USRE37180E1 - Photochemotherapeutical obstruction of newly-formed blood vessels - Google Patents
Photochemotherapeutical obstruction of newly-formed blood vessels Download PDFInfo
- Publication number
- USRE37180E1 USRE37180E1 US09/301,320 US30132099A USRE37180E US RE37180 E1 USRE37180 E1 US RE37180E1 US 30132099 A US30132099 A US 30132099A US RE37180 E USRE37180 E US RE37180E
- Authority
- US
- United States
- Prior art keywords
- mono
- tetra
- sodium salt
- npe
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000004204 blood vessel Anatomy 0.000 title description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 208000005590 Choroidal Neovascularization Diseases 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 7
- 208000007135 Retinal Neovascularization Diseases 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 44
- 206010060823 Choroidal neovascularisation Diseases 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 27
- 239000004615 ingredient Substances 0.000 abstract description 11
- 230000002215 photochemotherapeutic effect Effects 0.000 abstract description 9
- 206010028980 Neoplasm Diseases 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 19
- 238000010253 intravenous injection Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 206010029113 Neovascularisation Diseases 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 210000001525 retina Anatomy 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- BBIVMKFQDGGBRA-WPJANZPVSA-N [H]C(C)(NC(=O)C/C1=C2/N/C(=C\C3=N/C(=C\C4=C(C=C)C(C)=C(/C=C5\N=C1C(CCC(=O)O)C5C)N4)C(C)=C3CC)C(C)=C2C(=O)O)C(=O)O.[H]C(C)(NC(=O)CCC1C2=N/C(=C\C3=C(C)C(C=C)=C(/C=C4\N=C(/C=C5\N/C(=C\2CC(=O)O)C(C(=O)O)=C5C)C(CC)=C4C)N3)C1C)C(=O)O Chemical compound [H]C(C)(NC(=O)C/C1=C2/N/C(=C\C3=N/C(=C\C4=C(C=C)C(C)=C(/C=C5\N=C1C(CCC(=O)O)C5C)N4)C(C)=C3CC)C(C)=C2C(=O)O)C(=O)O.[H]C(C)(NC(=O)CCC1C2=N/C(=C\C3=C(C)C(C=C)=C(/C=C4\N=C(/C=C5\N/C(=C\2CC(=O)O)C(C(=O)O)=C5C)C(CC)=C4C)N3)C1C)C(=O)O BBIVMKFQDGGBRA-WPJANZPVSA-N 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229960005261 aspartic acid Drugs 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000000649 photocoagulation Effects 0.000 description 4
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 206010064930 age-related macular degeneration Diseases 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 208000002780 macular degeneration Diseases 0.000 description 3
- 150000002926 oxygen Chemical class 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 210000003161 choroid Anatomy 0.000 description 2
- 238000013534 fluorescein angiography Methods 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 229940109328 photofrin Drugs 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000009278 visceral effect Effects 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000037111 Retinal Hemorrhage Diseases 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- BBIVMKFQDGGBRA-TXPOKZKKSA-N [H][C@@](C)(NC(=O)C/C1=C2/N/C(=C\C3=N/C(=C\C4=C(C=C)C(C)=C(/C=C5\N=C1C(CCC(=O)O)C5C)N4)C(C)=C3CC)C(C)=C2C(=O)O)C(=O)O.[H][C@@](C)(NC(=O)CCC1C2=N/C(=C\C3=C(C)C(C=C)=C(/C=C4\N=C(/C=C5\N/C(=C\2CC(=O)O)C(C(=O)O)=C5C)C(CC)=C4C)N3)C1C)C(=O)O Chemical compound [H][C@@](C)(NC(=O)C/C1=C2/N/C(=C\C3=N/C(=C\C4=C(C=C)C(C)=C(/C=C5\N=C1C(CCC(=O)O)C5C)N4)C(C)=C3CC)C(C)=C2C(=O)O)C(=O)O.[H][C@@](C)(NC(=O)CCC1C2=N/C(=C\C3=C(C)C(C=C)=C(/C=C4\N=C(/C=C5\N/C(=C\2CC(=O)O)C(C(=O)O)=C5C)C(CC)=C4C)N3)C1C)C(=O)O BBIVMKFQDGGBRA-TXPOKZKKSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical group C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 210000000608 photoreceptor cell Anatomy 0.000 description 1
- 231100000119 phototoxicity / photoirritation testing Toxicity 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 201000007914 proliferative diabetic retinopathy Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- -1 sweetened tinctures Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/409—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/04—Artificial tears; Irrigation solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to an obstruent composition for use in photochemotherapeutical obstruction or occlusion of newly-formed or neovascular blood vessels as formed in a patient.
- the present invention also relates to a method for photochemotherapeutically obstructing neovascular vessels as formed in a patient having the neovascular vessels in eyes, cutaneous tissue or visceral tissue.
- the photochemotherapeutical method means such a chemotherapeutical method which makes use of a photosensitive substance capable of displaying a therapeutic action or medical action for the first time only when said substance is elicited photochemically by being irradiated with light, for example, ultraviolet rays or a beam of laser light, and in which, after the administration of said photosensitive substance, either such part or parts of the tissues of a living body of the patient where the photosensitive substance as administered has been presented and accumulated, or a flow of blood as formed by extracorporeal circulation of the blood containing said photosensitive substance is exposed to irradiation with light or is subjected to any other measure so that the photosensitive substance is elicited photochemically to display its therapeutic or medical action.
- light for example, ultraviolet rays or a beam of laser light
- the photosensitive substances of a first generation were used in the therapeutic treatment of tumors or cancerous tissues.
- the photosensitvive photosensitive substance of the first generation are accompanied by their drawback that they are very much slowly metabolized in vivo.
- Known photochemotherapeutic methods for treatment of tumor or cancer include such a method wherein such a photosensitiser having no anti-neoplastic activity by itself but having an affinity for tumor or cancer is administered to a patient and the photosensitiser is allowed to concentrate in the tissue of tumor or cancer, followed by irradiating the tumor or cancerous tissue with a laser light so that the tumor or cancerous tissue is treated therapeutically.
- the photosensitiser used in the above-mentioned method can exert such a mechanism that the photosensitiser, when exposed to the laser light, absorbs the photo-energy of the laser and becomes elicited photochemically and the energy of the elicited photosensitiser can then elicits elicit the oxygen components present in the tumor or cancer cells to produce activated oxygen, and that the activated oxygen so produced can give damages to the tumor or cancer cells so as to cause necrosis of the tumor or cancer tissue.
- the aforesaid fluorescent tetrapyrrole derivative which has concentrated and been accumulated in the tissue of tumor or cancer, can be elicited photochemically by being irradiated with intense light, for example, a laser beam and thereby becomes able to exert its effects of killing the tumor or cancer cells.
- neovascular blood vessels namely neovascularization occurs in various ocular tissues in the eyes due to certain pathogenic causes.
- Neovascularization of any ocular tissue causes serious visual disturbance.
- choroidal neovascularization which takes place accompanying with age-related macular degeneration is now becoming a primary cause for acquired blindness.
- choroidal neovascularization causes subretinal hemorrhage, exudates and fibrosis, leading to severe visual loss.
- Laser photocoagulation has heretofore been used for the therapeutic treatment of choroidal (ocular) neovascularization but is not a perfect method, because it damages overlying sensory retina by propagating heat.
- photochemotherapy using a laser beam is expected to provide a satisfactory therapeutic method for neovascularization, if the neovascular, ocular blood vessels can be selectively targeted by the photochemotherapy with the laser beam.
- An object of the present invention is to provide a new obstruent composition for use in obstructing or occluding photochemotherapeutically and selectively a part or all or some parts of newly-formed vessels formed in the various ocular tissues, as well as newly-formed vessels formed in other tissues in vivo.
- the other object of the present invention is provide a therapeutic method for photochemotherapeutically obstructing neovascular blood vessels as formed in a patient having the neovascular blood vessels.
- the present inventors have made investigations for seeking a photochemotherapeutic agent which is useful and suitable to obstruct or occlude various kinds of neovascular vessels, especially choroidal or retinal neovascularization.
- NPe6 mono-L-aspartly-chlorin e 6 mono - L - aspartyl chlorin e 6 tetra-sodium salt
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt can concentrate into and be accumulated well in the active lesions of the neovascular tissues, and that NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt present in the neovascular vessels can be elicited by irradiation with a laser beam at a wavelength of 664 nm and the elicited NP
- NPe6 substance mono- L - aspartyl chlorin e 6 tetra - sodium salt NPe6 substance mono- L - aspartyl chlorin e 6 tetra - sodium salt
- a tetrapyrrole derivative represented collectively by a general formula (I) given below including the NPe6 substance mono- L - aspartyl chlorin e 6 tetra - sodium salt , are utilizable effectively and highly safely as such an obstruent for obstructing or clogging the newly-formed vessels, which can be activated by irradiation with a light when it is used in a photochemotherapy.
- an obstruent composition for photochemotherapeutically obstructing the neovascularization which comprises as the effective ingredient a compound represented by the formula (I):
- n stands for an integer of 1 or 2, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier for the effective ingredient.
- the tetrapyrrole derivative of the general formula (I), which is used as the effective ingredient in the obstruent composition according to the first aspect of the present invention, may preferably be its stereoisomer having a steric configuration shown below and represented by the following general formula (I′):
- n stands for an integer of 1 or 2.
- the compound of the formula (I′) where n is 1 is such compound wherein L-aspartic acid is combined via an amido linkage with the side chain group —CH 2 CH 2 COOH —CH 2 COOH at the 20 - position of the tetrapyrrole ring shown in the above formula (I′).
- This particular compound is mono-L-aspartyl-chlorin e6.
- This mono-L-aspartyl-chlorin e6 may preferably be in the form of its tetra-sodium salt (abbreviated as “NPe6”) at the four carboxyl groups of the compound.
- the compound of the formula (I′) where n is 2 is such compound wherein L-glutamic acid, in stead of said L-aspartic acid, is combined via the amido linkage of the side chain group —CH 2 CH 2 COOH —CH 2 COOH at the 20 - position of the tetrapyrrole ring shown in the formula (I′).
- This compound is mono-L-glutamyl-chlorin e6.
- the compound of the general formula (I) or formula (I′) generally may form a salt thereof by reaction with a base.
- salt with the base may include the sodium, potassium, calcium, magnesium, ammonium, triethylammonium, trimethylammonium, morpholine and piperidine salts.
- the compound of the above formula (I), particularly the compound of the above formula (I′) is able to concentrate into and be accumulated well in the blood vessels in the eyes after the administration of said compound. And, the compound accumulated in the ocular blood vessels is able to obstruct the choroidal or retinal neovascularization when the compound is activated by the action of a laser beam irradiating a limited region of the neovascular tissues.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is a photosensitivity-improver consisting essentially of a single compound wherein one molecule of L-aspartic acid is combined via the amido linkage with the side chain group —CH 2 CH 2 COOH —CH 2 COOH at the 20 - position attached to the chlorin ring which is formed by the reduction of a single one double-bond of the D ring of the tetrapyrrole nucleus.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is characterized by that this specific compound can absorb well a light having a wavelength of 664 nm.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt has a high metabolic speed which is at least 10 times faster than that of the aforesaid “photofrin”, and at the end of 10 hours from the administration of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt , the level of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt in the blood plasma can reach a level as high as ⁇ fraction (1/500) ⁇ of the dosage of administration of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is further characterised by that NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt has a nature of exhibiting affinity to the serum albumin, that NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is of a low liposolubility and thus is hard to penetrate and diffuse into the healthy normal tissues having the barrier in vivo, and that NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is able to transfer into the in vivo cells not by the diffusion of the NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt molecules but by the phagocytosis and/or pinocytosis of the NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is a photosensitive agent which can advantageously be utilized to photochemotherapeutically obstruct various ocular neovascularizations.
- the obstruent composition for obstructing the newly-formed vessels according to the first aspect of the present invention is useful to be used in a photochemotherapeutic treatment of a variety of ocular diseases.
- the composition of the present invention is particularly effective to therapeutically treat various diseases caused by the neovascularization occurring in the choroid, for example, age-related macular degeneration, and the neovascularization occurring in the retina, for example, proliferative diabetic retinopathy, and so on.
- the obstruent composition according to the first aspect of the present invention may be administered to a patient either orally or parenterally by intravenous or intramuscular injection, or percutaneously.
- the obstruent composition of the present invention may be formulated into such a preparation which contains the compound of the formula (I) or (I′) in the form of its sodium salt and has been lyophilized in the form of a sterile powder containing no pyrogen.
- a preferred preparation of the composition is an injectable and isotonic aqueous solution containing the compound of the formula (I) or (I′).
- the compound of the formula (I) as the effective ingredient may be admixed with a pharmaceutically acceptable solid or liquid carrier or vehicle.
- a pharmaceutically acceptable solid or liquid carrier or vehicle such as tablets, buccal preparations, troches, capsules, sweetened tinctures, suspensions, syrups, wafers, or the like.
- the composition so prepared contains the compound of the formula (I) or (I′) as the effective ingredient in an amount of at least 0.1% by weight on the weight basis of the composition.
- the proportion of the compound of the formula (I) or (I′) in the composition naturally varies depending on the form of the preparation as formulated of the composition.
- a preferred proportion of the effective compound of the formula (I) or (I′) maybe in a range of from about 2% to 60% by weight of each dosage unit of the composition. It is desirable that each dosage unit of the orally administrable composition as formulated contains about 50 to 300 mg of the compound of the formula (I) or (I′) as the effective ingredient.
- Preferred examples of the preparation form for injection include an aqueous sterile solution or dispersion and a sterile injectable lyophilized preparations.
- Illustrative carriers useful therefor include water, ethanol, and polyols such as glycerol, propylene glycol and liquid polyethylene glycol, as well as desired mixed solvents thereof.
- a solvent or dispersing medium containing a vegetable oil can also be used.
- the liquid-form preparations can be maintained appropriately flowable by adding a viscosity modifier such as lecithin.
- a dispersion-type preparation its appropriate flowability can be maintained by controlling the effective ingredient compound to a desired particle size or by adding a surfactant.
- an isotonic agent such as sugar or sodium chloride.
- the injectable composition can contain an added agent capable of sustaining the absorption of the effective ingredient compound, such as aluminum monostearate or gelatin.
- the dosage of the compound of the formula (I) contained in the obstruent composition according to the present invention may vary depending on the purpose of the treatment, the severity of the symptoms and the like. In general, a dose of 0.2 to 10 mg mg/kg of the effective compound may be administered once a day to an adult.
- Examples of the irradiation source for a laser beam which is for use in the therapeutic treatment after the administration of the obstruent composition, include a powerful continuous laser beam sources equipped with optical filters, excited pigments and other laser-beam feeding systems. Among them, desired is an irradiation source which can generate a laser beam at a full output power of at least 500 mW to give a radiation intensity of 10 to 100 mW/cm 2 .
- Some of commercially-available laser generators can satisfy the above-mentioned standards for the laser generation.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt exhibits an LD 50 value of 164 mg/kg.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is a highly safe compound which does not involve adverse side reactions such as erythema and edema.
- the tetrapyrrole. derivative of the formula (I) or (I′) shown hereinbefore is evidently useful in the photochemotherapy to abstruct obstruct or clog the neovascular vessels as formed in a patient having the neovascular vessels produced due to certain pathogenic causes.
- a method for photochemotherapeutically obstructing neovascularization or neovascular blood vessels as formed in a patient having the neovascular blood vessels which comprises administering orally or parenterally to the patient an amount of a compound of the formula (I):
- n stands for an integer of 1 or 2, or a pharmaceutically acceptable salt thereof, allowing said compound administered to accumulate in the neovascular vessels to be obstructed after the administration of said compound to the patient, irradiating a part or all or some parts of the neovascular vessels to be obstructed, with a laser beam until the compound accumulated in the neovascular vessels has been elicited photochemically, terminating the irradiation of the laser beam, and then allowing the laser beam-irradiated part or parts of the neovascular vessels to be obstructed.
- the therapeutic method according to the second aspect of the present invention is especially useful to be applied to photochemotherapeutic obstruction of the choroidal or rotanal retinal neovascularization formed in the patient.
- the compound of the formula (I) used in the method of the second aspect of the present invention may preferably be a compound of the formula (I′) shown hereinbefore and may be administered in a dosage as explained for the obstruent composition according to the first aspect of the present invention hereinbefore.
- Injectable aqueous solutions containing NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt dissolved in a physiological saline were intravenously injected into seven eyes of four, normal pigmented rabbits, respectively at doses of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt of 25 mg/kg, 50 mg/kg and 100 mg/kg.
- predetermined regions of the blood vessels in the seven eyes under test were irradiated with a beam of laser light having a wavelength of 664 nm (as emitted from a semiconductor generator for laser, manufactured by Matsushita Electric works Works Ltd., Japan) for 9 seconds or 90 seconds, while the laser beam having a power of 10 mW was injected to irradiate several spots each of 500 ⁇ n ⁇ m in its diameter within the blood vessels to be irradiated.
- the predetermined regions (that is, said spots) of the blood vessels to be irradiated with the laser beam had been marked preliminarily by photo-coagulation by means of an argon laser beam.
- the fundus of the eyes under test was examined by fluorescein angiography.
- fundus treated with NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt were further examined histologically.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt in the blood after the administration of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt can decrease quickly during an earlier period after the administration of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt , and that NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt can be metabolized well after its administration into a human or animal body.
- Normal pigmented rabbits of a sort same as that employed in the above Test Example 1 were intravenously administered with a dose of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt of 100 mg/kg at their eyes in the same manner as in Test Example 1 and were subsequently housed for one week under ordinary fluorescent tubes of the usual living environments without receiving any irradiation with the laser ray. The eyes of the rabbits so housed were then examined by observing the fluorescein angiography and the light microscopic views of the fundus of the eyes.
- NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt is a photosensitive substance with a high safety, which does not adversely affect mammals when the mammals are kept under ordinary fluorescent lights of the usual living environments.
- the basal powder so obtained was mixed well with an appropriate amount of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt and the resulting mixture was shaped into tablets by a conventional tableting method, so that there were produced tablets each containing 100 mg of NPe 6 mono - L - aspartyl chlorin e 6 tetra - sodium salt as the active ingredient.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Ophthalmology & Optometry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
A photosensitive tetrapyrrole derivative having formula (I)where n stands for 1 or 2 or a pharmaceutically acceptable salt thereof is useful as an effective ingredient in an obstruent composition for photochemotherapeutically obstructing neovascular vessels. The photosensitive tetrapyrroles of the formula (I) may be administered in a photochemotherapeutic method for obstructing neovascular vessels, particularly choroidal and retinal neovascularizations.
Description
The present invention relates to an obstruent composition for use in photochemotherapeutical obstruction or occlusion of newly-formed or neovascular blood vessels as formed in a patient. The present invention also relates to a method for photochemotherapeutically obstructing neovascular vessels as formed in a patient having the neovascular vessels in eyes, cutaneous tissue or visceral tissue.
The photochemotherapeutical method means such a chemotherapeutical method which makes use of a photosensitive substance capable of displaying a therapeutic action or medical action for the first time only when said substance is elicited photochemically by being irradiated with light, for example, ultraviolet rays or a beam of laser light, and in which, after the administration of said photosensitive substance, either such part or parts of the tissues of a living body of the patient where the photosensitive substance as administered has been presented and accumulated, or a flow of blood as formed by extracorporeal circulation of the blood containing said photosensitive substance is exposed to irradiation with light or is subjected to any other measure so that the photosensitive substance is elicited photochemically to display its therapeutic or medical action.
Upon the beginning of the development of the photochemotherapy, the photosensitive substances of a first generation, of which a representative is photofrin, were used in the therapeutic treatment of tumors or cancerous tissues. From the viewpoint of clinical application, however, the photosensitvive photosensitive substance of the first generation are accompanied by their drawback that they are very much slowly metabolized in vivo.
Known photochemotherapeutic methods for treatment of tumor or cancer include such a method wherein such a photosensitiser having no anti-neoplastic activity by itself but having an affinity for tumor or cancer is administered to a patient and the photosensitiser is allowed to concentrate in the tissue of tumor or cancer, followed by irradiating the tumor or cancerous tissue with a laser light so that the tumor or cancerous tissue is treated therapeutically. The photosensitiser used in the above-mentioned method can exert such a mechanism that the photosensitiser, when exposed to the laser light, absorbs the photo-energy of the laser and becomes elicited photochemically and the energy of the elicited photosensitiser can then elicits elicit the oxygen components present in the tumor or cancer cells to produce activated oxygen, and that the activated oxygen so produced can give damages to the tumor or cancer cells so as to cause necrosis of the tumor or cancer tissue.
For instance, in Japanese patent publication No. 88902/94 and No. 89000/94 as well as European patent publication No. 168832-B1 and U.S. Pat. No. 4,675,338, there is disclosed that diagnosis and therapeutic treatment of tumor or cancereous tissues is conducted with using as a photochemotherapeutic agent such fluorescent tetrapyrrole derivatives or salts thereof which are prepared by condensing an amino-dicarboxylic acid of 4 to 10 carbon atoms, for example, aspartic acid or glutamic acid, via one or more amido linkages with at least one carboxyl group of certain tetrapyrrole compounds bearing a plurality of carboxyl group(s) and side chain(s) of carboxylic acids. There is also disclosed that the aforesaid fluorescent tetrapyrrole derivative, which has concentrated and been accumulated in the tissue of tumor or cancer, can be elicited photochemically by being irradiated with intense light, for example, a laser beam and thereby becomes able to exert its effects of killing the tumor or cancer cells.
Further, it is known that the formation of neovascular blood vessels, namely neovascularization occurs in various ocular tissues in the eyes due to certain pathogenic causes.
Neovascularization of any ocular tissue causes serious visual disturbance. Particularly, choroidal neovascularization which takes place accompanying with age-related macular degeneration is now becoming a primary cause for acquired blindness. In age-related macular degeneration, choroidal neovascularization causes subretinal hemorrhage, exudates and fibrosis, leading to severe visual loss.
Laser photocoagulation has heretofore been used for the therapeutic treatment of choroidal (ocular) neovascularization but is not a perfect method, because it damages overlying sensory retina by propagating heat. Compared with the above method, photochemotherapy using a laser beam is expected to provide a satisfactory therapeutic method for neovascularization, if the neovascular, ocular blood vessels can be selectively targeted by the photochemotherapy with the laser beam.
Sometimes, it is also desired to selectively obstruct or occlude newly-formed vessels other than the above-described ocular Ones ones, for example, those formed in skin tissue or visceral tissue due to a certain pathogenic cause.
An object of the present invention is to provide a new obstruent composition for use in obstructing or occluding photochemotherapeutically and selectively a part or all or some parts of newly-formed vessels formed in the various ocular tissues, as well as newly-formed vessels formed in other tissues in vivo. The other object of the present invention is provide a therapeutic method for photochemotherapeutically obstructing neovascular blood vessels as formed in a patient having the neovascular blood vessels. Another objects of the present invention will be clear from the following descriptions.
In order to achieve the above-mentioned objects of the present invention, the present inventors have made investigations for seeking a photochemotherapeutic agent which is useful and suitable to obstruct or occlude various kinds of neovascular vessels, especially choroidal or retinal neovascularization. As a result of the investigations, the present inventors have now found that when patients having the neovascular vessels are administered with a photosensitive substance, mono-L-aspartly-chlorin e6 mono-L-aspartyl chlorin e6 tetra-sodium salt (hereinafter abbreviated as “NPe6”) which is now employed and tested in a clinical application of a photochemotherapeutic treatment of malignant tumors and is known to be quickly uptaken into and excreted from the human and animal body, NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt can concentrate into and be accumulated well in the active lesions of the neovascular tissues, and that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt present in the neovascular vessels can be elicited by irradiation with a laser beam at a wavelength of 664 nm and the elicited NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is able to generate the activated oxygen and thereby to cause necrosis of the vascular endothelial cells and occlusion of choroidal neovascularization.
Further, the present inventors have found that not only the above-mentioned NPe6 substance mono-L-aspartyl chlorin e6 tetra-sodium salt but also a tetrapyrrole derivative represented collectively by a general formula (I) given below, including the NPe6 substance mono-L-aspartyl chlorin e6 tetra-sodium salt, are utilizable effectively and highly safely as such an obstruent for obstructing or clogging the newly-formed vessels, which can be activated by irradiation with a light when it is used in a photochemotherapy. It has also been found that the tetrapyrrole derivative having the general formula (I) given below are especially useful and effective with a high safety to obstruct the choroidal neovascularization as well as the retinal neovascularization. On the basis of these findings, the present inventors have completed the present invention.
In a first aspect of the present invention, therefore, there is provided an obstruent composition for photochemotherapeutically obstructing the neovascularization, which comprises as the effective ingredient a compound represented by the formula (I):
where n stands for an integer of 1 or 2, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier for the effective ingredient.
The tetrapyrrole derivative of the general formula (I), which is used as the effective ingredient in the obstruent composition according to the first aspect of the present invention, may preferably be its stereoisomer having a steric configuration shown below and represented by the following general formula (I′):
where n stands for an integer of 1 or 2.
Among the compounds of the general formula (I′) shown above, the compound of the formula (I′) where n is 1 is such compound wherein L-aspartic acid is combined via an amido linkage with the side chain group —CH2CH2COOH —CH2 COOH at the 20 -position of the tetrapyrrole ring shown in the above formula (I′). This particular compound is mono-L-aspartyl-chlorin e6. This mono-L-aspartyl-chlorin e6 may preferably be in the form of its tetra-sodium salt (abbreviated as “NPe6”) at the four carboxyl groups of the compound.
Among the compounds of the general formula (I′) shown above, the compound of the formula (I′) where n is 2 is such compound wherein L-glutamic acid, in stead of said L-aspartic acid, is combined via the amido linkage of the side chain group —CH2CH2COOH —CH2 COOH at the 20 -position of the tetrapyrrole ring shown in the formula (I′). This compound is mono-L-glutamyl-chlorin e6.
While, the compound of the general formula (I) or formula (I′) generally may form a salt thereof by reaction with a base. Examples of such salt with the base may include the sodium, potassium, calcium, magnesium, ammonium, triethylammonium, trimethylammonium, morpholine and piperidine salts.
The compound of the above formula (I), particularly the compound of the above formula (I′) is able to concentrate into and be accumulated well in the blood vessels in the eyes after the administration of said compound. And, the compound accumulated in the ocular blood vessels is able to obstruct the choroidal or retinal neovascularization when the compound is activated by the action of a laser beam irradiating a limited region of the neovascular tissues. In particular, NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is a photosensitivity-improver consisting essentially of a single compound wherein one molecule of L-aspartic acid is combined via the amido linkage with the side chain group —CH2CH2COOH —CH2 COOH at the 20 -position attached to the chlorin ring which is formed by the reduction of a single one double-bond of the D ring of the tetrapyrrole nucleus. NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is characterized by that this specific compound can absorb well a light having a wavelength of 664 nm. Besides, NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt has a high metabolic speed which is at least 10 times faster than that of the aforesaid “photofrin”, and at the end of 10 hours from the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt, the level of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt in the blood plasma can reach a level as high as {fraction (1/500)} of the dosage of administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt.
It has als0also been found that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is further characterised by that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt has a nature of exhibiting affinity to the serum albumin, that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is of a low liposolubility and thus is hard to penetrate and diffuse into the healthy normal tissues having the barrier in vivo, and that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is able to transfer into the in vivo cells not by the diffusion of the NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt molecules but by the phagocytosis and/or pinocytosis of the NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt molecules. The above-mentioned characteristic properties of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt reveal that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is a photosensitive agent which can advantageously be utilized to photochemotherapeutically obstruct various ocular neovascularizations.
Incidentally, the tetrapyrrole derivative of the general formula (I) shown above and the processes of producing it are disclosed in the aforesaid Japanese patent publication No. 88902/94 and No. 89000/94 as well as in the European patent application publication No. 168832-B1 specification and U.S. Pat. No. 4,675,338.
The obstruent composition for obstructing the newly-formed vessels according to the first aspect of the present invention is useful to be used in a photochemotherapeutic treatment of a variety of ocular diseases. The composition of the present invention is particularly effective to therapeutically treat various diseases caused by the neovascularization occurring in the choroid, for example, age-related macular degeneration, and the neovascularization occurring in the retina, for example, proliferative diabetic retinopathy, and so on.
The obstruent composition according to the first aspect of the present invention, or the compound of the formular (I) or the formula (I′) itself which is incorporated as the effective ingredient in said obstruent composition, may be administered to a patient either orally or parenterally by intravenous or intramuscular injection, or percutaneously. For instance, the obstruent composition of the present invention may be formulated into such a preparation which contains the compound of the formula (I) or (I′) in the form of its sodium salt and has been lyophilized in the form of a sterile powder containing no pyrogen. A preferred preparation of the composition is an injectable and isotonic aqueous solution containing the compound of the formula (I) or (I′). When the compound of the formula (I) or (I′) has been administered to a patient, it is possible that a laser light is irradiated to the neovascular vessels formed in the affected part or parts of the patient at an appropriate time between the time immediately after the administration and the time of up to 6 hours from the administration of said compound.
In the composition for oral administration, the compound of the formula (I) as the effective ingredient may be admixed with a pharmaceutically acceptable solid or liquid carrier or vehicle. The orally admintstrable composition may be formulated into intestinally absorbable forms, such as tablets, buccal preparations, troches, capsules, sweetened tinctures, suspensions, syrups, wafers, or the like.
It is preferable that the composition so prepared contains the compound of the formula (I) or (I′) as the effective ingredient in an amount of at least 0.1% by weight on the weight basis of the composition. The proportion of the compound of the formula (I) or (I′) in the composition naturally varies depending on the form of the preparation as formulated of the composition. A preferred proportion of the effective compound of the formula (I) or (I′) maybe in a range of from about 2% to 60% by weight of each dosage unit of the composition. It is desirable that each dosage unit of the orally administrable composition as formulated contains about 50 to 300 mg of the compound of the formula (I) or (I′) as the effective ingredient.
Preferred examples of the preparation form for injection include an aqueous sterile solution or dispersion and a sterile injectable lyophilized preparations. Illustrative carriers useful therefor include water, ethanol, and polyols such as glycerol, propylene glycol and liquid polyethylene glycol, as well as desired mixed solvents thereof. In addition, a solvent or dispersing medium containing a vegetable oil can also be used. The liquid-form preparations can be maintained appropriately flowable by adding a viscosity modifier such as lecithin. In the case of a dispersion-type preparation, its appropriate flowability can be maintained by controlling the effective ingredient compound to a desired particle size or by adding a surfactant. In many cases, it is preferred to add an isotonic agent such as sugar or sodium chloride. The injectable composition can contain an added agent capable of sustaining the absorption of the effective ingredient compound, such as aluminum monostearate or gelatin.
The dosage of the compound of the formula (I) contained in the obstruent composition according to the present invention may vary depending on the purpose of the treatment, the severity of the symptoms and the like. In general, a dose of 0.2 to 10 mg mg/kg of the effective compound may be administered once a day to an adult.
Examples of the irradiation source for a laser beam, which is for use in the therapeutic treatment after the administration of the obstruent composition, include a powerful continuous laser beam sources equipped with optical filters, excited pigments and other laser-beam feeding systems. Among them, desired is an irradiation source which can generate a laser beam at a full output power of at least 500 mW to give a radiation intensity of 10 to 100 mW/cm2. Some of commercially-available laser generators can satisfy the above-mentioned standards for the laser generation.
When the acute toxicity of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt was tested by intravenous injection to CD-1 mice (male), it has been found that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt exhibits an LD50 value of 164 mg/kg. From further photo-toxicity tests with NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt, it has been found that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is a highly safe compound which does not involve adverse side reactions such as erythema and edema.
As described in the above, the tetrapyrrole. derivative of the formula (I) or (I′) shown hereinbefore is evidently useful in the photochemotherapy to abstruct obstruct or clog the neovascular vessels as formed in a patient having the neovascular vessels produced due to certain pathogenic causes.
In a second aspect of the present invention therefore, there is provided a method for photochemotherapeutically obstructing neovascularization or neovascular blood vessels as formed in a patient having the neovascular blood vessels, which comprises administering orally or parenterally to the patient an amount of a compound of the formula (I):
where n stands for an integer of 1 or 2, or a pharmaceutically acceptable salt thereof, allowing said compound administered to accumulate in the neovascular vessels to be obstructed after the administration of said compound to the patient, irradiating a part or all or some parts of the neovascular vessels to be obstructed, with a laser beam until the compound accumulated in the neovascular vessels has been elicited photochemically, terminating the irradiation of the laser beam, and then allowing the laser beam-irradiated part or parts of the neovascular vessels to be obstructed.
The therapeutic method according to the second aspect of the present invention is especially useful to be applied to photochemotherapeutic obstruction of the choroidal or rotanal retinal neovascularization formed in the patient. The compound of the formula (I) used in the method of the second aspect of the present invention may preferably be a compound of the formula (I′) shown hereinbefore and may be administered in a dosage as explained for the obstruent composition according to the first aspect of the present invention hereinbefore.
The present invention is now illustrated with reference to the following Examples, to which the present invention is limited in no way.
Injectable aqueous solutions containing NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt dissolved in a physiological saline were intravenously injected into seven eyes of four, normal pigmented rabbits, respectively at doses of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt of 25 mg/kg, 50 mg/kg and 100 mg/kg. Immediately after the intravenous injection or one hour after the intravenous injection of the NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt solution, predetermined regions of the blood vessels in the seven eyes under test were irradiated with a beam of laser light having a wavelength of 664 nm (as emitted from a semiconductor generator for laser, manufactured by Matsushita Electric works Works Ltd., Japan) for 9 seconds or 90 seconds, while the laser beam having a power of 10 mW was injected to irradiate several spots each of 500 μn μm in its diameter within the blood vessels to be irradiated. The predetermined regions (that is, said spots) of the blood vessels to be irradiated with the laser beam had been marked preliminarily by photo-coagulation by means of an argon laser beam. Immediately after the irradiation with the laser at 664 nm, as well as one week after the irradiation and one month after the irradiation with the laser at 664 nm, the fundus of the eyes under test was examined by fluorescein angiography. In selected cases, fundus treated with NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt were further examined histologically.
(1) With the treated eyes which had been subjected to the irradiation with the laser at 664 nm immediately after the intravenous injection of the NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt solution and were observed and examined by the fluoresein angiography made one week after the laser irradiation, it was found that the obstruction took place in the choroidal vessels at all the doses of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt of 25, 50 and 100 mg/kg, and that the degree of the obstruction in the choroidal vessels increased with an increased doses of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt.
(2) Comparisons were made between the test results obtained when the intravenous injection of a dose of 25 mg/kg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt was followed immediately by the irradiation with the laser at 664 nm, and the test results obtained when the intravenous injection of a dose of 25 mg/kg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt was followed by the laser irradiation one hour after the intravenous injection of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. It was then found that the extent of damages incurred in the choroidal vessels is reduced at the laser irradiation as made one hour after the intravenous injection of the NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt solution, than that incurred at the laser irradiation made immediately after the intravenous injection of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. This likelihood could be observed commonly for all the doses of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. This reveals that the level of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt in the blood after the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt can decrease quickly during an earlier period after the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt, and that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt can be metabolized well after its administration into a human or animal body.
(3) The eye having received the intravenous injection of a dose of 25 mg/kg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt was subjected to the irradiation with the laser at 664 nm immediately after the intravenous injection of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. The eye so treated was subsequently observed under light microscope at the end of 2 hours after the laser irradiation. By this observation, it was found that endothelial cells of the chorio-capillaris had been swollen and necrotized and the choriocapillaris were obstructed. In the sensory retina of the eye so treated, it was observed that there took place such partial movements of the inner and outer segments of photoreceptor cells into the subretinal space, which might be considered to be a slough of the visual cells. However, it was found that the whole structure of the sensory retina could be retained intact as a whole. From these findings, it is presumed that the associated actions of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt and the irradiation with laser can be focused on choriocapillaris itself only but do not directly affect the sensory retina to a substantial extent.
(4) The eye having received the intravenous injection of a dose of 25 mg/kg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt was subjected to the irradiation with the laser at 664 nm immediately after the intravenous injection of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. The laser-irradiated parts of the eye so treated were subsequently observed under light microscope at the end of 1 hour after the laser irradiation. By this observation, At it was found that the choroidal blood vessels, more particularly the choriocapillaris continued to have been obstructed. From these findings, it is considered that the obstruction of the blood vessels as achieved by the associated actions of the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt and the irradiation with laser can be maintained for a prolonged period directly after the laser irradiation.
(5) Comparisons under light microscope were made between the coagulated lesions of the choroidal blood vessels, which had been formed by the thermal actions of a conventional irradiation with an argon laser ray, and the coagulated lesions of the choroidal vessels, which had been formed by the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt and the subsequent irradiation with Laser laser ray according to the present invention, wherein the laser irradiation was made immediately after the administration of a dose of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt of 25 mg/kg and the microscopic observations were done at the end of one week after the laser irradiation.
By these observations, it was found that the choroidal vessels were obstructed to a substantially same degree in the former case and the latter case, and that the damages incurred in the sensory retina were lighter in the latter case, that is, upon the administration of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt associated with the subsequent irradiation with laser ray, than those in the former case, that is, upon the conventional photo-coagulation with the argon laser ray. This finding clearly shows that the action of the argon laser ray used in the conventional photo-coagulation is different from the action of the laser irradiation as associated with the administration of the photochemotherapeutic obstruent, NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt according to the present invention, and also suggests that the present invention makes it feasible to achieve a selective obstruction in such predetermined regions of the blood vessels, where an effective amount of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is presented there.
Normal pigmented rabbits of a sort same as that employed in the above Test Example 1 were intravenously administered with a dose of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt of 100 mg/kg at their eyes in the same manner as in Test Example 1 and were subsequently housed for one week under ordinary fluorescent tubes of the usual living environments without receiving any irradiation with the laser ray. The eyes of the rabbits so housed were then examined by observing the fluorescein angiography and the light microscopic views of the fundus of the eyes. It was then found that the so housed rabbits were able to retain the normal structures in the retina and choroid of their eyes, despite that they had received the administration of a maximum dosage of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt. This finding reveals that NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt is a photosensitive substance with a high safety, which does not adversely affect mammals when the mammals are kept under ordinary fluorescent lights of the usual living environments.
Next, some illustrative formulations of the obstruent composition according to this invention are given below.
The following ingredients were mixed together in the proportions by weight as indicated below, to prepare a basal powder:
Sucrose | 80.3 grams | ||
Tapioca starch | 13.2 grams | ||
Magnesium stearate | 4.4 grams | ||
The basal powder so obtained was mixed well with an appropriate amount of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt and the resulting mixture was shaped into tablets by a conventional tableting method, so that there were produced tablets each containing 100 mg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt as the active ingredient.
In a volume of physiological saline were dissolved 200 mg of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt to give an aqueous solution which contained NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt dissolved in the saline at a final NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt concentration of 20 mg per ml. The resulting solution was sterilized in a conventional manner to afford an injectable solution of NPe6 mono-L-aspartyl chlorin e6 tetra-sodium salt, which is suitable for intravenous administration and also for intramuscular administration for the photochemotherapeutic purposes.
Claims (3)
1. A method for photochemotherapeutically obstructing neovascular vessels as foraged formed in a patient having the neovascular vessels, which comprises administering orally or parenterally to the patient an amount of a compound having the formula (I):
where n stands for an integer of 1 or 2, or a pharmaceutically acceptable salt thereof, allowing said compound administered to accumulate in the neovascular vessels to be obstructed after the administration of said compound to the patient, irradiating a part or all or some parts of the neovascular vessels to be obstructed, with a laser beam until the compound accumulated in the neovascular vessels has been elicited photochemically, terminating the irradiation of the laser beam, and then allowing the laser beam-irradiated part or parts of the neovascular vessels to be obstructed.
2. A method according to claim 1, which is applied to the photochemotherapeutical obstruction of the choroidal or retinal neovascularization.
3. A method according to claim 1, in which mono-L-aspartyl chlorin e6 or its tetra-sodium salt is administered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/301,320 USRE37180E1 (en) | 1995-09-06 | 1999-04-29 | Photochemotherapeutical obstruction of newly-formed blood vessels |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-228760 | 1995-09-06 | ||
JP7228760A JP2961074B2 (en) | 1995-09-06 | 1995-09-06 | Neovascular occlusive agents for photochemotherapy |
US08/616,177 US5633275A (en) | 1995-09-06 | 1996-03-15 | Photochemotherapeutical obstruction of newly-formed blood vessels |
US09/301,320 USRE37180E1 (en) | 1995-09-06 | 1999-04-29 | Photochemotherapeutical obstruction of newly-formed blood vessels |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/616,177 Reissue US5633275A (en) | 1995-09-06 | 1996-03-15 | Photochemotherapeutical obstruction of newly-formed blood vessels |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37180E1 true USRE37180E1 (en) | 2001-05-15 |
Family
ID=16881405
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/616,177 Ceased US5633275A (en) | 1995-09-06 | 1996-03-15 | Photochemotherapeutical obstruction of newly-formed blood vessels |
US09/301,320 Expired - Lifetime USRE37180E1 (en) | 1995-09-06 | 1999-04-29 | Photochemotherapeutical obstruction of newly-formed blood vessels |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/616,177 Ceased US5633275A (en) | 1995-09-06 | 1996-03-15 | Photochemotherapeutical obstruction of newly-formed blood vessels |
Country Status (2)
Country | Link |
---|---|
US (2) | US5633275A (en) |
JP (1) | JP2961074B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030018371A1 (en) * | 1999-01-15 | 2003-01-23 | Light Sciences Corporation | Compositions and methods for the treatment of metabolic bone disorders and bone metastases |
US20030114434A1 (en) * | 1999-08-31 | 2003-06-19 | James Chen | Extended duration light activated cancer therapy |
US20030167033A1 (en) * | 2002-01-23 | 2003-09-04 | James Chen | Systems and methods for photodynamic therapy |
US6622729B1 (en) * | 1999-01-21 | 2003-09-23 | Gholam A. Peyman | Selective photodynamic treatment |
US20030208249A1 (en) * | 1999-01-15 | 2003-11-06 | James Chen | Energy-activated targeted cancer therapy |
WO2004011460A2 (en) | 2002-07-24 | 2004-02-05 | Qlt, Inc. | Pyrazolylbenzothiazole derivatives and their use as therapeutic agents |
US20040243198A1 (en) * | 2002-10-03 | 2004-12-02 | Light Sciences Corporation | System and method for excitation of photoreactive compounds in eye tissue |
US20050244500A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Intravitreal implants in conjuction with photodynamic therapy to improve vision |
US6984655B1 (en) | 2000-02-17 | 2006-01-10 | Meiji Seika Kaisha, Ltd. | Photodynamic therapy for selectively closing neovasa in eyeground tissue |
US7053210B2 (en) | 2002-07-02 | 2006-05-30 | Health Research, Inc. | Efficient synthesis of pyropheophorbide a and its derivatives |
USRE39357E1 (en) | 1996-02-21 | 2006-10-17 | Meiji Seika Kaisha, Ltd. | Medicine for clogging blood vessels of eye fundus |
US7166719B2 (en) | 2002-06-27 | 2007-01-23 | Health Research, Inc. | Fluorinated photosensitizers related to chlorins and bacteriochlorins for photodynamic therapy |
US20070142880A1 (en) * | 2005-11-07 | 2007-06-21 | Barnard William L | Light delivery apparatus |
US7320786B2 (en) | 2000-01-12 | 2008-01-22 | Light Sciences Oncology, Inc. | Photodynamic therapy treatment for eye disease |
US20080033519A1 (en) * | 2003-03-14 | 2008-02-07 | Light Sciences Oncology, Inc. | Light generating device for intravascular use |
US20100274330A1 (en) * | 2003-03-14 | 2010-10-28 | Light Sciences Oncology, Inc. | Device for treatment of blood vessels using light |
WO2011020064A2 (en) | 2009-08-14 | 2011-02-17 | Light Sciences Oncology, Inc. | Low-profile intraluminal light delivery system and methods of using the same |
US7897140B2 (en) | 1999-12-23 | 2011-03-01 | Health Research, Inc. | Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents |
US10307610B2 (en) | 2006-01-18 | 2019-06-04 | Light Sciences Oncology Inc. | Method and apparatus for light-activated drug therapy |
WO2023100829A1 (en) | 2021-11-30 | 2023-06-08 | 第一三共株式会社 | Protease-degradable musk antibody |
WO2023153442A1 (en) | 2022-02-09 | 2023-08-17 | 第一三共株式会社 | Environmentally responsive masked antibody and use thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5756541A (en) | 1996-03-11 | 1998-05-26 | Qlt Phototherapeutics Inc | Vision through photodynamic therapy of the eye |
US6183773B1 (en) * | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
CA2448570A1 (en) * | 2001-05-31 | 2002-12-05 | Miravant Pharmaceuticals, Inc. | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and mri diagnosis |
US6942655B2 (en) * | 2001-11-13 | 2005-09-13 | Minu, Llc | Method to treat age-related macular degeneration |
US6936043B2 (en) * | 2001-11-13 | 2005-08-30 | Minu, Llc | Method to treat age-related macular degeneration |
WO2003088909A2 (en) * | 2002-04-19 | 2003-10-30 | University Of Arizona | Methods for modulating phototoxicity |
WO2004060373A1 (en) * | 2002-12-27 | 2004-07-22 | Santen Pharmaceutical Co., Ltd. | Therapeutic agent for wet age-related macular degeneration |
JP2006514064A (en) * | 2003-01-16 | 2006-04-27 | テクノ マート シーオー.,エルティーディー. | Porphyrin derivative |
ATE498426T1 (en) * | 2003-06-20 | 2011-03-15 | Univ Keio | PHOTODYNAMIC THERAPY DEVICE |
TW200610555A (en) * | 2004-09-24 | 2006-04-01 | Light Sciences Corp | Extended treatment of tumors through vessel occlusion with light activated drugs |
EP1827417A4 (en) * | 2004-12-15 | 2008-05-21 | Light Sciences Oncology Inc | Enhanced occlusive effect photodynamic therapy |
US20090041672A1 (en) * | 2005-04-14 | 2009-02-12 | Takafumi Ohshiro | Drug for Treating or Diagnosing Vascular Lesion in the Skin or the Subcutaneous Soft Tissue Caused by Light Irradiation |
US20070299046A1 (en) * | 2006-06-26 | 2007-12-27 | Mai Nguyen Brooks | Orally available light-independent antineoplastic compounds |
KR101454939B1 (en) * | 2006-11-30 | 2014-10-27 | 각고호우징 게이오기주크 | Ideal electrical conduction interrupter using photodynamic therapy (PDT) |
EP2644228A1 (en) | 2007-06-27 | 2013-10-02 | The General Hospital Corporation | Method and apparatus for optical inhibition of photodynamic therapy |
EP2540247B1 (en) | 2010-02-26 | 2016-04-27 | Keio University | Catheter for photodynamic ablation of cardiac muscle tissue |
JP2014221117A (en) | 2013-05-13 | 2014-11-27 | 株式会社アライ・メッドフォトン研究所 | Therapy progress degree monitoring device and method for therapy progress degree monitoring |
JP6147157B2 (en) * | 2013-09-27 | 2017-06-14 | 博 堀田 | Anti-hepatitis C virus agent |
JP2015089489A (en) | 2013-11-07 | 2015-05-11 | 株式会社アライ・メッドフォトン研究所 | Medical device and phototherapeutic apparatus |
JP2015097664A (en) | 2013-11-19 | 2015-05-28 | 株式会社アライ・メッドフォトン研究所 | Medical device and phototherapeutic apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4675338A (en) * | 1984-07-18 | 1987-06-23 | Nippon Petrochemicals Co., Ltd. | Tetrapyrrole therapeutic agents |
US4997639A (en) * | 1989-11-27 | 1991-03-05 | Nippon Petrochemicals Company, Limited | Method for detecting cholesterol deposited in bodies of mammals |
US5308861A (en) * | 1991-04-30 | 1994-05-03 | Nippon Petrochemicals Company, Limited | Therapeutic agent for treating atherosclerosis of mammals |
WO1994012239A1 (en) | 1992-11-20 | 1994-06-09 | University Of British Columbia | Method of activating photosensitive agents |
-
1995
- 1995-09-06 JP JP7228760A patent/JP2961074B2/en not_active Expired - Lifetime
-
1996
- 1996-03-15 US US08/616,177 patent/US5633275A/en not_active Ceased
-
1999
- 1999-04-29 US US09/301,320 patent/USRE37180E1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4675338A (en) * | 1984-07-18 | 1987-06-23 | Nippon Petrochemicals Co., Ltd. | Tetrapyrrole therapeutic agents |
US4997639A (en) * | 1989-11-27 | 1991-03-05 | Nippon Petrochemicals Company, Limited | Method for detecting cholesterol deposited in bodies of mammals |
US5308861A (en) * | 1991-04-30 | 1994-05-03 | Nippon Petrochemicals Company, Limited | Therapeutic agent for treating atherosclerosis of mammals |
WO1994012239A1 (en) | 1992-11-20 | 1994-06-09 | University Of British Columbia | Method of activating photosensitive agents |
US5705518A (en) | 1992-11-20 | 1998-01-06 | University Of British Columbia | Method of activating photosensitive agents |
US5770619A (en) | 1992-11-20 | 1998-06-23 | University Of British Columbia | Method of activating photosensitive agents |
Non-Patent Citations (3)
Title |
---|
"In Vivo Studies on the Utilization of Mono-L-aspartyl Chlorin (Npe6) for Photodynamic Therapy", Nelson et al, Cancer Research, 47, 4681-4685, Sep. 1, 1987. |
"Photodynamic Therapy of Subretinal Neovascularization in the Monkey Eye", Miller et al, Arch. Ophthalmol, vol. 111, Jun. 1993. |
"Role of Neovasculature and Vascular Permeability on the Tumor Retention of Photodynamic Agents", Roberts et al, Cancer Research, 52, 924-930, Feb. 15, 1992. |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE39357E1 (en) | 1996-02-21 | 2006-10-17 | Meiji Seika Kaisha, Ltd. | Medicine for clogging blood vessels of eye fundus |
US20050196401A1 (en) * | 1999-01-15 | 2005-09-08 | James Chen | Energy-activated targeted cancer therapy |
US7018395B2 (en) | 1999-01-15 | 2006-03-28 | Light Sciences Corporation | Photodynamic treatment of targeted cells |
US20030208249A1 (en) * | 1999-01-15 | 2003-11-06 | James Chen | Energy-activated targeted cancer therapy |
US20040215292A1 (en) * | 1999-01-15 | 2004-10-28 | James Chen | Photodynamic treatment of targeted cells |
US20030018371A1 (en) * | 1999-01-15 | 2003-01-23 | Light Sciences Corporation | Compositions and methods for the treatment of metabolic bone disorders and bone metastases |
US6622729B1 (en) * | 1999-01-21 | 2003-09-23 | Gholam A. Peyman | Selective photodynamic treatment |
US20030114434A1 (en) * | 1999-08-31 | 2003-06-19 | James Chen | Extended duration light activated cancer therapy |
US7897140B2 (en) | 1999-12-23 | 2011-03-01 | Health Research, Inc. | Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents |
US7320786B2 (en) | 2000-01-12 | 2008-01-22 | Light Sciences Oncology, Inc. | Photodynamic therapy treatment for eye disease |
US6984655B1 (en) | 2000-02-17 | 2006-01-10 | Meiji Seika Kaisha, Ltd. | Photodynamic therapy for selectively closing neovasa in eyeground tissue |
US20030167033A1 (en) * | 2002-01-23 | 2003-09-04 | James Chen | Systems and methods for photodynamic therapy |
USRE43274E1 (en) | 2002-06-27 | 2012-03-27 | Health Research, Inc. | Fluorinated photosensitizers related to chlorins and bacteriochlorins for photodynamic therapy |
US7166719B2 (en) | 2002-06-27 | 2007-01-23 | Health Research, Inc. | Fluorinated photosensitizers related to chlorins and bacteriochlorins for photodynamic therapy |
US7501509B2 (en) | 2002-06-27 | 2009-03-10 | Health Research, Inc. | Water soluble tetrapyrollic photosensitizers for photodynamic therapy |
US7820143B2 (en) | 2002-06-27 | 2010-10-26 | Health Research, Inc. | Water soluble tetrapyrollic photosensitizers for photodynamic therapy |
US7053210B2 (en) | 2002-07-02 | 2006-05-30 | Health Research, Inc. | Efficient synthesis of pyropheophorbide a and its derivatives |
WO2004011460A2 (en) | 2002-07-24 | 2004-02-05 | Qlt, Inc. | Pyrazolylbenzothiazole derivatives and their use as therapeutic agents |
US20040243198A1 (en) * | 2002-10-03 | 2004-12-02 | Light Sciences Corporation | System and method for excitation of photoreactive compounds in eye tissue |
US7288106B2 (en) | 2002-10-03 | 2007-10-30 | Light Sciences Oncology, Inc. | System and method for excitation of photoreactive compounds in eye tissue |
US20080033519A1 (en) * | 2003-03-14 | 2008-02-07 | Light Sciences Oncology, Inc. | Light generating device for intravascular use |
US20100274330A1 (en) * | 2003-03-14 | 2010-10-28 | Light Sciences Oncology, Inc. | Device for treatment of blood vessels using light |
US10376711B2 (en) | 2003-03-14 | 2019-08-13 | Light Sciences Oncology Inc. | Light generating guide wire for intravascular use |
US20050244500A1 (en) * | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Intravitreal implants in conjuction with photodynamic therapy to improve vision |
US20070142880A1 (en) * | 2005-11-07 | 2007-06-21 | Barnard William L | Light delivery apparatus |
US10307610B2 (en) | 2006-01-18 | 2019-06-04 | Light Sciences Oncology Inc. | Method and apparatus for light-activated drug therapy |
WO2011020064A2 (en) | 2009-08-14 | 2011-02-17 | Light Sciences Oncology, Inc. | Low-profile intraluminal light delivery system and methods of using the same |
WO2023100829A1 (en) | 2021-11-30 | 2023-06-08 | 第一三共株式会社 | Protease-degradable musk antibody |
WO2023153442A1 (en) | 2022-02-09 | 2023-08-17 | 第一三共株式会社 | Environmentally responsive masked antibody and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0971531A (en) | 1997-03-18 |
US5633275A (en) | 1997-05-27 |
JP2961074B2 (en) | 1999-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37180E1 (en) | Photochemotherapeutical obstruction of newly-formed blood vessels | |
US6984655B1 (en) | Photodynamic therapy for selectively closing neovasa in eyeground tissue | |
EP0894009B1 (en) | Improved vision through photodynamic therapy of the eye | |
Gomer et al. | Molecular, cellular, and tissue responses following photodynamic therapy | |
TWI260327B (en) | Pharmaceutical compositions for treating ocular neovascular diseases | |
Mellish et al. | Verteporfin: a milestone in opthalmology and photodynamic therapy | |
US5707986A (en) | Angiographic method using green porphyrins in primate eyes | |
US6248734B1 (en) | Use of photodynamic therapy for prevention of secondary cataracts | |
Kim et al. | Photodynamic therapy of pigmented choroidal melanomas of greater than 3-mm thickness | |
Costa et al. | Indocyanine green-mediated photothrombosis as a new technique of treatment for persistent central serous chorioretinopathy | |
US6524330B1 (en) | Method of ocular treatment | |
CA2270558C (en) | Treatment of autoimmune diseases by photochemotherapy | |
US20060110356A1 (en) | Ophthalmic drug delivery system using polymer micelle | |
US20060229284A1 (en) | Enhanced occlusive effect photodynamic therapy | |
HUE026361T2 (en) | Improved photosensitizer formulations and their use | |
RU2290973C1 (en) | Method of curing subretinal neovascular membrane | |
JP2012092145A (en) | Composition for visual acuity amelioration through photodynamic therapy of eye | |
Schuitmaker et al. | Evaluation of photodynamically induced damage to healthy eye tissues of rabbits using the second-generation photosensitizers bacteriochlorin a and mTHPC | |
WO2005018634A1 (en) | The use of the hernatoporphyrin monomethyl ether for the treatment of the eye disorders | |
Levy et al. | Use Of Green Porphyrinsto Treat Neovasculature In The Eyes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MEIJI SEIKA PHARMA CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEIJI SEIKA KAISHA, LTD.;REEL/FRAME:027211/0418 Effective date: 20110404 |