USRE46126E1 - Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing - Google Patents
Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing Download PDFInfo
- Publication number
- USRE46126E1 USRE46126E1 US14/699,621 US201514699621A USRE46126E US RE46126 E1 USRE46126 E1 US RE46126E1 US 201514699621 A US201514699621 A US 201514699621A US RE46126 E USRE46126 E US RE46126E
- Authority
- US
- United States
- Prior art keywords
- annulus
- engaging apparatus
- contact portion
- engaging
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 210000003709 heart valve Anatomy 0.000 title claims abstract description 19
- 230000035876 healing Effects 0.000 title claims abstract description 13
- 238000004873 anchoring Methods 0.000 title claims description 23
- 238000009434 installation Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 93
- 238000007634 remodeling Methods 0.000 claims abstract description 9
- 210000002216 heart Anatomy 0.000 claims description 25
- 210000004369 blood Anatomy 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 7
- 210000004115 mitral valve Anatomy 0.000 abstract description 11
- 238000011282 treatment Methods 0.000 abstract description 9
- 230000017531 blood circulation Effects 0.000 abstract description 4
- 230000002966 stenotic effect Effects 0.000 abstract description 3
- 208000031481 Pathologic Constriction Diseases 0.000 abstract 1
- 208000037804 stenosis Diseases 0.000 abstract 1
- 230000036262 stenosis Effects 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 19
- 238000010009 beating Methods 0.000 description 7
- 230000000747 cardiac effect Effects 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000000779 thoracic wall Anatomy 0.000 description 4
- 238000007675 cardiac surgery Methods 0.000 description 3
- 238000002324 minimally invasive surgery Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 206010027727 Mitral valve incompetence Diseases 0.000 description 2
- 201000001943 Tricuspid Valve Insufficiency Diseases 0.000 description 2
- 210000003748 coronary sinus Anatomy 0.000 description 2
- 210000002837 heart atrium Anatomy 0.000 description 2
- 230000010247 heart contraction Effects 0.000 description 2
- 210000005003 heart tissue Anatomy 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 208000005907 mitral valve insufficiency Diseases 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010067660 Heart valve incompetence Diseases 0.000 description 1
- 206010061996 Heart valve stenosis Diseases 0.000 description 1
- 208000020128 Mitral stenosis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010044640 Tricuspid valve incompetence Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 238000013153 catheter ablation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 1
- 238000011846 endoscopic investigation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003236 esophagogastric junction Anatomy 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 210000004971 interatrial septum Anatomy 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 208000006887 mitral valve stenosis Diseases 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2409—Support rings therefor, e.g. for connecting valves to tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2466—Delivery devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/008—Quadric-shaped paraboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0059—Additional features; Implant or prostheses properties not otherwise provided for temporary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/006—Additional features; Implant or prostheses properties not otherwise provided for modular
Definitions
- valve repair procedures typically involve annuloplasty, a set of techniques designed to restore the valve annulus shape and strengthen the annulus.
- Conventional annuloplasty surgery generally requires a thoracotomy, and sometimes a median sternotomy.
- These open heart procedures involve placing the patient on a cardiopulmonary bypass machine for sustained periods so that the patient's heart and lungs can be artificially stopped during the procedure.
- valve repair and replacement procedures are technically challenging and require a relatively large incision through the wall of the heart to access the valve.
- Some devices offer heart valve repair through minimally invasive incisions or intravascularly, while others attempt to improve open heart surgical procedures on beating hearts, stopped hearts or both.
- Difficulties in performing minimally invasive intra-cardiac surgery include positioning a minimally invasive treatment device in a desired location for performing a procedure and effectively placing and fixing a device into or on the surface of the target cardiac tissue.
- it is often essential for a physician to fix a device to valve annulus tissue.
- Annular tissue tends to be more fibrous than surrounding muscular or valve leaflet tissue, thus providing a more suitable location for securing such a device.
- various types of anchors and anchoring techniques have been developed in order to fix treatment devices to the annular tissue. This is an important stage in all annuloplasty procedures and especially in procedures for treating mitral or tricuspid valve regurgitation.
- FIG. 1 shows the location of the mitral annulus in a cross-section of the heart.
- FIG. 2 shows a first approach for positioning a first embodiment of an engaging apparatus at the annulus.
- FIG. 3 shows a cross section of the embodiment shown in FIG. 2 .
- FIG. 4 shows an embodiment of a delivery system in which a multi-pronged device is used to place the engaging apparatus at the annulus.
- FIG. 5 shows a close up of the end of the FIG. 4 embodiment.
- FIG. 6 is a detailed view of the first embodiment of the engaging apparatus.
- FIG. 7 shows a detailed view of another embodiment of the engaging apparatus.
- FIG. 8 shows the engaging apparatus of FIG. 7 in location at the mitral annulus immediately after being positioned and anchored to the tissue.
- FIG. 9 shows the engaging apparatus of FIG. 7 after being left in place for sufficient time for tissue healing and remodeling to occur.
- FIG. 10 shows another embodiment of an engaging apparatus that contains an integral anchoring delivery system.
- FIG. 11 shows the FIG. 10 embodiment with an artificial valve anchored to the engaging apparatus.
- FIG. 1 shows the location of the mitral annulus 2 in a cross-section of the heart.
- the method and engaging apparatus of the current delivery system are used to facilitate transvascular, minimally invasive and other “less invasive” surgical procedures, by facilitating the placing and fixing of a treatment engaging apparatus 6 at a treatment site.
- “less invasive” means any procedure that is less invasive than traditional, large-incision, open surgical procedures.
- any procedure in which a goal is to minimize or reduce invasiveness to the patient may be considered less invasive.
- the methods described herein are developed for use in minimally invasive procedures, they may be applied to performing or enhancing any suitable procedure, including traditional open heart surgery.
- the present application describes methods and apparatuses for performing heart valve repair or replacement procedures, and more specifically heart valve annuloplasty procedures such as mitral valve annuloplasty to treat mitral regurgitation and mitral valve replacement to treat mitral stenosis.
- the devices and methods may be used to enhance a laparoscopic or other endoscopic procedure on any part of the body, such as the bladder, stomach, gastroesophageal junction, vasculature, gall bladder, or the like. Therefore, although the following description typically focuses on mitral valve 8 and other heart valve 9 repair, such description should not be interpreted to limit the scope of the invention.
- FIG. 2 shows a cross-section of the heart, with a full view of one embodiment of a balloon delivery system 4 and a full view of an engaging apparatus 6 .
- the balloon delivery system 4 can be used for placement of the engaging apparatus 6 at the annulus 2 .
- the balloon is routed to the proper position in its deflated state (not shown) using any suitable route or method (e.g., an endoscopic technique), and then inflated.
- the system will resemble FIG. 2 , in which the balloon 4 is shown in its inflated state, positioned at the mitral valve 8 .
- the engaging apparatus 6 is located around the balloon 4 , and the inflation brings the engaging apparatus 6 into proximity of the annular tissue 2 and presses them towards each other.
- the engaging apparatus 6 initially surrounds the balloon 4 and anchors to the annular tissue 2 upon inflation of the balloon 4 .
- FIG. 3 depicts the same items as FIG. 2 except that the delivery system is shown in cross section.
- the balloon is shown with a central channel 10 and flexible leaflets 12 seen within its lumen. These leaflets 12 act as a temporary replacement valve in order to allow normal heart function during the insertion procedure.
- valve repair or replacement may be implemented using a hollow, inflatable balloon 4 with integral flexible valve leaflets 12 within its lumen which act as a temporary replacement for the natural valve upon inflation, while maintaining adequate flow through from the atrium 1 to the ventricle 3 throughout the procedure via channel 10 . Because of the channel 10 , blood can flow through the system even when the balloon 6 is inflated, which facilitates installation of the device into a beating heart.
- the engaging apparatus 6 Upon deflation of the balloon, the engaging apparatus 6 will detach from the balloon 4 and remain attached to the annulus 2 with enough anchoring force to withstand normal cardiac contraction, flow and valve movement. Attachment to the annulus can be aided by using appropriate anchors, hooks, barbs, etc. Alternatively, the engaging apparatus 6 can hold itself in place by exerting a centripetal pressure on the annulus, generated by the springiness of the engaging apparatus.
- the engaging apparatus 6 may be contained within a hidden circumferential pocket surrounding the balloon 4 and will engage the annular tissue 2 only upon release from this pocket.
- the release of the engaging apparatus 6 from the balloon 4 may be performed by releasing a slip-knot like suture from the balloon 4 or any other suitable alternative approach.
- conventional balloon and balloon inflation technology may be used, similar to those used in other annuloplasty procedures (e.g., conventional balloon procedures for widening a stenotic valve).
- FIG. 4 shows a cross-section of the heart, a full view of the first embodiment of an engaging apparatus 6 , and a full view of the second embodiment of a delivery system.
- This delivery system uses a multi-pronged device 14 that is preferably collapsible (similar to an umbrella frame, a truncated wire whisk, etc). to place the engaging apparatus 6 at the annulus 2 .
- the methods and engaging apparatus of the delivery system may be used in any suitable procedure, both cardiac and non-cardiac. For example, they may be used in procedures to repair any heart valve 9 , to replace any heart valve 9 , to repair an atrial-septal 11 defect, to access and possibly perform a valve repair from (or through) the coronary sinus.
- FIG. 5 shows a detail view of the multi-pronged delivery system 14 shown in FIG. 4 .
- valve repair may be implemented using a delivery device 14 which can be extended from the tip of a catheter 16 to allow for the correct positioning of the engaging apparatus 6 at the annulus.
- the multi-pronged placement device 14 can be introduced into the left atrium 1 (shown in FIG. 4 ) during on-pump or off-pump procedures through the wall of the atrium or through the intra-atrial septum, with the catheter 16 introduced by intravascular or minimal invasive approach. Placement and tightening may be performed on a beating heart because blood can flow through the spaces between the prongs. Access to the beating heart may be accomplished by any available technique, including intravascular, trans-thoracic, and the like. Intravascular access to a heart valve may be achieved using any suitable route or method.
- a catheter 16 may be advanced through a femoral artery, to the aorta, and into the left ventricle of the heart, to contact a length of the mitral valve.
- the device 14 is expanded so as to press the engaging apparatus 6 against the annulus.
- the expansion of the delivery system 14 may be implemented using any suitable technique such as withdrawal of a sheath that permits the prongs to to spring out to their natural state.
- access may be gained through the venous delivery system, to a central vein, into the right atrium of the heart, and across the inter-atrial septum to the left side of the heart to contact a length of the mitral valve.
- the catheter device 16 may access the coronary sinus and a valve procedure may be performed directly from the sinus.
- methods of the present delivery system may be used for intravascular stopped heart access as well as stopped heart open chest procedures. Any suitable intravascular or other access method may be substituted.
- FIG. 6 shows a detailed view of the first embodiment of the engaging apparatus.
- This embodiment uses a helical spring 18 that has been formed to be substantially arc-shaped preferably subtending an arc of at least 180°, and more preferably at least 270°, with a wire 20 within it for subsequent tightening.
- the spring geometry allows for changes in ring diameter, and creates a channel for the tightening wire. It also allows for tissue healing into the spaces in the spring 22 , thereby bonding the engaging apparatus to the annulus wall by embedding the engaging apparatus within the annulus wall.
- Tightening of the engaging apparatus may be accomplished, for example, by retracting a wire 20 left within the engaging apparatus 6 during its placement at the annulus using a minimally invasive approach.
- any alternative method or device for the tightening of a structure at the annulus may be used. This includes, but is not limited to, different types of steerable catheter tips 16 (as shown in FIG. 4 ) catheters allowing for direct manipulation of objects at the tip, catheters allowing for visualization of the annulus, and catheters which deliver energy at the area of interest (ultrasound, heat, radiofrequency fields, etc.).
- Non-invasive techniques for tightening the engaging apparatus 6 may also be used, including but not limited to magnetic manipulation through the chest wall, radiofrequency energy delivery through the chest wall and ultrasound energy transmitted through the chest wall.
- the engaging apparatus 6 may be made of Stainless Steel, Nitinol, Elgiloy or Titanium; however any material with the necessary strength, flexibility and biocompatibility to withstand cardiac pressures may be used.
- a suitable diameter for the arc is between about 25 and about 60 mm.
- a suitable diameter for the helix is between about 1 and about 3 mm, and a suitable pitch for the helix is between about 1 and about 3 mm.
- the engaging apparatus 6 may be constructed of a spring like ring 18 with or without a central cavity for a tightening wire 20 .
- This spring like ring 18 may be configured to facilitate the growth of annular tissue into the engaging apparatus 6 strengthening the adhesion between the annulus and the engaging apparatus 6 .
- other surface geometries which facilitate tissue anchoring into the engaging apparatus may also be used, including but not limited to serrated, hooked, porous or folded surfaces.
- a tube with holes or serrations cut therein (not shown) may also be used.
- the tightening wire 20 may be made of silk or plastic, however, any material with sufficient strength, elasticity and biocompatibility may be used for this purpose.
- the term “wire” includes all such materials and constructions. The wire 20 may be used for subsequent tightening of the engaging apparatus 6 (e.g., by pulling on both ends of the wire) leading to a tightening of the annulus of the patient's heart.
- FIG. 7 shows a detailed view of a second embodiment of an engaging apparatus.
- This embodiment is similar to the FIG. 6 embodiment discussed above, but anchors 24 are added to the spring like ring 18 for initial anchoring of the engaging apparatus 56 to the annulus to better withstand cardiac contraction, valve motion and blood flow.
- Any of the delivery systems described above may be used to position the engaging apparatus 56 at the annulus and fix it in place by gentle centripetal pressure 4 alone or in conjunction with any existing placing and anchoring technique or by the use of existing placing and anchoring techniques alone.
- the engaging apparatus 56 may be placed using any other minimally invasive or invasive placement delivery systems.
- any of the engaging apparatuses described herein may be coated with an adhesive substance to facilitate integration between the engaging apparatus and the annulus.
- the engaging apparatus may contain hooks, serrations, spokes or sutures for preliminary attachment to the annulus.
- suitable structures include, but are not limited to, a closed circular spring with a flexible diameter, open ended semi-circular structures, non circular structures capable of approximation between two or more free tips, and non-continuous structures such as individual tubes connected to the annular rim.
- the engaging apparatus may be made of or elute materials which stimulate or accelerate tissue growth. These materials may include but are not limited to growth factors, pro-inflammatory agents, foreign substances which are immunogenic and lead to an enhanced tissue reaction to the engaging apparatus.
- the engaging apparatus may contain an active electromechanical element, such as a motor or actuator, capable of tightening the engaging apparatus.
- This active component may be self powered by a battery or by mechanical energy generated by the cardiac muscle or blood flow.
- the active element may be activated using minimally invasive techniques or non-invasive techniques. In the case of non-invasive activation of the active element, any form of transmitted energy may be used, including but not limited to ultrasound and radiofrequency transmission.
- the delivery systems and engaging apparatuses described herein may be used for repair of a cardiac valve annulus such as a mitral valve annulus using a two step procedure: placing and tightening.
- the method preferably involves bringing an engaging apparatus into position to the annulus of interest as shown in FIG. 2 or FIG. 4 through a minimally invasive procedure.
- FIG. 8 shows the engaging apparatus 56 from FIG. 7 in location at the mitral annulus 2 immediately after being left in place and anchored to the tissue using the delivery system described above or any other minimally invasive or invasive placement delivery system. No tissue healing or remodeling has occurred at this stage and the engaging apparatus 6 is attached to the annulus 2 with the minimal necessary force.
- FIG. 9 shows the same engaging apparatus 56 after being left in place for sufficient time for tissue healing and remodeling to occur 28 .
- the engaging apparatus 56 is integrated into the annulus 2 due to tissue healing which has embedded the engaging apparatus within the annular wall.
- This tissue healing 28 embeds the engaging apparatus 56 within the wall of the annulus 2 with sufficient integration to allow for subsequent tightening of the engaging apparatus 56 (e.g., by pulling on both ends of the wire 20 , shown in FIG. 7 ) to circumferentially tighten the annulus 2 .
- the anchoring strength of the engaging apparatus to the annulus at this stage is preferably sufficient to withstand tightening of the engaging apparatus 56 and the entire annulus 2 in a subsequent procedure.
- the initial placement of the engaging apparatus 56 at the annulus 2 requires anchoring strength much lower than that used for existing minimally invasive annuloplasty techniques.
- the initial anchoring strength is sufficient to withstand the normal shear-forces, flow and contraction of the beating heart but, may be less than that necessary for tightening the annulus 2 .
- the tightening procedure is subsequently performed during a second procedure after allowing a sufficiently long period of time for tissue remodeling 28 into and around the engaging apparatus. It is expected that one week should be sufficient, but it may be possible to use a shorter waiting time in some circumstances.
- the second step of tightening the engaging apparatus 56 may be performed during the same procedure after allowing sufficient time for adhesion to occur between the engaging apparatus 56 and the annular tissue 2 .
- the tightening procedure may also be performed in any number of subsequent procedures or non-invasively through the chest wall.
- the engaging apparatus 56 may deliver energy or focus externally transmitted energy to the annular surface 2 in order to accelerate tissue growth into or around the engaging apparatus 28 .
- FIG. 10 shows yet another embodiment in which the engaging apparatus 66 contains an integral anchoring delivery system 30 which allows for an artificial valve 32 to be connected to the engaging apparatus 66 , during a subsequent procedure, instead of or in addition to tightening of the annulus.
- the illustrated delivery system may be used for replacement of a cardiac valve, such as the mitral valve using a three step procedure: widening of the annulus, placing the engaging apparatus 66 , and anchoring an artificial valve 32 to the engaging apparatus 66 .
- Introduction of the artificial valve 32 to the engaging apparatus may be performed through an intravascular or minimally invasive approach.
- FIG. 11 shows the FIG. 10 embodiment where the artificial valve 32 is anchored to the engaging apparatus 66 during a subsequent, minimally invasive procedure.
- the engaging apparatus 66 may be placed at the annulus 2 as a second step procedure following widening of the annulus 2 and valve 8 using a minimally invasive balloon inflation technique or any other method for widening a stenotic valve.
- the artificial valve 32 may be attached to the engaging apparatus 66 during a third procedure, instead of or in addition to tightening of the annulus 2 .
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Methods, delivery systems and engaging apparatuses for the placement and treatment of an insufficient or stenotic cardiac valve, such as the mitral valve are disclosed. One such method is based on a two step procedure, where during the first step the engaging apparatus is brought to the valve annulus using a delivery system which permits continued normal blood flow. In some preferred embodiments, this is implemented with a balloon and other preferred embodiments it is implemented using a multi-pronged structure that is collapsible like an umbrella frame. The second step is performed after the engaging apparatus has been integrated into the annular wall by natural processes of tissue healing and remodeling. In the second step the engaging apparatus is tightened leading to tightening of the valve annulus arid correction of existing valvular insufficiency. Optionally, an artificial valve may be anchored to the engaging apparatus during the same or subsequent procedure to correct either valvular insufficiency or stenosis.
Description
NOTICE: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,430,926. The reissue applications are the present application and application Ser. No. 14/699,447, both of which are reissues of U.S. Pat. No. 8,430,926.
This application claims the benefit of U.S. provisional application No. 60/822,113, filed Aug. 11, 2006, which is incorporated herein by reference.
In the recent past, many advances have been made to reduce the invasiveness of cardiac surgery. In an attempt to avoid open, stopped-heart procedures, which may be accompanied by high patient morbidity and mortality, many devices and methods have been developed for performing surgery on a heart through smaller incisions, operating on a beating heart, and finally, in the past years, performing cardiac procedures via transvascular access. Significant technological advances have been made in various types of cardiac procedures, such as cardiac ablation techniques for treating atrial fibrillation, stenting procedures for atherosclerosis, and valve repair procedures. More specifically, much progress has been made on treating conditions such as mitral valve regurgitation. In implementing many minimally invasive cardiac surgery techniques, especially beating-heart techniques, one of the most significant challenges is positioning a treatment device and once positioned, to effectively deploy and fix a given device or treatment into or on the surface of the target cardiac tissue.
Traditional treatment of heart valve stenosis or regurgitation, such as mitral or tricuspid regurgitation, typically involves an open-heart surgical procedure to replace or repair the valve. Valve repair procedures typically involve annuloplasty, a set of techniques designed to restore the valve annulus shape and strengthen the annulus. Conventional annuloplasty surgery generally requires a thoracotomy, and sometimes a median sternotomy. These open heart procedures involve placing the patient on a cardiopulmonary bypass machine for sustained periods so that the patient's heart and lungs can be artificially stopped during the procedure. Finally, valve repair and replacement procedures are technically challenging and require a relatively large incision through the wall of the heart to access the valve.
Due to the highly invasive nature of open heart valve repair or replacement, high risk patients are usually not candidates for these procedures and thus are destined to functional deterioration and cardiac enlargement. Often, such patients have no feasible alternative treatments for their heart valve conditions.
In order to try and solve this problem, a number of devices and methods for repairing cardiac valves in a less invasive manner have been described. Some devices offer heart valve repair through minimally invasive incisions or intravascularly, while others attempt to improve open heart surgical procedures on beating hearts, stopped hearts or both. Difficulties in performing minimally invasive intra-cardiac surgery include positioning a minimally invasive treatment device in a desired location for performing a procedure and effectively placing and fixing a device into or on the surface of the target cardiac tissue. In heart valve repair procedures, for example, it is often essential for a physician to fix a device to valve annulus tissue. Annular tissue tends to be more fibrous than surrounding muscular or valve leaflet tissue, thus providing a more suitable location for securing such a device. In the past, various types of anchors and anchoring techniques have been developed in order to fix treatment devices to the annular tissue. This is an important stage in all annuloplasty procedures and especially in procedures for treating mitral or tricuspid valve regurgitation.
Devices and methods that address these difficulties are described in U.S. patent application Ser. Nos. 60/445,890, 60/459,735, 60/462,502, 60/524,622, 10/461,043, 10/656,797 and Ser. No. 10/741,130. For example, these references describe devices and methods for exposing, stabilizing and/or performing procedure on a heart valve annulus, such as a mitral valve annulus. Many of these methods and devices have shown preliminary promise, however a highly safe and effective method and engaging apparatus for performing cardiac valve annuloplasty has, until now, been lacking.
Upon deflation of the balloon, the engaging apparatus 6 will detach from the balloon 4 and remain attached to the annulus 2 with enough anchoring force to withstand normal cardiac contraction, flow and valve movement. Attachment to the annulus can be aided by using appropriate anchors, hooks, barbs, etc. Alternatively, the engaging apparatus 6 can hold itself in place by exerting a centripetal pressure on the annulus, generated by the springiness of the engaging apparatus.
In some embodiments (not shown), the engaging apparatus 6 may be contained within a hidden circumferential pocket surrounding the balloon 4 and will engage the annular tissue 2 only upon release from this pocket. The release of the engaging apparatus 6 from the balloon 4 may be performed by releasing a slip-knot like suture from the balloon 4 or any other suitable alternative approach. In these embodiments, conventional balloon and balloon inflation technology may be used, similar to those used in other annuloplasty procedures (e.g., conventional balloon procedures for widening a stenotic valve).
For example, to perform a procedure on a mitral valve 8 a catheter 16 may be advanced through a femoral artery, to the aorta, and into the left ventricle of the heart, to contact a length of the mitral valve. After it is so positioned, the device 14 is expanded so as to press the engaging apparatus 6 against the annulus. The expansion of the delivery system 14 may be implemented using any suitable technique such as withdrawal of a sheath that permits the prongs to to spring out to their natural state. Alternatively, access may be gained through the venous delivery system, to a central vein, into the right atrium of the heart, and across the inter-atrial septum to the left side of the heart to contact a length of the mitral valve. In alternative embodiments, the catheter device 16 may access the coronary sinus and a valve procedure may be performed directly from the sinus. Furthermore, in addition to beating heart access, methods of the present delivery system may be used for intravascular stopped heart access as well as stopped heart open chest procedures. Any suitable intravascular or other access method may be substituted.
Tightening of the engaging apparatus may be accomplished, for example, by retracting a wire 20 left within the engaging apparatus 6 during its placement at the annulus using a minimally invasive approach. However, any alternative method or device for the tightening of a structure at the annulus may be used. This includes, but is not limited to, different types of steerable catheter tips 16 (as shown in FIG. 4 ) catheters allowing for direct manipulation of objects at the tip, catheters allowing for visualization of the annulus, and catheters which deliver energy at the area of interest (ultrasound, heat, radiofrequency fields, etc.). Non-invasive techniques for tightening the engaging apparatus 6 may also be used, including but not limited to magnetic manipulation through the chest wall, radiofrequency energy delivery through the chest wall and ultrasound energy transmitted through the chest wall.
The engaging apparatus 6 may be made of Stainless Steel, Nitinol, Elgiloy or Titanium; however any material with the necessary strength, flexibility and biocompatibility to withstand cardiac pressures may be used. A suitable diameter for the arc is between about 25 and about 60 mm. A suitable diameter for the helix is between about 1 and about 3 mm, and a suitable pitch for the helix is between about 1 and about 3 mm.
In some embodiments, the engaging apparatus 6 may be constructed of a spring like ring 18 with or without a central cavity for a tightening wire 20. This spring like ring 18 may be configured to facilitate the growth of annular tissue into the engaging apparatus 6 strengthening the adhesion between the annulus and the engaging apparatus 6. However, other surface geometries which facilitate tissue anchoring into the engaging apparatus may also be used, including but not limited to serrated, hooked, porous or folded surfaces. A tube with holes or serrations cut therein (not shown) may also be used.
In some embodiments, the tightening wire 20 may be made of silk or plastic, however, any material with sufficient strength, elasticity and biocompatibility may be used for this purpose. As used herein, the term “wire” includes all such materials and constructions. The wire 20 may be used for subsequent tightening of the engaging apparatus 6 (e.g., by pulling on both ends of the wire) leading to a tightening of the annulus of the patient's heart.
Optionally, any of the engaging apparatuses described herein may be coated with an adhesive substance to facilitate integration between the engaging apparatus and the annulus. Optionally, the engaging apparatus may contain hooks, serrations, spokes or sutures for preliminary attachment to the annulus. Examples of suitable structures include, but are not limited to, a closed circular spring with a flexible diameter, open ended semi-circular structures, non circular structures capable of approximation between two or more free tips, and non-continuous structures such as individual tubes connected to the annular rim. Optionally, the engaging apparatus may be made of or elute materials which stimulate or accelerate tissue growth. These materials may include but are not limited to growth factors, pro-inflammatory agents, foreign substances which are immunogenic and lead to an enhanced tissue reaction to the engaging apparatus. Optionally, the engaging apparatus may contain an active electromechanical element, such as a motor or actuator, capable of tightening the engaging apparatus. This active component may be self powered by a battery or by mechanical energy generated by the cardiac muscle or blood flow. The active element may be activated using minimally invasive techniques or non-invasive techniques. In the case of non-invasive activation of the active element, any form of transmitted energy may be used, including but not limited to ultrasound and radiofrequency transmission.
The delivery systems and engaging apparatuses described herein may be used for repair of a cardiac valve annulus such as a mitral valve annulus using a two step procedure: placing and tightening. The method preferably involves bringing an engaging apparatus into position to the annulus of interest as shown in FIG. 2 or FIG. 4 through a minimally invasive procedure.
By using this procedure (i.e., install, wait for incorporation, then tighten), the initial placement of the engaging apparatus 56 at the annulus 2 requires anchoring strength much lower than that used for existing minimally invasive annuloplasty techniques. The initial anchoring strength is sufficient to withstand the normal shear-forces, flow and contraction of the beating heart but, may be less than that necessary for tightening the annulus 2. The tightening procedure is subsequently performed during a second procedure after allowing a sufficiently long period of time for tissue remodeling 28 into and around the engaging apparatus. It is expected that one week should be sufficient, but it may be possible to use a shorter waiting time in some circumstances.
Alternatively, in embodiments that rely on adhesion the second step of tightening the engaging apparatus 56 may be performed during the same procedure after allowing sufficient time for adhesion to occur between the engaging apparatus 56 and the annular tissue 2. The tightening procedure may also be performed in any number of subsequent procedures or non-invasively through the chest wall. Optionally, the engaging apparatus 56 may deliver energy or focus externally transmitted energy to the annular surface 2 in order to accelerate tissue growth into or around the engaging apparatus 28.
All of the above-described embodiments advantageously permit blood flow during insertion of the delivery system and the engaging apparatus.
Claims (21)
1. A method of tightening an annulus of a heart comprising the steps of:
pressing an engaging apparatus with a contractible diameter up against an inner surface of the annulus, wherein the engaging apparatus is configured to attach to the inner surface with an initial anchoring strength when pressed against the inner surface, wherein the initial anchoring strength is less than that necessary to withstand tightening;
waiting for a bond to develop between the engaging apparatus and the annulus based on tissue healing and remodeling into and around the engaging apparatus that is strong enough to withstand tightening; and
contracting the engaging apparatus after development of the bond based on tissue healing and remodeling.
2. The method of claim 1 , wherein the pressing step comprises the step of inflating a balloon-like object to press the engaging apparatus against the inner surface of the annulus, and wherein the balloon-like object has a channel that permits blood to flow therethrough during the pressing step.
3. The method of claim 1 , wherein the pressing step comprises the step of opening a truncated wire-whisk shaped structure configured to press the engaging apparatus against the inner surface of the annulus, and wherein blood is free to flow past the truncated wire-whisk shaped structure during the pressing step.
4. The method of claim 1 , wherein the step of waiting for a bond to develop between the engaging apparatus and the annulus comprises waiting for at least one week.
5. The method of claim 1 , wherein the engaging apparatus has an annulus contact portion that is shaped like a helical spring that has been formed to be substantially arc-shaped, with an arc that subtends at least 270°.
6. An apparatus for repairing an annulus comprising:
an annulus contact portion having an outer boundary that is configured for pressing outwards against the annulus, wherein the annulus contact portion is substantially arc-shaped and has an inner core, and wherein the annulus contact portion is configured to attach to the annulus with an initial anchoring strength when pressed against the annulus, the initial anchoring strength being less than that necessary to withstand tightening, and wherein the annulus contact portion is also configured to permit tissue healing and remodeling into and around the annulus contact portion that increases the anchoring strength over time;
a truncated wire-whisk shaped structure configured to press the annulus contact portion against the inner surface of the annulus while permitting blood to flow freely past the truncated wire-whisk shaped structure; and
a wire that runs through the inner core and is arranged with respect to the annulus contact portion so that pulling on the wire causes the outer boundary to contract.
7. The apparatus of claim 6 , wherein the annulus contact portion has a plurality of barbs configured to promote initial anchoring of the annulus contact portion to the annulus.
8. The apparatus of claim 6 , wherein the substantially arc-shaped annulus contact portion subtends an angle of at least 180°.
9. The apparatus of claim 6 , wherein the substantially arc-shaped annulus contact portion subtends an angle of at least 270°.
10. The apparatus of claim 6 , wherein annulus contact portion comprises a helical spring that has been formed into an arc.
11. The apparatus of claim 10 , wherein the helical spring has an outer diameter between about 25 and about 60 mm, a helix diameter between about 1 and about 3 mm, and a helix pitch between about 1 and about 3 mm.
12. The apparatus of claim 10 , wherein the annulus contact portion has a plurality of barbs configured to promote attachment of the annulus contact portion to the annulus.
13. The apparatus of claim 10 , wherein the substantially arc-shaped annulus contact portion subtends an angle of at least 180°.
14. The apparatus of claim 10 , wherein the substantially arc-shaped annulus contact portion subtends an angle of at least 270°.
15. The method of claim 3 , wherein the step of waiting for a bond to develop between the engaging apparatus and the annulus comprises waiting at least one week.
16. The method of claim 3 , wherein the engaging apparatus has an annulus contact portion that is shaped like a helical spring that has been formed to be substantially arc-shaped, with an arc that subtends at least 270°.
17. A method of installing an artificial cardiac valve comprising the steps of:
attaching an engaging apparatus to an annulus, wherein the engaging apparatus is configured to attach to the annulus with an initial anchoring strength when attached to the annulus, wherein the initial anchoring strength is less than that necessary to withstand tightening;
waiting for a bond to develop between the engaging apparatus and the annulus based on tissue healing and remodeling into and around the engaging apparatus that is strong enough to withstand tightening; and
anchoring the artificial cardiac valve to the engaging apparatus after development of the bond based on tissue healing and remodeling.
18. The method of claim 17, wherein the attaching step comprises the step of inflating a balloon-like object to press the engaging apparatus against the annulus, and wherein the balloon-like object has a channel that permits blood to flow therethrough during the attaching step.
19. The method of claim 17, wherein the attaching step comprises the step of using a truncated wire-whisk shaped structure to press the engaging apparatus against the annulus, and wherein blood is free to flow past the truncated wire-whisk shaped structure during the attaching step.
20. The method of claim 19, wherein the step of waiting for a bond to develop between the engaging apparatus and the annulus comprises waiting for at least one week.
21. The method of claim 17, wherein the step of waiting for a bond to develop between the engaging apparatus and the annulus comprises waiting at least one week.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/699,621 USRE46126E1 (en) | 2006-08-11 | 2015-04-29 | Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82211306P | 2006-08-11 | 2006-08-11 | |
US11/837,077 US8430926B2 (en) | 2006-08-11 | 2007-08-10 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
US14/699,621 USRE46126E1 (en) | 2006-08-11 | 2015-04-29 | Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/837,077 Reissue US8430926B2 (en) | 2006-08-11 | 2007-08-10 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46126E1 true USRE46126E1 (en) | 2016-08-30 |
Family
ID=39226072
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/837,077 Ceased US8430926B2 (en) | 2006-08-11 | 2007-08-10 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
US12/549,989 Abandoned US20100049315A1 (en) | 2006-08-11 | 2009-08-28 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
US14/699,621 Active 2029-10-17 USRE46126E1 (en) | 2006-08-11 | 2015-04-29 | Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing |
US14/699,447 Active 2029-10-17 USRE46127E1 (en) | 2006-08-11 | 2015-04-29 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/837,077 Ceased US8430926B2 (en) | 2006-08-11 | 2007-08-10 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
US12/549,989 Abandoned US20100049315A1 (en) | 2006-08-11 | 2009-08-28 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/699,447 Active 2029-10-17 USRE46127E1 (en) | 2006-08-11 | 2015-04-29 | Annuloplasty with enhanced anchoring to the annulus based on tissue healing |
Country Status (1)
Country | Link |
---|---|
US (4) | US8430926B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9913706B2 (en) | 2014-07-17 | 2018-03-13 | Millipede, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US10258466B2 (en) | 2015-02-13 | 2019-04-16 | Millipede, Inc. | Valve replacement using moveable restrains and angled struts |
US10335275B2 (en) | 2015-09-29 | 2019-07-02 | Millipede, Inc. | Methods for delivery of heart valve devices using intravascular ultrasound imaging |
US10543088B2 (en) | 2012-09-14 | 2020-01-28 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10548731B2 (en) | 2017-02-10 | 2020-02-04 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10555813B2 (en) | 2015-11-17 | 2020-02-11 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10575952B2 (en) | 2016-09-15 | 2020-03-03 | Cardiac Implants Llc | Preventing dislodgement of a constricting cord that has been affixed to a cardiac valve annulus |
US10849755B2 (en) | 2012-09-14 | 2020-12-01 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10881390B2 (en) | 2018-01-03 | 2021-01-05 | Cardiac Implants Llc | Fastener for holding a constricting cord in a reduced-diameter state around a cardiac valve annulus, and installation of the fastener |
US11020230B2 (en) * | 2016-12-15 | 2021-06-01 | Cmi'nov | Device for performing or preparing for a mitral valve annuloplasty by a transfemoral approach |
US11173028B1 (en) | 2020-09-09 | 2021-11-16 | Cardiac Implants Llc | Positioning a medical device in the right atrium or right ventricle using a non-flexible catheter |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006097931A2 (en) | 2005-03-17 | 2006-09-21 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
US8333777B2 (en) | 2005-04-22 | 2012-12-18 | Benvenue Medical, Inc. | Catheter-based tissue remodeling devices and methods |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
JP2010511469A (en) | 2006-12-05 | 2010-04-15 | バルテック カーディオ,リミティド | Segmented ring placement |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US9192471B2 (en) | 2007-01-08 | 2015-11-24 | Millipede, Inc. | Device for translumenal reshaping of a mitral valve annulus |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
EP2296744B1 (en) | 2008-06-16 | 2019-07-31 | Valtech Cardio, Ltd. | Annuloplasty devices |
US8323335B2 (en) * | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
US8545553B2 (en) | 2009-05-04 | 2013-10-01 | Valtech Cardio, Ltd. | Over-wire rotation tool |
US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
ES2873182T3 (en) | 2008-12-22 | 2021-11-03 | Valtech Cardio Ltd | Adjustable annuloplasty devices |
US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US8241351B2 (en) | 2008-12-22 | 2012-08-14 | Valtech Cardio, Ltd. | Adjustable partial annuloplasty ring and mechanism therefor |
US8715342B2 (en) | 2009-05-07 | 2014-05-06 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
BRPI1007767A2 (en) | 2009-02-09 | 2017-06-27 | St Jude Medical Cardiology Div Inc | placement device and reversible display |
US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
EP3081195B1 (en) * | 2009-04-10 | 2018-10-03 | Lon Sutherland Annest | An implantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve |
US9011522B2 (en) | 2009-04-10 | 2015-04-21 | Lon Sutherland ANNEST | Device and method for temporary or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve |
US8885977B2 (en) * | 2009-04-30 | 2014-11-11 | Apple Inc. | Automatically extending a boundary for an image to fully divide the image |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US10098737B2 (en) * | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US20120089236A1 (en) * | 2010-10-08 | 2012-04-12 | E2 Llc | Anti-Reflux Devices and Methods for Treating Gastro-Esophageal Reflux Disease (GERD) |
EP2506777B1 (en) | 2009-12-02 | 2020-11-25 | Valtech Cardio, Ltd. | Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
CA2791390C (en) | 2010-03-05 | 2019-04-16 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US20110224785A1 (en) | 2010-03-10 | 2011-09-15 | Hacohen Gil | Prosthetic mitral valve with tissue anchors |
DK2590595T3 (en) | 2010-07-09 | 2015-12-07 | Highlife Sas | Transcatheter atrioventricular heart valve prosthesis |
US8657872B2 (en) | 2010-07-19 | 2014-02-25 | Jacques Seguin | Cardiac valve repair system and methods of use |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
EP2595569B1 (en) | 2010-07-23 | 2024-12-18 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US20120053680A1 (en) | 2010-08-24 | 2012-03-01 | Bolling Steven F | Reconfiguring Heart Features |
IT1402571B1 (en) | 2010-11-12 | 2013-09-13 | Ht Consultant Di Giovanni Righini | PROSTHETIC SYSTEM FOR CARDIO-VASCULAR VALVE WITH SEPARATE ANCHORAGE STRUCTURE |
EP2723274B1 (en) | 2011-06-23 | 2017-12-27 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US20140324164A1 (en) | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2013021374A2 (en) | 2011-08-05 | 2013-02-14 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2013021375A2 (en) | 2011-08-05 | 2013-02-14 | Mitraltech Ltd. | Percutaneous mitral valve replacement and sealing |
CA3040390C (en) * | 2011-08-11 | 2022-03-15 | Tendyne Holdings, Inc. | Improvements for prosthetic valves and related inventions |
US9387075B2 (en) * | 2011-09-12 | 2016-07-12 | Highlife Sas | Transcatheter valve prosthesis |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US8858623B2 (en) | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
EP2775896B1 (en) | 2011-11-08 | 2020-01-01 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US10398555B2 (en) | 2011-12-12 | 2019-09-03 | Cardiac Implants Llc | Magnetically coupled cinching of a loop installed in a valve annulus |
JP6153938B2 (en) | 2011-12-12 | 2017-06-28 | デイヴィッド・アロン | Heart valve repair device |
EP3581152A1 (en) | 2011-12-21 | 2019-12-18 | The Trustees of The University of Pennsylvania | Platforms for mitral valve replacement |
EP2620125B1 (en) * | 2012-01-24 | 2017-10-11 | Medtentia International Ltd Oy | An arrangement, a loop-shaped support, a prosthetic heart valve and a method of repairing or replacing a native heart valve |
CN110403735A (en) | 2012-01-31 | 2019-11-05 | 米特拉尔维尔福科技有限责任公司 | Bicuspid valve parking device, system and method |
GB2500432A (en) * | 2012-03-22 | 2013-09-25 | Stephen Brecker | Replacement heart valve with resiliently deformable securing means |
US9427315B2 (en) | 2012-04-19 | 2016-08-30 | Caisson Interventional, LLC | Valve replacement systems and methods |
US9011515B2 (en) | 2012-04-19 | 2015-04-21 | Caisson Interventional, LLC | Heart valve assembly systems and methods |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
WO2014052818A1 (en) | 2012-09-29 | 2014-04-03 | Mitralign, Inc. | Plication lock delivery system and method of use thereof |
EP3517052A1 (en) | 2012-10-23 | 2019-07-31 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
WO2014064695A2 (en) | 2012-10-23 | 2014-05-01 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US10327901B2 (en) | 2012-11-20 | 2019-06-25 | Innovheart S.R.L. | Device for the deployment of a system of guide wires within a cardiac chamber for implanting a prosthetic heart valve |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
ES2965612T3 (en) | 2013-01-25 | 2024-04-16 | Hvr Cardio Oy | A medical system with a device for collecting cords and/or leaflets |
WO2014114795A1 (en) | 2013-01-25 | 2014-07-31 | Medtentia International Ltd Oy | A valve for short time replacement, for taking over the function of and/or for temporary or partial support of a native valve in a heart and a method for delivery therefor |
EP2961351B1 (en) | 2013-02-26 | 2018-11-28 | Mitralign, Inc. | Devices for percutaneous tricuspid valve repair |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US9724195B2 (en) | 2013-03-15 | 2017-08-08 | Mitralign, Inc. | Translation catheters and systems |
CA3005848C (en) | 2013-06-06 | 2020-03-24 | David Alon | Heart valve repair and replacement |
EP3033048B1 (en) | 2013-08-14 | 2019-06-12 | Mitral Valve Technologies Sàrl | Replacement heart valve apparatus |
US10070857B2 (en) | 2013-08-31 | 2018-09-11 | Mitralign, Inc. | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US9050188B2 (en) | 2013-10-23 | 2015-06-09 | Caisson Interventional, LLC | Methods and systems for heart valve therapy |
WO2015059699A2 (en) | 2013-10-23 | 2015-04-30 | Valtech Cardio, Ltd. | Anchor magazine |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
AU2015215634B2 (en) | 2014-02-04 | 2019-05-23 | Innovheart S.R.L. | Prosthetic device for a heart valve |
CA2938468C (en) | 2014-02-20 | 2023-09-12 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
WO2015125024A2 (en) | 2014-02-21 | 2015-08-27 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US9889003B2 (en) | 2014-03-11 | 2018-02-13 | Highlife Sas | Transcatheter valve prosthesis |
US9974647B2 (en) | 2014-06-12 | 2018-05-22 | Caisson Interventional, LLC | Two stage anchor and mitral valve assembly |
EP4066786A1 (en) | 2014-07-30 | 2022-10-05 | Cardiovalve Ltd. | Articulatable prosthetic valve |
CA2960422C (en) * | 2014-09-08 | 2023-08-01 | Medtentia International Ltd Oy | Annuloplasty implant |
US10016272B2 (en) | 2014-09-12 | 2018-07-10 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
EP4331503A3 (en) | 2014-10-14 | 2024-06-05 | Edwards Lifesciences Innovation (Israel) Ltd. | Leaflet-restraining techniques |
US9750605B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750607B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
CN110141399B (en) | 2015-02-05 | 2021-07-27 | 卡迪尔维尔福股份有限公司 | Prosthetic valve with axially sliding frame |
US10231834B2 (en) | 2015-02-09 | 2019-03-19 | Edwards Lifesciences Corporation | Low profile transseptal catheter and implant system for minimally invasive valve procedure |
US20160256269A1 (en) | 2015-03-05 | 2016-09-08 | Mitralign, Inc. | Devices for treating paravalvular leakage and methods use thereof |
WO2016149453A1 (en) | 2015-03-19 | 2016-09-22 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
SG10202010021SA (en) | 2015-04-30 | 2020-11-27 | Valtech Cardio Ltd | Annuloplasty technologies |
DK3539509T3 (en) * | 2015-06-01 | 2021-10-11 | Edwards Lifesciences Corp | Heart valve repair devices configured for percutaneous administration |
EP3818963A1 (en) | 2015-12-30 | 2021-05-12 | Caisson Interventional, LLC | Systems for heart valve therapy |
WO2017117370A2 (en) | 2015-12-30 | 2017-07-06 | Mitralign, Inc. | System and method for reducing tricuspid regurgitation |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US10363130B2 (en) | 2016-02-05 | 2019-07-30 | Edwards Lifesciences Corporation | Devices and systems for docking a heart valve |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US20200146854A1 (en) | 2016-05-16 | 2020-05-14 | Elixir Medical Corporation | Methods and devices for heart valve repair |
US9517130B1 (en) | 2016-05-24 | 2016-12-13 | Cardiac Implants Llc | Implanting a cinching cord into a cardiac valve annulus |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US10828150B2 (en) | 2016-07-08 | 2020-11-10 | Edwards Lifesciences Corporation | Docking station for heart valve prosthesis |
GB201611910D0 (en) | 2016-07-08 | 2016-08-24 | Valtech Cardio Ltd | Adjustable annuloplasty device with alternating peaks and troughs |
GB201613219D0 (en) | 2016-08-01 | 2016-09-14 | Mitraltech Ltd | Minimally-invasive delivery systems |
CN109789018B (en) | 2016-08-10 | 2022-04-26 | 卡迪尔维尔福股份有限公司 | Prosthetic valve with coaxial frame |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US10722359B2 (en) | 2016-08-26 | 2020-07-28 | Edwards Lifesciences Corporation | Heart valve docking devices and systems |
CR20190069A (en) | 2016-08-26 | 2019-05-14 | Edwards Lifesciences Corp | Heart valve docking coils and systems |
CA3047396A1 (en) | 2016-12-20 | 2018-06-28 | Edwards Lifesciences Corporation | Systems and mechanisms for deploying a docking device for a replacement heart valve |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
USD867595S1 (en) | 2017-02-01 | 2019-11-19 | Edwards Lifesciences Corporation | Stent |
ES2890936T3 (en) | 2017-03-27 | 2022-01-25 | Truleaf Medical Ltd | coupling elements |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US10842619B2 (en) | 2017-05-12 | 2020-11-24 | Edwards Lifesciences Corporation | Prosthetic heart valve docking assembly |
CR20190570A (en) | 2017-06-30 | 2020-05-17 | Edwards Lifesciences Corp | Lock and release mechanisms for trans-catheter implantable devices |
MX2019015340A (en) | 2017-06-30 | 2020-02-20 | Edwards Lifesciences Corp | Docking stations transcatheter valves. |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
USD890333S1 (en) | 2017-08-21 | 2020-07-14 | Edwards Lifesciences Corporation | Heart valve docking coil |
CA3074477A1 (en) | 2017-08-31 | 2019-03-07 | Half Moon Medical, Inc. | Prosthetic leaflet device |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US10806574B2 (en) | 2017-11-20 | 2020-10-20 | Medtronic Vascular, Inc. | Delivery systems having a temporary valve and methods of use |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
GB201720803D0 (en) | 2017-12-13 | 2018-01-24 | Mitraltech Ltd | Prosthetic Valve and delivery tool therefor |
GB201800399D0 (en) | 2018-01-10 | 2018-02-21 | Mitraltech Ltd | Temperature-control during crimping of an implant |
EP3743015A1 (en) | 2018-01-24 | 2020-12-02 | Valtech Cardio, Ltd. | Contraction of an annuloplasty structure |
EP4248904A3 (en) | 2018-01-26 | 2023-11-29 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
CN112384175B (en) | 2018-07-12 | 2025-03-14 | 爱德华兹生命科学创新(以色列)有限公司 | Annuloplasty system and locking tool thereof |
US11395738B2 (en) | 2018-09-25 | 2022-07-26 | Truleaf Medical Ltd. | Docking elements |
US11452601B2 (en) | 2018-12-13 | 2022-09-27 | Medtronic Vascular, Inc. | Wire annuloplasty ring |
US11517434B2 (en) | 2018-12-13 | 2022-12-06 | Medtronic Vascular, Inc. | Annuloplasty device including tube-like structure |
JP2022518028A (en) | 2019-01-16 | 2022-03-11 | ハーフ ムーン メディカル インコーポレイテッド | Implantable joining support equipment with sensors and related systems and methods |
WO2020157719A1 (en) | 2019-01-31 | 2020-08-06 | West Pharma. Services Il, Ltd | Liquid transfer device |
US11504237B2 (en) * | 2019-03-12 | 2022-11-22 | Half Moon Medical, Inc. | Cardiac valve repair devices with annuloplasty features and associated systems and methods |
EP4360670A3 (en) | 2019-04-30 | 2024-07-17 | West Pharma Services IL, Ltd | Liquid transfer device with dual lumen iv spike |
CA3141965A1 (en) | 2019-05-29 | 2020-12-03 | Valtech Cardio, Ltd. | Tissue anchor handling systems and methods |
US11883291B2 (en) * | 2019-09-19 | 2024-01-30 | Half Moon Medical, Inc. | Valve repair devices with coaptation structures and multiple leaflet capture clips |
CR20210640A (en) | 2019-10-29 | 2022-05-30 | Valtech Cardio Ltd | ANNULOPLASTY AND TISSUE ANCHORAGE TECHNOLOGIES |
JP2023527304A (en) | 2020-05-20 | 2023-06-28 | カーディアック・インプランツ・エルエルシー | Heart valve annulus diameter reduction by independently controlling each anchor driven into the heart valve annulus |
USD956958S1 (en) | 2020-07-13 | 2022-07-05 | West Pharma. Services IL, Ltd. | Liquid transfer device |
CN116249503A (en) * | 2020-09-17 | 2023-06-09 | 波士顿科学国际有限公司 | Preset annulus patch for valve repair implant |
US20230210343A1 (en) * | 2021-12-31 | 2023-07-06 | Lg Electronics Inc. | Dishwasher |
EP4522076A1 (en) * | 2022-05-11 | 2025-03-19 | HVR Cardio Oy | Annuloplasty device |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5860951A (en) * | 1992-01-07 | 1999-01-19 | Arthrocare Corporation | Systems and methods for electrosurgical myocardial revascularization |
US6283961B1 (en) * | 1996-07-16 | 2001-09-04 | Arthrocare Corporation | Apparatus for electrosurgical spine surgery |
US6306163B1 (en) * | 1998-08-04 | 2001-10-23 | Advanced Cardiovascular Systems, Inc. | Assembly for collecting emboli and method of use |
US6716243B1 (en) * | 2000-09-13 | 2004-04-06 | Quickie, Inc. | Concentric passive knotless suture terminator |
US20040220610A1 (en) * | 1999-11-08 | 2004-11-04 | Kreidler Marc S. | Thin film composite lamination |
US20050107812A1 (en) | 2002-06-13 | 2005-05-19 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20050119523A1 (en) | 2003-09-03 | 2005-06-02 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
US20050137689A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delware Corporation | Retrievable heart valve anchor and method |
US20050216078A1 (en) | 2002-06-13 | 2005-09-29 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20050273138A1 (en) | 2003-12-19 | 2005-12-08 | Guided Delivery Systems, Inc. | Devices and methods for anchoring tissue |
US20060025750A1 (en) | 2002-06-13 | 2006-02-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060025787A1 (en) | 2002-06-13 | 2006-02-02 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20060058817A1 (en) | 2002-06-13 | 2006-03-16 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060129188A1 (en) * | 2002-06-13 | 2006-06-15 | Starksen Niel F | Remodeling a cardiac annulus |
US7314485B2 (en) * | 2003-02-03 | 2008-01-01 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040243227A1 (en) * | 2002-06-13 | 2004-12-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7753922B2 (en) * | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US7404824B1 (en) * | 2002-11-15 | 2008-07-29 | Advanced Cardiovascular Systems, Inc. | Valve aptation assist device |
US8187324B2 (en) * | 2002-11-15 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Telescoping apparatus for delivering and adjusting a medical device in a vessel |
US7377941B2 (en) * | 2004-06-29 | 2008-05-27 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
-
2007
- 2007-08-10 US US11/837,077 patent/US8430926B2/en not_active Ceased
-
2009
- 2009-08-28 US US12/549,989 patent/US20100049315A1/en not_active Abandoned
-
2015
- 2015-04-29 US US14/699,621 patent/USRE46126E1/en active Active
- 2015-04-29 US US14/699,447 patent/USRE46127E1/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5860951A (en) * | 1992-01-07 | 1999-01-19 | Arthrocare Corporation | Systems and methods for electrosurgical myocardial revascularization |
US6283961B1 (en) * | 1996-07-16 | 2001-09-04 | Arthrocare Corporation | Apparatus for electrosurgical spine surgery |
US6306163B1 (en) * | 1998-08-04 | 2001-10-23 | Advanced Cardiovascular Systems, Inc. | Assembly for collecting emboli and method of use |
US20040220610A1 (en) * | 1999-11-08 | 2004-11-04 | Kreidler Marc S. | Thin film composite lamination |
US6716243B1 (en) * | 2000-09-13 | 2004-04-06 | Quickie, Inc. | Concentric passive knotless suture terminator |
US20050216078A1 (en) | 2002-06-13 | 2005-09-29 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20050107812A1 (en) | 2002-06-13 | 2005-05-19 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060025750A1 (en) | 2002-06-13 | 2006-02-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060025787A1 (en) | 2002-06-13 | 2006-02-02 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20060058817A1 (en) | 2002-06-13 | 2006-03-16 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060129188A1 (en) * | 2002-06-13 | 2006-06-15 | Starksen Niel F | Remodeling a cardiac annulus |
US7588582B2 (en) * | 2002-06-13 | 2009-09-15 | Guided Delivery Systems Inc. | Methods for remodeling cardiac tissue |
US7314485B2 (en) * | 2003-02-03 | 2008-01-01 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
US20050119523A1 (en) | 2003-09-03 | 2005-06-02 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
US20060025784A1 (en) | 2003-09-04 | 2006-02-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20050273138A1 (en) | 2003-12-19 | 2005-12-08 | Guided Delivery Systems, Inc. | Devices and methods for anchoring tissue |
US20050137689A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delware Corporation | Retrievable heart valve anchor and method |
Non-Patent Citations (7)
Title |
---|
Cohn, et al., The Evolution of Mitral Valve Surgery, Am heart Hosp. J. 2003:1 pp. 40-46 (2003). |
Damon, et al., Percutaneous Mitral Valve Repair for Chronic Ischemic Mitral Regurgitation . . . Journal of the American Heart Association, publ. Apr. 25, 2005. |
Desimone, et al., Adjustable Tricuspid Valve Annuloplasty Assisted by Interoperative Transesophageal . . . The American Journal of Cardiology vol. 71 pp. 926-931 Apr. 15, 1993. |
Felger, M.D., et al., Robot-Assisted Sutureless Minimally Invasive Mitral Valve Repair, Cardiovascular Surgery, Surgical Technology International XII, p. 185-187 (undated). |
Folliguet, et al., Mitral valve repair robotic versus sternotomy, European Journal of Cadio-Thoracic Surgery 29 (2006) pp. 362-366. |
Greelish et al., Minimally invasive mitral valve repair suggests earlier operations for mitral valve . . . , The Journal of Thoracic & Cardiovascular Surgery vol. 126, No. 2 (2003). |
Maniu, MD, et al. Acute & Chronic Reduction of Functional Mitral Regurgitation . . . Journal of the American College of Cardiology, vol. 44, No. 8, pp. 1652-1661 (2004). |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10543088B2 (en) | 2012-09-14 | 2020-01-28 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10849755B2 (en) | 2012-09-14 | 2020-12-01 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US9913706B2 (en) | 2014-07-17 | 2018-03-13 | Millipede, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US10136985B2 (en) | 2014-07-17 | 2018-11-27 | Millipede, Inc. | Method of reconfiguring a mitral valve annulus |
US12023235B2 (en) | 2014-07-17 | 2024-07-02 | Boston Scientific Scimed, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US10695160B2 (en) | 2014-07-17 | 2020-06-30 | Boston Scientific Scimed, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US10258466B2 (en) | 2015-02-13 | 2019-04-16 | Millipede, Inc. | Valve replacement using moveable restrains and angled struts |
US11918462B2 (en) | 2015-02-13 | 2024-03-05 | Boston Scientific Scimed, Inc. | Valve replacement using moveable restraints and angled struts |
US10335275B2 (en) | 2015-09-29 | 2019-07-02 | Millipede, Inc. | Methods for delivery of heart valve devices using intravascular ultrasound imaging |
US10555813B2 (en) | 2015-11-17 | 2020-02-11 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10786356B2 (en) | 2016-09-15 | 2020-09-29 | Cardiac Implants Llc | Multi-channel apparatus for delivering a constricting cord or a ring to a cardiac valve annulus |
US11576783B2 (en) | 2016-09-15 | 2023-02-14 | Cardiac Implants Llc | Delivering a constricting cord to a cardiac valve annulus using balloon-assisted positioning |
US10695179B2 (en) | 2016-09-15 | 2020-06-30 | Cardiac Implants Llc | Delivering a constricting cord to a cardiac valve annulus using balloon-assisted positioning |
US10667913B2 (en) | 2016-09-15 | 2020-06-02 | Cardiac Implants Llc | Preventing tissue ingrowth into constricting cords after implantation |
US10716670B2 (en) | 2016-09-15 | 2020-07-21 | Cardiac Implants Llc | Apparatus for delivering a constricting cord to a cardiac valve annulus with balloon retainer |
US10575952B2 (en) | 2016-09-15 | 2020-03-03 | Cardiac Implants Llc | Preventing dislodgement of a constricting cord that has been affixed to a cardiac valve annulus |
US11337811B2 (en) | 2016-09-15 | 2022-05-24 | Cardiac Implants Llc | Apparatus for delivering a constricting cord to a cardiac valve annulus with spooling feature |
US11554018B2 (en) | 2016-09-15 | 2023-01-17 | Cardiac Implants Llc | Preventing dislodgement of a constricting cord that has been affixed to a cardiac valve annulus |
US11554017B2 (en) | 2016-09-15 | 2023-01-17 | Cardiac Implants Llc | Preventing dislodgement of a constricting cord that has been affixed to a cardiac valve annulus |
US11020230B2 (en) * | 2016-12-15 | 2021-06-01 | Cmi'nov | Device for performing or preparing for a mitral valve annuloplasty by a transfemoral approach |
US10548731B2 (en) | 2017-02-10 | 2020-02-04 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10881390B2 (en) | 2018-01-03 | 2021-01-05 | Cardiac Implants Llc | Fastener for holding a constricting cord in a reduced-diameter state around a cardiac valve annulus, and installation of the fastener |
US11058409B2 (en) | 2018-01-03 | 2021-07-13 | Cardiac Implants Llc | Fastening a constricting cord in a reduced-diameter state around a cardiac valve annulus, and cutting proximal portions of the cord |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
US11173028B1 (en) | 2020-09-09 | 2021-11-16 | Cardiac Implants Llc | Positioning a medical device in the right atrium or right ventricle using a non-flexible catheter |
Also Published As
Publication number | Publication date |
---|---|
US20080077235A1 (en) | 2008-03-27 |
US8430926B2 (en) | 2013-04-30 |
USRE46127E1 (en) | 2016-08-30 |
US20100049315A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46126E1 (en) | Cardiac valve installation with enhanced anchoring to the annulus based on tissue healing | |
US11337809B2 (en) | Cardiac valve downsizing device and method | |
US7922762B2 (en) | Devices and methods for cardiac annulus stabilization and treatment | |
US9023065B2 (en) | Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ | |
US7316706B2 (en) | Tensioning device, system, and method for treating mitral valve regurgitation | |
US8475525B2 (en) | Tricuspid valve repair using tension | |
US20040210240A1 (en) | Method and repair device for treating mitral valve insufficiency | |
US20160242908A1 (en) | Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device | |
US20130030522A1 (en) | Devices and methods for heart treatments | |
JP2007530136A5 (en) | ||
WO2007029252A2 (en) | Method and device for treatment of congestive heart failure and valve dysfunction | |
JP2008534085A (en) | Apparatus, system, and method for reshaping a heart valve annulus | |
AU2011253682B8 (en) | Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ | |
EP4243698A1 (en) | Minimally invasive fixation devices for fixating a feltable textile, sets comprising a fixation device and a method for fixating a feltable textile at a target site in a patient | |
CN115245406A (en) | Implant ring body and anchoring system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |