CH ⁇ CH 2 or —CH 2 —CH 3 ,
- R 2 is a saturated, unsaturated, branched or unbranched C 1 -C 30 alkyl group which is optionally substituted with a C 3 -C 9 aliphatic or aromatic cyclohydrocarbon or heterocyclic group.
- M is a hydrogen or a metal atom.
- Formula I is not 2-n-propyl-4-pentynoic acid (4-yn-VPA) or 2-n-propyl-4-pentenoic acid (4-en-VPA) and when R 1 is —CH 2 —CH 3 , R 2 is C 5 to C 30 .
- This invention also provides a method of making the compounds of the invention.
- compositions useful for inhibiting cell mitosis and/or promoting neuronal function comprising effective amounts of the compounds suitable for use in the treatments of the invention with a pharmaceutical carrier suitable for administration to an individual
- this invention relates to methods of promoting neuronal function and/or survival, and in particular to methods of treating individuals with neurodegenerative disorders.
- the compounds useful for treating neurodegenerative disorders include those of formula I as described above including 2-n-propyl-4-pentenoic acid and 2-n-propyl-4-pentynoic acid, as well as those of formula II
- R 3 and R 4 are independently of one another C 1 -C 30 saturated or unsaturated, branched and/or unbranched aliphatic hydrocarbon, optionally substituted by a C 3-9 aliphatic or aromatic cyclohydrocarbon, or heterocyclic group.
- M is hydrogen or a metal atom.
- the compounds and compositions of this invention which are neurotrophic may be used to promote the survival and function of neurons which would otherwise have diminished function, degenerate or die. Accordingly, in addition to treating individuals diagnosed with a neurodegenerative disorder, the compounds and compositions of this invention may also be used prophylactically to prevent or retard the onset of neurodegenerative disorders in individuals identified as being at risk for developing such disorders.
- the compounds and compositions useful for treating neurodegenerative disorders may also be used to treat proliferative disorders.
- the antiproliferative activity of the compounds and compositions may be used to prevent or retard the formation of a wide variety of tumors by administering the compounds and compositions to a person in need of treatment. This treatment is especially useful for treating tumors of neuronal or glial origin given that these compounds penetrate the CNS.
- Another object of this invention is to provide compounds and compositions useful for inhibiting the pathologic proliferation of neuronal, glial or related cells.
- FIG. 1 Dose-Response relationship of antiproliferative effect of 2-n-butyl-4-pentynoic acid; and 2-n-pentyl-4-pentynoic acid.
- FIG. 2 Induction of neurite outgrowth of neuro-2a neuroblastoma cells.
- Neuroblastoma cells were cultured in the presence of 2-n-butyl-4-pentynoic acid (1.0 mM, 2mM); and 2-n-pentyl-4-pentynoic acid (0.3 mM, 0.5 mM).
- Test medium was added to cells after 24 hours in culture and maintained as a test medium for 48 hours after which they were fixed in 2.5% glutaraldehyde and 0.5M sodium phosphate buffer overnight at 4° C.
- Cells were postfixed with osmium tetroxide and prepared for scanning microscopy as described. Fixed and stained cells were observed in a scanning electron microscope at an accelerating voltage of 15 kV.
- FIGS. 2 A- 2 E Induction of neurite outgrowth of neuro- 2 a neuroblastoma cells.
- Neuroblastoma cells were cultured in the presence of 2 - n - butyl - 4 - pentynoic acid ( 1 . 0 mM, 2 mM ); and 2 - n - pentyl - pentynoic acid ( 0 . 3 mM, 0 . 5 mM ).
- Test medium was added to cells after 24 hours in culture and maintained as a test medium for 48 hours after which they were fixed in 2 . 5 % glutaraldehyde and 0 . 5 M sodium phosphate buffer overnight at 4 ° C.
- Cells were postfixed with osmium tetroxide and prepared for scanning microscopy as described. Fixed and stained cells were observed in a scanning electron microscope at an accelerating voltage of 15 kV.
- FIG. 3 Neural Cell Adhesion Molecule (NCAM) immunofluorescence in neuro-2a neuroblastoma cells.
- Panel A Cells gown in the presences of 2-n-pentyl-pentynoic acid (1.0 mm) show increased immunofluorescence directed against NCAM compared to control cells.
- Panel B Neuroblastoma cells were cultured for 48 hours in the presence of increasing concentrations of 2-n-butyl-4-pentynoic acid and 2-n-pentyl-4-pentynoic acid. They were then fixed and prepared for staining with rabbit anti-NCAM antibody. A second anti-rabbit antibody conjugated to rhodamine was incubated with the cells to detect bound anti-NCAM antibody. Cells were observed with a fluorescence microscope at an excitation wavelength of 535 nm. Immunofluorescence is expressed as mean ⁇ SEM.
- FIGS. 3 A- 1 , 3 A - 2 and 3 B Neural Cell Adhesion Molecule ( NCAM ) immunofluorescence in neuro - 2 a neuroblastoma cells.
- Panel A Cells grown in the presences of 2 - n - pentynoic acid ( 1 . 0 mm ) show increased immunofluorescence directed against NCAM compared to control cells.
- Panel B Neuroblastoma cells were cultured for 48 hours in the presence of increasing concentrations of 2 - n - butyl - 4 - pentynoic acid and 2 - n - pentyl - 4 - pentynoic acid. They were then fixed and prepared for staining with rabbit anti - NCAM antibody.
- a second anti - rabbit antibody conjugated to rhodamine was incubated with the cells to detect bound anti - NCAM antibody. Cells were observed with a fluorescence microscope at an excitation wavelength of 535 nm. Immunofluorescence is expressed as mean +/ ⁇ SEM.
- This invention relates to derivatives of valproic acid, methods of their preparation and pharmaceutical compositions comprising these compounds. This invention also relates to a method of promoting neuronal function and differentiation which is useful for preventing and treating neurodegenerative disorders.
- the anti-mitotic activity of the compounds and compositions of the invention are useful for arresting cells in a specific stage of the cell cycle and for the prevention and treatment of neoplastic disease.
- the objects of this invention are accomplished by providing potent teratogenic analogs of valproic acid which penetrate the CNS as neurotrophic/neuroprotective agents capable of treating and retarding the onset of neurodegenerative diseases.
- the compounds and compositions of this invention are also useful for controlling the cell proliferative rate and the metastatic potential of neoplastic or potentially neoplastic cells.
- R 1 is —C ⁇ CH, —CH ⁇ CH 2 , or —CH 2 —CH 3 ,
- R 2 is independently a saturated, unsaturated with at least one double or triple bond, branched or unbranched C 1-30 alkyl group, optionally substituted with an aliphatic or aromatic C 3-9 cyclohydrocarbon or heterocyclic group; with the proviso that when R 1 is CH 2 —CH 3 , R 2 is C 5-30 , and that formula I is not 2-n-propyl-4-pentynoic acid or 2-n-propyl-4-pentenoic acid (4-en-VPA).
- M is a hydrogen or a metal atom.
- This invention also includes the racemic mixtures and the separate enantiomeric R and S forms of the compounds and pharmaceutical acceptable salts thereof.
- R 1 is —C ⁇ CH and R 2 is an unbranched saturated C 2 -C 10 alkyl group. More preferred, R 2 is an unbranched, saturated C 4 -C 6 alkyl group. Examples of preferred substituents for R 2 include —(CH 2 ) 1-9 —CH 3 , more preferred is —(CH 2 ) 3-6 —CH 3 , and most preferred is —(CH 2 ) 4-5 —CH 3 .
- Preferred metal atoms are sodium or other alkali metals, as well as alkaline earth metals such as, for example, calcium or magnesium.
- the teratogenic, antiproliferative and prodifferentiative potencies of the preferred compounds are much higher than of the antiepileptic drug valproic acid.
- R 1 or R 2 reduces the potency of the corresponding compounds. This is demonstrated by the low teratogenic, antiproliferative and prodifferentiative potency of the following compound.
- the compounds and compositions of this invention are more potent teratogenic analogues of valproate and exhibit greater antiproliferative and neurotrophic/neuroprotective activity than the parent.
- saturated valproate analogues where both chains must contain 3 carbon atoms each for maximal activity
- a double or triple bond in the ⁇ position of one chain exhibits higher activities when the other chain contains 4 to 6 carbon atoms.
- the 2-n-propyl-4-pentynoic acid, 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid are the most potent valproate-related teratogens synthesized.
- 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4-pentynoic and 2-n-hexyl-4-pentynoic acid are more preferred. Most preferred are 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid.
- the preferred compounds for use with this invention possess a chiral alpha-carbon.
- the efficacy and potency of different enantiomeric forms may differ.
- S-2-n-propyl-4-pentynoic acid has significantly greater teratogenic potential than the R-enantiomeric form.
- the S enantiomeric form is preferred.
- the compounds of this invention are prepared by reacting an appropriately substituted malonic acid diethylester with an appropriate unsaturated alkylating agent such as a straight-chain alkylhalide. The product is then hydrolyzed and decarboxylated.
- the reaction can also be carried out in the reciprocal manner in that a malonic acid diethylester, substituted with an unsaturated function is reacted with an appropriate alkylhalide. This reaction is again followed by hydrolysis and decarboxylation.
- novel compounds of this invention may be produced according to the method of this invention.
- the method of synthesizing the compounds comprises combining a malonic acid diester reactant with a first halide reactant having the general formula
- R 2 is a saturated or unsaturated branched or unbranched C 1 -C 30 alkyl group and X is a halide.
- This first reaction produces a 2-alkyl-malonic acid diester.
- the 2-alkyl-malonic acid diester is then further combined with a second halide reactant having the general formula
- R 1 is —C ⁇ CH, —CH ⁇ CH 2 or —CH 2 —CH 3 to produce compounds with the general formula
- R 5 is an alkyl group.
- the resulting diesters are then hydrolyzed, decarboxylated and optionally converted into a salt.
- the order of carrying out the reactions is reversed, such that the R 1 —CH 2 —X is combined with the malonic acid diester followed by further reaction with the R 2 —X.
- malonic acid diethylester is treated with a base, for example, sodium ethylate, to deprotonate carbon 2.
- a base for example, sodium ethylate
- Subsequent treatment of the resulting deprotonated ester with an alkylating agent in the form of a straight-chain alkyl halide yields a 2-n-alkyl-malonic acid diethylester.
- the diesters (XI) and (XII) and (XIII) are hydrolyzed and decarboxylated with potassium hydroxide in ethanol/water with heat treatment.
- Another embodiment of this invention is the promotion of neural function by contacting neural cells with a neurotrophic amount of a compound of formula (II)
- R 3 and R 4 are independently of each other saturated or unsaturated, branched, or unbranched, C 1 -C 30 aliphatic hydrocarbons, optionally possessing at least one double or triple bond.
- R 3 and R 4 are unbranched, and R 3 is less than or equal to a three carbon chain.
- R 4 preferably is a saturated alkyl group and is preferably from C 2 -C 10 , as in for example —(CH 2 ) 1-9 —CH 3 , and more preferably from C 4 to C 6 , as in for example —(CH 2 ) 3-5 —CH 3 .
- Neurodegenerative disorders include any disorder resulting in neuronal degeneration which is responsive to at least one of the valproate analogues or valproate itself.
- the neurotrophic activity associated with valproate and its analogues may be determined based on in vitro indices of differentiation, including inhibition of mitosis, increase in neurite outgrowth, and NCAM expression.
- the ability to promote neurite outgrowth is correlated with enhanced survival of certain cultured neural cells including embryonic sensory and sympathetic neurons.
- Proliferating immature neuroblasts, in vitro have a rounded shape and are loosely adherent to culture surfaces. In the presence of a neurotrophic factor, these cells become more adherent and sprout processes known in the art as neurites. Accordingly, in vitro neurite outgrowth may be used as an assay for determining concentrations of compound in contact with target cells which would be expected to achieve desirable neuroprotecting effects.
- Methods of assessing neurite outgrowth in vitro are well known in the art and, for example, may be assessed through direct microscopic visual inspection or through the use of computer aided image processing.
- neurotrophic factors which may be used to assess the neuroprotective action of the compounds and compositions of this invention is their ability to promote survival or certain specific cell types.
- NGF is required in vitro for the survival of certain specific cell types which die in the absence of NGF.
- Such NGF dependent cells include neurons of the chick dorsal rat ganglia at about embryonic day E5to E8.
- Scanning electron microscopy illustrates the cells ability to increase cell-substratum adhesivity. They eliminate rounded and clustered growth, typical of tumor cells, and induce a flattening and greater interaction with the substratum (FIG. 2 ). In vivo, it is generally believed that these neurites further differentiate into axons and dendrites and form synapses with other neurons. During diseases involving neurodegeneration, there may be a loss of synapses and degeneration of axons and dendrites resulting in a deficit of neuronal function.
- NCAM neurotrophic activity
- valproate analogues Another index of differentiation resulting from the neurotrophic activity of valproate analogues is an increase in NCAM expression. Further, increases in NCAM prevalence enhances neurite outgrowth. Doherty et al., Nature (1990) 343:464-466. NCAM has been reported as playing a fundamental role in memory formation as intraventricular infusion of anti-NCAM during consolidation of a recent learning event induces an amnesia. Doyle et al., J. Neurochem. (1992) 59:1570-1573, which is incorporated herein by reference. Rapid endocytosis of the Aplysia NCAM homologue was reported following a serotonin-induced change in synapse structure in vitro. Bailey et al., Science (1992) 256:645-649.
- NCAM synapse specific NCAM isoform
- the synapse specific NCAM isoform (NCAM 180) which is associated with differentiated neurons increases its sialylation state during later stages of development until the period of synaptogenesis is complete. Breen et al., J. Neurochem (1988) 50:712-716. A similar isoform-specific sialylation of NCAM 180 occurs during consolidation of a passive-avoidance response. Doyle et al., J. Neurosci Res., (1992) 31:513-523.
- the methods of treatment and prevention of neurodegenerative diseases rely on the ability of valproate and its analogues to possess neurotrophic activity such as promoting neurite outgrowth and survival of neuronal cells and NCAM expression.
- the methods of treatment may provide benefits to persons with neurodegeneration from disorders including, but not limited to ALS, Alzheimers disease, Parkinson's disease, Huntington's disease, diabetic neuropathy and stroke.
- the neurite promoting activity of the disclosed compounds and compositions would also provide benefits to individuals with traumatic nerve injury.
- methods are provided for arresting cells in a specific stage of the cell cycle which leaves the cells in a differentiated state by contacting cells with a mitotic inhibitory amount of a compound of formula II as described above.
- Preferred substituents for R 3 , R 4 and M for inhibiting mitosis are the same as those for promoting neuronal function, with the proviso that formula II is not valproate if simply used to inhibit cell mitosis.
- Preventing mitosis in this manner is useful for enhancing the expression of specific proteins associated with the differentiated phenotype. This enhanced expression facilitates purification of such proteins.
- arresting or retarding mitosis is useful for treating proliferative disorders by administering to individuals in need of treatment valproate and/or another of its anti-mitotic analogues.
- valproate or its antimitotic analogues we have observed sensitivity to valproate or its antimitotic analogues in all cells tested.
- Such cell types include: primary astrocytes, human astrocytoma, and those from cardiac, renal, and immune systems. Accordingly, the antiproliferative action of valproate and its other analogues described herein should have broad applicability for a wide variety of tumors derived from a variety of cell types and particularly those mentioned above.
- the neurotrophic and/or anti-mitotic effective amounts of valproate and active analogues may be determined using standard dose-response curves. Accordingly, representative cells may be cultured in vitro in the presence of varying concentration of test compound. At an appropriate time, the cells under the different conditions are examined for the appropriate parameter (for example, cell number for antimitotic activity; neurite outgrowth for neurotrophic activity) and the ED 50 may be determined.
- the appropriate parameter for example, cell number for antimitotic activity; neurite outgrowth for neurotrophic activity
- the preferred compounds of this invention exert a most profound antiproliferative action with ED50 values well below ( ⁇ 0.5 mM) those observed with valproate (FIG. 1 ). Thus, these compounds may be expected to act an concentrations which will be devoid of the sedative and hepatotoxic side effects of valproate.
- the preferred compounds also exert the prodifferentiative action observed with valproate. In the neuro-2a neuroblastoma cell line they induce a marked neuritogenic response which correlates with their antiproliferative potential (FIG. 2 ).
- NCAM neural cell adhesion molecule
- compositions useful for treating neurodegenerative or proliferative disorders comprising a compound selected from formulas I or II as described above.
- the pharmaceutical composition may also comprise adjuvant substances and carriers.
- the compositions may be in the form of tablets, capsules, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations such as oral or sterile parenteral solutions or suspensions.
- composition of the invention is in the form of a unit dose.
- Unit dose presentation forms for oral administration may be tablets and capsules and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone, fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycolate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulphate.
- binding agents for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone
- fillers for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine
- disintegrants for example starch, polyvinylpyrrolidone, sodium starch glycolate or microcrystalline cellulose
- pharmaceutically acceptable wetting agents such
- the solid oral compositions may be prepared by conventional methods of blending, filling, tabletting or the like. Repeated blending operation may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art.
- the tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
- Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use.
- Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate of sorbic acid; and if desired conventional flavoring or coloring agents.
- suspending agents for example sorbitol syrup, methyl cellulose, gelatin, hydroxy
- fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle.
- the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing.
- adjuvants such as a local anaesthetic, a preservative and buffering agents can be dissolved in the vehicle.
- the composition can be frozen after filling into the vial and the water removed under vacuum.
- Parenteral suspensions are prepared is substantially the same manner, except that the compound is suspended in the vehicle instead or being dissolved, and sterilization cannot be accomplished by filtration.
- the compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle.
- a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
- the dose of the compound used in the treatment of such disease will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and the relative efficacy of the compound.
- Antiproliferative and neuroprotective actions should be sufficient to achieve the desired inhibition of mitosis or neuroprotection without serious hetaptotoxic side effects.
- the plasma concentrations to be achieved will be sufficient to provide therapeutically effective concentrations of compound in contact with the target cells. Standard clinical techniques may be used to determine the effective amount of compound to be administered to achieve the desired therapeutic effect.
- Dose response curves may be determined first in vitro in a relevant animal model to determine ranges of expected therapeutic concentrations in humans. For example, mitosis of mouse neuro-2a-neuroblastoma cells is inhibited by valproate with an ED 50 of 1.0-1.3 mM. Other cell lines, including those of human origin may be used to assesses activity as well.
- 0.1 mol n-butyl malonic acid diethylester and 0.1 mol 3-bromo-1-propine were placed in a dry argon flushed flask and heated to 60° C.
- 0.1 mol sodium ethanolat prepared from 0.1 mol sodium and 50 mol dry ethanol
- TLC Silica alu sheets, hexane/ethylacetate 7.5/1
- the ethanol was evaporated under reduced pressure, the remaining salts were dissolved in water and the product was extracted three times with CH 2 Cl 2 .
- the organic phase was dried over sodium sulfate and evaporated The distillation under reduced pressure resulted in the unsymmetrically substituted malonic acid diethylester.
- the dialkylated malonic esters were heated in a solution of 20.3 g (0.35 mol) potassium hydroxide, 50 ml water and 100 ml ethanol. After completion of the saponification, ethanol was evaporated under reduced pressure. The remaining residue was diluted with water and washed with ether. The water layer was acidified with concentrated HCl (pH ⁇ 2) and extracted with ether. Drying over anhydrous sodium sulfate and concentration under reduced pressure yielded crude dialkyl malonic acid. Decarboxylation was achieved by heating of the crude product (120°-180° C.). The dark residue was distilled twice in vacuo resulted in the desired products.
- Lithium-dianion (0.2 Mol) was prepared by adding 0.2 Mol n-butyl-lithium to a solution of 0.2 Mol freshly distilled diisopropylamine and 130 ml dry tetrahydrofurane at 0° C.
- Octanoic acid (0.1 Mol) was added followed by 19 hexamethylphosphoric acid triamide to effect solution of the dianion.
- the resulting mixture was stirred at room temperature for 30 min followed by cooling to ⁇ 60° C. and addition of 3-bromo-1-propin (0.1 Mol) quickly via a syringe. The temperature rose instantly.
- the mouse neuro-2a neuroblastoma cell line (Klebe and Ruddle, 1969 J. Cell Biol., 43:69A) was cultured in Dulbecco's modified Eagle's medium (DMEM; Flow Laboratories) supplemented with 10% fetal bovine serum (Tissue Culture Services), 200 mM glutamine and 100 ⁇ g/ml of gentamicin or 100 units/ml and 100 ⁇ g/ml of penicillin/streptomycin antibiotics (Sigma Chemicals). The cells were maintained in a water-humidified atmosphere of 9% CO 2 at 37° C. Cells were passaged using 0.025% trypsin (Gibco) in DMEM, and were seeded at a density of 1 ⁇ 10 4 cells/cm 2 .
- Neuro-2a cells were seeded in 25cm 2 flasks (Costar) at a density of 1 ⁇ 10 4 cells/cm 2 . Following a recovery period of 24 h, the agent to be examined was added to the cells in a vehicle of dimethyl sulphoxide (DMSO), the volume of which was 0.2% of the total volume of medium bathing the cells. A flask containing the DMSO vehicle alone was employed as control. Following incubation for 48h, cells were examined using an inverted phase contrast microscope (Leitz Diavert) and photographed (Ilford 50ASA film). Cells were then harvested by trypsinization and were counted using a haemocytometer (improved Neubauer model). FIG. 1 shows the resultant decrease in cell proliferation.
- DMSO dimethyl sulphoxide
- Cells which were to be examined by scanning electron microscopy were grown as previously described in 25cm 2 flasks. Following 48 h exposure to the agent, cells were fixed in a solution of 2.5% glutaraldehyde in 0.1M sodium phosphate buffer, pH 7.4, overnight at 4° C. The cells were post-fixed subsequently in phosphate-buffered 1% osmium tetroxide for 1 h at room temperature, washed and were dehydrated gradually for 1 hour using a series of ethanol concentrations stepwise from 20, 40, 60, 80 to a final concentration 100%.
- Sections of the base of the tissue culture flask were removed and were critical point dried to minimize shrinkage and cracking. This was achieved by placing the samples in a Polaron critical point dryer and purging the chamber several times with CO 2 to remove all traces of ethanol. After 1 h the temperature and pressure were increased to 40° C. and 1200 lbs/in 2 , respectively, at which stage the critical point for carbon dioxide had been reached and drying was completed.
- Specimens were subsequently removed from the chamber, mounted on stubs suitable for scanning electron microscopy using conductive carbon cement (Neubauer) and were sputter coated with gold under vacuum (5 ⁇ 10 ⁇ 2 torr) in the presence of argon gas at a current of 20 mA for 3 minutes (Polaron E5100). Following gold-coating, samples were examined in the scanning electron microscope (JEOL 35C) at an accelerating voltage of 15 kV. Images were recorded on film (Kodak Plus-X Pan 120 film) as shown in FIG. 2 .
- Cells were seeded in 24-well plates at a density of 1 ⁇ 10 4 cells/cm 2 . Following a recovery period 24 h they were exposed for an additional 48 h to the drug under investigation. Cells were progressively fixed by six ten-minute incubations with DMEM containing increasing concentrations of neutral buffered formalin stepwise from 10, 30, 50, 70, 90 to a final concentration of 100%. When fixation was complete, cells were washed three times with phosphate buffered saline pH 7.4 over a 30 minute period. The cells were then incubated with a 1 in 50 dilution of rabbit anti-NCAM antibody, (Pliophys et al. J. Neuropsychiatr.
- Fluorescence of rhodamine was visualized using an excitatory wavelength of 535 nm (Leica filter block N2.1) on a Leitz DMRB fluorescence microscope. Fluorescence intensity was examined at points of cell-cell contact using a Quantimet 500 Image Analysis System. Fluorescence intensity is expressed as grey level at points of cell contact relative to that observed in the control.
- FIG. 3 shows the increase in NCAM immunofluorescence.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Neurotrophic and antiproliferative compounds related to the antiepileptic drug valproate are provided. These compounds are useful for promoting neuronal function as in neurodegenerative disorders and for treating neoplastic disease.
Description
This invention provides methods and compositions useful for the prevention and/or treatment of neurodegenerative and proliferative diseases. The compositions of the invention promote neuronal cell maturation and retard their proliferation. In particular, this invention relates to nonprotein neurotrophic molecules capable of passing the blood brain barrier to provide therapeutic effects.
Proper function of the nervous system requires the maturation and maintenance of neuronal cells. In addition, the establishment of proper synaptic connections allows for the communication between different neurons. Defects in the survival of neurons, or the ability to maintain synaptic connections is associated with neurodegenerative disorders including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, stroke and degeneration of neurons due to diabetic neuropathy and trauma.
Many of the neurodegenerative disorders are associated with the loss or degeneration of a particular class of neuronal cells. For example, in Parkinson's disease dopaminergic neurons of the substantia nigra degenerate. Whereas ALS is associated with the loss of motor neurons. Wernicke-Korsakoff syndrome, commonly associated with chronic alcoholism, causes amnesia due to damage to the mammillary bodies and medial dorsal nucleus of the thalamus. Butters N., Seminar Neurol. (1984) 4:226-244. Alzheimer's disease appears to be associated with the degeneration of certain cholinergic neurons. The severance of axons as a result of trauma may cause retrograde degeneration and neuronal death.
The association between neurodegeneration and the development of disease has prompted the search for neurotrophic agents capable of retarding, preventing, or reversing such neurodegeneration. To date, much emphasis in this area has focused on the identification and characterization of neurotrophic polypeptides. For example, attention has been given to studying the effects of nerve growth factor (NFG), ciliary neurotrophic factor (CNTF), brain drive neurotrophic factor (BDNF) and others. The general neurotrophic effect of CNTF and, in particular, its trophic action on motor neurons has led to its investigation as a useful agent in the treatment of ALS and other neurodegenerative disorders. See, for example, Collins et al. U.S. Pat. No. 5,141,856 and Masiakowski WO 91/04316 which are incorporated herein by reference. NGF which has been shown to promote neuronal outgrowth from central cholinergic neurons has been suggested as a useful agent in the treatment of Alzheimer's disease. Most of the neurotrophic polypeptides identified to date are active on relatively restricted populations of neuronal cells. Whereas others such as CNTF are active on a greater number of neuronal cell types.
It has generally been observed that agents which induce maturation or differentiation of neuronal cells in culture, also inhibit their proliferation. Normal proliferating embryonic precursors to sympathetic and sensory neurons are induced to mature and stop dividing in the presence of certain growth factors such as NGF. The association between neuronal maturation or differentiation and anti-mitotic action has also been observed for certain neoplastic cells which are responsive to neurotrophic factors. For example, rat pheochromocytoma, PC12, cells in the presence of NGF develop long neurites and stop dividing. Green LA and Tischler AS, Proc. Natl. Acad. Sci. USA (1976) 72:2424-2428. Similar effects have been observed with other neuronal cells.
Cells in the nervous system give rise to a variety of potentially fatal neoplastic diseases. For example, neuroblastoma and pheochromocytoma are believed to arise from cells having an origin in the neural crest. Non-neuronal cells of the nervous system including glial cells, astrocytes and Schwann cells also give rise to different types of tumors. Most present agents used for chemotherapy involving neuronal cells are cytotoxic and have relatively poor specificity and penetrability. Treatment of neoplastic disease through agents causing maturation has been a long sought for goal. Aaronson, S. A. Science (1991) 254:1146-1153.
Although neurotrophic polypeptides may eventually prove useful for treating certain neurodegenerative, and proliferative disorders, they are characterized by poor bio-availability resulting from their relatively large size making them resistant to passing through the blood brain barrier. This poor penetration into the relevant target tissue raises substantial difficulties in their use for treating neurodegenerative disorders and neoplastic disease of the central nervous system.
The anticonvulsant sodium valproate (VPA) is a branched chain carboxylic acid effective in the treatment of primary generalized seizures, especially those of the absence type. Pinder, R. M. et al., Drugs (1977) 13:81-12. Recently, VPA has been reported to be a teratogen and has been suggested as potentially causing neural tube defects in 1% to 2% of exposed fetuses (Robert E. and Rosa F. W., “Maternal valproic acid and neural tube defects,” Lancet (1982) 2:937). In addition, a number of other defects are also induced by valproic acid treatment during pregnancy (Nau et al. J. Pharmacol. Exp. Ther. (1981) 219:768-777. Spina bifida aperta, a most serious birth defect, can now also be induced by valproic acid in an animal model (Ehlers et al., 1992 a,b). Like the neurotrophic polypeptides, valproic acid also shows very limited transfer into the central nervous system of the human (Löscher et al., Epilepsia (1988) 29:311-316). For reviews of clinical and experimental valproic acid teratogenesis. cf. Nau et al., Pharmacol. Toxicol. (1991) 69:310-321; Nau, CIBA Foundation Symposium 181, pp. 615-664; Marcel Dekker, 1993.
Studies in vitro have demonstrated valproate to potently inhibit the rate of neural derived cell proliferation at concentrations within its therapeutic plasma level (Regan, C., Brain Res. (1985) 347:394-398). This antiproliferative action of valproate is restricted to a defined point in the G1 phase of the cell cycle. Martin M. and Regan C., Brain Res. (1991) 554:223-228. In the presence of valproate, cells assume a differentiated phenotype as judged by morphology, increased cell-substratum adhesivity and decreased affinity for concanavalin A lectin coated surfaces (Martin et al., Toxic in Vitro (1988) 2:43-48; Martin et al., Brain Res. (1988) 459:131-137; Maguire and Regan, Int. J. Devl. Neurosci. (1991) 9:581-586; Regan, C., Brain Res. (1985) 347:394-398. These actions of valproate are likely to be restricted to cells of the developing neural tube as, in in vivo experimental models, valproate has been shown to increase the incidence of neural tube defects and sequester specifically into the neuroephithelium where it generates cellular disarray (Dencker et al., Teratology (1990) 41:699-706; Ehlers et al., Teratology (1992) 45:145-151; Ehlers et al., Teratology (1992) 46:117-130; Kao et al., Teratogen. Mutagen, Carcinogen. (1981) 1:367-382; Turner et al., Teratology (1990) 41:421-442.
Hyperthermia, which induces neural tube defects (Chernoff and Golden, Teratology (1988) 37:37-42; Edwards, Teratogen. Mutagen. Carcinogen. (1986) 6:563-582; Shiota, Am J. Med. Genet. (1982) 12:281-288; Finnell et al., Teratology (1986) 33:247-252), also arrests neural cells in the G1 phase of the cell cycle both in vivo and in vitro (martin et al. Brain Res. (1991) 554:223-228; Walsh and Morris, Teratology (1989) 40:583-592); and produces similar pro-differentiative effects to those observed with valproate (Martin and Regan, Brain Res. (1988) 459:131-137). Thus, a coincident anti-proliferative and pro-differentiative action may identify agents which are capable of inducing neural tube defects yet provide a basis for the development of compounds useful for treatment or prevention of neurodegenerative diseases.
The studies of the structure activity relationship of teratogenic valproate-related compounds suggest a strict structural requirement for high teratogenic potency. Nau, H. et al., Pharmacol. & Toxicol. (1991) 69:310-321. Studies of structure-activity relationships were possible as a result of previous work demonstrating that the parent drug molecule—at least in the case of valproic acid—and not metabolite(s) proved responsible for the teratogenic action (Nau, Fundam Appl Toxicol, (1986) 6:662-668. Molecules which are highly teratogenic were reported to require an alpha-hydrogen atom, a free carboxyl function, and branching on carbon atom 2 with two chains containing three carbons each for maximum teratogenic activity. (Nau and Löscher, 1986, Nau and Scott, 1986). Substances which do not conform with these strict structural requirements are of very low or negligible teratogenic activity, but still often exhibit good anticonvulsant activity in several experimental models. These compounds may therefore be valuable anti-epileptic agents (Nau et al., Neurology (1984) 34:400-402; Löscher and Nau, Neuropharmacol (1985) 24:427-435; Wegner and Nau, Neurology (1992) 42 (Supp. 5):17-24; Elmazar et al., J. Pharm. Sci. (1993) 82:1255-1258. Teratogenic activity also demonstrated stereoisomeric preferences suggesting a stereoselective interaction between the drugs and a specific structure within the embryo.
In the case of 4-en-VPA (2-n-propyl-4-pentenoic acid) (Hauck and Nau, Toxicol Lett (1989) 49:41-48) and 4-yn-VPA (2-n-propyl-4-pentynoic acid) (Hauck and Nau, Pharm. Res. (1992) 9:850-855) the S-enantiomers proved to be more potent teratogens than the corresponding R-enantiomers. This stereoselective teratogenicity was due to differing intrinsic teratogenic potencies of the enantiomers, and not due to differences in pharmacokinetics as both enantiomers of a given pair reached the target tissue to the same degree, but one was more potent than the other (Hauck et al., Toxicol. Lett (1992) 60:145-153). Other examples supported the pronounced stereoselectivity of the teratogenic, but not the anticonvulsant and sedative effect (Hauck et al., Life Sci. (1990) 46:513-518; Nau et al., Pharmacol. & Toxicol. (1991) 69:310-321. Carbon chains connected to carbon atom 2 of valproate which were shorter or longer than 3 carbons reduced teratogenic activity. Nau et al. Id. Valproate's antimitotic activity has been suggested as being related to its teratogenic potential rather than as a potential therapeutic asset, as the non-teratogenic valpromide analogue is not antiproliferative (Regan et al., Toxic in Vitro (1991) 5:77-82). Teratogenic analogs of valproate have been synthesized to date for the purpose of producing more desirable antiepileptic agents having fewer or no side effects and have not been suggested as being useful in their own right for other therapeutic purposes.
Despite continued efforts to identify compounds useful for treating neurodegenerative and proliferative disorders there is still a great need for useful compounds of increased efficacy and potency.
This invention provides compounds, pharmaceutical compositions and methods useful for promoting neuronal function and inhibiting cell mitosis. Accordingly, this invention also provides methods of preventing and treating neurodegenerative and proliferative disorders.
wherein
R1 is —C≡CH, —CH═CH2 or —CH2—CH3,
R2 is a saturated, unsaturated, branched or unbranched C1-C30 alkyl group which is optionally substituted with a C3-C9 aliphatic or aromatic cyclohydrocarbon or heterocyclic group.
M is a hydrogen or a metal atom. Formula I is not 2-n-propyl-4-pentynoic acid (4-yn-VPA) or 2-n-propyl-4-pentenoic acid (4-en-VPA) and when R1 is —CH2—CH3, R2 is C5 to C30.
This invention also provides a method of making the compounds of the invention.
This invention also provides pharmaceutical compositions useful for inhibiting cell mitosis and/or promoting neuronal function comprising effective amounts of the compounds suitable for use in the treatments of the invention with a pharmaceutical carrier suitable for administration to an individual
In addition, this invention relates to methods of promoting neuronal function and/or survival, and in particular to methods of treating individuals with neurodegenerative disorders. The compounds useful for treating neurodegenerative disorders include those of formula I as described above including 2-n-propyl-4-pentenoic acid and 2-n-propyl-4-pentynoic acid, as well as those of formula II
wherein R3 and R4 are independently of one another C1-C30 saturated or unsaturated, branched and/or unbranched aliphatic hydrocarbon, optionally substituted by a C3-9 aliphatic or aromatic cyclohydrocarbon, or heterocyclic group. M is hydrogen or a metal atom.
The compounds and compositions of this invention which are neurotrophic may be used to promote the survival and function of neurons which would otherwise have diminished function, degenerate or die. Accordingly, in addition to treating individuals diagnosed with a neurodegenerative disorder, the compounds and compositions of this invention may also be used prophylactically to prevent or retard the onset of neurodegenerative disorders in individuals identified as being at risk for developing such disorders.
In another embodiment of this invention, the compounds and compositions useful for treating neurodegenerative disorders may also be used to treat proliferative disorders. The antiproliferative activity of the compounds and compositions may be used to prevent or retard the formation of a wide variety of tumors by administering the compounds and compositions to a person in need of treatment. This treatment is especially useful for treating tumors of neuronal or glial origin given that these compounds penetrate the CNS.
It is an object of this invention to provide neurotrophic compounds useful for enhancing the survival of neurons and glial cells.
It is another object of this invention to provide compound and compositions useful for promoting the expression of characteristics associated with mature functioning neuronal or glial cells.
By promoting the survival and function of neuronal or glial cells, it is an object to this invention to provide compounds and compositions useful for the prevention and/or treatment of a variety of neurodegenerative disorders.
Another object of this invention is to provide compounds and compositions useful for inhibiting the pathologic proliferation of neuronal, glial or related cells.
FIG. 1: Dose-Response relationship of antiproliferative effect of 2-n-butyl-4-pentynoic acid; and 2-n-pentyl-4-pentynoic acid. Neuro-2a neuroblastoma cells were cultured in 25 cm2 flasks for 48 hours in the presence of test medium. After 48 hours, cells were observed, photographed and harvested with trypsin for counting using a haemocytometer. Cell number is expressed as percentage mean±SEM (n=3) of control values.
FIG. 2: Induction of neurite outgrowth of neuro-2a neuroblastoma cells. Neuroblastoma cells were cultured in the presence of 2-n-butyl-4-pentynoic acid (1.0 mM, 2mM); and 2-n-pentyl-4-pentynoic acid (0.3 mM, 0.5 mM). Test medium was added to cells after 24 hours in culture and maintained as a test medium for 48 hours after which they were fixed in 2.5% glutaraldehyde and 0.5M sodium phosphate buffer overnight at 4° C. Cells were postfixed with osmium tetroxide and prepared for scanning microscopy as described. Fixed and stained cells were observed in a scanning electron microscope at an accelerating voltage of 15 kV.
FIGS. 2A-2E: Induction of neurite outgrowth of neuro- 2a neuroblastoma cells. Neuroblastoma cells were cultured in the presence of 2 -n-butyl- 4 -pentynoic acid ( 1.0 mM, 2 mM); and 2 -n-pentyl-pentynoic acid ( 0.3 mM, 0.5 mM). Test medium was added to cells after 24 hours in culture and maintained as a test medium for 48 hours after which they were fixed in 2.5 % glutaraldehyde and 0.5 M sodium phosphate buffer overnight at 4° C. Cells were postfixed with osmium tetroxide and prepared for scanning microscopy as described. Fixed and stained cells were observed in a scanning electron microscope at an accelerating voltage of 15 kV.
FIG. 3: Neural Cell Adhesion Molecule (NCAM) immunofluorescence in neuro-2a neuroblastoma cells. Panel A. Cells gown in the presences of 2-n-pentyl-pentynoic acid (1.0 mm) show increased immunofluorescence directed against NCAM compared to control cells. Panel B. Neuroblastoma cells were cultured for 48 hours in the presence of increasing concentrations of 2-n-butyl-4-pentynoic acid and 2-n-pentyl-4-pentynoic acid. They were then fixed and prepared for staining with rabbit anti-NCAM antibody. A second anti-rabbit antibody conjugated to rhodamine was incubated with the cells to detect bound anti-NCAM antibody. Cells were observed with a fluorescence microscope at an excitation wavelength of 535 nm. Immunofluorescence is expressed as mean±SEM.
FIGS. 3A- 1, 3A- 2 and 3B: Neural Cell Adhesion Molecule (NCAM) immunofluorescence in neuro- 2a neuroblastoma cells. Panel A. Cells grown in the presences of 2 -n-pentynoic acid ( 1.0 mm) show increased immunofluorescence directed against NCAM compared to control cells. Panel B. Neuroblastoma cells were cultured for 48 hours in the presence of increasing concentrations of 2 -n-butyl- 4 -pentynoic acid and 2 -n-pentyl- 4 -pentynoic acid. They were then fixed and prepared for staining with rabbit anti-NCAM antibody. A second anti-rabbit antibody conjugated to rhodamine was incubated with the cells to detect bound anti-NCAM antibody. Cells were observed with a fluorescence microscope at an excitation wavelength of 535 nm. Immunofluorescence is expressed as mean +/− SEM.
This invention relates to derivatives of valproic acid, methods of their preparation and pharmaceutical compositions comprising these compounds. This invention also relates to a method of promoting neuronal function and differentiation which is useful for preventing and treating neurodegenerative disorders. The anti-mitotic activity of the compounds and compositions of the invention are useful for arresting cells in a specific stage of the cell cycle and for the prevention and treatment of neoplastic disease.
The objects of this invention are accomplished by providing potent teratogenic analogs of valproic acid which penetrate the CNS as neurotrophic/neuroprotective agents capable of treating and retarding the onset of neurodegenerative diseases. The compounds and compositions of this invention are also useful for controlling the cell proliferative rate and the metastatic potential of neoplastic or potentially neoplastic cells.
wherein
R1 is —C≡CH, —CH═CH2, or —CH2—CH3,
R2 is independently a saturated, unsaturated with at least one double or triple bond, branched or unbranched C1-30 alkyl group, optionally substituted with an aliphatic or aromatic C3-9 cyclohydrocarbon or heterocyclic group; with the proviso that when R1 is CH2—CH3, R2 is C5-30, and that formula I is not 2-n-propyl-4-pentynoic acid or 2-n-propyl-4-pentenoic acid (4-en-VPA).
M is a hydrogen or a metal atom.
This invention also includes the racemic mixtures and the separate enantiomeric R and S forms of the compounds and pharmaceutical acceptable salts thereof.
Preferably, R1 is —C≡CH and R2 is an unbranched saturated C2-C10 alkyl group. More preferred, R2 is an unbranched, saturated C4-C6alkyl group. Examples of preferred substituents for R2include —(CH2)1-9—CH3, more preferred is —(CH2)3-6—CH3, and most preferred is —(CH2)4-5—CH3. Most preferred compounds are 2-n-butyl-4-pentynoic acid (R1=—C≡H; R2=—(CH2)3—CH3)), 2-n-pentyl-4-pentynoic acid (R1=—C≡H; R2=—(CH2)4—CH3) and 2-n-hexyl-4-pentynoic acid (R1=—C≡H; R2=—(CH2)5—CH3). In addition, although both enantiomers and their racemic mixtures are considered within the scope of this invention, the S-enantiomeric form is preferred. Preferred metal atoms are sodium or other alkali metals, as well as alkaline earth metals such as, for example, calcium or magnesium.
The teratogenic, antiproliferative and prodifferentiative potencies of the preferred compounds are much higher than of the antiepileptic drug valproic acid.
Further branching of R1 or R2 reduces the potency of the corresponding compounds. This is demonstrated by the low teratogenic, antiproliferative and prodifferentiative potency of the following compound.
Unsaturation between C2 and C3 (IV) as well as methylation of the C5 (V, VI) also lowers, but does not abolish, the above mentioned cellular neurotrophic and antiproliferative activity
In agreement with our basic hypothesis, compound IV (Nau et al., Neurology (1984) 34:400-402; Nau and Löscher, Fundam Appl. Toxicol. (1986) 6:669-676; Nau and Scott, Nature (1986) 323:276-278; Vorhees et al., Teratology (1991) 43:583-590; Ehlers et al., Devel. Pharmacol. Ther. (1992) 19:196-204 and VI (Nau et al., Pharmacol. & Toxicol. (1991) 69:310-321; Elmazar et al., J. Pharm. Sci. (1993) 82:1255-1258 has very low or undetectable teratogenic activities, but good anticonvulsant properties in experimental models.
The compounds and compositions of this invention are more potent teratogenic analogues of valproate and exhibit greater antiproliferative and neurotrophic/neuroprotective activity than the parent. In contrast to saturated valproate analogues (where both chains must contain 3 carbon atoms each for maximal activity) a double or triple bond in the ω position of one chain exhibits higher activities when the other chain contains 4 to 6 carbon atoms. The 2-n-propyl-4-pentynoic acid, 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid are the most potent valproate-related teratogens synthesized. 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4-pentynoic and 2-n-hexyl-4-pentynoic acid are more preferred. Most preferred are 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid.
The preferred compounds for use with this invention possess a chiral alpha-carbon. As a result of chirality, the efficacy and potency of different enantiomeric forms may differ. For example, S-2-n-propyl-4-pentynoic acid has significantly greater teratogenic potential than the R-enantiomeric form. Hauck and Nau, Pharm. Res. (1992) 9:850-855; Hauck et al. Toxicol. Lett. (1992) 60:145-153. See Nau et al. Pharmacol. Toxicology (1991) 69:310-321 which is incorporated herein by reference. Although there is no general rule of the above-identified compounds, the S enantiomeric form is preferred.
The compounds of this invention are prepared by reacting an appropriately substituted malonic acid diethylester with an appropriate unsaturated alkylating agent such as a straight-chain alkylhalide. The product is then hydrolyzed and decarboxylated.
The reaction can also be carried out in the reciprocal manner in that a malonic acid diethylester, substituted with an unsaturated function is reacted with an appropriate alkylhalide. This reaction is again followed by hydrolysis and decarboxylation.
The novel compounds of this invention may be produced according to the method of this invention. In one embodiment, the method of synthesizing the compounds comprises combining a malonic acid diester reactant with a first halide reactant having the general formula
wherein R2 is a saturated or unsaturated branched or unbranched C1-C30 alkyl group and X is a halide. This first reaction produces a 2-alkyl-malonic acid diester. The 2-alkyl-malonic acid diester is then further combined with a second halide reactant having the general formula
wherein R5 is an alkyl group.
The resulting diesters are then hydrolyzed, decarboxylated and optionally converted into a salt.
In an alternative embodiment, the order of carrying out the reactions is reversed, such that the R1—CH2—X is combined with the malonic acid diester followed by further reaction with the R2—X.
In a preferred method of preparing the compounds of this invention, malonic acid diethylester is treated with a base, for example, sodium ethylate, to deprotonate carbon 2. Subsequent treatment of the resulting deprotonated ester with an alkylating agent in the form of a straight-chain alkyl halide yields a 2-n-alkyl-malonic acid diethylester.
The diesters (XI) and (XII) and (XIII) are hydrolyzed and decarboxylated with potassium hydroxide in ethanol/water with heat treatment.
Another embodiment of this invention is the promotion of neural function by contacting neural cells with a neurotrophic amount of a compound of formula (II)
wherein R3 and R4 are independently of each other saturated or unsaturated, branched, or unbranched, C1-C30 aliphatic hydrocarbons, optionally possessing at least one double or triple bond. Preferably R3 and R4 are unbranched, and R3 is less than or equal to a three carbon chain. R4 preferably is a saturated alkyl group and is preferably from C2-C10, as in for example —(CH2)1-9—CH3, and more preferably from C4 to C6, as in for example —(CH2)3-5—CH3. In addition to the compounds stated above in connection with formula I, other compounds which are useful for the promotion of neuronal function and inhibition of cell mitosis are described in Nau et al. PCT application PCT/DE93/00861 publish as WO94/06743, and which is incorporated herein by reference.
Preferred compounds useful for promoting neuronal function include for example, 2-n-propyl-4-pentynoic acid (R3=—CH2—C≡CH; R4=—(CH2)2—CH3); valproic acid (R3=R4=—(CH2)2—CH3); 2-n-propylhexanoic acid (R3=—(CH2)3—CH3, R4=—(CH2)2—CH3); and 2-n-butylhexanoic acid (R3=—(CH2)3—CH3).
The promotion of neuronal function is particularly useful for preventing and treating neurodegenerative disorders. Neurodegenerative disorders include any disorder resulting in neuronal degeneration which is responsive to at least one of the valproate analogues or valproate itself.
The neurotrophic activity associated with valproate and its analogues may be determined based on in vitro indices of differentiation, including inhibition of mitosis, increase in neurite outgrowth, and NCAM expression. For example, the ability to promote neurite outgrowth is correlated with enhanced survival of certain cultured neural cells including embryonic sensory and sympathetic neurons. Proliferating immature neuroblasts, in vitro, have a rounded shape and are loosely adherent to culture surfaces. In the presence of a neurotrophic factor, these cells become more adherent and sprout processes known in the art as neurites. Accordingly, in vitro neurite outgrowth may be used as an assay for determining concentrations of compound in contact with target cells which would be expected to achieve desirable neuroprotecting effects.
Methods of assessing neurite outgrowth in vitro are well known in the art and, for example, may be assessed through direct microscopic visual inspection or through the use of computer aided image processing.
Another characteristic of neurotrophic factors which may be used to assess the neuroprotective action of the compounds and compositions of this invention is their ability to promote survival or certain specific cell types. For example, NGF is required in vitro for the survival of certain specific cell types which die in the absence of NGF. Such NGF dependent cells include neurons of the chick dorsal rat ganglia at about embryonic day E5to E8.
Scanning electron microscopy illustrates the cells ability to increase cell-substratum adhesivity. They eliminate rounded and clustered growth, typical of tumor cells, and induce a flattening and greater interaction with the substratum (FIG. 2). In vivo, it is generally believed that these neurites further differentiate into axons and dendrites and form synapses with other neurons. During diseases involving neurodegeneration, there may be a loss of synapses and degeneration of axons and dendrites resulting in a deficit of neuronal function.
Another index of differentiation resulting from the neurotrophic activity of valproate analogues is an increase in NCAM expression. Further, increases in NCAM prevalence enhances neurite outgrowth. Doherty et al., Nature (1990) 343:464-466. NCAM has been reported as playing a fundamental role in memory formation as intraventricular infusion of anti-NCAM during consolidation of a recent learning event induces an amnesia. Doyle et al., J. Neurochem. (1992) 59:1570-1573, which is incorporated herein by reference. Rapid endocytosis of the Aplysia NCAM homologue was reported following a serotonin-induced change in synapse structure in vitro. Bailey et al., Science (1992) 256:645-649.
During development of individual brain regions, or in adults exhibiting ongoing neurogenesis, NCAM transiently increases its sialylation state. See review, Regan, Int. J. Biochem. (1991) 23:513-523, which is incorporated herein by reference, Rougon (1993) Eur. J. Cell Biol. 61:197-207. The synapse specific NCAM isoform (NCAM 180) which is associated with differentiated neurons increases its sialylation state during later stages of development until the period of synaptogenesis is complete. Breen et al., J. Neurochem (1988) 50:712-716. A similar isoform-specific sialylation of NCAM 180 occurs during consolidation of a passive-avoidance response. Doyle et al., J. Neurosci Res., (1992) 31:513-523.
Accordingly, the methods of treatment and prevention of neurodegenerative diseases rely on the ability of valproate and its analogues to possess neurotrophic activity such as promoting neurite outgrowth and survival of neuronal cells and NCAM expression.
It is contemplated that the methods of treatment may provide benefits to persons with neurodegeneration from disorders including, but not limited to ALS, Alzheimers disease, Parkinson's disease, Huntington's disease, diabetic neuropathy and stroke. In addition, the neurite promoting activity of the disclosed compounds and compositions would also provide benefits to individuals with traumatic nerve injury.
IN another embodiment of this invention, methods are provided for arresting cells in a specific stage of the cell cycle which leaves the cells in a differentiated state by contacting cells with a mitotic inhibitory amount of a compound of formula II as described above. Preferred substituents for R3, R4 and M for inhibiting mitosis are the same as those for promoting neuronal function, with the proviso that formula II is not valproate if simply used to inhibit cell mitosis. Preventing mitosis in this manner is useful for enhancing the expression of specific proteins associated with the differentiated phenotype. This enhanced expression facilitates purification of such proteins. In addition, arresting or retarding mitosis is useful for treating proliferative disorders by administering to individuals in need of treatment valproate and/or another of its anti-mitotic analogues.
We have observed sensitivity to valproate or its antimitotic analogues in all cells tested. Such cell types include: primary astrocytes, human astrocytoma, and those from cardiac, renal, and immune systems. Accordingly, the antiproliferative action of valproate and its other analogues described herein should have broad applicability for a wide variety of tumors derived from a variety of cell types and particularly those mentioned above.
The neurotrophic and/or anti-mitotic effective amounts of valproate and active analogues may be determined using standard dose-response curves. Accordingly, representative cells may be cultured in vitro in the presence of varying concentration of test compound. At an appropriate time, the cells under the different conditions are examined for the appropriate parameter (for example, cell number for antimitotic activity; neurite outgrowth for neurotrophic activity) and the ED50 may be determined.
The preferred compounds of this invention exert a most profound antiproliferative action with ED50 values well below (<0.5 mM) those observed with valproate (FIG. 1). Thus, these compounds may be expected to act an concentrations which will be devoid of the sedative and hepatotoxic side effects of valproate. The preferred compounds also exert the prodifferentiative action observed with valproate. In the neuro-2a neuroblastoma cell line they induce a marked neuritogenic response which correlates with their antiproliferative potential (FIG. 2).
In addition, the more potent of these compounds increase neural cell adhesion molecule (NCAM) prevalence (FIG. 3). This cell recognition system regulates neural plasticity during development and, later, during information storage in the adult animal by altering its prevalence and glycosylation state (Doyle et al., J. Neurosci Res., (1992) 31:513-523). Drugs which reverse scopolamine-induced amnesia, such as piracetam-related compounds, appear to act through a neuroprotective mechanism which involves a non-specific increase in NCAM glycosylation and/or prevalence (Doyle et al., J. Neurochem. (1993) 61:266-272). Consequently agents which would induce NCAM expression may be predicted to have neuroprotective potential.
This invention also provides pharmaceutical compositions useful for treating neurodegenerative or proliferative disorders comprising a compound selected from formulas I or II as described above. In addition to the compounds of formula I or II, the pharmaceutical composition may also comprise adjuvant substances and carriers. The compositions may be in the form of tablets, capsules, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations such as oral or sterile parenteral solutions or suspensions.
In order to obtain consistency or administration it is preferred that a composition of the invention is in the form of a unit dose.
Unit dose presentation forms for oral administration may be tablets and capsules and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone, fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycolate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulphate.
The solid oral compositions may be prepared by conventional methods of blending, filling, tabletting or the like. Repeated blending operation may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate of sorbic acid; and if desired conventional flavoring or coloring agents.
For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, a preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared is substantially the same manner, except that the compound is suspended in the vehicle instead or being dissolved, and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
The dose of the compound used in the treatment of such disease will vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and the relative efficacy of the compound.
Antiproliferative and neuroprotective actions should be sufficient to achieve the desired inhibition of mitosis or neuroprotection without serious hetaptotoxic side effects. The plasma concentrations to be achieved will be sufficient to provide therapeutically effective concentrations of compound in contact with the target cells. Standard clinical techniques may be used to determine the effective amount of compound to be administered to achieve the desired therapeutic effect. Dose response curves may be determined first in vitro in a relevant animal model to determine ranges of expected therapeutic concentrations in humans. For example, mitosis of mouse neuro-2a-neuroblastoma cells is inhibited by valproate with an ED50 of 1.0-1.3 mM. Other cell lines, including those of human origin may be used to assesses activity as well.
0.1 mol n-butyl malonic acid diethylester and 0.1 mol 3-bromo-1-propine were placed in a dry argon flushed flask and heated to 60° C. To this mixture was added 0.1 mol sodium ethanolat (prepared from 0.1 mol sodium and 50 mol dry ethanol) dropwise such as to keep the mixture boiling. After completion of the addition, the mixture was heated until TLC (Silica alu sheets, hexane/ethylacetate 7.5/1) showed absence of starting material (usually 1-2 hours). The ethanol was evaporated under reduced pressure, the remaining salts were dissolved in water and the product was extracted three times with CH2Cl2. The organic phase was dried over sodium sulfate and evaporated The distillation under reduced pressure resulted in the unsymmetrically substituted malonic acid diethylester.
bP0.3 mbar:78°-82° C.
The dialkylated malonic esters were heated in a solution of 20.3 g (0.35 mol) potassium hydroxide, 50 ml water and 100 ml ethanol. After completion of the saponification, ethanol was evaporated under reduced pressure. The remaining residue was diluted with water and washed with ether. The water layer was acidified with concentrated HCl (pH<2) and extracted with ether. Drying over anhydrous sodium sulfate and concentration under reduced pressure yielded crude dialkyl malonic acid. Decarboxylation was achieved by heating of the crude product (120°-180° C.). The dark residue was distilled twice in vacuo resulted in the desired products.
Overall yield: 18%
bP0.1 mbar: 75°-78° C.
1H-NMR (CDCl3): 0.94 (3H, t, CH3), 1.34 (4H, m, 2×CH2), 1.72 (2H, m, CH2—CHRCOOH), 2.04 (1H, t, C≡C—H), 2.36-2.68 (3H, m, CHRCOOH—CH2—C≡C), 11.88 (1H, s, broad, COOH)
0.1 mol n-pentyl malonic acid diethylester is reacted with 0.1 mol 3-bromo-1-propine as described in example 1.
Overall yield: 14%
bP15 mbar: 135° C.
1H-NMR (CDCL3): 0.92 (3H, t, CH3), 1.32 (6H, m, 3=CH2), 1.72 (2H, m, CH2—CHRCOOH), 2.04 (1H, t, C≡C—H), 2.40-2.72 (3H, m, CHRCOOH—CH2—C≡C), 11.32 (1H, s, broad, COOH)
Synthesis is by the dianion method (Petragnani, Synthesis 521, 1982).
All glassware was oven dried and the reaction apparatus was flushed with argon throughout the entire operation.
Lithium-dianion (0.2 Mol) was prepared by adding 0.2 Mol n-butyl-lithium to a solution of 0.2 Mol freshly distilled diisopropylamine and 130 ml dry tetrahydrofurane at 0° C. Octanoic acid (0.1 Mol) was added followed by 19 hexamethylphosphoric acid triamide to effect solution of the dianion. The resulting mixture was stirred at room temperature for 30 min followed by cooling to −60° C. and addition of 3-bromo-1-propin (0.1 Mol) quickly via a syringe. The temperature rose instantly. After cooling back to −60° C., the reaction was stirred and monitored by TLC (Hexane:Ethylacetate=7.5:1 plus 5% acetic acid) until completion (ca 1.5 h). Cooling was removed and 200 ml 10% HCl was added. The phases were separated and the water phase was extracted twice with ether. The combined organic phases were washed with half saturated NaCl solution and dried with Na2SO4. Evaporation of the solvent yielded a yellow oil. Destillation yielded a colorless liquid (bp. 82°-84° C., 0.1 mbar). 1H NMR (CDCl3)=0.88 (3H, t, CH3), 1.40 (8H, mc, CH2), 1.90 (2H, mc, CH2), 2.04 (1H, t, ≡—H), 2.32-2.68 (3H, m, CH2, Hα), 12.04 (1H, s broad, COOH).
The following non-limiting preferred examples are compounds within the scope of this invention:
2-n-propyl-4-pentynoic acid
2-n-prop-11-enyl-4-pentynoic acid
2-n-prop-21-enyl-4-pentynoic acid
2-i-propyl-4-pentynoic acid
2-i-propenyl-4-pentynoic acid
2-n-butyl-4-pentynoic acid
2-n-but-11-enyl-4-pentynoic acid
2-n-but-21-enyl-4-pentynoic acid
2-n-but-31-enyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(11-methylprop-11-enyl)-4-pentynoic acid
2-(11-methylprop-21-enyl)-4-pentynoic acid
2-(21-methylpropyl)-4-pentynoic acid
2-(21-methylprop-11-enyl)-4-pentynoic acid
2-(21-methylprop-21-enyl)-4-pentynoic acid
2-tert.-butyl-4-pentynoic acid
2-n-pentyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(21-methylbutyl)-4-pentynoic acid
2-(31-methylbutyl)-4-pentynoic acid
2-(11,11-dimethylpropyl)-4-pentynoic acid
2-(11,21-dimethylpropyl)-4-pentynoic acid
2-(21,21-dimethylpropyl)-4-pentynoic acid
2-n-hexyl-4-pentynoic acid
2-n-hex-11-enyl-4-pentynoic acid
2-n-hex-21-enyl-4-pentynoic acid
2-n-hex-31-enyl-4-pentynoic acid
2-n-hex-41-enyl-4-pentynoic acid
2-n-hex-51-enyl-4-pentynoic acid
2-(11-methylpentyl)-4-pentynoic acid
2-(11-methylpent-11-enyl)-4-pentynoic acid
2-(11-methylpent-21-enyl)-4-pentynoic acid
2-(11-methylpent-31-enyl)-4-pentynoic acid
2-(11-methylpent-41-enyl)-4-pentynoic acid
2-(21-methylpentyl)-4-pentynoic acid
2-(21-methylpent-11-enyl)-4-pentynoic acid
2-(21-methylpent-21-enyl)-4-pentynoic acid
2-(21-methylpent-31-enyl)-4-pentynoic acid
2-(21-methylpent-41-enyl)-4-pentynoic acid
2-(31-methylpentyl)-4-pentynoic acid
2-(31-methylpent-11-enyl)-4-pentynoic acid
2-(31-methylpent-21-enyl)-4-pentynoic acid
2-(31-methylpent-31-enyl)-4-pentynoic acid
2-(31-methylpent-41-enyl)-4-pentynoic acid
2-(41-methylpentyl)-4-pentynoic acid
2-(41-methylpent-11-enyl)-4-pentynoic acid
2-(41-methylpent-21-enyl)-4-pentynoic acid
2-(41-methylpent-31-enyl)-4-pentynoic acid
2-(41-methylpent-41-enyl)-4-pentynoic acid
2-(11,11-dimethylbutyl)-4-pentynoic acid
2-(11,11-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,11-dimethylbut-31-enyl)-4-pentynoic acid
2-(11,21-dimethylbutyl)-4-pentynoic acid
2-(11,21-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,21, dimethylbut-21-enyl)-4-pentynoic acid
2-(11,21, dimethylbut-31-enyl)-4-pentynoic acid
2-(11,31-dimethylbutyl)-4-pentynoic acid
2-(11,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,31-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,31-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,21-dimethylbutyl)-4-pentynoic acid
2-(21,21-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,31-dimethylbutyl)-4-pentynoic acid
2-(21,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-21-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-31-enyl)-4-pentynoic acid
2-(31,31-dimethylbutyl)-4-pentynoic acid
2-(31,31-dimethylbut-11-enyl)-4--pentynoic acid
2-(11,11,21-trimethylpropyl)-4-pentynoic acid
2-(11,11,21-trimethylprop-21-enyl)-4-pentynoic acid
2-(11,21, 21-trimethylpropyl)-4-pentynoic acid
2-n-heptyl-4-pentynoic acid
2-(11-methylhexyl)-4-pentynoic acid
2-(21-methylhexyl)-4-pentynoic acid
2-(31-methylhexyl)-4-pentynoic acid
2-(41-methylhexyl)-4-pentynoic acid
2-(51-methylhexyl)-4-pentynoic acid
2-(11,11-dimethylpentyl)-4-pentynoic acid
2-(11,21-dimethylpentyl)-4-pentynoic acid
2-(11,31-dimethylpentyl)-4-pentynoic acid
2-(11,41-dimethylpentyl)-4-pentynoic acid
2-(21,21-dimethylpentyl)-4-pentynoic acid
2-(21,31-dimethylpentyl)-4-pentynoic acid
2-(21,41-dimethylpentyl)-4-pentynoic acid
2-(31,31-dimethylpentyl)-4-pentynoic acid
2-(31,41-dimethylpentyl)-4-pentynoic acid
2-(41,41-dimethylpentyl)-4-pentynoic acid
2-(11,11,21-trimethylbutyl)-4-pentynoic acid
2-(11,11,31-trimethylbutyl)-4-pentynoic acid
2-(11,21,31-trimethylbutyl)-4-pentynoic acid
2-(21,21,31-trimethylbutyl)-4-pentynoic acid
2-(21,31,31-trimethylbutyl)-4-pentynoic acid
Maintenance of Cell Lines.
The mouse neuro-2a neuroblastoma cell line (Klebe and Ruddle, 1969 J. Cell Biol., 43:69A) was cultured in Dulbecco's modified Eagle's medium (DMEM; Flow Laboratories) supplemented with 10% fetal bovine serum (Tissue Culture Services), 200 mM glutamine and 100 μg/ml of gentamicin or 100 units/ml and 100 μg/ml of penicillin/streptomycin antibiotics (Sigma Chemicals). The cells were maintained in a water-humidified atmosphere of 9% CO2at 37° C. Cells were passaged using 0.025% trypsin (Gibco) in DMEM, and were seeded at a density of 1×104 cells/cm2.
Antiproliferative Assay.
Neuro-2a cells were seeded in 25cm2 flasks (Costar) at a density of 1×104 cells/cm2. Following a recovery period of 24 h, the agent to be examined was added to the cells in a vehicle of dimethyl sulphoxide (DMSO), the volume of which was 0.2% of the total volume of medium bathing the cells. A flask containing the DMSO vehicle alone was employed as control. Following incubation for 48h, cells were examined using an inverted phase contrast microscope (Leitz Diavert) and photographed (Ilford 50ASA film). Cells were then harvested by trypsinization and were counted using a haemocytometer (improved Neubauer model). FIG. 1 shows the resultant decrease in cell proliferation.
Scanning Electron Microscopy.
Cells which were to be examined by scanning electron microscopy were grown as previously described in 25cm2 flasks. Following 48 h exposure to the agent, cells were fixed in a solution of 2.5% glutaraldehyde in 0.1M sodium phosphate buffer, pH 7.4, overnight at 4° C. The cells were post-fixed subsequently in phosphate-buffered 1% osmium tetroxide for 1 h at room temperature, washed and were dehydrated gradually for 1 hour using a series of ethanol concentrations stepwise from 20, 40, 60, 80 to a final concentration 100%.
Sections of the base of the tissue culture flask were removed and were critical point dried to minimize shrinkage and cracking. This was achieved by placing the samples in a Polaron critical point dryer and purging the chamber several times with CO2 to remove all traces of ethanol. After 1 h the temperature and pressure were increased to 40° C. and 1200 lbs/in2, respectively, at which stage the critical point for carbon dioxide had been reached and drying was completed.
Specimens were subsequently removed from the chamber, mounted on stubs suitable for scanning electron microscopy using conductive carbon cement (Neubauer) and were sputter coated with gold under vacuum (5×10−2 torr) in the presence of argon gas at a current of 20 mA for 3 minutes (Polaron E5100). Following gold-coating, samples were examined in the scanning electron microscope (JEOL 35C) at an accelerating voltage of 15 kV. Images were recorded on film (Kodak Plus-X Pan 120 film) as shown in FIG. 2.
Fluorescence Microscopy.
Cells were seeded in 24-well plates at a density of 1×104 cells/cm2. Following a recovery period 24 h they were exposed for an additional 48 h to the drug under investigation. Cells were progressively fixed by six ten-minute incubations with DMEM containing increasing concentrations of neutral buffered formalin stepwise from 10, 30, 50, 70, 90 to a final concentration of 100%. When fixation was complete, cells were washed three times with phosphate buffered saline pH 7.4 over a 30 minute period. The cells were then incubated with a 1 in 50 dilution of rabbit anti-NCAM antibody, (Pliophys et al. J. Neuropsychiatr. 2:413-417, 1990) in phosphate buffered saline containing 1% (W/V) bovine serum albumin for 1 h at RT and washed three times with phosphate buffered saline, pH 7.4 for 30 minutes. Washed cells were then incubated for 1 h at RT with the secondary anti-rabbit antibody diluted 1 in 50 in phosphate buffered saline containing 1% (W/V) bovine serum albumin (Sigma) which was conjugated to rhodamine. The cells were again washed three times with phosphate buffered saline pH 7.4 and were then mounted using Citifluor (Agar Scientific) containing a fluorescence enhancer. Fluorescence of rhodamine was visualized using an excitatory wavelength of 535 nm (Leica filter block N2.1) on a Leitz DMRB fluorescence microscope. Fluorescence intensity was examined at points of cell-cell contact using a Quantimet 500 Image Analysis System. Fluorescence intensity is expressed as grey level at points of cell contact relative to that observed in the control. FIG. 3 shows the increase in NCAM immunofluorescence.
While we have hereinbefore described a number of embodiments of this invention, it is apparent that the basic constructions can be altered to provide other embodiments which utilize the methods of this invention. Therefore, it will be appreciated that the scope of this invention is defined by the claims appended hereto rather than by the specific embodiments which have been presented hereinbefore by way of example.
Claims (23)
wherein
R1 is —C≡CH, —CH═CH2, or —CH2—CH3,
R2 is a saturated, unsaturated, branched and/or unbranched C1-C30 alkyl group, optionally further comprising an aliphatic or aromatic C3-9 cyclohydrocarbon or heterocyclic group comprising 3 to 9 atoms; and
M is a hydrogen or a metal atom,
and enantiomeres thereof and pharmaceutical acceptable salts thereof; with the proviso that the compound of formula (I) is not 2-n-propyl-4-pentynoic acid, 2-benzylpentanoic acid, 4,4′-dien-valproic acid or 2-n-propyl-4-pentenoic acid (4-en-VPA), and when R1 is —CH2—CH3, R2 is C5 to C30.
2. The compounds according to claim 1 wherein R1 is —C≡CH or —CH═CH2 and R2 is unbranched and —(CH2)1-9—CH3.
3. The compound according to claim 2 wherein R2 is —(CH2)3-6—CH3.
4. The compounds according to claim 2 wherein R2 is —(CH2)4-5—CH3.
5. The compounds according to claim 4 wherein R1 is —C≡CH.
6. The S enantiomer of the compounds according to claim 1 .
7. The compounds according to claim 1 , selected from the group consisting of:
2-n-prop-11-enyl-4-pentynoic acid
2-n-prop-21-enyl-4-pentynoic acid
2-i-propyl-4-pentynoic acid
2-i-propenyl-4-pentynoic acid
2-n-but-11-enyl-4-pentynoic acid
2-n-but-21-enyl-4-pentynoic acid
2-n-but-31-enyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(11-methylprop-11-enyl)-4-pentynoic acid
2-(11-methylprop-21-enyl)-4-pentynoic acid
2-(21-methylpropyl)-4-pentynoic acid
2-(21-methylprop-11-enyl)-4-pentynoic acid
2-(21-methylprop-21-enyl)-4-pentynoic acid
2-tert.-butyl-4-pentynoic acid
2-n-pentyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(21-methylbutyl)-4-pentynoic acid
2-(31-methylbutyl)-4-pentynoic acid
2-(31-dimethylpropyl)-4-pentynoic acid
2-(11,11-dimethylpropyl)-4-pentynoic acid
2-(21,21-dimethylpropyl)-4-pentynoic acid
2-n-hexyl-4-pentynoic acid
2-n-hex-11-enyl-4-pentynoic acid
2-n-hex-21-enyl-4-pentynoic acid
2-n-hex-31-enyl-4-pentynoic acid
2-n-hex-41-enyl-4-pentynoic acid
2-n-hex-51-enyl-4-pentynoic acid
2-(11-methylpentyl)-4-pentynoic acid
2-(11-methylpent-11-enyl)-4-pentynoic acid
2-(11-methylpent-21-enyl)-4-pentynoic acid
2-(11-methylpent-31-enyl)-4-pentynoic acid
2-(11-methylpent-41-enyl)-4-pentynoic acid
2-(21-methylpentyl)-4-pentynoic acid
2-(21-methylpent-11-enyl)-4-pentynoic acid
2-(21-methylpent-21-enyl)-4-pentynoic acid
2-(21-methylpent-31-enyl)-4-pentynoic acid
2-(21-methylpent-41-enyl)-4-pentynoic acid
2-(31-methylpentyl)-4-pentynoic acid
2-(31-methylpent-11-enyl)-4-pentynoic acid
2-(31-methylpent-21-enyl)-4-pentynoic acid
2-(31-methylpent-31-enyl)-4-pentynoic acid
2-(31-methylpent-41-enyl)-4-pentynoic acid
2-(41-methylpentyl)-4-pentynoic acid
2-(41-methylpent-11-enyl)-4-pentynoic acid
2-(41-methylpent-21-enyl)-4-pentynoic acid
2-(41-methylpent-31-enyl)-4-pentynoic acid
2-(41-methylpent-41-enyl)-4-pentynoic acid
2-(11,11-dimethylbutyl)-4-pentynoic acid
2-(11,11-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,11-dimethylbut-31-enyl)-4-pentynoic acid
2-(11,21-dimethylbutyl)-4-pentynoic acid
2-(11,21-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,21,dimethylbut-31-enyl)-4-pentynoic acid
2-(11,31,dimethylbutyl)-4-pentynoic acid
2-(11,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,21-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,31-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,21-dimethylbutyl)-4-pentynoic acid
2-(21,21-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,31-dimethylbutyl)-4-pentynoic acid
2-(21,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-21-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-31-enyl)-4-pentynoic acid
2-(31,31-dimethylbutyl)-4-pentynoic acid
2-(31,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,11,21-trimethylpropyl)-4-pentynoic acid
2-(11,11,21-trimethylprop-21-enyl)-4-pentynoic acid
2-(11,21,21-trimethylpropyl)-4-pentynoic acid
2-n-heptyl-4-pentynoic acid
2-)11-methylhexyl)-4-pentynoic acid
2-(21-methylhexyl)-4-pentynoic acid
2-(31-methylhexyl)-4-pentynoic acid
2-(41-methylhexyl)-4-pentynoic acid
2-(51-methylhexyl)-4-pentynoic acid
2-(11,11-dimethylpentyl)-4-pentynoic acid
2-(11,21-dimethylpentyl)-4-pentynoic acid
2-(11,31-dimethylpentyl)-4-pentynoic acid
2-(11,41-dimethylpentyl)-4-pentynoic acid
2-(21,21-dimethylpentyl)-4-pentynoic acid
2-(21,31-dimethylpentyl)-4-pentynoic acid
2-(21,41-dimethylpentyl)-4-pentynoic acid
2-(31,31-dimethylpentyl)-4-pentynoic acid
2-(31,41-dimethylpentyl)-4-pentynoic acid
2-(41,41-dimethylpentyl)-4-pentynoic acid
2-(11,11,21-trimethylbutyl)-4-pentynoic acid
2-(11,11,31-trimethylbutyl)-4-pentynoic acid
2-(11,21,31-trimethylbutyl)-4-pentynoic acid
2-(21,21,31-trimethylbutyl)-4-pentynoic acid
2-(21,31,31-trimethylbutyl)-4-pentynoic acid.
8. The compounds according to claim 7 selected from the group consisting of 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4- pentynoic acid and 2-n-hexyl-4-pentynoic acid.
9. The compounds according to claim 8 wherein the compounds are selected from the group consisting of 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid.
wherein
R1 is —C≡CH, —CH═CH2, or —CH2—CH3,
R2 is saturated, unsaturated, branched and/or unbranched C1-30 alkyl group, optionally substituted with an aliphatic of aromatic C3-9 cyclohydrocarbon or heterocyclic group; and
M is a hydrogen or a metal atom, comprising;
combining a malonic acid diester with a first halide having the general formula (VII)
wherein R2 has the meaning given previously; or halogen, to form a 2-alkyl malonic acid diester, and combining the 2-alkyl malonic acid diester with a second halide having the general formula (VIII)
wherein R1 has the meaning given previously; or
combining the malonic acid diester with the second halide having the general formula (VIII) to form a 2-alkyl malonic acid diester; and
wherein R5 is an alkyl group; and hydrolyzing and decarboxylating the compound of formula (IX) to form the compound of formula (I) to a salt.
11. The method according to claim 10 wherein R1 is —C≡CH and R2 is —(CH2)1-9—CH3.
12. The method according to claim 11 wherein R2 is —(CH2)3-6—CH3).
13. The method according to claim 12 wherein R2 is —(CH2)4-5—CH3.
14. The method according to claim 10 wherein the method is used to prepare a compound selected from the group consisting of:
2-n-prop-11-enyl-4-pentynoic acid
2-n-prop-21-enyl-4-pentynoic acid
2-i-propyl-4-pentynoic acid
2-i-propenyl-4-pentynoic acid
2-n-butyl-4-pentynoic acid
2-n-but-11-enyl-4-pentynoic acid
2-n-but-21-enyl-4-pentynoic acid
2-n-but-31-enyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(11-methylprop-21-enyl)-4-pentynoic acid
2-(11-methylprop-21-enyl)-4-pentynoic acid
2-(21-methylpropyl)-4-pentynoic acid
2-(21-methylprop-11-enyl)-4-pentynoic acid
2-(21-methylprop-21-enyl)-4-pentynoic acid
2-tert.-butyl-4-pentynoic acid
2-n-pentyl-4-pentynoic acid
2-(11-methylbutyl)-4-pentynoic acid
2-(21-methylbutyl)-4-pentynoic acid
2-(31-methylbutyl)-4-pentynoic acid
2-(11,11-dimethylpropyl)-4-pentynoic acid
2-(11,21-dimethylpropyl)-4-pentynoic acid
2-(21,21-dimethylpropyl)-4-pentynoic acid
2-n-hexyl-4-pentynoic acid
2-n-hex-11-enyl-4-pentynoic acid
2-n-hex-21-enyl-4-pentynoic acid
2-n-hex-31-enyl-4-pentynoic acid
2-n-hex-41-enyl-4-pentynoic acid
2-n-hex-51-enyl-4-pentynoic acid
2-(11-methylpentyl)-4-pentynoic acid
2-(11-methylpent-11-enyl)-4-pentynoic acid
2-(11-methylpent-21-enyl)-4-pentynoic acid
2-(11-methylpent-31-enyl)-4-pentynoic acid
2-(11-methylpent-41-enyl)-4-pentynoic acid
2-(21-methylpentyl)-4-pentynoic acid
2-(21-methylpent-11-enyl)-4-pentynoic acid
2-(21-methylpent-21-enyl)-4-pentynoic acid
2-(21-methylpent-31-enyl)-4-pentynoic acid
2-(21-methylpent-41-enyl)-4-pentynoic acid
2-(31-methylpentyl)-4-pentynoic acid
2-(31-methylpent-11-enyl)-4-pentynoic acid
2-(31-methylpent-21-enyl)-4-pentynoic acid
2-(31-methylpent-31-enyl)-4-pentynoic acid
2-(31-methylpent-41-enyl)-4-pentynoic acid
2-(41-methylpentyl)-4-pentynoic acid
2-(41-methylpent-11-enyl)-4-pentynoic acid
2-(41-methylpent-21-enyl)-4-pentynoic acid
2-(41-methylpent-31-enyl)-4-pentynoic acid
2-(41-methylpent-41-enyl)-4-pentynoic acid
2-(11,11-dimethylbutyl)-4-pentynoic acid
2-(11,11-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,11-dimethylbut-31-enyl)-4-pentynoic acid
2-(11,21-dimethylbutyl)-4-pentynoic acid
2-(11,21-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,21,dimethylbut-21-enyl)-4pentynoic acid
2-(11,21,dimethylbut-31-enyl)-4-pentynoic acid
2-(11,31-dimethylbutyl)-4-pentynoic acid
2-(11,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,31-dimethylbut-21-enyl)-4-pentynoic acid
2-(11,31-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,21-dimethylbutyl)-4-pentynoic acid
2-(21,21-dimethylbut-31-enyl)-4-pentynoic acid
2-(21,31-dimethylbutyl)-4-pentynoic acid
2-(21,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-21-enyl)-4-pentynoic acid
2-(21,31-dimethylbut-31-enyl)-4-pentynoic acid
2-)31,31-dimethylbutyl)-4-pentynoic acid
2-(31,31-dimethylbut-11-enyl)-4-pentynoic acid
2-(11,11,21-trimethylpropyl)-4-pentynoic acid
2-(11,11,21-trimethylprop-21-enyl)-4-pentynoic acid
2-(11,21,21-trimethylpropyl)-4-pentynoic acid
2-n-heptyl-4-pentynoic acid
2-)11-methylhexyl)-4-pentynoic acid
2-(21-methylhexyl)-4-pentynoic acid
2-(31-methylhexyl)-4-pentynoic acid
2-(41-methylhexyl)-4-pentynoic acid
2-(51-methylhexyl)-4-pentynoic acid
2-(11,11-dimethylpentyl)-4-pentynoic acid
2-(11,21-dimethylpentyl)-4-pentynoic acid
2-(11,31-dimethylpentyl)-4-pentynoic acid
2-(11,41-dimethylpentyl)-4-pentynoic acid
2-(21,21-dimethylpentyl)-4-pentynoic acid
2-(21,31-dimethylpentyl)-4-pentynoic acid
2-(21,41-dimethylpentyl)-4-pentynoic acid
2-(31,31-dimethylpentyl)-4-pentynoic acid
2-(31,41-dimethylpentyl)-4-pentynoic acid
2-(41,41-dimethylpentyl)-4-pentynoic acid
2-(11,11,21-trimethylbutyl)-4-pentynoic acid
2-(11,11,31-trimethylbutyl)-4-pentynoic acid
2-(11,21,31-trimethylbutyl)-4-pentynoic acid
2-(21,21,31-trimethylbutyl)-4-pentynoic acid
2-(211,31,31-trimethylbutyl)-4-pentynoic acid.
15. The method according to claim 10 wherein the method is used to prepare at least one compound selected from the group consisting of 2-n-butyl-4-pentynoic acid, 2-n-pentyl-4-pentynoic acid and 2-n-hexyl-4-pentynoic acid.
wherein
R 1 is —C≡CH, R 2 is a saturated, unsaturated, branched and/or unbranched C 1 -C 30 alkyl group, optionally further comprising an aliphatic or aromatic C 3-9 cyclohydrocarbon or heterocyclic group comprising 3 to 9 atoms; and M is a hydrogen or a metal atom, and pharmaceutical acceptable salts thereof; with the proviso that the compound of formula (I) is not 2 -n-propyl- 4 -pentynoic acid.
17. A compound according to claim 16 wherein R2 is —(CH 2)3-6 —CH 3 .
18. A compound according to claim 16 wherein R2 is —(CH 2)4-5 —CH 3 .
19. A compound according to claim 16 selected from the group consisting of:
2 -n-prop- 1 1-enyl- 4 -pentynoic acid
2 -n-prop- 2 1-enyl- 4 -pentynoic acid
2 -i-propyl- 4 -pentynoic acid
2 -i-propenyl- 4 -pentynoic acid
2 -n-butyl- 4 -pentynoic acid
2 -n-but- 1 1-enyl- 4 -pentynoic acid
2 -n-but- 2 1-enyl- 4 -pentynoic acid
2 -n-but- 3 1-enyl- 4 -pentynoic acid
2 -( 1 1-methylbutyl)- 4 -pentynoic acid
2 -( 1 1-methylprop- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1-methylprop- 2 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylpropyl)- 4 -pentynoic acid
2 -( 2 1-methylprop- 1 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylprop- 2 1-enyl)- 4 -pentynoic acid
2 -tert.-butyl- 4 -pentynoic acid
2 -n-pentyl- 4 -pentynoic acid
2 -( 1 1-methylbutyl)- 4 -pentynoic acid
2 -( 2 1-methylbutyl)- 4 -pentynoic acid
2 -( 3 1-methylbutyl)- 4 -pentynoic acid
2 -( 1 1 ,1 1-dimethylpropyl)- 4 -pentynoic acid
2 -( 1 1 ,2 1-dimethylpropyl)- 4 -pentynoic acid
2 -( 2 1 ,2 1-dimethylpropyl)- 4 -pentynoic acid
2 -n-hexyl- 4 -pentynoic acid
2 -n-hex- 1 1-enyl- 4 -pentynoic acid
2 -n-hex- 2 1-enyl- 4 -pentynoic acid
2 -n-hex- 3 1-enyl- 4 -pentynoic acid
2 -n-hex- 4 1-enyl- 4 -pentynoic acid
2 -n-hex- 5 1-enyl- 4 -pentynoic acid
2 -( 1 1-methylpentyl)- 4 -pentynoic acid
2 -( 1 1-methylpent- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1-methylpent- 2 1-enyl)- 4 -pentynoic acid
2 -( 1 1-methylpent- 3 1-enyl)- 4 -pentynoic acid
2 -( 1 1-methylpent- 4 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylpentyl)- 4 -pentynoic acid
2 -( 2 1-methylpent- 1 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylpent- 2 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylpent- 3 1-enyl)- 4 -pentynoic acid
2 -( 2 1-methylpent- 4 1-enyl)- 4 -pentynoic acid
2 -( 3 1-methylpentyl)- 4 -pentynoic acid
2 -( 3 1-methylpent- 1 1-enyl)- 4 -pentynoic acid
2 -( 3 1-methylpent- 2 1-enyl)- 4 -pentynoic acid
2 -( 3 1-methylpent- 3 1-enyl)- 4 -pentynoic acid
2 -( 3 1-methylpent- 4 1-enyl)- 4 -pentynoic acid
2 -( 4 1-methylpentyl)- 4 -pentynoic acid
2 -( 4 1-methylpent- 1 1-enyl)- 4 -pentynoic acid
2 -( 4 1-methylpent- 2 1-enyl)- 4 -pentynoic acid
2 -( 4 1-methylpent- 3 1-enyl)- 4 -pentynoic acid
2 -( 4 1-methylpent- 4 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 1 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 1 1- 1 1-dimethylbut- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 1 1-dimethylbut- 3 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 2 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 1 1- 2 1-dimethylbut- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 2 1-dimethylbut- 2 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 2 1-dimethylbut- 3 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 3 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 1 1- 3 1-dimethylbut- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 3 1-dimethylbut- 2 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 3 1-dimethylbut- 3 1-enyl)- 4 -pentynoic acid
2 -( 2 1- 2 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 2 1- 2 1-dimethylbut- 3 1-enyl)- 4 -pentynoic acid
2 -( 2 1- 3 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 2 1- 3 1-dimethylbut- 1 1-enyl)- 4 -pentynoic acid
2 -( 2 1- 3 1-dimethylbut- 2 1-enyl)- 4 -pentynoic acid
2 -( 2 1- 3 1-dimethylbut- 3 1-enyl)- 4 -pentynoic acid
2 -( 3 1- 3 1-dimethylbutyl)- 4 -pentynoic acid
2 -( 3 1- 3 1-dimethylbut- 1 1-enyl)- 4 -pentynoic acid
2 -( 1 1- 1 1- 2 1-trimethylpropyl)- 4 -pentynoic acid
2 -( 1 1- 1 1- 2 1-trimethylprop- 2 -enyl)- 4 -pentynoic acid
2 -( 1 1- 2 1- 2 1-trimethylpropyl)- 4 -pentynoic acid
2 -n-heptyl- 4 -pentynoic acid
2 -( 1 1-methylhexyl)- 4 -pentynoic acid
2 -( 2 1-methylhexyl)- 4 -pentynoic acid
2 -( 3 1-methylhexyl)- 4 -pentynoic acid
2 -( 4 1-methylhexyl)- 4 -pentynoic acid
2 -( 5 1-methylhexyl)- 4 -pentynoic acid
2 -( 1 1 ,1 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 1 1 ,2 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 1 1 ,3 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 1 1 ,4 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 2 1 ,2 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 2 1 ,3 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 2 1 ,4 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 3 1 ,3 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 3 1 ,4 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 4 1 ,4 1-dimethylpentyl)- 4 -pentynoic acid
2 -( 1 1 ,1 1 ,2 1-trimethylbutyl)- 4 -pentynoic acid
2 -( 1 1 ,1 1 ,3 1-trimethylbutyl)- 4 -pentynoic acid
2 -( 1 1 ,2 1 ,3 1-trimethylbutyl)- 4 -pentynoic acid
2 -( 2 1 ,2 1 ,3 1-trimethylbutyl)- 4 -pentynoic acid
2 -( 2 1 ,3 1 ,3 1-trimethylbutyl)- 4 -pentynoic acid.
20. A compound according to claim 19 wherein the compounds are selected from the group consisting of 2-n-pentyl- 4 -pentynoic acid and 2 -n-hexyl- 4 -pentynoic acid.
21. 2-n-pentyl- 4 -pentynoic acid and enantiomers thereof and pharmaceutically acceptable salts thereof.
22. A S-enantiomer of the compounds of claim 21 and pharmaceutically acceptable salts thereof.
wherein R
1
is —C≡CH, R
2
is a saturated, unbranched C
5
alkyl group; and M is a hydrogen or a metal atom, comprising:
combining a malonic acid diester with a first halide having the general formula (VII)
wherein R 2 has the meaning given previously to form a 2 -pentyl malonic acid diester, and combining the 2 -pentyl malonic acid diester with a second halide having the general formula (VIII)
wherein R 1 has the meaning given previously; or combining the malonic acid diester with the second halide having the general formula (VIII) to form a 2 -pentyl malonic acid diester; and combining the first halide having the general formula (VII) to form a compound of formula (IX)
wherein R 5 is an alkyl group; and hydrolyzing and decarboxylating the compound of formula (IX) to form the compound of formula (I); and optionally converting the compound of formula (I) to a salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/250,001 USRE37670E1 (en) | 1994-08-30 | 1999-02-08 | Antiproliferative and neurotrophic molecules |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/298,108 US5672746A (en) | 1994-08-30 | 1994-08-30 | Antiproliferative and neurotrophic molecules |
US09/250,001 USRE37670E1 (en) | 1994-08-30 | 1999-02-08 | Antiproliferative and neurotrophic molecules |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/298,108 Reissue US5672746A (en) | 1993-09-10 | 1994-08-30 | Antiproliferative and neurotrophic molecules |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37670E1 true USRE37670E1 (en) | 2002-04-23 |
Family
ID=23149066
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/298,108 Ceased US5672746A (en) | 1993-09-10 | 1994-08-30 | Antiproliferative and neurotrophic molecules |
US09/250,001 Expired - Fee Related USRE37670E1 (en) | 1994-08-30 | 1999-02-08 | Antiproliferative and neurotrophic molecules |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/298,108 Ceased US5672746A (en) | 1993-09-10 | 1994-08-30 | Antiproliferative and neurotrophic molecules |
Country Status (2)
Country | Link |
---|---|
US (2) | US5672746A (en) |
DE (1) | DE19502050A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020032185A1 (en) * | 2000-07-18 | 2002-03-14 | Ono Pharmaceutical Co., Ltd. | Agent for treating parkinson's disease comprising astrocyte function-improving agent as active ingredient |
US20060223888A1 (en) * | 2002-12-16 | 2006-10-05 | Abbott Frank S | Valproic acid analogues and pharmaceutical composition thereof |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69408373T2 (en) * | 1993-06-01 | 1998-07-16 | Ono Pharmaceutical Co | Pentanoic acid derivatives |
IT1285801B1 (en) * | 1996-10-10 | 1998-06-24 | Sigma Tau Ind Farmaceuti | IMPROVED PROCEDURE FOR THE PREPARATION OF VALPROIC ACID |
US8198334B2 (en) * | 1997-10-27 | 2012-06-12 | Pathologica Llc | Methods for modulating macrophage proliferation in ocular disease using polyamine analogs |
US7087648B1 (en) * | 1997-10-27 | 2006-08-08 | The Regents Of The University Of California | Methods for modulating macrophage proliferation using polyamine analogs |
EP1170008A1 (en) * | 2000-07-07 | 2002-01-09 | Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus | Valproic acid and derivatives thereof as histone deacetylase inhibitors |
US6605638B1 (en) | 2000-12-20 | 2003-08-12 | D-Pharm Limited | Use of branched chain fatty acids and derivatives thereof for inhibition of P-glycoprotein |
US8026280B2 (en) | 2001-03-27 | 2011-09-27 | Errant Gene Therapeutics, Llc | Histone deacetylase inhibitors |
US7314953B2 (en) | 2001-03-27 | 2008-01-01 | Errant Gene Therapeutics, Llc | Treatment of lung cells with histone deacetylase inhibitors |
US6495719B2 (en) * | 2001-03-27 | 2002-12-17 | Circagen Pharmaceutical | Histone deacetylase inhibitors |
US7842727B2 (en) | 2001-03-27 | 2010-11-30 | Errant Gene Therapeutics, Llc | Histone deacetylase inhibitors |
US7312247B2 (en) * | 2001-03-27 | 2007-12-25 | Errant Gene Therapeutics, Llc | Histone deacetylase inhibitors |
AU2002315337A1 (en) * | 2001-06-18 | 2003-01-02 | Psychiatric Genomics, Inc. | Method for neural stem cell differentiation using valproate |
EP1293205A1 (en) * | 2001-09-18 | 2003-03-19 | G2M Cancer Drugs AG | Valproic acid and derivatives thereof for the combination therapy of human cancers, for the treatment of tumour metastasis and minimal residual disease |
JP2005298334A (en) * | 2001-12-19 | 2005-10-27 | Ono Pharmaceut Co Ltd | Novel intermediate compound and method for manufacturing compound by using the same |
WO2003099272A1 (en) | 2002-05-22 | 2003-12-04 | Errant Gene Therapeutics, Llc | Histone deacetylase inhibitors based on alpha-ketoepoxide compounds |
US20060160906A1 (en) * | 2004-10-04 | 2006-07-20 | Marton Laurence J | Polyamine analogs as therapeutic agents for ocular diseases |
WO2009036414A1 (en) * | 2007-09-13 | 2009-03-19 | University Of South Florida | Method of selectively inhibiting pkciota |
US8921533B2 (en) | 2011-07-25 | 2014-12-30 | Chromatin Technologies | Glycosylated valproic acid analogs and uses thereof |
CN117783501B (en) * | 2024-02-26 | 2024-05-10 | 四川大学华西第二医院 | Application of sodium octoate in attention deficit and hyperactivity disorder and product |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325361A (en) | 1962-10-17 | 1967-06-13 | Chemetron Corp | Anticonvulsant agents |
US3701729A (en) | 1970-06-01 | 1972-10-31 | Tenneco Chem | Oil-soluble mixed copper soap products |
US3847956A (en) | 1973-04-06 | 1974-11-12 | Us Agriculture | 2-hydroperoxycarboxylic acids and their preparation |
US3932285A (en) | 1973-10-03 | 1976-01-13 | Tenneco Chemicals, Inc. | Chromium salt compositions and a process for their production |
US4025649A (en) | 1974-08-19 | 1977-05-24 | Labaz | Acetic acid derivatives having pharmacological activity and compositions containing the same |
US4129599A (en) | 1975-04-28 | 1978-12-12 | The Board Of Trustees Of Leland Stanford Jr. University | A-Norsteroids |
JPS5680116A (en) | 1979-12-05 | 1981-07-01 | Sanyo Electric Co Ltd | Manufacture of substrate for magnetic bubble |
JPS5967266A (en) | 1982-10-07 | 1984-04-16 | Takeda Chem Ind Ltd | Substituted vinylcarboxylic acid derivative |
FR2599737A1 (en) | 1986-06-10 | 1987-12-11 | Sanofi Sa | Process for attaching alkyl, alkenyl, cycloalkyl or aralkyl groups to a carbon chain carrying a functional group |
JPH01135740A (en) | 1987-11-24 | 1989-05-29 | Nippon Mining Co Ltd | 2-alkyl-1-alkanoic acid having optical activity and production thereof |
US5021398A (en) | 1989-10-26 | 1991-06-04 | Amp Incorporated | Method of forming patterned oxide superconducting films |
WO1994006456A1 (en) | 1992-09-16 | 1994-03-31 | Genentech, Inc. | Protection against liver damage by hgf |
WO1994006743A1 (en) | 1992-09-12 | 1994-03-31 | Heinz Nau | Analogues of vpa used as anti-epileptica |
WO1994012608A1 (en) | 1992-11-30 | 1994-06-09 | The Procter & Gamble Company | High sudsing detergent compositions with specially selected soaps |
JPH06188152A (en) | 1992-12-18 | 1994-07-08 | Matsushita Electric Ind Co Ltd | Electrolytic solution for driving electronic capacitor and electrolytic capacitor using same |
EP0632008A1 (en) | 1993-06-01 | 1995-01-04 | Ono Pharmaceutical Co., Ltd. | Pentanoic acid derivatives |
WO1995033044A1 (en) | 1994-05-27 | 1995-12-07 | The Procter & Gamble Company | Liquid laundry detergent compositions comprising specially selected soaps |
US5503830A (en) | 1993-09-10 | 1996-04-02 | Petrovax, L.L.C. | Compounds having immunostimulating activity and methods of use thereof |
US5681854A (en) | 1995-11-22 | 1997-10-28 | Alcon Laboratories, Inc. | Use of aliphatic carboxylic acid derivatives in ophthalmic disorders |
WO1998003472A1 (en) | 1996-07-23 | 1998-01-29 | Chiesi Farmaceutici S.P.A. | Alpha-amino acid amides, preparation thereof and the therapeutical use thereof |
-
1994
- 1994-08-30 US US08/298,108 patent/US5672746A/en not_active Ceased
-
1995
- 1995-01-13 DE DE19502050A patent/DE19502050A1/en not_active Withdrawn
-
1999
- 1999-02-08 US US09/250,001 patent/USRE37670E1/en not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325361A (en) | 1962-10-17 | 1967-06-13 | Chemetron Corp | Anticonvulsant agents |
US3701729A (en) | 1970-06-01 | 1972-10-31 | Tenneco Chem | Oil-soluble mixed copper soap products |
US3847956A (en) | 1973-04-06 | 1974-11-12 | Us Agriculture | 2-hydroperoxycarboxylic acids and their preparation |
US3932285A (en) | 1973-10-03 | 1976-01-13 | Tenneco Chemicals, Inc. | Chromium salt compositions and a process for their production |
US4025649A (en) | 1974-08-19 | 1977-05-24 | Labaz | Acetic acid derivatives having pharmacological activity and compositions containing the same |
US4129599A (en) | 1975-04-28 | 1978-12-12 | The Board Of Trustees Of Leland Stanford Jr. University | A-Norsteroids |
JPS5680116A (en) | 1979-12-05 | 1981-07-01 | Sanyo Electric Co Ltd | Manufacture of substrate for magnetic bubble |
JPS5967266A (en) | 1982-10-07 | 1984-04-16 | Takeda Chem Ind Ltd | Substituted vinylcarboxylic acid derivative |
FR2599737A1 (en) | 1986-06-10 | 1987-12-11 | Sanofi Sa | Process for attaching alkyl, alkenyl, cycloalkyl or aralkyl groups to a carbon chain carrying a functional group |
JPH01135740A (en) | 1987-11-24 | 1989-05-29 | Nippon Mining Co Ltd | 2-alkyl-1-alkanoic acid having optical activity and production thereof |
US5021398A (en) | 1989-10-26 | 1991-06-04 | Amp Incorporated | Method of forming patterned oxide superconducting films |
WO1994006743A1 (en) | 1992-09-12 | 1994-03-31 | Heinz Nau | Analogues of vpa used as anti-epileptica |
WO1994006456A1 (en) | 1992-09-16 | 1994-03-31 | Genentech, Inc. | Protection against liver damage by hgf |
WO1994012608A1 (en) | 1992-11-30 | 1994-06-09 | The Procter & Gamble Company | High sudsing detergent compositions with specially selected soaps |
JPH06188152A (en) | 1992-12-18 | 1994-07-08 | Matsushita Electric Ind Co Ltd | Electrolytic solution for driving electronic capacitor and electrolytic capacitor using same |
EP0632008A1 (en) | 1993-06-01 | 1995-01-04 | Ono Pharmaceutical Co., Ltd. | Pentanoic acid derivatives |
US5503830A (en) | 1993-09-10 | 1996-04-02 | Petrovax, L.L.C. | Compounds having immunostimulating activity and methods of use thereof |
WO1995033044A1 (en) | 1994-05-27 | 1995-12-07 | The Procter & Gamble Company | Liquid laundry detergent compositions comprising specially selected soaps |
US5681854A (en) | 1995-11-22 | 1997-10-28 | Alcon Laboratories, Inc. | Use of aliphatic carboxylic acid derivatives in ophthalmic disorders |
WO1998003472A1 (en) | 1996-07-23 | 1998-01-29 | Chiesi Farmaceutici S.P.A. | Alpha-amino acid amides, preparation thereof and the therapeutical use thereof |
Non-Patent Citations (61)
Title |
---|
Atkinson, R.S., et al., Intramolecular Reactions of N-Nitrenes with Alkenes, J. Chem. Soc., Perkin Trans. 1:1905-12 (1984). |
Atkinson, R.S., et al., Intramolecular Reactions of N-Nitrenes: Description of the Transition State Geometry for Addition to Alkenes, J. Chem. Soc., Perkin Trans. 1:1135-45 (1987). |
Barton, H, et al., Photochemical Degradation of Barbituric Acid Derivatives, Pharmazie, 38:630-1 (1983). |
Baxter, G.P.,. Thirty-Sixth Annual Report of the Committe on Atomic Weights. Determinations Published During 1929, J. Am. Chem. Soc., 52:1281-1283 (1930). |
Borstlap, C., 2-Alkylalkanoic Acids: Relation Between Structure and Sensitivity Towards Water Hardness, Chem Phys. Chem. Anwendungstech. Grenzflaechenaktiven Stoffe, Ber. Int. Knogr., 6th, 1:91-9 (1973). |
Breusch, F.L., et al., Isomeric Series of the Di-N-Alkylacetic Acids C23H46O2, Second Chemical Institute of the University of Istanbul, Series C., 33:39-42 (1968). |
Chapman, A.G., et al., Acute Anticonvulsant Activity of Structural Analogues of Valproic Acid and Changes in Brain Gaba and Aspartate Content, Life Sciences, 32:2023-2031 (1983). |
Chem. Abst. 115:149747 (1991). |
Curran, D.P., et al., Amide-Based Protecting/Radical Translocating (PRT) Groups. Generation of Radicals Adjacent to Carbonyls by 1,5-Hydrogen Transfer Reactions of O-Iodoanilides, Tetrahedron, 50:7343-66 (1994). |
Doyle and Regan (1993) J. Neural Transm. 92:33-49. |
Doyle, et al. (1993) J. Neurochem. 61:266-272. |
Drake, C.A ., et al., Synthesis of Ethylenes with Acyclic Quaternary Carbons by Dehydration of Neopentyl Alcohols. Application of the 2-D Inapt Technique, J. Org. Chem., 53:4555-62 (1988). |
Fu, G.C., et al., Catalytic Ring-Closing Metathesis of Functionalized Dienes by a Ruthenium Carbene Complex, J. Am. Chem. Soc. 115:9856-7 (1993). |
Gavrilova, V. M., et al., Side Reactions in Hydrocarboxylation of Olefins, Translated from Zhurnal Prikladnoi Khimii, 63:1428-1431 (1990). |
Haj-Yehia, Abdulla and Bialer, Meir (1990) J. Pharm. Sci. 79:8, 719-724. |
Hauck and Nau (1989) Toxicol. Lett. 49:41-48. |
Hauck, et al. (1992) Toxicol. Lett. 60:145-153. |
Kato, K., et al., Thromboxane Synthetase Inhibitors (TXSI). Design, Synthesis, and Evaluation of a Novel Series of omega-Pyridylalkenoic Acids, J. Med. Chem., 28:287-94 (1985). |
Kato, K., et al., Thromboxane Synthetase Inhibitors (TXSI). Design, Synthesis, and Evaluation of a Novel Series of ω-Pyridylalkenoic Acids, J. Med. Chem., 28:287-94 (1985). |
Keane, P.E., et al., The Effects of Analogues of Valproic Acid on Seizures Induced by Pentyleneterazol and Gaba Content in Brain of Mice, Neuropharmacology. 22:875-879 (1983). |
Konen, D.A., et al., alpha Anions. VII. Direct Oxidation of Enolate Anions to 2-Hydroperoxy-and 2-Hydroxycarboxylic Acids and Esters, J. Org. Chem., 40:3253-8 (1975). |
Konen, D.A., et al., α Anions. VII. Direct Oxidation of Enolate Anions to 2-Hydroperoxy-and 2-Hydroxycarboxylic Acids and Esters, J. Org. Chem., 40:3253-8 (1975). |
Kotva, R., et al., Some 2-Substituted Derivatives of 5-(2-Amino-6-Hydroxy-4-Oxo-3,4-Dihydro-5-Pyrimidinyl)-Pentanoic Acid, Collection Czechoslovak Chem. Commun. 46:1397-404 (1981). |
Kurata, K., et al., Synthesis of Alkl-3 delta-Lactones v. Synthesis of Alkyl-3 delta-Lactones, Chem. Pharm. Bull., 24:538-40 (1976). |
Kurata, K., et al., Synthesis of Alkl-3 δ-Lactones v. Synthesis of Alkyl-3 δ-Lactones, Chem. Pharm. Bull., 24:538-40 (1976). |
Kurth, M.J., et al., Regioselectivity in the Iodolactonization of 1,6-Heptadien-4-Carboxylic Acid Derivatives, Tetrahedron Lett., 29:1517-20 (1988). |
Kurth, Mark J. and Brown, Edward G., (1987) J. Am. Chem. Soc., 109(22), 6844-5. |
Kurth, Mark J., et al., (1988) Tetrahedron Lett., 29(13), 1517-1520. |
Lambert, C., et al., Palladium (II) Catalyzed Cyclization of Alkynoic Acids, Tetrahedron Lett., 25:5323-6 (1984). |
Lindau, J., et al., Thermal Phase Behaviour of Thallium (L) Branched Alkanoates-Influence of Chain Length and Position of Branching on the Occurence of the (Anhydrous) Neat Phase; Mol. Cryst. Liq. Cryst., 133:259-66 (1986). |
Löscher, W. and Nau, H., (1985) Neuropharmacology 24:5, 427-435. |
Maguire, C. and Regan, C.M., (1991) Int. J. Devl. Neuroscience 9:6 581-586. |
Martin, et al., (1988) Toxic in vitro, 2:1 43-48. |
Martin, M.L. and Regan, C.M., (1988) Brain Research, 459:131-137. |
Martin, M.L. and Regan, C.M., (1991) Brain Research, 554:223-228. |
McCarty, F.J., et al., Synthesis and Pharmacology of a Series of 1-Aralykyl-3-Butenylamines, J. Med. Chem., 11:534-41 (1968). |
Mellow, A.M., et al., Sodium Valproate in the Treatment of Behavioral Disturbance in Dementia, J. Geriatric Psychiatry and Neurology, 6:205-209 (1993). |
Mysak, A.E., et al. Gas-Chromatographic Analysis of Branched Carboxylic Acids Formed on Carboxylating C6-C10alpha-Olefins, Journal of Analytical Chemistry of the USSR, 25:1729-1731 (1970). |
Mysak, A.E., et al. Gas-Chromatographic Analysis of Branched Carboxylic Acids Formed on Carboxylating C6-C10α-Olefins, Journal of Analytical Chemistry of the USSR, 25:1729-1731 (1970). |
Nau et al., "Valproic Acid-Induced Neural Tube Defects in Mouse and Human: Aspects of Chirality, Alternative Drug Development, Pharmacokinetics and Possible Mechanisms", Pharmacology & Toxicology 69, pp. 310-321, 1991. * |
Nau, et al., (1981) J. Pharmacol. Exp. Ther. 219:768-777. |
Nau, et al., (1991) Pharmacol. and Toxicol. 69:310-321. |
Nau, H. and Löscher, W., (1986) Fund. Applied Toxicol. 6:669-676. |
Negrete, G.R., et al.; Asymmetric Alkylations of N-Acyl Dihydropyrimidinones; Tetrahedron Asymetry 2:105-108 (1991). |
Okada, Katsuhide, et al., (1980) Agric. Biol. Chem., 44(11), 2595-2599. |
Padwa, A., et al., Ligand Effects on Dirhodium (II) Carbene Reactivities. Highly Effective Switching Between Competitive Carbenoid Transformations, J. Am Chem. Soc., 115:8669-80 (1993). |
R.S. Hauck et al., "On the development of alternative antiepileptic drugs. Lack of enantioselectivity of the anticonvulsant activity, in contrast to teratogenicity, of 2-n-propyl-4-pentenoic acid and 2-n-propyl-4-pentynoic acid, analogs of the anticonvulsant drug valproic acid." Naturwissenschaften 78:272-274 (1991) |
Regan, C.M., Brain Research, 347:394-398. |
Regan, et al. (1991) Toxic. in vitro 5:77-82. |
Rougon, et al., (1986) J. Cell Biol. 103:2429-2437. |
Sangster, J., Octanol-Water Partition Coefficients of Simple Organic Compounds, J. Phys. Chem. 18:1111-1229 (1989). |
Saus, A., et al., On The Preparation of the Stereoisomeric Hydroxymethylpentadecanes, Tenside, 6:129-30 (1969). |
Shostenko, A.G., et al., Radiation-Induced Interaction of Ethylene wtih Carboxylic Acids, Translated from Khimiya Vyzokikh Energii [High-Energy Chemistry] 10:371-373 (1976). |
Sonnet, Philip E., Synthesis of the Stereoisomers of the Sex Pheromones of the Southern Corn Rootworm and Lesser Tea Tortrix, J. Org. Chem., 47:3793-6 (1982). |
Spencer, R. W., et al., Ynenol Lactones: Synthesis and Investigation of Reactions Relevant to their Inactivation of Serine Proteases, J. Am. Chem. Soc., 108:5589-97 (1986). |
St{acute over (ee)}llberg, G.; Syntheses of Substituted Glycerol Ethers; Chemica Scripta, 7:31-41 (1975). |
Staninets, V.I., et al., Conformational Effects in Iodolactonization of Anions of alpha-R-Allylacetic Acids, Translation of Dokl. Akad. Nauk SSSR, 187:109-111 (1969) @ 525-527 of the English Edition of that Journal. |
Staninets, V.I., et al., Conformational Effects in Iodolactonization of Anions of α-R-Allylacetic Acids, Translation of Dokl. Akad. Nauk SSSR, 187:109-111 (1969) @ 525-527 of the English Edition of that Journal. |
Wilson, Stephen R., (1993) Proc. Workshop Vitam. D., 6th(Vitam. D), 749-754, New York University, NY, NY 10003. |
Yoshishu, K., et al., The Proceedings for the 23rd Symposium on Essences, Terpenes and Essential-Oil Chemistry, Koryo, Terupen oyobi Seiyu Kagaku ni kansuru Toronkai, 23rd, 157-8 (1979). |
Zambelli, A., et al., Carbon-13 Nuclear Magnetic Resonance Analysis of Model Compounds of Saturated End Groups in Polypropylene, Macromolecules, 12:154-6 (1979). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020032185A1 (en) * | 2000-07-18 | 2002-03-14 | Ono Pharmaceutical Co., Ltd. | Agent for treating parkinson's disease comprising astrocyte function-improving agent as active ingredient |
US20060052453A1 (en) * | 2000-07-18 | 2006-03-09 | Ono Pharmaceutical Co., Ltd. | Agent for treating Parkinson's disease comprising astrocyte function-improving agent as active ingredient |
US7019032B2 (en) | 2000-07-18 | 2006-03-28 | Ono Pharmaceutical Co., Ltd. | Agent for treating Parkinson's disease comprising astrocyte function-improving agent as active ingredient |
US20060223888A1 (en) * | 2002-12-16 | 2006-10-05 | Abbott Frank S | Valproic acid analogues and pharmaceutical composition thereof |
Also Published As
Publication number | Publication date |
---|---|
US5672746A (en) | 1997-09-30 |
DE19502050A1 (en) | 1996-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37670E1 (en) | Antiproliferative and neurotrophic molecules | |
JP2756756B2 (en) | Pentanoic acid derivatives, methods for their production and drugs containing them | |
US4826984A (en) | Heteroarotinoid compounds as anticancer agents | |
JP2007091748A (en) | Neurotrophic and antiproliferative compounds | |
JPH08505375A (en) | Triols with substituents | |
JP2001501202A (en) | Allyl-substituted acrylamide by leukotriene B4 (LTB-4) receptor antagonist activity | |
EP1650182B1 (en) | Branched carboxylic acid compound and use thereof | |
WO1997030023A1 (en) | 3,4-disubstituted phenylethanolaminotetralincarboxamide derivatives | |
JPH0329056B2 (en) | ||
AU750698B2 (en) | Neurotrophic and antiproliferative compounds | |
MXPA97001594A (en) | Antiproliferati neurotrophic compounds | |
Black et al. | Synthesis of cyclic and acyclic βγ-unsaturated car☐ ylic acids Via an E1-type ionization/elimination of β-lactones | |
US6348496B1 (en) | 15-hydroxyeicosatetraenoic acid analogs with enhanced metabolic stability and methods of their use in treating dry eye disorders | |
US3792167A (en) | Naphthyl alkanols and derivatives thereof,methods of use thereof,and processes for the preparation thereof | |
AU776153B2 (en) | Benzenoid derivatives of 15-hydroxyeicosatetraenoic acid and methods of their use in treating dry eye disorders | |
DE69002568T2 (en) | Process for the preparation of optically active 2-arylpropionic acids. | |
US3923900A (en) | 1-(6-Methoxy-2-naphthyl)ethyl hydroxymethylketone | |
JP2507163B2 (en) | Method for racemization of optically active 4-phenylbutyric acid ester derivative | |
NO751401L (en) | ||
NO750175L (en) | ||
JPWO2017170859A1 (en) | Bisaryl derivatives and pharmaceutical uses thereof | |
JPH09100270A (en) | Retinoid antagosnist | |
JPH03505220A (en) | New leukotriene-B4-derivatives, their preparation and their use as pharmaceuticals | |
JPS60243082A (en) | (6,11-dihydro-11-oxodibenz(b,e)oxevinyl)pentanoic acid and derivative | |
JP2007039413A (en) | Crystal composed of (2s)-2-propenyloctanoic acid or (2s)-2-propynyloctanoic acid and amine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAEGIS PHARMACEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN BIOGENETIC SCIENCES, INC.;REEL/FRAME:016237/0710 Effective date: 20050512 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |