US9825665B2 - Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal - Google Patents
Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal Download PDFInfo
- Publication number
- US9825665B2 US9825665B2 US14/722,641 US201514722641A US9825665B2 US 9825665 B2 US9825665 B2 US 9825665B2 US 201514722641 A US201514722641 A US 201514722641A US 9825665 B2 US9825665 B2 US 9825665B2
- Authority
- US
- United States
- Prior art keywords
- lna
- output
- input
- signal
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004891 communication Methods 0.000 title abstract description 53
- 239000003990 capacitor Substances 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 abstract description 15
- 238000002955 isolation Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000010363 phase shift Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000009738 saturating Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/525—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
Definitions
- This application relates generally to self-interference cancellation, including self-interference cancellation for full-duplex communication.
- a duplex communication system includes two transceivers that communicate with each other over a channel in both directions.
- duplex communication systems There are two types of duplex communication systems: half-duplex communication systems and full-duplex communication systems.
- half-duplex communication systems the two transceivers communicate with each other over the channel in both directions but only in one direction at a time; that is, only one of the two transceivers transmits at any given point in time, while the other receives.
- a full-duplex communication system does not have such a limitation. Rather, in a full-duplex communication system, the two transceivers can communicate with each other over the channel simultaneously in both directions.
- Wireless communication systems often emulate full-duplex communication. For example, in some wireless communication systems two transceivers communicate with each other simultaneously in both directions using two different carrier frequencies or channels. This scheme, where communication is carried out simultaneously in both directions using two different carrier frequencies, is referred to as frequency division duplexing (FDD). FDD is said to only emulate full-duplex communication because FDD uses two half-duplex channels rather than a single channel to accomplish simultaneous communication in both directions.
- FDD frequency division duplexing
- FIG. 1 illustrates a block diagram of an example RF front-end configured to emulate full-duplex communication using FDD.
- FIG. 2 illustrates a block diagram of an example RF front-end configured to emulate full-duplex communication using FDD.
- FIG. 3 illustrates a block diagram of an example RF front-end configured to perform true full-duplex communication in accordance with embodiments of the present disclosure.
- FIG. 4 illustrates another block diagram of an example RF front-end configured to perform true full-duplex communication in accordance with embodiments of the present disclosure.
- FIG. 5 illustrates a block diagram of an example MIMO RF front-end configured to perform true full-duplex communication in accordance with embodiments of the present disclosure.
- references in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
- module shall be understood to include software, firmware, or hardware (such as one or more circuits, microchips, processors, and/or devices), or any combination thereof.
- each module can include one, or more than one, component within an actual device, and each component that forms a part of the described module can function either cooperatively or independently of any other component forming a part of the module.
- multiple modules described herein can represent a single component within an actual device. Further, components within a module can be in a single device or distributed among multiple devices in a wired or wireless manner.
- the present disclosure is directed to an apparatus and method for cancelling self-interference caused by full-duplex communication.
- the receiver will generally experience significant self-interference from the full-duplex communication device's own transmitter transmitting a strong outbound signal over the same channel that the receiver is to receive a weak inbound signal.
- the apparatus and method are configured to adjust a phase and gain of the outbound signal provided at the output of a power amplifier (PA) and inject the phase and gain adjusted outbound signal at the input of a low-noise amplifier (LNA) to cancel interference from the outbound signal in the inbound signal.
- PA power amplifier
- LNA low-noise amplifier
- the apparatus and method use a passive network of resistors and capacitors to generate the phase and gain adjusted outbound signal.
- RF front-end 100 includes an antenna 105 , a duplexer 110 , a low-noise amplifier (LNA) 115 , and a power amplifier (PA) 120 .
- LNA low-noise amplifier
- PA power amplifier
- RF front-end 100 transmits outbound signals and receives inbound signals simultaneously over different channels (i.e. carrier frequencies).
- channels i.e. carrier frequencies.
- both inbound and outbound signals are simultaneously coupled between antenna 105 and duplexer 110 over a common signal path 130 .
- the inbound signals are received at a carrier frequency f RX that is different from the carrier frequency f TX at which the comparatively stronger outbound signals are transmitted.
- duplexer 110 is used to couple common signal path 130 to both the input of LNA 115 and to the output of PA 120 .
- Duplexer 110 provides the necessary coupling, while preventing the strong outbound signals, produced by PA 120 , from being coupled to the input of LNA 115 .
- duplexer 110 is needed because the strong outbound signals can still saturate LNA 115 , leading to gain compression.
- duplexer 110 is a three-port device having an antenna port 135 , a transmit port 140 , and a receive port 145 .
- Antenna port 135 is coupled to transmit port 140 through a transmit band-pass filter, included in duplexer 110 , and to receive port 145 through a receive band-pass filter, further included in duplexer 110 .
- the pass band of the transmit filter is centered within the frequency range of the outbound signals, which are received at node 150 from a transmitter (not shown).
- the pass band of the receive filter is centered within the frequency range of the inbound signals, which are passed to a receiver (not shown) at node 155 .
- the transmit and receive band-pass filters are configured such that their respective stop bands overlap with each other's pass bands. In this way, the band-pass filters isolate the input of LNA 115 from the strong outbound signals produced by PA 120 , as well as the output of PA 120 from the received inbound signals. In typical implementations, duplexer 110 must attenuate the strong outbound signals by about 50-60 dB to prevent the outbound signals from saturating LNA 115 .
- FIG. 2 illustrates a block diagram of another RF front-end 200 configured to provide emulated full-duplex communication.
- RF front-end 200 provides isolation using electrical balance.
- RF front-end 200 includes an antenna 205 , an isolation module 215 , a balancing network 220 , an LNA 225 , and a PA 230 .
- RF front-end 200 transmits outbound signals and receives inbound signals simultaneously over different channels or carrier frequencies. For example, as illustrated in FIG. 2 , both inbound and outbound signals are simultaneously coupled between antenna 205 and isolation module 215 over a common signal path 235 .
- the inbound signals are received at a carrier frequency f RX that is different from the carrier frequency f TX at which the comparatively stronger outbound signals are transmitted.
- isolation module 215 is used to couple common signal path 235 to a differential input 240 of LNA 225 and to an output 245 of PA 230 .
- Isolation module 215 provides the necessary coupling, while preventing strong outbound signals that are provided by PA 230 from saturating LNA 225 .
- isolation module 215 is needed for the same reason RF front-end 100 in FIG. 1 needs duplexer 110 : because the strong outbound signals can saturate LNA 225 , leading to gain compression.
- Isolation module 215 is specifically implemented as a four-port device having an antenna port 250 , a transmit port 255 , a differential receive port 260 , and a balance port 265 .
- Isolation module 215 in conjunction with balancing network 220 , is configured to isolate transmit port 255 from differential receive port 260 by electrical balance.
- the current of the strong outbound signals provided by PA 230 at transmit port 255 is split by isolation module 215 , with a first portion of the current directed towards antenna 205 for transmission, and a second portion of the current directed towards balancing network 220 , where its associated energy is dissipated (as heat).
- balancing network 220 is configured to provide an impedance substantially equal to that of antenna 205 such that the first portion and second portion of current are equal (i.e., each are exactly one-half the total current of the strong outbound signals sourced by PA 230 ) and result in equal voltages on the differential ends of LNA 225 .
- isolation module 215 can effectively isolate differential input 240 of LNA 225 from the strong outbound signals.
- FIG. 3 illustrates a block diagram of an example RF front-end 300 configured to perform true full-duplex communication in accordance with embodiments of the present disclosure.
- RF front-end 300 can be used in any wireless transceiver, including those for cellular and wireless local area network communications.
- RF front-end 300 includes an antenna 305 , an optional circulator 310 , a self-interference cancellation module 315 controlled by a digital signal processor (DSP) 320 , a LNA 325 , and a PA 330 .
- DSP digital signal processor
- RF front-end 300 transmits outbound signals and receives inbound signals simultaneously over the same channel or carrier frequency. For example, as illustrated in FIG. 3 , both inbound and outbound signals are simultaneously coupled between antenna 305 and optional circulator 310 over a common signal path 335 .
- optional circulator 310 is used to couple common signal path 335 to both the input of LNA 325 and to the output of PA 330 .
- Optional circulator 310 provides the necessary coupling, while preventing to some degree the strong outbound signals, produced by PA 330 , from being coupled to the input of LNA 325 .
- optional circulator 310 is used to not only help prevent the strong outbound signal from saturating LNA 325 , but also to help prevent the strong outbound signal from directly interfering with the weak inbound signal that it overlaps with in frequency.
- optional circulator 310 can help to reduce self-interference in the inbound signal coupled to the input of LNA 325 , optional circulator 310 can generally only provide around 15 to 25 dB of isolation, which is too low for many operating conditions to allow for full-duplex communication with a spectral efficiency gain over emulated full-duplex communication using FDD.
- Self-interference cancellation module 315 can help to further bridge this gap. More specifically, self-interference cancellation module 315 is configured to adjust a phase and gain of the outbound signal, provided at the output of PA 330 , and inject the phase and gain adjusted outbound signal at the input of LNA 325 to cancel interference from the outbound signal in the inbound signal.
- the phase of the outbound signal can be specifically adjusted to effectively invert the outbound signal and delay the outbound signal to match the delay of the interference from the outbound signal in the inbound signal at the input of LNA 325 .
- the gain can be adjusted to match the magnitude of the interference from the outbound signal in the inbound signal at the input of LNA 325 .
- DSP 320 can specifically be used to set and dynamically adapt the value of the phase and gain adjustment provided by self-interference cancellation module 315 .
- self-interference cancellation module 315 can provide over 35 dB of additional isolation. It can be further shown that self-interference cancellation module 315 can be fully implemented on a monolithic integrated circuit (IC) 350 together with DSP 320 , LNA 325 , and optionally PA 330 .
- IC integrated circuit
- RF front-end 400 has a similar configuration as RF front-end 300 but includes a specific implementation of self-interference cancellation module 405 and a matching network (MN) 410 .
- MN matching network
- the output of PA 330 is often differential and coupled to antenna 305 via matching network 410 , which is used to help increase the transfer of power from PA 330 to antenna 305 and reduce reflections from antenna 305 back towards PA 330 .
- self-interference cancellation module 405 includes four passive elements and four switches.
- self-interference cancellation module 405 includes two variable resistors R 1 and R 2 that are each controllably coupled between the input of LNA 325 and a respective differential end of PA 330 via a switch.
- self-interference cancellation module 405 further includes two variable capacitors C 1 and C 2 that are each controllably coupled between the input of LNA 325 and a respective differential end of PA 330 via a switch.
- DSP 320 can independently adjust the resistances of resistors R 1 and R 2 , the capacitances of capacitors C 1 and C 2 , and the configuration of the four switches (i.e., whether each switch is opened or closed) to adjust the phase and gain of the outbound signal, provided at the output of PA 330 , and inject the resulting phase and gain adjusted outbound signal at the input of LNA 325 to cancel interference from the outbound signal in the inbound signal.
- the phase of the outbound signal can specifically be adjusted to effectively invert the outbound signal and delay the outbound signal to match the delay of the interference from the outbound signal in the inbound signal at the input of LNA 325 .
- the gain can be adjusted to match the magnitude of the interference from the outbound signal in the inbound signal at the input of LNA 325 .
- self-interference cancellation module 405 provides full flexibility in terms of phase adjustment of the outbound signal. For example, assuming that the top most differential end of PA 330 provides the outbound signal at +90 degrees and the bottom most differential end of PA 330 provides the outbound signal at ⁇ 90 degrees, one of the following four switch configurations can be used based on the desired phase shift:
- MIMO RF front-end 500 a block diagram of a multiple-input, multiple-output (MIMO) RF front-end 500 is illustrated in accordance with embodiments of the present disclosure.
- MIMO RF front-end 500 two single-antenna RF front-ends 505 and 510 are used to perform a multi-antenna technique, such as beamforming or spatial multiplexing.
- MIMO RF front-end 500 can be used in any wireless transceiver, including those for cellular and wireless local area network communications.
- single antenna RF front-ends 505 and 510 each have a substantially similar structure as RF front-end 300 in FIG. 3 , but each includes an additional self-interference cancellation module for every other RF front-end within MIMO RF front-end 500 . Because exemplary MIMO RF front-end 500 includes only two, single antenna RF front-ends 505 and 510 , each single antenna RF front-end 505 and 510 includes only one additional self-interference cancellation module.
- single antenna RF front-end 505 includes a self-interference cancellation module 515 that is used in the same manner as self-interference cancellation module 315 in FIG. 3 to adjust a phase and gain of the outbound signal, provided at the output of its own PA 525 , and inject the phase and gain adjusted outbound signal at the input of its own LNA 530 to cancel interference.
- a self-interference cancellation module 515 that is used in the same manner as self-interference cancellation module 315 in FIG. 3 to adjust a phase and gain of the outbound signal, provided at the output of its own PA 525 , and inject the phase and gain adjusted outbound signal at the input of its own LNA 530 to cancel interference.
- RF front-end 505 includes a self-interference cancellation module 535 that is used to adjust a phase and gain of the outbound signal, provided at the output of its own PA 525 , and inject the phase and gain adjusted outbound signal at the input of LNA 545 to cancel interference.
- Self-interference cancellation module 535 can specifically adjust the phase of the outbound signal, provided at the output of PA 525 , to effectively invert and delay the outbound signal to match the delay of the interference from the outbound signal in the inbound signal at the input of LNA 545 .
- Self-interference cancellation module 535 can further adjust the gain of the outbound signal, provided at the output of PA 525 , to match the magnitude of the interference from the outbound signal in the inbound signal at the input of LNA 545 .
- Single antenna RF front-end 510 includes a self-interference cancellation module 520 that is used in the same manner as self-interference cancellation module 315 in FIG. 3 to adjust a phase and gain of the outbound signal, provided at the output of its own PA 540 , and inject the phase and gain adjusted outbound signal at the input of its own LNA 545 to cancel interference.
- a self-interference cancellation module 520 that is used in the same manner as self-interference cancellation module 315 in FIG. 3 to adjust a phase and gain of the outbound signal, provided at the output of its own PA 540 , and inject the phase and gain adjusted outbound signal at the input of its own LNA 545 to cancel interference.
- RF front-end 510 includes a self-interference cancellation module 550 that is used to adjust a phase and gain of the outbound signal, provided at the output of its own PA 540 , and inject the phase and gain adjusted outbound signal at the input of LNA 530 to cancel interference.
- Self-interference cancellation module 550 can specifically adjust the phase of the outbound signal, provided at the output of PA 540 , to effectively invert and delay the outbound signal to match the delay of the interference from the outbound signal in the inbound signal at the input of LNA 530 .
- Self-interference cancellation module 550 can further adjust the gain of the outbound signal, provided at the output of PA 540 , to match the magnitude of the interference from the outbound signal in the inbound signal at the input of LNA 530 .
- MIMO RF front-end 500 is provided by way of example and not limitation. Other MIMO RF front-ends 500 can include more than two single antenna RF front-ends as would be appreciated by a person of ordinary skill in the art. It should be further noted that one or more DSPs can be used to control self-interference cancellation modules 515 , 520 , 535 , and 550 similar to DSP 320 described above in regard to FIG. 3 . Finally, it should be noted that each of self-interference cancellation modules 515 , 520 , 535 , and 550 can be implemented similar to self-interference cancellation module 405 in FIG. 4 using a network of passive elements and switches.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
Description
-
- 1. For a desired phase shift between 0-90 degrees, R1 and C1 can be coupled between
LNA 325 andPA 330 by closing their respective switches and R2 and C2 can be decoupled betweenLNA 325 andPA 330 by opening their respective switches. - 2. For a desired phase shift between 90-180 degrees, R2 and C1 can be coupled between
LNA 325 andPA 330 by closing their respective switches and R1 and C2 can be decoupled betweenLNA 325 andPA 330 by opening their respective switches. - 3. For a desired phase shift between 180-270 degrees, R2 and C2 can be coupled between
LNA 325 andPA 330 by closing their respective switches and R1 and C1 can be decoupled betweenLNA 325 andPA 330 by opening their respective switches. - 4. For a desired phase shift between 270-360 degrees, R1 and C2 can be coupled between
LNA 325 andPA 330 by closing their respective switches and R2 and C1 can be decoupled betweenLNA 325 andPA 330 by opening their respective switches.
- 1. For a desired phase shift between 0-90 degrees, R1 and C1 can be coupled between
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/722,641 US9825665B2 (en) | 2015-05-27 | 2015-05-27 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US15/792,198 US10200080B2 (en) | 2015-05-27 | 2017-10-24 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US16/249,195 US10715202B2 (en) | 2015-05-27 | 2019-01-16 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/722,641 US9825665B2 (en) | 2015-05-27 | 2015-05-27 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,198 Continuation US10200080B2 (en) | 2015-05-27 | 2017-10-24 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160352386A1 US20160352386A1 (en) | 2016-12-01 |
US9825665B2 true US9825665B2 (en) | 2017-11-21 |
Family
ID=57397686
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/722,641 Active 2035-11-25 US9825665B2 (en) | 2015-05-27 | 2015-05-27 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US15/792,198 Active US10200080B2 (en) | 2015-05-27 | 2017-10-24 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US16/249,195 Active US10715202B2 (en) | 2015-05-27 | 2019-01-16 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,198 Active US10200080B2 (en) | 2015-05-27 | 2017-10-24 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US16/249,195 Active US10715202B2 (en) | 2015-05-27 | 2019-01-16 | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Country Status (1)
Country | Link |
---|---|
US (3) | US9825665B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10211879B2 (en) * | 2017-03-15 | 2019-02-19 | Murata Manufacturing Co., Ltd. | Front-end module |
CN110445506A (en) * | 2019-06-27 | 2019-11-12 | 维沃移动通信有限公司 | Signal receiving/transmission device and electronic equipment |
US10715202B2 (en) | 2015-05-27 | 2020-07-14 | Avago Technologies International Sales Pte. Limited | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017010623A1 (en) * | 2015-07-14 | 2017-01-19 | 엘지전자 주식회사 | Method for estimating nonlinear self-interference channel in wireless communication system and device for same |
US10164722B1 (en) * | 2015-12-16 | 2018-12-25 | Amazon Technologies, Inc. | Dynamic signal filter in multi-antenna system |
US10432250B2 (en) | 2016-09-13 | 2019-10-01 | Electronics And Telecommunications Research Institute | Method for cancelling self-interference of in-band full-duplex multiple-input multiple-output wireless communication |
EP3685467B1 (en) * | 2017-09-22 | 2021-07-07 | Telefonaktiebolaget LM Ericsson (PUBL) | Antenna connection circuits |
US11323172B2 (en) * | 2017-11-13 | 2022-05-03 | Lg Electronics Inc. | Method for performing magnetic interference cancellation, and communication device therefor |
WO2019132825A2 (en) | 2017-11-16 | 2019-07-04 | Sabanci Universitesi | An adaptive self-interference cancelling system for 5g full duplex and massive mimo systems |
US12021799B2 (en) * | 2020-01-15 | 2024-06-25 | Qualcomm Incorporated | Duplex-mode remediation for self interference |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130301487A1 (en) * | 2012-05-13 | 2013-11-14 | Amir Keyvan Khandani | Full Duplex Wireless Transmission with Self-Interference Cancellation |
US20140348018A1 (en) * | 2011-02-03 | 2014-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Self-interference cancellation |
US20160134380A1 (en) * | 2014-04-27 | 2016-05-12 | Lg Electronics Inc. | Method and apparatus for cancelling self-interference signal between transmission antenna and reception antenna |
US20160266245A1 (en) * | 2013-08-09 | 2016-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Backscatter estimation using progressive self interference cancellation |
US20160285502A1 (en) * | 2013-12-04 | 2016-09-29 | Huawei Technologies Co., Ltd. | Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20055401A0 (en) * | 2005-07-11 | 2005-07-11 | Nokia Corp | Improvements in integrated RF circuits |
US9042838B2 (en) * | 2010-08-25 | 2015-05-26 | Intel Corporation | Transmit leakage cancellation in a wide bandwidth distributed antenna system |
US9236892B2 (en) * | 2013-03-15 | 2016-01-12 | Dockon Ag | Combination of steering antennas, CPL antenna(s), and one or more receive logarithmic detector amplifiers for SISO and MIMO applications |
US9430683B1 (en) * | 2014-06-18 | 2016-08-30 | Impinj, Inc. | Passive self-jammer cancellation in RFID systems |
US9438463B2 (en) * | 2014-09-25 | 2016-09-06 | Stmicroelectronics S.R.L. | System for the correction of amplitude and phase errors of in-quadrature signals, corresponding receiver and method |
US9825665B2 (en) | 2015-05-27 | 2017-11-21 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
-
2015
- 2015-05-27 US US14/722,641 patent/US9825665B2/en active Active
-
2017
- 2017-10-24 US US15/792,198 patent/US10200080B2/en active Active
-
2019
- 2019-01-16 US US16/249,195 patent/US10715202B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140348018A1 (en) * | 2011-02-03 | 2014-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Self-interference cancellation |
US20130301487A1 (en) * | 2012-05-13 | 2013-11-14 | Amir Keyvan Khandani | Full Duplex Wireless Transmission with Self-Interference Cancellation |
US20160266245A1 (en) * | 2013-08-09 | 2016-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Backscatter estimation using progressive self interference cancellation |
US20160285502A1 (en) * | 2013-12-04 | 2016-09-29 | Huawei Technologies Co., Ltd. | Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna |
US20160134380A1 (en) * | 2014-04-27 | 2016-05-12 | Lg Electronics Inc. | Method and apparatus for cancelling self-interference signal between transmission antenna and reception antenna |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10715202B2 (en) | 2015-05-27 | 2020-07-14 | Avago Technologies International Sales Pte. Limited | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US10211879B2 (en) * | 2017-03-15 | 2019-02-19 | Murata Manufacturing Co., Ltd. | Front-end module |
CN110445506A (en) * | 2019-06-27 | 2019-11-12 | 维沃移动通信有限公司 | Signal receiving/transmission device and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
US20180145719A1 (en) | 2018-05-24 |
US10715202B2 (en) | 2020-07-14 |
US20160352386A1 (en) | 2016-12-01 |
US20190222252A1 (en) | 2019-07-18 |
US10200080B2 (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10715202B2 (en) | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal | |
CN110048735B (en) | System and method for radio frequency filter | |
US9490866B2 (en) | Passive leakage cancellation networks for duplexers and coexisting wireless communication systems | |
US10615949B2 (en) | Hybrid-based cancellation in presence of antenna mismatch | |
US9590794B2 (en) | Enhancing isolation and impedance matching in hybrid-based cancellation networks and duplexers | |
EP2296286B1 (en) | RF front-end with wideband transmitter/receiver isolation | |
US10581650B2 (en) | Enhancing isolation in radio frequency multiplexers | |
WO2014027231A1 (en) | Full duplex system with self-interference cancellation | |
US20230387943A1 (en) | Electrical balance n-plexer | |
JP2017225105A (en) | Technique for full duplex using single antenna | |
US20200099504A1 (en) | Self-Interference Cancellation for In-Band Full Duplex Single Antenna Communication Systems | |
WO2014169954A1 (en) | Circuit arrangement | |
US11239878B2 (en) | Method and system for interference cancellation in MIMO wireless system | |
US20170070217A1 (en) | Method for tuning feed-forward canceller | |
Khaledian et al. | Inherent self-interference cancellation at 900 MHz for in-band full-duplex applications | |
EP4122107B1 (en) | Antenna interface arrangement | |
US5721521A (en) | Notch-enhancement in band-reject filters | |
US20190305814A1 (en) | Method and apparatus for broadband high-isolation circulator for simultaneous transmit and receive systems | |
EP4122108B1 (en) | Antenna interface arrangement | |
EP3685467B1 (en) | Antenna connection circuits | |
KR20130121493A (en) | Rf front-end apparatus for isolating tx and rx signal | |
US20250023599A1 (en) | Multiplexer transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRZAEI, ALEX;DARABI, HOOMAN;REEL/FRAME:035724/0257 Effective date: 20150526 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 |
|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001 Effective date: 20170119 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047422/0464 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047422 FRAME: 0464. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:048883/0702 Effective date: 20180905 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |