US9968690B2 - Norbornene modified peptides and their labelling with tetrazine compounds - Google Patents
Norbornene modified peptides and their labelling with tetrazine compounds Download PDFInfo
- Publication number
- US9968690B2 US9968690B2 US14/373,292 US201314373292A US9968690B2 US 9968690 B2 US9968690 B2 US 9968690B2 US 201314373292 A US201314373292 A US 201314373292A US 9968690 B2 US9968690 B2 US 9968690B2
- Authority
- US
- United States
- Prior art keywords
- norbornene
- protein
- lysine
- tetrazine
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 title abstract description 46
- 238000002372 labelling Methods 0.000 title description 93
- 150000004905 tetrazines Chemical class 0.000 title description 33
- 108091005601 modified peptides Proteins 0.000 title 1
- 150000001413 amino acids Chemical class 0.000 abstract description 72
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 66
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 66
- 229920001184 polypeptide Polymers 0.000 abstract description 63
- 238000000034 method Methods 0.000 abstract description 45
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 abstract description 44
- 239000004472 Lysine Substances 0.000 abstract description 33
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 abstract description 18
- 125000000539 amino acid group Chemical group 0.000 abstract description 8
- 108090000623 proteins and genes Proteins 0.000 description 153
- 102000004169 proteins and genes Human genes 0.000 description 149
- 235000018102 proteins Nutrition 0.000 description 133
- 235000001014 amino acid Nutrition 0.000 description 82
- 229940024606 amino acid Drugs 0.000 description 82
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 78
- 210000004027 cell Anatomy 0.000 description 77
- 238000006243 chemical reaction Methods 0.000 description 74
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 52
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical group C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 45
- 102000052866 Amino Acyl-tRNA Synthetases Human genes 0.000 description 42
- 108700028939 Amino Acyl-tRNA Synthetases Proteins 0.000 description 42
- 239000000523 sample Substances 0.000 description 37
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 30
- 230000014509 gene expression Effects 0.000 description 29
- 230000035772 mutation Effects 0.000 description 29
- 239000000243 solution Substances 0.000 description 29
- 238000010348 incorporation Methods 0.000 description 27
- 210000004962 mammalian cell Anatomy 0.000 description 27
- 239000005090 green fluorescent protein Substances 0.000 description 26
- -1 sortase Proteins 0.000 description 25
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- 230000008901 benefit Effects 0.000 description 24
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 23
- 102000003960 Ligases Human genes 0.000 description 22
- 108090000364 Ligases Proteins 0.000 description 22
- 108020004705 Codon Proteins 0.000 description 21
- 108020005038 Terminator Codon Proteins 0.000 description 20
- 241000588724 Escherichia coli Species 0.000 description 19
- 235000018977 lysine Nutrition 0.000 description 18
- 239000013598 vector Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 17
- 238000005160 1H NMR spectroscopy Methods 0.000 description 17
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 17
- 101001132142 Methanosarcina barkeri Pyrrolysine-tRNA ligase Proteins 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000000499 gel Substances 0.000 description 17
- 229910001868 water Inorganic materials 0.000 description 17
- 229920001223 polyethylene glycol Polymers 0.000 description 16
- 108091005946 superfolder green fluorescent proteins Proteins 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 15
- 239000000975 dye Substances 0.000 description 14
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- MKOSBHNWXFSHSW-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-en-5-ol Chemical compound C1C2C(O)CC1C=C2 MKOSBHNWXFSHSW-UHFFFAOYSA-N 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 108010062374 Myoglobin Proteins 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 241000205274 Methanosarcina mazei Species 0.000 description 10
- 102000036675 Myoglobin Human genes 0.000 description 10
- 108010026552 Proteome Proteins 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 9
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000006352 cycloaddition reaction Methods 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 239000012044 organic layer Substances 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 8
- 230000006320 pegylation Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 8
- 102000001301 EGF receptor Human genes 0.000 description 7
- 108060006698 EGF receptor Proteins 0.000 description 7
- 241000205275 Methanosarcina barkeri Species 0.000 description 7
- 239000007832 Na2SO4 Substances 0.000 description 7
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 238000000799 fluorescence microscopy Methods 0.000 description 7
- 238000004949 mass spectrometry Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 102000034287 fluorescent proteins Human genes 0.000 description 6
- 108091006047 fluorescent proteins Proteins 0.000 description 6
- 235000019253 formic acid Nutrition 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 101100459320 Caenorhabditis elegans myo-2 gene Proteins 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 101000925646 Enterobacteria phage T4 Endolysin Proteins 0.000 description 5
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 5
- ZFOMKMMPBOQKMC-KXUCPTDWSA-N L-pyrrolysine Chemical compound C[C@@H]1CC=N[C@H]1C(=O)NCCCC[C@H]([NH3+])C([O-])=O ZFOMKMMPBOQKMC-KXUCPTDWSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 150000001540 azides Chemical class 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N biotin Natural products N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 150000002848 norbornenes Chemical class 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000009145 protein modification Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000004809 thin layer chromatography Methods 0.000 description 5
- 108060008226 thioredoxin Proteins 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 239000004098 Tetracycline Substances 0.000 description 4
- 102000002933 Thioredoxin Human genes 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000006229 amino acid addition Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- ZPWOOKQUDFIEIX-UHFFFAOYSA-N cyclooctyne Chemical compound C1CCCC#CCC1 ZPWOOKQUDFIEIX-UHFFFAOYSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 4
- 150000003840 hydrochlorides Chemical group 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- IIHQNAXFIODVDU-UHFFFAOYSA-N pyrimidine-2-carbonitrile Chemical compound N#CC1=NC=CC=N1 IIHQNAXFIODVDU-UHFFFAOYSA-N 0.000 description 4
- 108040001032 pyrrolysyl-tRNA synthetase activity proteins Proteins 0.000 description 4
- 239000012723 sample buffer Substances 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 238000004885 tandem mass spectrometry Methods 0.000 description 4
- 229960002180 tetracycline Drugs 0.000 description 4
- 229930101283 tetracycline Natural products 0.000 description 4
- 235000019364 tetracycline Nutrition 0.000 description 4
- 150000003522 tetracyclines Chemical class 0.000 description 4
- 229940094937 thioredoxin Drugs 0.000 description 4
- URYYVOIYTNXXBN-OWOJBTEDSA-N trans-cyclooctene Chemical class C1CCC\C=C\CC1 URYYVOIYTNXXBN-OWOJBTEDSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 3
- 0 *C1=NN=C(C2=CC=C(C(=O)CCCOCCOC)C=C2)N=N1.*C1=NN=C(C2=CC=C(C(=O)O)C=C2)N=N1.*C1=NN=C(C2=CC=C(C(=O)ON3C(=O)CCC3=O)C=C2)N=N1.CC(=O)O.CN.N#CC1=CC=C(C(=O)O)C=C1.[H]C(=N)N Chemical compound *C1=NN=C(C2=CC=C(C(=O)CCCOCCOC)C=C2)N=N1.*C1=NN=C(C2=CC=C(C(=O)O)C=C2)N=N1.*C1=NN=C(C2=CC=C(C(=O)ON3C(=O)CCC3=O)C=C2)N=N1.CC(=O)O.CN.N#CC1=CC=C(C(=O)O)C=C1.[H]C(=N)N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- VRPJIFMKZZEXLR-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxycarbonylamino]acetic acid Chemical compound CC(C)(C)OC(=O)NCC(O)=O VRPJIFMKZZEXLR-UHFFFAOYSA-N 0.000 description 3
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 3
- IFOXWHQFTSCNQB-UHFFFAOYSA-N 5-aminopyridine-2-carbonitrile Chemical compound NC1=CC=C(C#N)N=C1 IFOXWHQFTSCNQB-UHFFFAOYSA-N 0.000 description 3
- 108020005098 Anticodon Proteins 0.000 description 3
- 241000423300 Desulfitobacterium hafniense DCB-2 Species 0.000 description 3
- 241000981919 Desulfitobacterium hafniense Y51 Species 0.000 description 3
- 238000006117 Diels-Alder cycloaddition reaction Methods 0.000 description 3
- 238000005698 Diels-Alder reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000012097 Lipofectamine 2000 Substances 0.000 description 3
- 241001474685 Methanosarcina barkeri MS Species 0.000 description 3
- 101100410821 Methanosarcina barkeri pylS gene Proteins 0.000 description 3
- 241000205290 Methanosarcina thermophila Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000010420 art technique Methods 0.000 description 3
- JENBJSNDXVSJCK-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-ene;tetrazine Chemical compound C1=CN=NN=N1.C1C2CCC1C=C2 JENBJSNDXVSJCK-UHFFFAOYSA-N 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 230000005754 cellular signaling Effects 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 150000002540 isothiocyanates Chemical class 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 238000001819 mass spectrum Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000012743 protein tagging Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 101150052472 pylS gene Proteins 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- FFNVQNRYTPFDDP-UHFFFAOYSA-N 2-cyanopyridine Chemical compound N#CC1=CC=CC=N1 FFNVQNRYTPFDDP-UHFFFAOYSA-N 0.000 description 2
- WMHSQCDPPJRWIL-UHFFFAOYSA-N 6-cyanopyridine-3-carboxylic acid Chemical compound OC(=O)C1=CC=C(C#N)N=C1 WMHSQCDPPJRWIL-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241001432458 Desulfitobacterium hafniense PCP-1 Species 0.000 description 2
- 241000237641 Desulfotomaculum acetoxidans DSM 771 Species 0.000 description 2
- 241001302160 Escherichia coli str. K-12 substr. DH10B Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 241001148031 Methanococcoides burtonii Species 0.000 description 2
- 241001139408 Methanosarcina acetivorans C2A Species 0.000 description 2
- 241000134675 Methanosarcina barkeri str. Fusaro Species 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 2
- 241000283222 Physeter catodon Species 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 101710123256 Pyrrolysine-tRNA ligase Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000012650 click reaction Methods 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013058 crude material Substances 0.000 description 2
- 150000001945 cysteines Chemical class 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229940093499 ethyl acetate Drugs 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001972 liquid chromatography-electrospray ionisation mass spectrometry Methods 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003586 protic polar solvent Substances 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- AOCSUUGBCMTKJH-UHFFFAOYSA-N tert-butyl n-(2-aminoethyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCN AOCSUUGBCMTKJH-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- MKOSBHNWXFSHSW-JEAXJGTLSA-N (1r,4r)-bicyclo[2.2.1]hept-2-en-5-ol Chemical compound C1[C@H]2C(O)C[C@@H]1C=C2 MKOSBHNWXFSHSW-JEAXJGTLSA-N 0.000 description 1
- DQUHYEDEGRNAFO-QMMMGPOBSA-N (2s)-6-amino-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCCN DQUHYEDEGRNAFO-QMMMGPOBSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- NVHCRGBEQNNREV-SRZZPIQSSA-N 1-(4-amino-1,2,5-oxadiazol-3-yl)-n-[(e)-cyclohex-3-en-1-ylmethylideneamino]-5-(3-methoxyphenyl)triazole-4-carboxamide Chemical compound COC1=CC=CC(C=2N(N=NC=2C(=O)N\N=C\C2CC=CCC2)C=2C(=NON=2)N)=C1 NVHCRGBEQNNREV-SRZZPIQSSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- JFBIRMIEJBPDTQ-UHFFFAOYSA-N 3,6-dipyridin-2-yl-1,2,4,5-tetrazine Chemical compound N1=CC=CC=C1C1=NN=C(C=2N=CC=CC=2)N=N1 JFBIRMIEJBPDTQ-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 241001120493 Arene Species 0.000 description 1
- FOXXZZGDIAQPQI-XKNYDFJKSA-N Asp-Pro-Ser-Ser Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O FOXXZZGDIAQPQI-XKNYDFJKSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- CYLUBDRMQIEBPR-UHFFFAOYSA-N C.CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.CC(C)(C)OC(=O)NCC(=O)O.NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1 Chemical compound C.CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.CC(C)(C)OC(=O)NCC(=O)O.NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1 CYLUBDRMQIEBPR-UHFFFAOYSA-N 0.000 description 1
- UNACBACYLDMVKR-UHFFFAOYSA-M CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NN=C(C3=CC=CC=N3)N=N2)C=C1.CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.O=NO[Na] Chemical compound CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NN=C(C3=CC=CC=N3)N=N2)C=C1.CC(C)(C)OC(=O)CCC(=O)NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.O=NO[Na] UNACBACYLDMVKR-UHFFFAOYSA-M 0.000 description 1
- LDWXQRPSSIMAEG-UHFFFAOYSA-N CC(C)(C)OC(=O)CCCN.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.N#CC1=NC=C(C(=O)O)C=C1 Chemical compound CC(C)(C)OC(=O)CCCN.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.N#CC1=NC=C(C(=O)O)C=C1 LDWXQRPSSIMAEG-UHFFFAOYSA-N 0.000 description 1
- RLHZYAOELKAIIX-UHFFFAOYSA-N CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NNC(C3=NC=CC=N3)=NN2)C=C1.N#CC1=NC=CC=N1.NN Chemical compound CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NNC(C3=NC=CC=N3)=NN2)C=C1.N#CC1=NC=CC=N1.NN RLHZYAOELKAIIX-UHFFFAOYSA-N 0.000 description 1
- DWJWNABWSJIJOO-UHFFFAOYSA-N CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.CC1=NNC(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)=NN1.NN Chemical compound CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C#N)C=C1.CC1=NNC(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)=NN1.NN DWJWNABWSJIJOO-UHFFFAOYSA-N 0.000 description 1
- SXTXRPBHDUPAKA-UHFFFAOYSA-M CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NNC(C3=NC=CC=N3)=NN2)C=C1.O=NO[Na] Chemical compound CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1.CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NNC(C3=NC=CC=N3)=NN2)C=C1.O=NO[Na] SXTXRPBHDUPAKA-UHFFFAOYSA-M 0.000 description 1
- YYLWDPWFGILNFJ-UHFFFAOYSA-O CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1.[Cl-].[NH3+]CCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1 Chemical compound CC(C)(C)OC(=O)NCCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1.[Cl-].[NH3+]CCCC(=O)C1=CN=C(C2=NN=C(C3=NC=CC=N3)N=N2)C=C1 YYLWDPWFGILNFJ-UHFFFAOYSA-O 0.000 description 1
- OEWGRTCTDRIZFR-AAWCHHPMSA-N CC(C)(C)OC(=O)N[C@@H](CCCCNC(=O)OC1CC2C=CC1C2)C(=O)O.Cl.N[C@@H](CCCCNC(=O)OC1CC2C=CC1C2)C(=O)O.O=C(OC1CC2C=CC1C2)ON1C(=O)CCC1=O.OC1CC2C=CC1C2 Chemical compound CC(C)(C)OC(=O)N[C@@H](CCCCNC(=O)OC1CC2C=CC1C2)C(=O)O.Cl.N[C@@H](CCCCNC(=O)OC1CC2C=CC1C2)C(=O)O.O=C(OC1CC2C=CC1C2)ON1C(=O)CCC1=O.OC1CC2C=CC1C2 OEWGRTCTDRIZFR-AAWCHHPMSA-N 0.000 description 1
- HLNSNYORWMTTTG-UHFFFAOYSA-N CC1=NN=C(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)N=N1.CC1=NNC(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)=NN1 Chemical compound CC1=NN=C(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)N=N1.CC1=NNC(C2=NC=C(C(=O)CCCNC(=O)OC(C)(C)C)C=C2)=NN1 HLNSNYORWMTTTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 241000228124 Desulfitobacterium hafniense Species 0.000 description 1
- 241000592829 Desulfotomaculum acetoxidans Species 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010056740 Genital discharge Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001422708 Methanococcoides burtonii DSM 6242 Species 0.000 description 1
- 241000205276 Methanosarcina Species 0.000 description 1
- 241000205284 Methanosarcina acetivorans Species 0.000 description 1
- 241001437647 Methanosarcina mazei Go1 Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- JBTKTABWHLVNPV-UHFFFAOYSA-N N#CC1=NC=C(N)C=C1.N#CC1=NC=CC=C1.NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.NN Chemical compound N#CC1=NC=C(N)C=C1.N#CC1=NC=CC=C1.NC1=CN=C(C2=NNC(C3=CC=CC=N3)=NN2)C=C1.NN JBTKTABWHLVNPV-UHFFFAOYSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- VNVPLTDKBKPMFK-ARAJFMJPSA-N N[C@@H](CCCCCC(=O)OC1CC2C=CC1C2)C(=O)O Chemical compound N[C@@H](CCCCCC(=O)OC1CC2C=CC1C2)C(=O)O VNVPLTDKBKPMFK-ARAJFMJPSA-N 0.000 description 1
- 108091060545 Nonsense suppressor Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 238000010870 STED microscopy Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000005365 aminothiol group Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- LGCWOEYDVKIVCX-UHFFFAOYSA-N carbonic acid;pyrrolidine-2,5-dione Chemical compound OC(O)=O.O=C1CCC(=O)N1.O=C1CCC(=O)N1 LGCWOEYDVKIVCX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- JLYFCTQDENRSOL-VIFPVBQESA-N dimethenamid-P Chemical compound COC[C@H](C)N(C(=O)CCl)C=1C(C)=CSC=1C JLYFCTQDENRSOL-VIFPVBQESA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 108010001814 phosphopantetheinyl transferase Proteins 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000010869 super-resolution microscopy Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/32—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C271/34—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of rings other than six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/13—Labelling of peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y601/00—Ligases forming carbon-oxygen bonds (6.1)
- C12Y601/01—Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
- C12Y601/01026—Pyrrolysine-tRNAPyl ligase (6.1.1.26)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
Definitions
- the invention relates to site-specific incorporation of bio-orthogonal groups via the (expanded) genetic code.
- the invention relates to incorporation of a norbornene group into polypeptide.
- bio-orthogonal groups via genetic code expansion provides a powerful general strategy for site specifically labeling proteins with any probe.
- the slow reactivity of the bio-orthogonal functional groups that can be genetically encoded has limited this strategy's utility.
- Ideal methods for protein labeling would i) allow probes to be easily placed at any position in a protein in diverse cells, ii) be rapid and quantitative, iii) be specific for a user-defined site in a protein, iv) show .‘turn on.’ fluorescence, with minimal off-site or background labeling, and v) allow for labeling with diverse probes.
- the genetically encoded, site specific incorporation of unnatural amino acids bearing bioorthogonal functional groups would allow the labeling of specific proteins at defined sites with essentially any probe.
- Bio-orthogonal groups including azides, alkynes, ketones, anilines, alkenes, tetrazoles, and [1,2] aminothiols have been genetically encoded using amber suppressor aminoacyl tRNA synthetase/tRNACUA pairs.[19-29] For established reactions that have been demonstrated on proteins the rate constants for the corresponding model reactions[30] are in the range of 10 ⁇ 2 M ⁇ 1 s ⁇ 1 to 10 ⁇ 4 M ⁇ 1 s ⁇ 1 (although for emerging approaches higher rates have been reported).[29,31,32]
- the present invention seeks to overcome problem(s) associated with the prior art.
- the invention provides a polypeptide comprising an amino acid having a norbornene group.
- a norbornene group has numerous advantages which are described and demonstrated herein.
- norbornene group is present as an amino acid residue of a norbornene lysine.
- the invention provides a polypeptide comprising a single amino acid having a norbornene group. Having only a single amino acid bearing a norbornene group provides a precisely defined polypeptide product. Having only a single amino acid bearing a norbornene group avoids problems of multiple labelling or incomplete labelling (if a reaction does not go to completion, heterogeneous products can result which can be a problem which is usefully addressed by having only a single amino acid bearing a norbornene group).
- said norbornene group is present as an amino acid residue of a norbornene lysine.
- said single amino acid is not the N-terminal amino acid.
- the N-terminal amino group does not comprise norbornene.
- the amino acid residue bearing the norbornene is an internal amino acid of the polypeptide.
- the invention in another aspect, relates to a method of producing a polypeptide comprising a norbornene group, said method comprising genetically incorporating an amino acid comprising a norbornene group into a polypeptide.
- Genetically incorporating the norbornene group allows precise construction of a defined polypeptide. The location of the norbornene group can be precisely controlled. This advantageously avoids the need to subject the whole polypeptide to complex reaction steps for addition of the norbornene group.
- the method described for producing the polypeptide comprises
- nucleic acid encoding the polypeptide which nucleic acid comprises an orthogonal codon encoding the amino acid having a norbornene group
- said orthogonal codon comprises an amber codon (TAG)
- said tRNA comprises MbtRNA CUA
- said tRNA synthetase comprises MbPylRS.
- amino acid comprising a norbornene group is a norbornene lysine.
- amino acid is N ⁇ -5-norbornene-2-yloxycarbonyl-L-lysine.
- said amino acid having a norbornene group is incorporated at a position corresponding to a lysine residue in the wild type polypeptide.
- the polypeptide comprises a single norbornene group.
- the polypeptide comprises a single norbornene amino acid residue.
- a key advantage of incorporation of norbornene group is that is permits a range of extremely useful further compounds such as labels to be easily and specifically attached to the norbornene group.
- said norbornene group is joined to a tetrazine group.
- said tetrazine group is further joined to a fluorophore.
- said tetrazine group is further joined to a PEG group.
- said fluorophore comprises fluorescein, tetramethyl rhodamine (TAMRA) or boron-dipyrromethene (BODIPY).
- TAMRA tetramethyl rhodamine
- BODIPY boron-dipyrromethene
- the invention relates to a novel unnatural amino acid comprising a norbornene group, such as N ⁇ -5-norbornene-2-yloxycarbonyl-L-lysine.
- N ⁇ -5-norbornene-2-yloxycarbonyl-L-lysine corresponds to formula 2:
- the invention relates to a tetrazine compound joined to a fluorophore.
- the invention relates to a tetrazine compound joined to a polyethylene glycol (PEG) group.
- PEG polyethylene glycol
- said tetrazine is selected from the group consisting of 5, 6, 7 or 8 of FIG. 10 .
- said fluorophore comprises fluorescein, tetramethyl rhodamine (TAMRA) or boron-dipyrromethene (BODIPY).
- TAMRA tetramethyl rhodamine
- BODIPY boron-dipyrromethene
- said tetrazine compound joined to a fluorophore is selected from the group consisting of 9, 10, 11, 12, 13 or 14 of FIG. 1C .
- the invention in another aspect, relates to a method of producing a polypeptide comprising a tetrazine group, said method comprising providing a polypeptide comprising a norbornene group as described above, contacting said polypeptide with a tetrazine compound, and incubating to allow joining of the tetrazine to the norbornene group by a cycloaddition reaction.
- said cycloaddition reaction is an inverse electron demand Diels-Alder cycloaddition reaction.
- This chemistry has the advantage of speed of reaction.
- said reaction is allowed to proceed for 16 hours or less. More suitably said reaction is allowed to proceed for 2 hours or less. Most suitably said reaction is allowed to proceed for 30 minutes or less.
- the invention in another aspect, relates to a method of PEGylating a polypeptide comprising carrying out the method as described above wherein said tetrazine compound is a tetrazine compound joined to a PEG group.
- reaction times may affect reaction times. Most suitably the shortest times such as 2 hours or less or 30 minutes or less are applied to in vitro reactions.
- Reactions in vivo, or in eukaryotic culture conditions such as tissue culture medium or other suitable media for eukaryotic cells may need to be conducted for longer than 30 minutes or longer than 2 hours to achieve maximal labelling.
- the skilled operator can determine optimum reaction times by trial and error based on the guidance provided herein.
- said tetrazine compound used in the methods described is a tetrazine compound as described above.
- the invention relates to a tetrazine compound selected from the group consisting of 5, 6, 7 or 8 of FIG. 1C .
- tetrazine compound selected from the group consisting of 5, 6, 7 or 8 of FIG. 1C .
- a method of making a polypeptide comprising a norbornene group comprising modifying a nucleic acid encoding said polypeptide to provide an amber codon at one or more position(s) corresponding to the position(s) in said polypeptide where it is desired to incorporate a norbornene group.
- modifying said nucleic acid comprises mutating a codon for lysine to an amber codon (TAG).
- Targeting ie. substitution with unnatural amino acid e.g. via amber suppression
- Targeting is suitably done so that the chosen position is accessible to the tetrazine-fluorophore, i.e. lies on the surface of the folded protein.
- polar aminoacids in the original wildtype sequences are especially suitable positions to be targeted.
- the invention is not limited to mutating lysine codons.
- the invention can be applied to any position in the polypeptide.
- the invention is not applied to the N-terminal amino acid of the polypeptide.
- a surface residue may be determined by sequence analysis.
- Surface residues may be determined by three dimensional molecular modelling.
- Surface residues may be determined by any suitable method known in the art.
- Advantages of targeting surface residues include better presentation of dyes such as fluors or labels such as biophysical labels.
- Advantages of targeting surface residues include simpler or more efficient downstream modifications.
- Advantages of targeting surface residues include less likelihood of disruption of polypeptide structure and/or function by application of the label.
- Particularly suitable amino acid residues to target in the polypeptide of interest include non-hydrophobic residues.
- Suitably hydrophobic residues are not targeted according to the invention.
- Suitably hydrophilic residues are targeted.
- Suitably polar residues are targeted.
- Suitably alanine or lysine are targeted.
- the invention relates to a homogenous recombinant polypeptide as described above.
- said polypeptide is made by a method as described above.
- polypeptide produced according to the method(s) described herein. As well as being the product of those new methods, such a polypeptide has the technical feature of comprising norbornene.
- Mutating has it normal meaning in the art and may refer to the substitution or truncation or deletion of the residue, motif or domain referred to. Mutation may be effected at the polypeptide level e.g. by synthesis of a polypeptide having the mutated sequence, or may be effected at the nucleotide level e.g. by making a nucleic acid encoding the mutated sequence, which nucleic acid may be subsequently translated to produce the mutated polypeptide. Where no amino acid is specified as the replacement amino acid for a given mutation site, suitably a randomisation of said site is used. As a default mutation, alanine (A) may be used. Suitably the mutations used at particular site(s) are as set out herein.
- a fragment is suitably at least 10 amino acids in length, suitably at least 25 amino acids, suitably at least 50 amino acids, suitably at least 100 amino acids, suitably at least 200 amino acids, suitably at least 250 amino acids, suitably at least 300 amino acids, suitably at least 313 amino acids, or suitably the majority of the polypeptide of interest.
- said genetic incorporation preferably uses an orthogonal or expanded genetic code, in which one or more specific orthogonal codons have been allocated to encode the specific amino acid residue with the norbornene group so that it can be genetically incorporated by using an orthogonal tRNA synthetase/tRNA pair.
- the orthogonal tRNA synthetase/tRNA pair can in principle be any such pair capable of charging the tRNA with the amino acid comprising the norbornene group and capable of incorporating that amino acids comprising the norbornene group into the polypeptide chain in response to the orthogonal codon.
- the orthogonal codon may be the orthogonal codon amber, ochre, opal or a quadruplet codon.
- the codon simply has to correspond to the orthogonal tRNA which will be used to carry the amino acid comprising the norbornene group.
- the orthogonal codon is amber.
- the anticodon region of the tRNA may simply be swapped for the desired anticodon region for the codon of choice.
- the anticodon region is not involved in the charging or incorporation functions of the tRNA nor recognition by the tRNA synthetase so such swaps are entirely within the ambit of the skilled operator.
- orthogonal tRNA synthetase/tRNA pairs may be used if desired.
- the orthogonal synthetase/tRNA pair are Methanosarcina barkeri MS pyrrolysine tRNA synthetase (MbPylRS) and its cognate amber suppressor tRNA (MbtRNACUA).
- MbPylRS Methanosarcina barkeri MS pyrrolysine tRNA synthetase
- MbtRNACUA cognate amber suppressor tRNA
- the Methanosarcina barkeri PylT gene encodes the MbtRNACUA tRNA.
- the Methanosarcina barkeri PylS gene encodes the MbPylRS tRNA synthetase protein.
- MbPylRS Methanosarcina barkeri pyrrolysyl-tRNA synthetase amino acid sequence as the reference sequence (i.e.
- Said sequence has been annotated here below as SEQ ID NO.1.
- MbPylRS tRNA synthetase protein by mutating it so as to optimise for the norbornene amino acid to be used.
- the need for mutation depends on the norbornene amino acid used.
- An example where the MbPylRS tRNA synthetase does not need to be mutated is when the norbornene amino acid used in step (a) is N ⁇ -5-norbornene-2-yloxycarbonyl-L-lysine.
- MbPylRS tRNA synthetase may need to be mutated is when the norbornene amino acid is not processed by the MbPylRS tRNA synthetase protein.
- Such mutation may be carried out by introducing mutations into the MbPylRS tRNA synthetase, for example at one or more of the following positions in the MbPylRS tRNA synthetase: M241, A267, Y271, L274 and C313.
- tRNA synthetase of the invention may be varied. Although specific tRNA synthetase sequences may have been used in the examples, the invention is not intended to be confined only to those examples.
- any tRNA synthetase which provides the same tRNA charging (aminoacylation) function can be employed in the invention.
- the tRNA synthetase may be from any suitable species such as from archea, for example from Methanosarcina barkeri MS; Methanosarcina barkeri str. Fusaro; Methanosarcina mazei Go1 ; Methanosarcina acetivorans C2A; Methanosarcina thermophila ; or Methanococcoides burtonii .
- the tRNA synthetase may be from bacteria, for example from Desulfitobacterium hafniense DCB-2 ; Desulfitobacterium hafniense Y51 ; Desulfitobacterium hafniense PCP1; Desulfotomaculum acetoxidans DSM 771.
- Exemplary sequences from these organisms are the publically available sequences.
- the following examples are provided as exemplary sequences for pyrrolysine tRNA synthetases:
- barkeri MS/1-419/ Methanosarcina barkeri MS VERSION Q6WRH6.1 GI: 74501411 MDKKPLDVLISATGLWMSRTGTLHKIKHHEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC KRCRVSDEDINNFLTRSTESKNSVKVRVVSAPKVKKAMPKSVSRAPKPLENSVSAKASTNTSRSVPSPAK STPNSSVPASAPAPSLTRSQLDRVEALLSPEDKISLNMAKPFRELEPELVTRRKNDFQRLYTNDREDYLGK LERDITKFFVDRGFLEIKSPILIPAEYVERMGINNDTELSKQIFRVDKNLCLRPMLAPTLYNYLRKLDRILPGP IKIFEVGPCYRKESDGKEHLEEFTMVNFCQMGSGCTRENLEALIKEFLDYLEIDFEIVGDSCMVYGDTL DIMHGDLELSSAVVGPVSLDREWGIDKPWIGAGFGLERLLK
- thermophila /1-478 Methanosarcina thermophila VERSION DQ017250.1 GI: 67773308 MDKKPLNTLISATGLWMSRTGKLHKIRHHEVSKRKIYIEMECGERLVVNNSRSCRAARALRHHKYRKIC KHCRVSDEDLNKFLTRTNEDKSNAKVTVVSAPKIRKVMPKSVARTPKPLENTAPVQTLPSESQPAPTTPIS ASTTAPASTSTTAPAPASTTAPAPASTTAPASASTTISTSAMPASTSAQGTTKFNYISGGFPRPIPVQASAP ALTKSQIDRLQGLLSPKDEISLDSGTPFRKLESELLSRRRKDLKQIYAEEREHYLGKLEREITKFFVDRGFLEIK SPILIPMEYIERMGIDNDKELSKQIFRVDNNFCLRPMLAPNLYNYLRKLNRALPDPIKIFEIGPCYRKESDG KEHLEEFTMLNFCQMGSGCTRENLEAIIKDFLDYLGID
- hafniense _DCB-2/1-279 Desulfitobacterium hafniense DCB-2 VERSION YP_002461289.1 GI: 219670854 MSSFWTKVQYQRLKELNASGEQLEMGFSDALSRDRAFQGIEHQLMSQGKRHLEQLRTVKHRPALLEL EEGLAKALHQQGFVQVVTPTIITKSALAKMTIGEDHPLFSQVFWLDGKKCLRPMLAPNLYTLWRELERL WDKPIRIFEIGTCYRKESQGAQHLNEFTMLNLTELGTPLEERHQRLEDMARWVLEAAGIREFELVTESSV VYGDTVDVMKGDLELASGAMGPHFLDEKWEIVDPWVGLGFGLERLLMIREGTQHVQSMARSLSYL DGVRLNIN > D.
- hafniense _Y51/1-312 Desulfitobacterium hafniense Y51 VERSION YP_521192.1 GI: 89897705 MDRIDHTDSKFVQAGETPVLPATFMFLTRRDPPLSSFWTKVQYQRLKELNASGEQLEMGFSDALSRDR AFQGIEHQLMSQGKRHLEQLRTVKHRPALLELEEGLAKALHQQGFVQVVTPTIITKSALAKMTIGEDH PLFSQVFWLDGKKCLRPMLAPNLYTLWRELERLWDKPIRIFEIGTCYRKESQGAQHLNEFTMLNLTELGT PLEERHQRLEDMARWVLEAAGIREFELVTESSVVYGDTVDVMKGDLELASGAMGPHFLDEKWEIVD PWVGLGFGLERLLMIREGTQHVQSMARSLSYLDGVRLNIN > D.
- tRNA charging (aminoacylation) function When the particular tRNA charging (aminoacylation) function has been provided by mutating the tRNA synthetase, then it may not be appropriate to simply use another wild-type tRNA sequence, for example one selected from the above. In this scenario, it will be important to preserve the same tRNA charging (aminoacylation) function. This is accomplished by transferring the mutation(s) in the exemplary tRNA synthetase into an alternate tRNA synthetase backbone, such as one selected from the above.
- Target tRNA synthetase proteins/backbones may be selected by alignment to known tRNA synthetases such as exemplary M. barkeri and/or M. mazei sequences.
- FIG. 5 provides an alignment of all PylS sequences. These can have a low overall % sequence identity. Thus it is important to study the sequence such as by aligning the sequence to known tRNA synthetases (rather than simply to use a low sequence identity score) to ensure that the sequence being used is indeed a tRNA synthetase.
- sequence identity when sequence identity is being considered, suitably it is considered across the tRNA synthetases as in FIG. 5 .
- % identity may be as defined from FIG. 5 .
- FIG. 6 shows a diagram of sequence identities between the tRNA synthetases.
- % identity may be as defined from FIG. 6 .
- FIG. 7 aligns just the catalytic regions. The aim of this is to provide a tRNA catalytic region from which a high % identity can be defined to capture/identify backbone scaffolds suitable for accepting mutations transplanted in order to produce the same tRNA charging (aminoacylation) function, for example new or unnatural amino acid recognition.
- sequence identity when sequence identity is being considered, suitably it is considered across the catalytic region as in FIG. 7 .
- the % identity may be as defined from FIG. 7 .
- FIG. 8 shows a diagram of sequence identities between the catalytic regions.
- the % identity may be as defined from FIG. 8 .
- ‘Transferring’ or ‘transplanting’ mutations onto an alternate tRNA synthetase backbone can be accomplished by site directed mutagenesis of a nucleotide sequence encoding the tRNA synthetase backbone. This technique is well known in the art. Essentially the backbone pylS sequence is selected (for example using the active site alignment discussed above) and the selected mutations are transferred to (i.e. made in) the corresponding/homologous positions.
- MbPylRS Methanosarcina barkeri pyrrolysyl-tRNA synthetase amino acid sequence as the reference sequence (i.e. as encoded by the publicly available wild type Methanosarcina barkeri PylS gene Accession number Q46E77):
- L266M means that the amino acid corresponding to L at position 266 of the wild type sequence is replaced with M.
- transplantation of mutations between alternate tRNA backbones is now illustrated with reference to exemplary M. barkeri and M. mazei sequences, but the same principles apply equally to transplantation onto or from other backbones.
- Mb AcKRS is an engineered synthetase for the incorporation of AcK
- PCKRS engineered synthetase for the incorporation of PCK
- Synthetases with the same substrate specificities can be obtained by transplanting these mutations into M. mazei PylS.
- the sequence homology of the two synthetases can be seen in FIG. 9 .
- the following synthetases may be generated by transplantation of the mutations from the Mb backbone onto the Mm tRNA backbone:
- Mm PCKRS introducing mutations M276F, A302S, Y306C, L309M into M. mazei PylS.
- Transplanted polypeptides produced in this manner should advantageously be tested to ensure that the desired function/substrate specificities have been preserved.
- the inventors performed selections in order to find an orthogonal tRNA/tRNA synthetase pair that would direct incorporation of norbornene lysine with higher yields.
- One preferred synthetase consisted of a MbtRNA synthetase (MbPylRS) with the following mutations in the catalytic active site: L275A, C314S, M3161. This synthetase is suitably used with the MbtRNACUA tRNA. Usage of this tRNA/tRNA synthetase pair lead to better yields for protein expression.
- the same mutations may be made on other synthetase backbones as explained above.
- examples of other M. mazei based tRNA synthetase sequences for incorporation of norbornene lysine include:
- MmPylRS with mutations Y384F, Y3066, and I405R are mutations Y384F, Y3066, and I405R.
- Polynucleotides encoding the polypeptide of interest for the method described above can be incorporated into a recombinant replicable vector.
- the vector may be used to replicate the nucleic acid in a compatible host cell.
- the invention provides a method of making polynucleotides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector.
- the vector may be recovered from the host cell. Suitable host cells include bacteria such as E. coli.
- a polynucleotide of the invention in a vector is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector.
- operably linked means that the components described are in a relationship permitting them to function in their intended manner.
- a regulatory sequence “operably linked” to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences.
- Vectors of the invention may be transformed or transfected into a suitable host cell as described to provide for expression of a protein of the invention. This process may comprise culturing a host cell transformed with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the protein, and optionally recovering the expressed protein.
- the vectors may be for example, plasmid or virus vectors provided with an origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter.
- the vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid. Vectors may be used, for example, to transfect or transform a host cell.
- Control sequences operably linked to sequences encoding the protein of the invention include promoters/enhancers and other expression regulation signals. These control sequences may be selected to be compatible with the host cell for which the expression vector is designed to be used in.
- promoter is well-known in the art and encompasses nucleic acid regions ranging in size and complexity from minimal promoters to promoters including upstream elements and enhancers.
- Another aspect of the invention is a method, such as an in vitro method, of incorporating the norbornene containing amino acid(s) genetically and site-specifically into the protein of choice, suitably in a eukaryotic cell.
- One advantage of incorporating genetically by said method is that it obviates the need to deliver the proteins comprising the norbornene amino acid into a cell once formed, since in this embodiment they may be synthesised directly in the target cell.
- the method comprises the following steps:
- Step (i) entails or replacing a specific codon with an orthogonal codon such as an amber codon at the desired site in the genetic sequence of the protein.
- This can be achieved by simply introducing a construct, such as a plasmid, with the nucleotide sequence encoding the protein, wherein the site where the norbornene containing amino acid is desired to be introduced/replaced is altered to comprise an orthogonal codon such as an amber codon. This is well within the person skilled in the art's ability and examples of such are given here below.
- Step (ii) requires an orthogonal expression system to specifically incorporate the norbornene containing amino acid at the desired location (e.g. the amber codon).
- a specific orthogonal tRNA synthetase such as an orthogonal pyrollysyl-tRNA synthetase and a specific corresponding orthogonal tRNA pair which are together capable of charging said tRNA with the norbornene containing amino acid are required. Examples of these are provided herein.
- Host cells comprising polynucleotides of the invention may be used to express proteins of the invention.
- Host cells may be cultured under suitable conditions which allow expression of the proteins of the invention.
- Expression of the proteins of the invention may be constitutive such that they are continually produced, or inducible, requiring a stimulus to initiate expression.
- protein production can be initiated when required by, for example, addition of an inducer substance to the culture medium, for example dexamethasone or IPTG.
- Proteins of the invention can be extracted from host cells by a variety of techniques known in the art, including enzymatic, chemical and/or osmotic lysis and physical disruption.
- Proteins of the invention can be purified by standard techniques known in the art such as preparative chromatography, affinity purification or any other suitable technique.
- the norbornene group incorporated into the polypeptide of interest is reacted with a tetrazine compound.
- the tetrazine acts to conveniently attach a molecule of interest to the polypeptide via the norbornene.
- the tetrazine compound bears the molecule of interest.
- tetrazine group may be further joined to any suitable molecule of interest for attaching same to the polypeptide via the norbornene-tetrazine reaction.
- Tetrazines are designed and synthesized in a way that they have a readily accessible primary amino group. This amino group can be reacted with a variety of compounds using standard amine coupling reactions. As tetrazines are stable in a wide variety of reaction conditions almost any compound can be coupled to the tetrazine of interest. Exemplary compounds joined to tetrazines (for attachment to polypeptide via the norbornene) include various fluorophores as mentioned herein (such as in the examples section). Tetrazines may also be coupled to more sophisticated fluorophores, e.g. those suitable for Super Resolution Microscopy, such as STORM, PALM or STED, (for example Alexa dyes or special dyes from Abberior, developed for STED microscopy). Lipids may be coupled to tetrazines via standard techniques. PEGs may be coupled to tetrazines (see examples), which are beneficial for PEGylation of polypeptides via the norbornene according to the invention.
- the key benefits of our approach include the fact that the incorporation of norbornene according to the invention is site specific and most importantly can be done in vivo (and/or in vitro in an organism such as E. coli ).
- the purified antibody or protein can only be reacted in vitro with norbornene in a non-selective and not site-specific manner which has numerous problems as set out above.
- the invention delivers significant benefits compared to prior art methods as demonstrated herein.
- the norbornene containing polypeptide of the invention may be conveniently conjugated to other biophysical labels than fluorophores, for example, NMR probes, Spin label probes, IR labels, EM-probes as well as small molecules, oligonucleotides, lipids, nanoparticles, quantum dots, biophysical probes (EPR labels, NMR labels, IR labels), small molecules (biotin, drugs, lipids), oligonucleotides (DNA, RNA, LNA, PNA), particles (nanoparticles, viruses), polymers (PEG, PVC), proteins, peptides, surfaces and the like.
- biophysical labels than fluorophores
- the so modified thioredoxin was then reacted with a tetrazine and the tetrazine ligation was confirmed by mass spectrometry.
- This prior art method is a standard biochemical ligation. This cannot be performed selectively. All cysteines present will be labelled by this method. If no cysteines are present, no reaction will be possible.
- the present invention allows the labelling of any predetermined site on a polypeptide. By contrast the invention allows selective labelling. By contrast the present invention avoids the complicated post-translational chemistry of this prior art technique. By contrast the present invention allows the labelling to take place without the need to produce purified protein (eg. see FIG. 3 and the examples). By contrast the present invention allows labelling in live cells with high selectivity over other proteins.
- Weissleder has also coupled norbornene to different antibodies and labelled them afterwards with tetrazine fluorophores.
- the antibodies were labelled with standard amine coupling techniques, i.e. the antibodies were incubated with an activated form (mostly a succinimidyl ester) of the corresponding strained alkene (e.g. norbornene) so that all lysines as well as the N-terminal end of the antibody polypeptide are reacted with it. Therefore this known method is not a site selective method of labelling.
- this known method is confined to a biochemical reaction. This reaction must be done on purified antibody polypeptide.
- the present invention allows the labelling of any predetermined site on a polypeptide.
- the invention allows selective labelling.
- the present invention avoids the complicated post-translational chemistry of this prior art technique.
- the present invention avoids labelling the N-terminus of the polypeptide.
- the present invention allows the labelling to take place without the need to produce purified protein (eg. see FIG. 3 and the examples).
- the present invention allows labelling in live cells with high selectivity over other proteins.
- norbornene is incorporated into the polypeptide with improved (faster) kinetics compared to known approaches.
- norbornene is incorporated at a predetermined position of the polypeptide.
- FIG. 1A shows genetically encoded norbornenes rapidly react with tetrazines in aqueous solution at ambient temperatures and pressures to site-specifically label proteins.
- FIG. 1B shows the amino acid structures of pyrrolysine (1), N ⁇ -5-norbornene-2-yloxy-carbonyl-L-lysine (2), N ⁇ -tert-butyloxycarbonyl-L-lysine (3), and N ⁇ -(2-azidoethyloxy-carbonyl-L-lysine (4).
- FIG. 1C shows structures (5-14) of tetrazines and tetrazine-fluorophores used in this study.
- FIGS. 2A-B show the efficient, genetically-directed incorporation of 2 using the PylRS/tRNA CUA pair in E. coli .
- FIG. 2A shows the amino acid dependent expression of sfGFP bearing an amber codon at position 150 and myoglobin bearing an amber codon at position 4.
- FIG. 2B shows the MS characterization of amino acid incorporation, left: sfGFP-2-His 6 , found: 27975.5 ⁇ 1.5 Da, calculated: 27977.5 Da; right: Myo-2-His 6 , found: 18532.5 ⁇ 1.5 Da, calculated: 18532.2 Da).
- FIGS. 3A-D show the characterization of tetrazine norbornene reactions.
- FIG. 3A shows “turn-on” fluorescence of tetrazine-fluorophores upon reaction with 5-norbornene-2-ol (Nor).
- FIG. 3B shows specific and quantitative labeling of sfGFP bearing 2 as demonstrated by SDS PAGE (Coomassie staining and in gel fluorescence) and mass spectrometry. Red mass spectrum: before bioconjugation, found 27975.5 ⁇ 1.5 Da, expected 27977.5 Da. Blue mass spectrum: after bioconjugation, found 28783.0 ⁇ 1.5 Da, expected 28784.4 Da.
- FIG. 3C shows labeling of myoglobin bearing 2 at position 4 with 12.
- FIG. 3D shows specificity of labeling 2 in sfGFP versus the E. coli proteome.
- Lanes 1-5 Coomassie stained gel showing proteins from E. coli producing sfGFP in the presence of the indicated concentration of unnatural amino acids 2 or 3.
- Lanes 6-10 The expressed protein was detected in lysates using an anti His 6 antibody.
- Lanes 11-20 Fluorescence images of protein labeled with the indicated fluorophore 12 or 13.
- FIGS. 4A-C Site-specific incorporation of 2 into proteins in mammalian cells and the specific labeling of EGFR-GFP on the cell surface with tetrazine-fluorophore 9.
- FIG. 4A shows cells containing the PylRS/tRNA CUA pair and the mCherry(TAG)eGFP-HA reporter produce GFP only in the presence of 2.
- FIG. 4B shows Western blots confirming that the expression of full length mCherry(TAG)eGFP-HA is dependent on the presence of 2.
- FIG. 4C shows specific and rapid labeling of a cell surface protein in live mammalian cells.
- EGFR-GFP bearing 2 or 3 at position 128 is visible as green fluorescence at the membrane of transfected cells (left panels). Treatment of cells with 9 (200 nM) leads to selective labeling of EGFR containing 2 (middle panels). Cells were imaged 4 hours after addition of 9.
- FIG. 5 shows alignment of PylS sequences.
- FIG. 6 shows sequence identity of PylS sequences.
- FIG. 7 shows alignment of the catalytic domain of PylS sequences (from 350 to 480; numbering from alignment of FIG. 5 ).
- FIG. 8 shows sequence identity of the catalytic domains of PylS sequences.
- FIG. 9 shows alignment of synthetases with transplanted mutations based on M. barkeri PylS or M. mazei PylS. The red asterisks indicate the mutated positions.
- FIGS. 10A-C show diagrams and photographs of PEGylation.
- FIG. 10A shows a schematic of the protein PEGylation reaction of a norbornene-protein and a tetrazine-PEG reagent.
- FIG. 10B shows PAGE gel showing purified superfolder-green fluorescent protein (sfGFP) containing the norbornene-lysine (NorK) incorporated at position 00 in a E. coli expression system.
- FIG. 10C shows PAGE gel (imaging GFP fluorescence) of the PEGylation reaction showing a distinct change in molecular weight of sfGFP through addition of a single PEG group.
- FIG. 11 shows a representation of a selective, bioorthogonal conjugation reaction.
- the reaction between a chemical handle (yellow—pie shape) linked to a biomolecule (orange—diamond shape), e.g., an unnatural amino acid introduced into a protein, and a reactive probe (green—oblique triangle shape) bearing bioorthogonal functional groups proceeds in the presence of all the functionality found within living systems (blue—remaining shapes around periphery) under physiological conditions.
- FIG. 12 shows bioconjugation reactions applied in bioorthogonal labeling.
- the reaction between a tetrazine and a norbornene (A) has important advantages over all other bioconjugation reactions developed in the art to date.
- Embodiment of the invention is outlined in bold.
- FIG. 13 shows myoglobin bearing an amber codon at position 4 and T4 lysozyme bearing an amber codon at position 83 produced good yields of protein in the presence, but not absence; the incorporation of 2 was further confirmed by electrospray ionization mass spectrometry of purified proteins.
- FIG. 14 shows that the tetrazines (5-8) readily react with 5-norbornene-2-ol to form the corresponding dihydropyridazines S15 and its isomeric forms S16 in protic solvents in >96% conversion.
- FIGS. 15A-C show rate constants k for different tetrazines were measured under pseudo first order conditions with a 10- to 100-fold excess of 5-norbornene-2-ol in methanol/water mixtures by following the exponential decay in UV absorbance of the tetrazine at 320 or 300 nm over time.
- FIG. 16A shows rate constants for the reaction of 5-norbornene-2-ol with various tetrazines.
- FIG. 16B shows mass spectrometry data for tetrazine-fluorophores 9-14.
- FIG. 17 shows the chemical structures of 9-14 and S17.
- FIG. 18 shows fluorescence spectra of compounds 9-14.
- FIG. 19 shows the mass spectra of aliquots taken from the in vitro labeling of purified proteins with different tetrazines.
- FIGS. 20A-B show SDS-PAGE based fluorescence imaging ( FIG. 20A ) and ESI-MS analysis ( FIG. 20B ) of purified sfGFP-2, Myo-2 and T4L-2 incubated overnight with fluorophore 9.
- FIG. 21 shows the specificity of labeling 2 in sfGFP-2 and Myo-2 versus the E. coli proteome.
- FIG. 22 shows the gel fluorescence imaging of the labeling reaction of sfGFP-2 with tetrazine fluorophores 9 and 12.
- FIGS. 23A-B show MS/MS data from the incorporation of 2 into proteins in mammalian cells.
- FIG. 24 shows specific and rapid labeling of EGFR-2-GFP in mammalian cells with a tetrazine-based fluorophore 9 (2 h).
- FIG. 25 shows specific and rapid labeling of EGFR-2-GFP in mammalian cells with a tetrazine-based fluorophore 9 (4 h).
- FIG. 26 shows specific and rapid labeling of EGFR-2-GFP in mammalian cells with a tetrazine-based fluorophore 9 (8 h).
- FIG. 27 shows specific and rapid labeling of EGFR-2-GFP in mammalian cells with a tetrazine-based fluorophore 9 (16 h).
- FIG. 28 shows MS/MS data showing the incorporation of 4 into proteins in mammalian cells.
- FIG. 29 shows labeling attempt (S17, TAMRA-DiBO-alkyne commercially available from Invitrogen) of EGFR-4-GFP in mammalian cells with a cyclooctyne-based fluorophore.
- FIG. 30 shows labeling attempt of EGFR-4-GFP in mammalian cells with a cyclooctyne-based fluorophore using conditions provided by the supplier.
- FPs fluorescent proteins
- a highly targeted strategy to label proteins is to introduce a single-residue modification.
- chemoselectivity needs to apply not only to a complex mixture but also to the functionalities found on a single protein and its labeling partner. Therefore, at a specific location, an inconspicuous bioorthogonal modification should be introduced into a protein under physiological conditions.
- this can be achieved by altering the protein translation machinery to introduce unnatural amino acids with a bioorthogonal handle, e.g., a norbornene.
- FIG. 11 shows a representation of a selective, bioorthogonal conjugation reaction.
- the reaction between a chemical handle (yellow—pie shape) linked to a biomolecule (orange—diamond shape), e.g., an unnatural amino acid introduced into a protein, and a reactive probe (green—oblique triangle shape) bearing bioorthogonal functional groups proceeds in the presence of all the functionality found within living systems (blue—remaining shapes around periphery) under physiological conditions.
- the bioconjugation reaction then involves the site-specific pre-modified protein carrying a unique chemical handle (functionalized unnatural amino acid, e.g., norbornene lysine) that will specifically and covalently bind to a labeling molecule without perturbation of structure and function.
- a unique chemical handle functionalized unnatural amino acid, e.g., norbornene lysine
- unnatural amino acids allow the introduction of virtually any type of physical and chemical label, even polymers like polyethylene glycol (PEG).
- PEG polyethylene glycol
- the inverse electron demand Diels-Alder (IED-DA) cycloaddition reaction between a tetrazine and a strained olefin is a superior bioorthogonal reaction with important advantages o ver the other bioconjugation reactions shown in Table 1, such as high selectivity, excellent yields, and extremely fast kinetics in aqueous media.
- IED-DA reaction has been successfully applied in bioconjugation reactions to a tetrazine-modified thioredoxin (Trx) in an acetate buffer 15 and to a norbornene-bearing antibody in both serum and live cells.
- the target residue need not be a lysine in the polypeptide of interest.
- T4 lysozyme (position 83, in wildtype position 83 is a lysine)
- Myoglobin (position 4, which in the wildtype sequence is a serine)
- sfGFP position 150, which in the wildtype is an asparagine
- Example 1B Selectivity of the Norbornene-Tetrazine Reaction Against the E. coli Proteome
- Example 1C Application of Norbornene-Lysine Incorporation in the Site-Specific Modification of Proteins with Polyethylene Glycol
- PEG-tetrazine reagents Two exemplary PEG-tetrazine reagents, a 5 kDa and a 20 kDa one (R ⁇ H), were synthesized in 3 steps from commercially available reagents following a published procedure for tetrazine assembly (Angew. Chem. Int. Ed. 2012, 51, 5222-5225).
- R groups may be used in order to tune the reactivity of the tetrazine reagent, e.g., halides, alkanes, haloalkanes, arenes, heteroarenes, haloarenes, and others.
- linear and branched PEG groups of different molecular weight (e.g., 1 kDa, 2 kDa, 40 kDa, 100 kDa) may also be used.
- FIG. 10A shows a schematic of the protein PEGylation reaction of a norbornene-protein and a tetrazine-PEG reagent.
- FIG. 10B shows PAGE gel showing purified superfolder-green fluorescent protein (sfGFP) containing the norbornene-lysine (NorK) incorporated at position 00 in a E. coli expression system.
- sfGFP superfolder-green fluorescent protein
- NorK norbornene-lysine
- FIG. 10C shows PAGE gel (imaging GFP fluorescence) of the PEGylation reaction showing a distinct change in molecular weight of sfGFP through addition of a single PEG group.
- the pyrrolysyl-tRNA synthetase/tRNACUA pair (PylRS/tRNACUA) from Methanosarcina species, which naturally incorporates pyrrolysine (1, FIG. 1B ), is orthogonal to endogenous tRNAs and aminoacyl-tRNA synthetases in E. coli and eukaryotic cells. 39-42 Using this pair, and its synthetically evolved derivatives, we and others have directed the efficient incorporation of unnatural amino acids, including post-translationally modified amino acids, chemical handles, and photocaged amino acids, at specific sites in desired proteins in E. coli , yeast, and mammalian cells.
- tetrazine S8c Deprotection of 8 under acidic conditions gave tetrazine S8c.
- the primary amino group in this tetrazine derivative provides a handle for further functionalization with biophysical probes.
- All the tetrazines synthesized are stable in MeOH/H 2 O and DMSO/H 2 O at room temperature for several days as judged by LCMS (data not shown).
- the tetrazines (5-8) readily react with 5-norbornene-2-ol to form the corresponding dihydropyridazines S15 and its isomeric forms S16 in protic solvents in >96% conversion ( FIG. 14 and Supplementary Information).
- the rate constants for these reactions were determined under pseudo-first order conditions by following the exponential decay in the UV absorbance of the tetrazine at 320 or 300 nm over time ( FIGS. 15A-C ). The reactions were faster in more polar solvent systems, i.e., solvent mixtures with higher water content, as expected. 36,48
- Tetrazine 8 displays the highest activity towards 5-norbornene-2-ol with second order rate constants of approximately 9 M ⁇ 1 s ⁇ 1 in H 2 O/MeOH (95:5) at 21° C., while 5 reacts with a rate constant of approximately 1 M ⁇ 1 s ⁇ 1 under the same conditions ( FIG. 16A and Supplementary Information). This confirms that the tetrazine norbornene reaction is orders of magnitude faster than established bioorthogonal reactions.
- the fluorescence of the visible light-emitting TAMRA tetrazine conjugate 9 and BODIPY tetrazine conjugate 10 were substantially reduced with respect to the fluorescence of the succinimidyl or isothiocyanate derivatives of the parental fluorophores. This is in agreement with recent work showing that fluorophores can be quenched by energy transfer to a proximal tetrazine chromophore which absorbs between 510 and 530 nm. 49 However, despite 5, 6, and 8 having very similar absorption spectra, the fluorescence reduction of the dye-conjugates was dependent on the specific combination of tetrazine and fluorophore.
- E. coli DH10B cells To express sfGFP with an incorporated unnatural amino acid, we transformed E. coli DH10B cells with pBKPylS (which endcodes MbPylRS) and psfGFP150TAGPylT-His 6 (which encodes MbtRNA CUA and a C-terminally hexahistidine tagged sfGFP gene with an amber codon at position 150).
- pBKPylS which endcodes MbPylRS
- psfGFP150TAGPylT-His 6 which encodes MbtRNA CUA and a C-terminally hexahistidine tagged sfGFP gene with an amber codon at position 150.
- the extract was clarified by centrifugation (20 min, 21.000 g, 4° C.), 600 ⁇ L of Ni 2+ -NTA beads (Qiagen) were added to the extract and the mixture was incubated with agitation for 1 h at 4° C. Beads were collected by centrifugation (10 min, 1000 g). The beads were three times resuspended in 30 mL wash buffer (10 mM Tris-HCl, 20 mM imidazole, 200 mM NaCl, pH 8) and spun down at 1000 g. Subsequently, the beads were resuspended in 10 mL of wash buffer and transferred to a column.
- wash buffer (10 mM Tris-HCl, 20 mM imidazole, 200 mM NaCl, pH 8)
- the protein was eluted with 3 ml of wash buffer supplemented with 200 mM imidazole and further purified by size-exclusion chromatography employing a HiLoad 16/60 Superdex 75 Prep Grade column (GE Life Sciences) at a flow rate of 1 mL/min (buffer: 20 mM Tris-HCl, 100 mM NaCl, pH 7.4). Fractions containing the protein were pooled and concentrated with an Amicon Ultra-15 3 kDa MWCO centrifugal filter device (Millipore). Purified proteins were analyzed by 4-12% SDS-PAGE.
- sperm whale myoglobin and T4 Lysozyme with incorporated 2 were prepared in the same way, except that cells were transformed with pMyo4TAGPylT-His6 (which encodes MbtRNACUA and a C-terminally hexahistidine tagged sperm whale myoglobin gene with an amber codon at position 4) and pBKPylS or pT4L83TAGPylT-His 6 (which encodes MbtRNA CUA and a C-terminally hexahistidine tagged T4 lysozyme gene with an amber codon at position 83) and pBKPylS. Yields of purified proteins were up to 4 mg/L.
- ESI-MS was carried out with a 6130 Quadrupole spectrometer.
- the solvent system consisted of 0.2% formic acid in H 2 O as buffer A, and 0.2% formic acid in acetonitrile (MeCN) as buffer B.
- LC-ESI-MS on proteins was carried out using a Phenomenex Jupiter C4 column (150 ⁇ 2 mm, 5 ⁇ m) and samples were analyzed in the positive mode, following protein UV absorbance at 214 and 280 nm. Total protein masses were calculated by deconvolution within the MS Chemstation software (Agilent Technologies). Protein mass spectrometry was additionally carried out with an LCT TOF mass spectrometer (Micromass, see below).
- protein total mass was determined on an LCT time-of-flight mass spectrometer with electrospray ionization (ESI, Micromass). Proteins were rebuffered in 20 mM of ammonium bicarbonate and mixed 1:1 acetonitrile, containing 1% formic acid. Alternatively samples were prepared with a C4 Ziptip (Millipore) and infused directly in 50% aqueous acetonitrile containing 1% formic acid. Samples were injected at 10 ⁇ L min ⁇ 1 and calibration was performed in positive ion mode using horse heart myoglobin. 30 scans were averaged and molecular masses obtained by maximum entropy deconvolution with MassLynx version 4.1 (Micromass). Theoretical masses of wild-type proteins were calculated using Protparam (http://us.expasy.org/tools/protparam.html), and theoretical masses for unnatural amino acid containing proteins were adjusted manually.
- Protparam http://us.expasy.org
- sfGFP-2 Purified recombinant proteins with site-specifically incorporated 2, sfGFP-2, Myo-2, T4L-2 (all ⁇ 10 ⁇ M in 20 mM Tris-HCl, 100 mM NaCl, pH 7.4), were incubated with 10 equivalents of the tetrazine-dye conjugate 9 (2 mM in dmso). The solution was incubated at RT and aliquots were taken after 12 h and analyzed by SDS PAGE and—after desalting with a C4-ZIPTIP—by ESI-MS. The SDS PAGE gels were either stained with coomassie or scanned with a Typhoon imager to visualize in gel fluorescence.
- E. coli DH10B cells containing either psfGFP150TAGPylT-His 6 and pBKPylS or pMyo4TAGPylT-His 6 and pBKPylS were inoculated into LB containing kanamycin (50 ⁇ g/mL) and tetracycline (25 ⁇ g/mL). The cells were incubated with shaking overnight at 37° C., 250 rpm. 2 mL of overnight culture was used to inoculate into 100 mL of LB supplemented with kanamycin (25 ⁇ g/mL) and tetracycline (12 ⁇ g/mL) and incubated at 37° C.
- washed cell pellet was suspended in 100 ⁇ L PBS and incubated with 3 ⁇ L of tetrazine-dye conjugate 12 or 13 (2 mM in dmso) at RT overnight.
- the cells were collected again by centrifugation and washed two times with 1 ml PBS by suspending and centrifugation.
- the cells were resuspended in 100 ⁇ L of NuPAGE LDS sample buffer supplemented with 5% ⁇ -mercaptoethanol, heated at 90° C. for 10 min and centrifuged at 16000 g for 10 min.
- the crude cell lysate was analyzed by 4-12% SDS-PAGE to assess protein levels.
- Rate constants k for different tetrazines were measured under pseudo first order conditions with a 10- to 100-fold excess of 5-norbornene-2-ol in methanol/water mixtures by following the exponential decay in UV absorbance of the tetrazine at 320 or 300 nm over time ( FIGS. 15A-C and FIG. 16A ).
- Stock solutions were prepared for each tetrazine (0.1 mM in 9/1 water/methanol) and for 5-norbornene-2-ol (1 to 10 mM in either methanol or water). Mixing equal volumes of the prepared stock solutions resulted in a final concentration of 0.05 mM tetrazine and of 0.5 to 5 mM 5-norbornene-2-ol, corresponding to 10 to 100 equivalents.
- Spectra were recorded using the following instrumental parameters: wavelength, 320 nm for 6 and 8; 300 nm for 5 and 3,6-dipyridyl-1,2,4,5-tetrazine, 280 nm for 7; spectral band width (SBW), 1.0 nm; increment of data point collection, 0.5 s or 2.0 s. All data were recorded at 21° C. Data were fit to a single-exponential equation. Each measurement was carried out three times and the mean of the observed rates k′ was plotted against the concentration of 5-norbornene-2-ol to obtain the rate constant k from the slope of the plot. All data processing was performed using Kaleidagraph software (Synergy Software, Reading, UK).
- the EGFR-EGFP was ligated into the pMmPylRS-mCherry-TAG-EGFP-HA vector in place of the mCherry-EGFP using T4 DNA ligase (NEB) to create pMmPylRS-EGFR(128TAG)-GFP-HA.
- NEB T4 DNA ligase
- HEK293 cells were seeded onto a corning 96 well plate and grown to approximately 90% confluence in 10% FBS DMEM with Penicillin/Streptomycin.
- Cells were transfected with 2 plasmids, pMmPylRS-mCherry-TAG-EGFP-HA, and p4CMVE-U6-PylT which contains 4 copies of the wild-type Pyrrollysyl tRNA. Transfection was carried out using the lipofectamine 2000 transfection reagent from Invitrogen according to the manufacturer's protocol.
- the growth media in which the cells were transfected was 10% FBS DMEM, and contained 1 mM 2, 1 mM 3 or no additional amino acid as indicated.
- MS/MS Analysis Cells were grown on 100 mm tissue culture dishes to ⁇ 90% confluence. Cells were transfected with pMmPylRS-mCherry-TAG-EGFP-HA and p4CMVE-U6-PylT using lipofectamine 2000 (Invitrogen). After 16-24 hours in the presence of 1 mM 2 cells were lysed in RIPA buffer and mCherry-eGFP fusion protein was purified using the GFP_Trap_A system (Chromotek). MS/MS analysis was either performed by NextGen Sciences or by an in house facility. For the former, the eluate was added to 4 ⁇ NuPage LDS Sample buffer and run out on an SDS-PAGE gel.
- the band corresponding to the full length mCherry-eGFP fusion was then excised.
- the gel plugs were digested overnight in trypsin.
- the digests were then analyzed by LC/MS/MS with a 30 minute gradient on an LTQ Orbitrap XL mass spectrometer.
- Product-ion data were searched against a database of 4 protein sequences, with the lysine modification incorporated among the typically used variable modifications.
- the Mascot search engine was utilised with the Scaffold program used for collation and analysis of the data.
- the protein solution was reduced and alkylated using standard methods prior to overnight digest with Promega procine Trypsin.
- the generated peptides were separated on a Dionex Ultimate 3000 HPLC system with a 15 cm, 75 Um, C18 acclaim pep-map column and analysed on a Thermo Scientific LTQ XL Orbitrap mass spectrometer. Protein identification was carried out using an in-house Mascot database.
- hEGFR-eGFP fusion was then labeled with 200 nm of tetrazine-dye conjugate 9 (tet1-TAMRA-X) for 2-16 hours as indicated, washed for 10 mins in DMEM with 0.1% FBS and imaged on Zeiss LSM 780 or Zeiss LSM 710 laser scanning microscope with a Plan Apochromat 63 ⁇ oil immersion objective and using a 1 ⁇ or 2 ⁇ scan zoom, averaging 16.
- EGFP was excited using a 488 nm Argon laser and detected between 493 nm and 554 nm.
- TMR was excited using DPSS 561 nm laser and detected at 566-685 nm.
- Cells transfected in the presence of amino acid 4 were grown for 16 to 24 hours after transfection. According to the suppliers protocols, cells were washed in DPBS with 1% FBS, incubated with DiBO-TAMRA dye (Invitrogen) in DPBS with 1% FBS for 16 hours, washed 4 times in DPBS 1% FBS and imaged in DPBS 1% FBS.
- DiBO-TAMRA dye Invitrogen
- Analytical thin-layer chromatography was carried out on silica 60F-254 plates. The spots were visualized by UV light (254 nm) and/or by potassium permanganate staining. Flash column chromatography was carried out on silica gel 60 (230-400 mesh or 70-230 mesh).
- ESI-MS was carried out with a 6130 Quadrupole spectrometer. The solvent system consisted of 0.2% formic acid in H 2 O as buffer A, and 0.2% formic acid in acetonitrile (MeCN) as buffer B.
- Small molecule LC-MS was carried out using a Phenomenex Jupiter C18 column (150 ⁇ 2 mm, 5 ⁇ m). Variable wavelengths were used and MS acquisitions were carried out in positive and negative ion modes.
- Disuccinimide carbonate (6.3 g, 0.024 mol) was added to a solution of (1R,4R)-5-norbornene-2-ol (endo/exo mixture, 1.5 g, 0.014 mol) and triethylamine (5.7 mL, 0.041 mol) in dry acetonitrile (50 mL) at room temperature. The resulting mixture was stirred overnight and then concentrated under vacuum. The product was purified by column chromatography on SiO2 (1-5% diethyl ether in dichloromethane) to deliver S2a as a white solid in 82%, 7:3 endo/exo (2.8 g, 0.011 mol).
- Boc-Lys-OH (3.2 g, 0.013 mol) was added to a stirred solution of S2a (2.5 g, 0.010 mol) in dry dimethylformamide (35 mL). The reaction was allowed to proceed overnight at room temperature. The mixture was diluted in water (150 mL) and extracted with ethyl acetate (150 mL ⁇ 3). The combined organic layers were washed with water (100 mL ⁇ 3) and brine (75 mL). The resulting organic layer was dried over Na 2 SO 4 , filtered and concentrated under vacuum to dryness. Compound S2b was obtained in 95% yield (3.6 g, 9.40 mmol) as an off-white foam.
- N-(tert-butoxycarbonyl)glycine (1.66 g, 9.48 mmol) in dry THF N-methylpyrrolidone (1.3 ml, 11.85 mmol) was added.
- the reaction mixture was chilled to 0° C. before isobutylchloroformate (1.0 ml, 7.82 mmol) was added dropwise. A white precipitate was formed instantaneously and the mixture was stirred at 0° C.
- Compound S6b (605 mg, 75%) was synthesized in a similar way by reacting S6a (500 mg, 1.96 mmol) with N-tert-butyloxycarbonylglycine (1.37 g, 7.84 mmol), isobutylchloroformate (883 mg, 840 ⁇ l, 6.47 mmol) and N-methylpyrrolidone (991 mg, 1.08 ml, 9.8 mmol) in dry THF.
- reaction mixture was diluted with dichloromethane, extracted with 5% citric acid and saturated sodium bicarbonate solution and the organic layer was dried over Na 2 SO 4 .
- the solvent was evaporated and compound S7a (882 mg, 90%) could be used without further purification for the next step.
- the product was purified by preparative reverse phase HPLC using a gradient from 20% to 85% of buffer B in buffer A (buffer A: H 2 O, 0.1% TFA; buffer B: acetonitril, 0.1% TFA). The identity and purity of the conjugates were confirmed by LC-MS (see FIG. 16B and FIG. 17 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
>M. barkeriMS/1-419/ | |
Methanosarcina barkeri MS | |
VERSION Q6WRH6.1 GI: 74501411 | |
MDKKPLDVLISATGLWMSRTGTLHKIKHHEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC | |
KRCRVSDEDINNFLTRSTESKNSVKVRVVSAPKVKKAMPKSVSRAPKPLENSVSAKASTNTSRSVPSPAK | |
STPNSSVPASAPAPSLTRSQLDRVEALLSPEDKISLNMAKPFRELEPELVTRRKNDFQRLYTNDREDYLGK | |
LERDITKFFVDRGFLEIKSPILIPAEYVERMGINNDTELSKQIFRVDKNLCLRPMLAPTLYNYLRKLDRILPGP | |
IKIFEVGPCYRKESDGKEHLEEFTMVNFCQMGSGCTRENLEALIKEFLDYLEIDFEIVGDSCMVYGDTL | |
DIMHGDLELSSAVVGPVSLDREWGIDKPWIGAGFGLERLLKVMHGFKNIKRASRSESYYNGISTNL | |
>M. barkeriF/1-419/ | |
Methanosarcina barkeri str. Fusaro | |
VERSION YP_304395.1 GI: 73668380 | |
MDKKPLDVLISATGLWMSRTGTLHKIKHYEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC | |
KRCRVSDEDINNFLTRSTEGKTSVKVKVVSAPKVKKAMPKSVSRAPKPLENPVSAKASTDTSRSVPSPAK | |
STPNSPVPTSAPAPSLTRSQLDRVEALLSPEDKISLNIAKPFRELESELVTRRKNDFQRLYTNDREDYLGKLE | |
RDITKFFVDRDFLEIKSPILIPAEYVERMGINNDTELSKQIFRVDKNLCLRPMLAPTLYNYLRKLDRILPDPIKI | |
FEVGPCYRKESDGKEHLEEFTMVNFCQMGSGCTRENLESLIKEFLDYLEIDFEIVGDSCMVYGDTLDI | |
MHGDLELSSAVVGPVPLDREWGIDKPWIGAGFGLERLLKVMHGFKNIKRASRSESYYNGISTNL | |
>M. mazei/1-454 | |
Methanosarcina mazei Gol | |
VERSION NP_633469.1 GI: 21227547 | |
MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARALRHHKYRKTCK | |
RCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARAPKPLENTEAAQAQPSGSKFSPAI | |
PVSTQESVSVPASVSTSISSISTGATASALVKGNTNPITSMSAPVQASAPALTKSQTDRLEVLLNPKDEISL | |
NSGKPFRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGIDNDTELS | |
KQIFRVDKNFCLRPMLAPNLYNYLRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFCQMGSGC | |
TRENLESIITDFLNHLGIDFKIVGDSCMVYGDTLDVMHGDLELSSAVVGPIPLDREWGIDKPWIGAGF | |
GLERLLKVKHDFKNIKRAARSESYYNGISTNL | |
>M. acetivorans/1-443 | |
Methanosarcina acetivorans C2A | |
VERSION NP_615128.2 GI: 161484944 | |
MDKKPLDTLISATGLWMSRTGMIHKIKHHEVSRSKIYIEMACGERLVVNNSRSSRTARALRHHKYRKTCR | |
HCRVSDEDINNFLTKTSEEKTTVKVKVVSAPRVRKAMPKSVARAPKPLEATAQVPLSGSKPAPATPVSA | |
PAQAPAPSTGSASATSASAQRMANSAAAPAAPVPTSAPALTKGQLDRLEGLLSPKDEISLDSEKPFRE | |
LESELLSRRKKDLKRIYAEERENYLGKLEREITKFFVDRGFLEIKSPILIPAEYVERMGINSDTELSKQVFRIDK | |
NFCLRPMLAPNLYNYLRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFCQMGSGCTRENLEAII | |
TEFLNHLGIDFEIIGDSCMVYGNTLDVMHDDLELSSAVVGPVPLDREWGIDKPWIGAGFGLERLLKV | |
MHGFKNIKRAARSESYYNGISTNL | |
>M. thermophila/1-478 | |
Methanosarcina thermophila, VERSION DQ017250.1 GI: 67773308 | |
MDKKPLNTLISATGLWMSRTGKLHKIRHHEVSKRKIYIEMECGERLVVNNSRSCRAARALRHHKYRKIC | |
KHCRVSDEDLNKFLTRTNEDKSNAKVTVVSAPKIRKVMPKSVARTPKPLENTAPVQTLPSESQPAPTTPIS | |
ASTTAPASTSTTAPAPASTTAPAPASTTAPASASTTISTSAMPASTSAQGTTKFNYISGGFPRPIPVQASAP | |
ALTKSQIDRLQGLLSPKDEISLDSGTPFRKLESELLSRRRKDLKQIYAEEREHYLGKLEREITKFFVDRGFLEIK | |
SPILIPMEYIERMGIDNDKELSKQIFRVDNNFCLRPMLAPNLYNYLRKLNRALPDPIKIFEIGPCYRKESDG | |
KEHLEEFTMLNFCQMGSGCTRENLEAIIKDFLDYLGIDFEIVGDSCMVYGDTLDVMHGDLELSSAVV | |
GPVPMDRDWGINKPWIGAGFGLERLLKVMHNFKNIKRASRSESYYNGISTNL | |
>M. burtonii/1-416 | |
Methanococcoides burtonii DSM6242, VERSION YP_566710.1 GI: 91774018 | |
MEKQLLDVLVELNGVWLSRSGLLHGIRNFEITTKHIHIETDCGARFTVRNSRSSRSARSLRHNKYRKPCKR | |
CRPADEQIDRFVKKTFKEKRQTVSVFSSPKKHVPKKPKVAVIKSFSISTPSPKEASVSNSIPTPSISVVKDEV | |
KVPEVKYTPSQIERLKTLMSPDDKIPIQDELPEFKVLEKELIQRRRDDLKKMYEEDREDRLGKLERDITEFFV | |
DRGFLEIKSPIMIPFEYIERMGIDKDDHLNKQIFRVDESMCLRPMLAPCLYNYLRKLDKVLPDPIRIFEIGP | |
CYRKESDGSSHLEEFTMVNFCQMGSGCTRENMEALIDEFLEHLGIEYEIEADNCMVYGDTIDIMHGD | |
LELSSAVVGPIPLDREWGVNKPWMGAGFGLERLLKVRHNYTNIRRASRSELYYNGINTNL | |
>D. hafniense_DCB-2/1-279 | |
Desulfitobacterium hafniense DCB-2 | |
VERSION YP_002461289.1 GI: 219670854 | |
MSSFWTKVQYQRLKELNASGEQLEMGFSDALSRDRAFQGIEHQLMSQGKRHLEQLRTVKHRPALLEL | |
EEGLAKALHQQGFVQVVTPTIITKSALAKMTIGEDHPLFSQVFWLDGKKCLRPMLAPNLYTLWRELERL | |
WDKPIRIFEIGTCYRKESQGAQHLNEFTMLNLTELGTPLEERHQRLEDMARWVLEAAGIREFELVTESSV | |
VYGDTVDVMKGDLELASGAMGPHFLDEKWEIVDPWVGLGFGLERLLMIREGTQHVQSMARSLSYL | |
DGVRLNIN | |
>D. hafniense_Y51/1-312 | |
Desulfitobacterium hafniense Y51 | |
VERSION YP_521192.1 GI: 89897705 | |
MDRIDHTDSKFVQAGETPVLPATFMFLTRRDPPLSSFWTKVQYQRLKELNASGEQLEMGFSDALSRDR | |
AFQGIEHQLMSQGKRHLEQLRTVKHRPALLELEEGLAKALHQQGFVQVVTPTIITKSALAKMTIGEDH | |
PLFSQVFWLDGKKCLRPMLAPNLYTLWRELERLWDKPIRIFEIGTCYRKESQGAQHLNEFTMLNLTELGT | |
PLEERHQRLEDMARWVLEAAGIREFELVTESSVVYGDTVDVMKGDLELASGAMGPHFLDEKWEIVD | |
PWVGLGFGLERLLMIREGTQHVQSMARSLSYLDGVRLNIN | |
>D. hafniensePCP1/1-288 | |
Desulfitobacterium hafniense | |
VERSION AY692340.1 GI: 53771772 | |
MFLTRRDPPLSSFWTKVQYQRLKELNASGEQLEMGFSDALSRDRAFQGIEHQLMSQGKRHLEQLRTV | |
KHRPALLELEEKLAKALHQQGFVQVVTPTIITKSALAKMTIGEDHPLFSQVFWLDGKKCLRPMLAPNLY | |
TLWRELERLWDKPIRIFEIGTCYRKESQGAQHLNEFTMLNLTELGTPLEERHQRLEDMARWVLEAAGIRE | |
FELVTESSVVYGDTVDVMKGDLELASGAMGPHFLDEKWEIFDPWVGLGFGLERLLMIREGTQHVQS | |
MARSLSYLDGVRLNIN | |
>D. acetoxidans/1-277 | |
Desulfotomaculum acetoxidans DSM771 | |
VERSION YP_003189614.1 GI: 258513392 | |
MSFLWTVSQQKRLSELNASEEEKNMSFSSTSDREAAYKRVEMRLINESKQRLNKLRHETRPAICALENRL | |
AAALRGAGFVQVATPVILSKKLLGKMTITDEHALFSQVFWIEENKCLRPMLAPNLYYILKDLLRLWEKPV | |
RIFEIGSCFRKESQGSNHLNEFTMLNLVEWGLPEEQRQKRISELAKLVMDETGIDEYHLEHAESVVYGET | |
VDVMHRDIELGSGALGPHFLDGRWGVVGPWVGIGFGLERLLMVEQGGQNVRSMGKSLTYLDG | |
VRLNI |
MDKKPLDVLI SATGLWMSRT GTLHKIKHYE VSRSKIYIEM | |
ACGDHLVVNN SRSCRTARAF RHHKYRKTCK RCRVSDEDIN | |
NFLTRSTEGK TSVKVKVVSA PKVKKAMPKS VSRAPKPLEN | |
PVSAKASTDT SRSVPSPAKS TPNSPVPTSA PAPSLTRSQL | |
DRVEALLSPE DKISLNIAKP FRELESELVT RRKNDFQRLY | |
TNDREDYLGK LERDITKFFV DRDFLEIKSP ILIPAEYVER | |
MGINNDTELS KQIFRVDKNL CLRPMLAPTL YNYLRKLDRI | |
LPDPIKIFEV GPCYRKESDG KEHLEEFTMV NFCQMGSGCT | |
RENLESLIKE FLDYLEIDFE IVGDSCMVYG DTLDIMHGDL | |
ELSSAVVGPV PLDREWGIDK PWIGAGFGLE RLLKVMHGFK | |
NIKRASRSES YYNGISTNL |
>Mb_PyIS/1-419 | |
MDKKPLDVLISATGLWMSRTGTLHKIKHHEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC | |
KRCRVSDEDINNFLTRSTESKNSVKVRVVSAPKVKKAMPKSVSRAPKPLENSVSAKASTNTSRSVPSPAK | |
STPNSSVPASAPAPSLTRSQLDRVEALLSPEDKISLNMAKPFRELEPELVTRRKNDFQRLYTNDREDYLGK | |
LERDITKFFVDRGFLEIKSPILIPAEYVERMGINNDTELSKQIFRVDKNLCLRPMLAPTLYNYLRKLDRILPGP | |
IKIFEVGPCYRKESDGKEHLEEFTMVNFCQMGSGCTRENLEALIKEFLDYLEIDFEIVGDSCMVYGDTL | |
DIMHGDLELSSAVVGPVSLDREWGIDKPWIGAGFGLERLLKVMHGFKNIKRASRSESYYNGISTNL | |
>Mb_AcKRS/1-419 | |
MDKKPLDVLISATGLWMSRTGTLHKIKHHEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC | |
KRCRVSGEDINNFLTRSTESKNSVKVRVVSAPKVKKAMPKSVSRAPKPLENSVSAKASTNTSRSVPSPAK | |
STPNSSVPASAPAPSLTRSQLDRVEALLSPEDKISLNMAKPFRELEPELVTRRKNDFQRLYTNDREDYLGK | |
LERDITKFFVDRGFLEIKSPILIPAEYVERMGINNDTELSKQIFRVDKNLCLRPMVAPTIFNYARKLDRILPG | |
PIKIFEVGPCYRKESDGKEHLEEFTMVNFFQMGSGCTRENLEALIKEFLDYLEIDFEIVGDSCMVYGDTL | |
DIMHGDLELSSAVVGPVSLDREWGIDKPWIGAGFGLERLLKVMHGFKNIKRASRSESYYNGISTNL | |
>Mb_PCKRS/1-419 | |
MDKKPLDVLISATGLWMSRTGTLHKIKHHEVSRSKIYIEMACGDHLVVNNSRSCRTARAFRHHKYRKTC | |
KRCRVSDEDINNFLTRSTESKNSVKVRVVSAPKVKKAMPKSVSRAPKPLENSVSAKASTNTSRSVPSPAK | |
STPNSSVPASAPAPSLTRSQLDRVEALLSPEDKISLNMAKPFRELEPELVTRRKNDFQRLYTNDREDYLGK | |
LERDITKFFVDRGFLEIKSPILIPAEYVERFGINNDTELSKQIFRVDKNLCLRPMLSPTLCNYMRKLDRILPGP | |
IKIFEVGPCYRKESDGKEHLEEFTMVNFCQMGSGCTRENLEALIKEFLDYLEIDFEIVGDSCMVYGDTL | |
DIMHGDLELSSAVVGPVSLDREWGIDKPWIGAGFGLERLLKVMHGFKNIKRASRSESYYNGISTNL | |
>Mm_PyIS/1-454 | |
MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARALRHHKYRKTCK | |
RCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARAPKPLENTEAAQAQPSGSKFSPAI | |
PVSTQESVSVPASVSTSISSISTGATASALVKGNTNPITSMSAPVQASAPALTKSQTDRLEVLLNPKDEISL | |
NSGKPFRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGIDNDTELS | |
KQIFRVDKNFCLRPMLAPNLYNYLRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFCQMGSGC | |
TRENLESIITDFLNHLGIDFKIVGDSCMVYGDTLDVMHGDLELSSAVVGPIPLDREWGIDKPWIGAGF | |
GLERLLKVKHDFKNIKRAARSESYYNGISTNL | |
>Mm_AcKRS/1-454 | |
MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARALRHHKYRKTCK | |
RCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARAPKPLENTEAAQAQPSGSKFSPAI | |
PVSTQESVSVPASVSTSISSISTGATASALVKGNTNPITSMSAPVQASAPALTKSQTDRLEVLLNPKDEISL | |
NSGKPFRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGIDNDTELS | |
KQIFRVDKNFCLRPMVAPNIFNYARKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFFQMGSGC | |
TRENLESIITDFLNHLGIDFKIVGDSCMVYGDTLDVMHGDLELSSAVVGPIPLDREWGIDKPWIGAGF | |
GLERLLKVKHDFKNIKRAARSESYYNGISTNL | |
>Mm_PCKRS/1-454 | |
MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARALRHHKYRKTCK | |
RCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARAPKPLENTEAAQAQPSGSKFSPAI | |
PVSTQESVSVPASVSTSISSISTGATASALVKGNTNPITSMSAPVQASAPALTKSQTDRLEVLLNPKDEISL | |
NSGKPFRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERFGIDNDTELSK | |
QIFRVDKNFCLRPMLSPNLCNYMRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFCQMGSGC | |
TRENLESIITDFLNHLGIDFKIVGDSCMVYGDTLDVMHGDLELSSAVVGPIPLDREWGIDKPWIGAGF | |
GLERLLKVKHDFKNIKRAARSESYYNGISTNL |
- Amino acids for diels-alder reactions in living cells. Plass, T., Milles, S., Koehler, C., Szymanski, J., Mueller, R., Wiessler, M., Schultz, C. & Lemke, E. A. Angew Chem Int Ed Engl. 2012 Apr. 23; 51(17):4166-70. doi: 10.1002/anie.201108231.Epub 2012 Mar. 30.
- A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Kaya E, Vrabel M, Deiml C, Prill S, Fluxa V S, Caret T., Angew Chem Int Ed Engl. 2012 Apr. 27; 51(18):4466-9. doi: 10.1002/anie.201109252. Epub 2012 Mar. 21.
- i) introducing, or replacing a specific codon with, an orthogonal codon such as an amber codon at the desired site in the nucleotide sequence encoding the protein
- ii) introducing an expression system of orthogonal tRNA synthetase/tRNA pair in the cell, such as a pyrollysyl-tRNA synthetase/tRNA pair
- iii) growing the cells in a medium with the norbornene containing amino acid according to the invention.
-
- labeling of proteins with biophysical and cellular probes (e.g., fluorescent labels, spin labels, NMR labels, IR labels, etc.)
- bioconjugation of therapeutic proteins with biologically active small molecules (e.g., cytotoxic compounds or cell targeting compounds)
- bioconjugation of therapeutic proteins with polymers (e.g., polyethylene glycol to enhance stability and circulation time or polyamines for cellular uptake)
- immobilization of proteins on surfaces (e.g., for the creation of biosensors)
- 1. Basle, E., Joubert, N. & Pucheault, M. Protein chemical modification on endogenous amino acids.
Chem Biol 17, 213-227 (2010). - 2. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48, 6974-6998 (2009).
- 3. Tsien, R. Y. The green fluorescent protein. Annu Rev Biochem 67, 509-544 (1998).
- 4. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells.
Science 300, 87-91 (2003). - 5. Hadjantonakis, A. K., Dickinson, M. E., Fraser, S. E. & Papaioannou, V. E. Technicolour transgenics: imaging tools for functional genomics in the mouse.
Nat Rev Genet 4, 613-625 (2003). - 6. Strack, R. L. et al. A noncytotoxic DsRed variant for whole-cell labeling.
Nat Methods 5, 955-957 (2008). - 7. Tour, O. et al. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator.
Nat Chem Biol 3, 423-431 (2007). - 8. Los, G. V. & Wood, K. The HaloTag: a novel technology for cell imaging and protein analysis.
Methods Mol Biol 356, 195-208 (2007). - 9. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis.
ACS Chem Biol 3, 373-382 (2008). - 10. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo.
Nat Biotechnol 21, 86-89 (2003). - 11. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells.
Chem Biol 15, 128-136 (2008). - 12. Cronan, J. E. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265, 10327-10333 (1990).
- 13. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem
Int Ed Engl 44, 7342-7372 (2005). - 14. Lim, R. K. & Lin, Q. Bioorthogonal chemistry: recent progress and future directions. Chem Commun (Comb) 46, 1589-1600 (2010).
- 15. Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J
Am Chem Soc 130, 13518-13519 (2008). - 16. Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging.
Bioconjug Chem 19, 2297-2299 (2008). - 17. Devaraj, N. K. & Weissleder, R. Biomedical Applications of Tetrazine Cycloadditions. Acc Chem Res (2011).
- 18. Geoghegan, K. F. & Stroh, J. G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine.
Bioconjug Chem 3, 138-146 (1992). - 19. Gaertner, H. F. & Offord, R. E. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins.
Bioconjug Chem 7, 3844 (1996). - 20. Breinbauer, R. & Köhn, M. Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry.
Chembiochem 4, 1147-1149 (2003). - 21. Hein, C. D., Liu, X. M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences.
Pharm Res 25, 2216-2230 (2008). - 22. de Graaf, A. J., Kooijman, M., Hennink, W. E. & Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation.
Bioconjug Chem 20, 12811295 (2009). - 23. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J
Am Chem Soc 126, 15046-15047 (2004). - 24. Shelbourne, M., Chen, X., Brown, T. & El-Sagheer, A. H. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction. Chem Commun (Camb) 47, 6257-6259 (2011).
- 25. Köhn, M. & Breinbauer, R. The Staudinger ligation—a gift to chemical biology. Angew Chem
Int Ed Engl 43, 3106-3116 (2004). - 26. Debets, M. F., van der Doelen, C. W., Rutjes, F. P. & van Delft, F. L. Azide: a unique dipole for metal-free bioorthogonal ligations.
Chembiochem 11, 1168-1184 (2010). - 27. Tona, R. & Häner, R. Synthesis and bioconjugation of diene-modified oligonucleotides.
Bioconjug Chem 16, 837-842 (2005). - 28. Hill, K. W. et al. Diels-Alder bioconjugation of diene-modified oligonucleotides. J Org Chem 66, 5352-5358 (2001).
- 29. de Araújo, A. D. et al. Diels-Alder ligation of peptides and proteins.
Chemistry 12, 6095-6109 (2006). - 30. Palomo, J. M. Diels-Alder Cycloaddition in Protein Chemistry. Eur. J. Org. Chem 33, 6303-6314 (2010).
- 31. Filice, M., Romero, O., Guisan, J. M. & Palomo, J. M. trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling.
Org Biomol Chem 9, 5535-5540 (2011). - 32. Wang, Y., Vera, C. I. & Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition.
Org Lett 9, 4155-4158 (2007). - 33. Song, W., Wang, Y., Qu, J. & Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J
Am Chem Soc 130, 9654-9655 (2008). - 34. Lin, Y. A., Chalker, J. M., Floyd, N., Bernardes, G. J. & Davis, B. G. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J
Am Chem Soc 130, 9642-9643 (2008). - 35. Chalker, J. M., Lin, Y. A., Boutureira, O. & Davis, B. G. Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine. Chem Commun (Camb), 3714-3716 (2009).
- 36. Lin, V. A. & Davis, B. G. The allylic chalcogen effect in olefin metathesis. Beilstein
J Org Chem 6, 1219-1228 (2010). - 37. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew Chem Int Ed Engl 49, 1540-1573 (2010).
- 38. Weinrich, D. et al. Oriented immobilization of farnesylated proteins by the thiol-ene reaction. Angew Chem Int Ed Engl 49, 1252-1257 (2010).
- 39. Kodama, K. et al. Regioselective carbon-carbon bond formation in proteins with palladium catalysis; new protein chemistry by organometallic chemistry.
Chembiochem 7, 134-139 (2006). - 40. Kodama, K. et al. Site-specific functionalization of proteins by organopalladium reactions.
Chembiochem 8, 232-238 (2007). - 41. Brustad, E. et al. A genetically encoded boronate-containing amino acid. Angew Chem Int Ed Engl 47, 8220-8223 (2008).
forward: |
ACCAGggtctcGATGCAtagAAAACCGGACTGAAGGAGCTGCCCATG, |
reverse: |
TTGCAggtctcTGCATCATAGTTAGATAAGACTGCTAAGGCATAG. |
- 1 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802-805 (1994).
- 2 Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl
Acad Sci USA 91, 12501-12504 (1994). - 3 Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function.
Science 312, 217-224, doi:312/5771/217 [pii] 10.1126/science.1124618 (2006). - 4 Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins.
Nat Methods 2, 905-909, doi:nmeth819 [pii] 10.1038/nmeth819 (2005). - 5 Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis.
ACS Chem Biol 3, 373-382, doi:10.1021/cb800025k (2008). - 6 Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo.
Nat Biotechnol 21, 86-89, doi:10.1038/nbt765 nbt765 [pii] (2003). - 7 Kosaka, N. et al. In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands.
Bioconjug Chem 20, 1367-1374, doi:10.1021/bc9001344 (2009). - 8 Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells.
Chem Biol 15, 128-136, doi:S1074-5521(08)00041-0 [pii] 10.1016/j.chembiol.2008.01.007 (2008). - 9 George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J
Am Chem Soc 126, 8896-8897, doi:10.1021/ja048396s (2004). - 10 Zhou, Z., Koglin, A., Wang, Y., McMahon, A. P. & Walsh, C. T. An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. J
Am Chem Soc 130, 9925-9930, doi:10.1021/ja802657n (2008). - 11 Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci USA 102, 15815-15820, doi:0507705102 [pii] 10.1073/pnas.0507705102 (2005).
- 12 Fernandez-Suarez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes.
Nat Biotechnol 25, 1483-1487, doi:nbt1355 [pii] 10.1038/nbt1355 (2007). - 13 Uttamapinant, C. et al. A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl
Acad Sci USA 107, 10914-10919, doi:0914067107 [pii] 10.1073/pnas.0914067107 (2010). - 14 Popp, M. W., Antos, J. M., Grotenbreg, G. M., Spooner, E. & Ploegh, H. L. Sortagging: a versatile method for protein labeling.
Nat Chem Biol 3, 707-708, doi:nchembio.2007.31 [pii] 10.1038/nchembio.2007.31 (2007). - 15 Antos, J. M. et al. Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J Am Chem Soc 131, 10800-10801, doi:10.1021/ja902681k (2009).
- 16 Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269-272 (1998).
- 17 Halo, T. L., Appelbaum, J., Hobert, E. M., Balkin, D. M. & Schepartz, A. Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131, 438-439, doi:10.1021/ja807872s 10.1021/ja807872s [pii] (2009).
- 18 Hinner, M. J., Johnsson, K. How to obtain labeled proteins and what to do with them.
Curr Opin Biotechnol 21, 766-776 (2010). - 19 Chin, J. W. et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124, 9026-9027, doi:ja027007w [pii] (2002).
- 20 Zhang, Z., Wang, L., Brock, A. & Schultz, P. G. The selective incorporation of alkenes into proteins in Escherichia coli. Angew Chem
Int Ed Engl 41, 2840-2842, doi:10.1002/1521-3773(20020802)41:15<2840::AID-ANIE2840>3.0.CO;2-# (2002). - 21 Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964-967, doi:10.1126/science.1084772 301/5635/964 [pii] (2003).
- 22 Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125, 11782-11783, doi:10.1021/ja0370037 (2003).
- 24 Mehl, R. A. et al. Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125, 935-939, doi:10.1021/ja0284153 (2003).
- 25 Wang, L., Zhang, Z., Brock, A. & Schultz, P. G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl
Acad Sci USA 100, 56-61, doi:10.1073/pnas.0234824100 0234824100 [pii] (2003). - 26 Carrico, Z. M., Romanini, D. W., Mehl, R. A. & Francis, M. B. Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun (Comb), 1205-1207, doi:10.1039/b717826c (2008).
- 27 Fekner, T., Li, X., Lee, M. M. & Chan, M. K. A pyrrolysine analogue for protein click chemistry. Angew Chem Int Ed Engl 48, 1633-1635, doi:10.1002/anie.200805420 (2009).
- 28 Nguyen, D. P. et al. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc 131, 8720-8721, doi:10.1021/ja900553w (2009).
- 29 Wang, Y., Song, W., Hu, W. J. & Lin, Q. Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles. Angew Chem Int Ed Engl 48, 5330-5333, doi:10.1002/anie.200901220 (2009).
- 30 Agard, N. J., Baskin, J. M., Prescher, J. A., Lo, A. & Bertozzi, C. R. A comparative study of bioorthogonal reactions with azides.
ACS Chem Biol 1, 644-648 (2006). - 31 Wang, J. et al. A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc 132, 14812-14818, doi:10.1021/ja104350y (2010).
- 32 Nguyen, D. P., Elliott, T., Holt, M., Muir, T. W. & Chin, J. W. Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J Am Chem Soc 133, 11418-11421, doi:10.1021/ja203111c (2011).
- 33 Laughlin, S. T. & Bertozzi, C. R. Imaging the glycome. Proc Natl
Acad Sci USA 106, 12-17, doi:0811481106 [pii] 10.1073/pnas.0811481106 (2009). - 34 Prescher, J. A. & Bertozzi, C. R. Chemical technologies for probing glycans.
Cell 126, 851-854, doi:S0092-8674(06)01084-1 [pii] 10.1016/j.cell.2006.08.017 (2006). - 35 Johnson, J. A., Lu, Y. Y., Van Deventer, J. A., Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications.
Curr Opin Biotechnol 14, 774-780 (2010). - 36 Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J
Am Chem Soc 130, 13518-13519, doi:10.1021/ja8053805 (2008). - 37 Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging.
Bioconjug Chem 19, 2297-2299, doi:10.1021/bc8004446 10.1021/bc8004446 [pii] (2008). - 38 Devaraj, N. K. & Weissleder, R. Biomedical Applications of Tetrazine Cycloadditions. Acc Chem Res, doi:10.1021/ar200037t (2011).
- 39 Mukai, T. et al. Adding 1-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun 371, 818-822, doi:S0006-291X(08)00860-7 [pii] 10.1016/j.bbrc.2008.04.164 (2008).
- 40 Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins.
Nat Chem Biol 4, 232-234, doi:nchembio.73 [pii] 10.1038/nchembio.73 (2008). - 41 Hancock, S. M., Uprety, R., Deiters, A. & Chin, J. W. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132, 14819-14824, doi:10.1021/ja104609m (2010).
- 42 Greiss, S. & Chin, J. W. Expanding the Genetic Code of an Animal. J Am Chem Soc, doi:10.1021/ja2054034 (2011).
- 43 Polycarpo, C. R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett 580, 6695-6700, doi:S0014-5793(06)01347-0 [pii] 10.1016/j.febslet.2006.11.028 (2006).
- 44 Li, X., Fekner, T., Ottesen, J. J. & Chan, M. K. A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed Engl 48, 9184-9187, doi:10.1002/anie.200904472 (2009).
- 45 Nguyen, D. P., Garcia Alai, M. M., Kapadnis, P. B., Neumann, H. & Chin, J. W. Genetically encoding N(epsilon)-methyl-L-lysine in recombinant histones. J Am Chem Soc 131, 14194-14195, doi:10.1021/ja906603s (2009).
- 46 Gautier, A. et al. Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 132, 4086-4088, doi:10.1021/ja910688s (2010).
- 47 Direct oxidation of dihydrotetrazines 5a and 6a to the corresponding tetrazines lead to compounds, whose amino groups were not susceptible to any further transformation, probably because the amino group looses its nucleophilicity through π-conjugation with the aromatic rings.
- 48 Wijinen, J. W., Zavarise, S., Engberts, J. B. F. N; Cahrton, M I. J. Substituent Effects on an Inverse Electron Demand Hetero DielsiAlder Reaction in Aqueous Solution and Organic Solvents: Cycloaddition of Substituted Styrenes to Di(2-pyridyl)-1,2,4,5-tetrazine. J Org Chem 61, 2001 (1996).
- 49 Devaraj, N. K., Hilderbrand, S., Upadhyay, R., Mazitschek, R. & Weissleder, R. Bioorthogonal Turn-On Probes for Imaging Small Molecules inside Living Cells. Angew Chem Int Ed Engl 49, 2869-2872, doi:10.1002/anie.200906120 (2010).
- 50 Since we add label to the cell population, and subsequently lyse the cells, we cannot rule out that labeling may take place in the lysate.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/373,292 US9968690B2 (en) | 2012-01-20 | 2013-01-21 | Norbornene modified peptides and their labelling with tetrazine compounds |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261588948P | 2012-01-20 | 2012-01-20 | |
GBGB1201100.3A GB201201100D0 (en) | 2012-01-20 | 2012-01-20 | Polypeptides and methods |
GB1201100.3 | 2012-01-20 | ||
US14/373,292 US9968690B2 (en) | 2012-01-20 | 2013-01-21 | Norbornene modified peptides and their labelling with tetrazine compounds |
PCT/GB2013/050121 WO2013108044A2 (en) | 2012-01-20 | 2013-01-21 | Polypeptides and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150005481A1 US20150005481A1 (en) | 2015-01-01 |
US9968690B2 true US9968690B2 (en) | 2018-05-15 |
Family
ID=45840830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/373,292 Active 2033-09-23 US9968690B2 (en) | 2012-01-20 | 2013-01-21 | Norbornene modified peptides and their labelling with tetrazine compounds |
Country Status (5)
Country | Link |
---|---|
US (1) | US9968690B2 (en) |
EP (1) | EP2804872B1 (en) |
CN (2) | CN104203971B (en) |
GB (1) | GB201201100D0 (en) |
WO (1) | WO2013108044A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10774039B2 (en) | 2014-03-14 | 2020-09-15 | United Kingdom Research And Innovation | Cyclopropene amino acids and methods |
US11732001B2 (en) | 2012-05-18 | 2023-08-22 | United Kingdom Research And Innovation | Methods of incorporating an amino acid comprising a BCN group into a polypeptide using an orthogonal codon encoding it and an orthogonal pylrs synthase |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2670767T3 (en) * | 2011-02-03 | 2018-03-26 | European Molecular Biology Laboratory | Non-naturally occurring amino acids comprising a cyclooctynyl or transcyclooctynyl analog group and uses thereof |
DK3094977T3 (en) | 2014-01-14 | 2018-12-10 | European Molecular Biology Laboratory | Multiple cycloaddition reactions to select molecules |
GB201419109D0 (en) | 2014-10-27 | 2014-12-10 | Medical Res Council | Incorporation of unnatural amino acids into proteins |
WO2016164565A1 (en) * | 2015-04-08 | 2016-10-13 | University Of Delaware | Trans-cycloheptenes and hetero-trans-cycloheptenes for bioorthogonal coupling |
US10738338B2 (en) | 2016-10-18 | 2020-08-11 | The Research Foundation for the State University | Method and composition for biocatalytic protein-oligonucleotide conjugation and protein-oligonucleotide conjugate |
IL293192B2 (en) * | 2017-04-20 | 2024-01-01 | Immunogen Inc | Methods for the preparation of indolinobenzodiazepine derivatives |
US11560384B2 (en) | 2017-05-04 | 2023-01-24 | University Of Utah Research Foundation | Benzonorbornadiene derivatives and reactions thereof |
AR111963A1 (en) | 2017-05-26 | 2019-09-04 | Univ California | METHOD AND MOLECULES |
WO2019016354A1 (en) | 2017-07-20 | 2019-01-24 | Valanx Biotech Gmbh | Novel amino acids bearing a norbornene moiety |
CN111718920B (en) * | 2019-03-19 | 2021-05-07 | 宁波鲲鹏生物科技有限公司 | aminoacyl-tRNA synthetases with high efficiency of lysine derivatives incorporation into proteins |
WO2021191686A1 (en) | 2020-03-27 | 2021-09-30 | Aratinga.Bio Tnp | Targeted poly(beta-amino ester)s |
CN115701451B (en) * | 2021-08-02 | 2023-08-01 | 宁波鲲鹏生物科技有限公司 | aminoacyl-tRNA synthetase for high-efficiency introducing lysine derivative and application thereof |
JP2024532537A (en) | 2021-09-06 | 2024-09-05 | ヴェラクサ バイオテック ゲーエムベーハー | Novel aminoacyl-tRNA synthetase mutants for genetic code expansion in eukaryotes |
EP4437005A1 (en) | 2021-11-25 | 2024-10-02 | Veraxa Biotech GmbH | Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion |
EP4186529A1 (en) | 2021-11-25 | 2023-05-31 | Veraxa Biotech GmbH | Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010139948A2 (en) | 2009-06-04 | 2010-12-09 | Medical Research Council | Methods |
WO2011156686A2 (en) | 2010-06-11 | 2011-12-15 | The Regents Of The University Of Colorado, A Body Corporate | Method for synthesizing a cyclic multivalent peptide using a thiol-mediated reaction |
WO2012104422A1 (en) | 2011-02-03 | 2012-08-09 | Embl | Unnatural amino acids comprising a cyclooctynyl or trans-cyclooctenyl analog group and uses thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2847253B1 (en) * | 2002-11-19 | 2007-05-18 | Aventis Pharma Sa | NOVEL DERIVATIVES OF PYRIDAZINONES AS MEDICAMENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEM |
CN101160525A (en) * | 2003-06-18 | 2008-04-09 | 斯克利普斯研究院 | Genetic code increase for unnaturally active amino acids |
EP2410331B1 (en) * | 2003-06-18 | 2015-09-23 | The Scripps Research Institute | Aminoacyl-tRNA synthetase for aminoacylation tRNA with unnatural amino acids |
GB0917240D0 (en) * | 2009-10-01 | 2009-11-18 | Medical Res Council | Incorporation of methyl lysine into poiypeptide |
WO2011117583A2 (en) * | 2010-03-24 | 2011-09-29 | Medical Research Council | Method |
-
2012
- 2012-01-20 GB GBGB1201100.3A patent/GB201201100D0/en not_active Ceased
-
2013
- 2013-01-21 WO PCT/GB2013/050121 patent/WO2013108044A2/en active Application Filing
- 2013-01-21 CN CN201380015571.6A patent/CN104203971B/en active Active
- 2013-01-21 US US14/373,292 patent/US9968690B2/en active Active
- 2013-01-21 EP EP13711926.9A patent/EP2804872B1/en active Active
- 2013-01-21 CN CN201910659987.0A patent/CN110577564B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010139948A2 (en) | 2009-06-04 | 2010-12-09 | Medical Research Council | Methods |
WO2011156686A2 (en) | 2010-06-11 | 2011-12-15 | The Regents Of The University Of Colorado, A Body Corporate | Method for synthesizing a cyclic multivalent peptide using a thiol-mediated reaction |
WO2012104422A1 (en) | 2011-02-03 | 2012-08-09 | Embl | Unnatural amino acids comprising a cyclooctynyl or trans-cyclooctenyl analog group and uses thereof |
Non-Patent Citations (12)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11732001B2 (en) | 2012-05-18 | 2023-08-22 | United Kingdom Research And Innovation | Methods of incorporating an amino acid comprising a BCN group into a polypeptide using an orthogonal codon encoding it and an orthogonal pylrs synthase |
US10774039B2 (en) | 2014-03-14 | 2020-09-15 | United Kingdom Research And Innovation | Cyclopropene amino acids and methods |
Also Published As
Publication number | Publication date |
---|---|
CN104203971A (en) | 2014-12-10 |
US20150005481A1 (en) | 2015-01-01 |
GB201201100D0 (en) | 2012-03-07 |
CN110577564B (en) | 2024-02-13 |
CN110577564A (en) | 2019-12-17 |
WO2013108044A2 (en) | 2013-07-25 |
CN104203971B (en) | 2019-08-09 |
EP2804872B1 (en) | 2018-03-21 |
WO2013108044A8 (en) | 2014-02-20 |
EP2804872A2 (en) | 2014-11-26 |
WO2013108044A3 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9968690B2 (en) | Norbornene modified peptides and their labelling with tetrazine compounds | |
US11732001B2 (en) | Methods of incorporating an amino acid comprising a BCN group into a polypeptide using an orthogonal codon encoding it and an orthogonal pylrs synthase | |
Zhang et al. | Illuminating biological processes through site-specific protein labeling | |
EP2438174B1 (en) | METHOD FOR INCORPORATING ALIPHATIC AMINO ACIDS COMPRISING ALKYNE, AZIDE OR ALIPHATIC KETONE FUNCTIONAL GROUPS USING APPROPRIATE tRNA/tRNA SYNTHASE PAIRS | |
CN113767111B (en) | Polypeptides spontaneously forming isopeptidic bonds with peptide tag partners at enhanced rates and uses thereof | |
US20150125904A1 (en) | Probe incorporation mediated by enzymes | |
JP2023100859A (en) | ARCHAEAL PYRROLYSYL tRNA SYNTHETASE FOR ORTHOGONAL USE | |
JP5306995B2 (en) | Target substance detection method, tag, DNA, vector, probe and detection kit used therefor | |
US20140148576A1 (en) | Traceless Ubiquitination | |
US10774039B2 (en) | Cyclopropene amino acids and methods | |
Scinto | Dual-reactivity trans-cyclooctenol probes for sulfenylation in live cells and affinity bioorthogonal chemistry tags for site-selective synthesis of protein-protein and protein-material conjugates | |
Wu | Techniques for labelling biological macromolecules for spectroscopic studies | |
Tschirpke et al. | Sortase A-mediated farnesylation of Cdc42 in vitro | |
Steiner et al. | The Arginine-Phenylglyoxal Peptide Tag (APP-tag)–A Ubiquitous Strategy for Protein Bioconjugation In Vivo | |
Chen | Adding new chemistry to proteins via genetic incorporation | |
Lee | Expanding the Genetic Code for Synthesis of Proteins with Native Biological Modifications and Novel Chemical, Biophysical Probes | |
Addei-Maanu | Structural and catalytic roles of cysteine residues in human lysyl-tRNA synthetase | |
Durkin et al. | Design and Application of Autofluorescent Proteins by Biological Incorporation of Intrinsically Fluorescent Noncanonical Amino Acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDICAL RESEARCH COUNCIL, GREAT BRITAIN Free format text: CONFIRMATION OF ASSIGNMENT;ASSIGNOR:CHIN, JASON W;REEL/FRAME:034826/0240 Effective date: 20141015 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UNITED KINGDOM RESEARCH AND INNOVATION, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:046469/0108 Effective date: 20180401 Owner name: UNITED KINGDOM RESEARCH AND INNOVATION, UNITED KIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:046469/0108 Effective date: 20180401 |
|
AS | Assignment |
Owner name: NORTH CAROLINA STATE UNIVERSITY, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEITERS, ALEXANDER;REEL/FRAME:056944/0271 Effective date: 20210618 Owner name: UNITED KINGDOM RESEARCH AND INNOVATION, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LANG, KATHRIN;REEL/FRAME:056944/0278 Effective date: 20210630 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |