US9811924B2 - Interferometric techniques for magnetic resonance imaging - Google Patents
Interferometric techniques for magnetic resonance imaging Download PDFInfo
- Publication number
- US9811924B2 US9811924B2 US14/112,737 US201214112737A US9811924B2 US 9811924 B2 US9811924 B2 US 9811924B2 US 201214112737 A US201214112737 A US 201214112737A US 9811924 B2 US9811924 B2 US 9811924B2
- Authority
- US
- United States
- Prior art keywords
- right arrow
- arrow over
- new correlation
- magnetic resonance
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/32—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
Definitions
- the present invention is directed to image reconstruction and more particularly to applying interferometric techniques to magnetic resonance imaging reconstruction by temporally cross-correlating spatially incoherent k-space locations.
- Magnetic resonance imaging is a medical imaging technique used to visualize the internal structure of human systems. MR images are formed through measuring the magnetization alignment of internal tissues and converting these magnetic fields to human-readable images, or other subject images. Unlike standard computed tomography (CT) scans that require dangerous ionizing radiation, MRI scans are harmless to the patient and offer enhanced contrast resolution.
- CT computed tomography
- MRI scans can take over two hours to complete. Since MRI machines cost hundreds of thousands of dollars, and staffing MRI centers can be expensive, any reduction in scan time will result in substantial savings as well as other related benefits. Furthermore, any improvement in image resolution without increasing scan time is similarly beneficial, as images with improved resolution better aid radiologists in diagnosing illnesses and injuries.
- the embodiments of the invention disclosed allow MRI technicians to generate standard quality images in less time, or alternatively to generate superior images in the same amount of time.
- Interferometry refers to a class of techniques that superimpose electromagnetic waves together to obtain meaningful information from those waves.
- an array of telescopes act together as an interferometer to obtain higher quality images than would be available using only a single telescope.
- Direct application of spatial interferometry for nuclear magnetic resonance (NMR) and MRI has been rejected as impossible, however, due to the extreme distances (tens of thousands of miles) between receiver elements that would be necessary.
- An aspect of an embodiment of the present invention allows, among other things, MRI technicians or applicable user to generate suitable images in less time than other methods, or alternatively to generate superior images in the same time. Accordingly, an aspect of an embodiment of the present invention provides an MR spectroscopic image reconstruction technique that offers both computational efficiency and accuracy. An aspect of an embodiment of the present invention provides a fast image reconstruction method and system. An aspect of an embodiment of the present invention allows MRI technicians or other applicable user to generate standard quality images in less time. It should be appreciated that an aspect of an embodiment of the present invention may also be applicable to non-spectroscopic MR image reconstruction techniques that offers both computational efficiency and accuracy.
- an embodiment of the present invention is directed to applying interferometric techniques to magnetic resonance spectroscopic imaging (MRSI) reconstruction based on temporally cross-correlating k-space locations under a state of spatial incoherence.
- an aspect of an embodiment of the present invention may be directed to applying interferometric techniques to magnetic resonance non-spectroscopic imaging reconstruction.
- the present invention implements a new fast image reconstruction method based on applying interferometric techniques to MRSI data through temporally cross-correlating k-space readouts using a single receiver element.
- This algorithm can be performed rapidly with developed computational strategies with a high degree of accuracy.
- the aspects of the present invention may be implemented as a computer program, computer method, machine readable medium, executable instructions, and computer program product. Further, said present invention method, system, computer system, or computer program may be implemented with MRSI systems. Similarly, an aspect of an embodiment of the present invention may be directed to applying interferometric techniques to MRI data, as well implemented with MRI systems.
- this method requires significantly fewer k-space location measurements to generate an image of comparable resolution and accuracy.
- the spatial limitation of traditional interferometry is overcome because only a single receiver element is used.
- the system embodiment of the invention involves a modified MRI system or uniquely configured system wherein the MRI system's processor runs the computational method described and disclosed herein.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a method for reconstructing a spectroscopic image of an object.
- the method may comprise: (a) taking magnetic resonance imaging data of the object; (b) temporally cross-correlating multiple k-space locations of said data to map a new correlation domain; and (c) forming a spectroscopic image using said new correlation domain that may be transmitted to an output module or display module or combination thereof.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a system for reconstructing a spectroscopic image of an object.
- the system may comprise: (a) an image data taking device configured for taking magnetic resonance imaging data of the object; (b) a processor, in communication with the image data taking device, wherein said processor is configured for: temporally cross-correlating multiple k-space locations of said data to map a new correlation domain; and forming a spectroscopic image using said new correlation domain; and (c) an output module or display module or combination thereof for receiving said formed spectroscopic image.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a machine readable medium having executable instructions stored thereon for performing a method for reconstructing a spectroscopic image of an object.
- the method may comprise: (a) acquiring magnetic resonance imaging data of the object; (b) temporally cross-correlating multiple k-space locations of said data to map a new correlation domain; (c) forming spectroscopic image data using said new correlation domain; and (d) providing said formed spectroscopic image data to an output module or display module.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a method for reconstructing an image of an object.
- the method may comprise: (a) taking magnetic resonance imaging data of the object; (b) cross-correlating multiple k-space locations of said data to map a new correlation domain; and (c) forming an image using said new correlation domain that may be transmitted to an output module or display module or combination thereof.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a system for reconstructing an image of an object.
- the system may comprise: (a) an image data taking device configured for taking magnetic resonance imaging data of the object; (b) a processor, in communication with the image data taking device, wherein said processor is configured for: cross-correlating multiple k-space locations of said data to map a new correlation domain; and forming an image using said new correlation domain; and (c) an output module or display module or combination thereof for receiving said formed image.
- An aspect of an embodiment of the present invention provides, but not limited thereto, a machine readable medium having executable instructions stored thereon for performing a method for reconstructing a spectroscopic image of an object.
- the method may comprise: (a) acquiring magnetic resonance imaging data of the object; (b) cross-correlating multiple k-space locations of said data to map a new correlation domain; (c) forming image data using said new correlation domain; and (d) providing said formed spectroscopic image data to an output module or display module.
- FIG. 1 provides a flow chart of an embodiment of the present invention MR spectroscopic image reconstruction method.
- an approach may be directed toward MR non-spectroscopic image reconstruction.
- FIG. 2A provides a photographic depiction of a cross-sectional image of a human head reconstructed using conventional MR techniques.
- FIG. 2B provides a photographic depiction of an approximation of a square of the cross-sectional image shown in FIG. 2A .
- the depiction was created by reducing the gamma of the depiction in FIG. 2A to simulate the effects of summing over a square.
- FIGS. 3A-3G provide an illustration that demonstrates how cross-correlating different locations in k-space can generate a larger domain in a new space, defined as ⁇ k.
- the lines drawn between the two domains indicate the k-space locations that are being subtracted and the ⁇ k locations that are being generated.
- FIGS. 3A-3G illustrate a progression whereby a large ⁇ k domain can be generated from a smaller domain k through a series of permutations of k 1 and k 2 . While the lines drawn in the figures only portray the generation of negative ⁇ k values, the generation of positive ⁇ k values can be obtained using the same method.
- FIG. 4 provides a graphical representation of the maximum possible ⁇ k-locations that can be generated using a given number of phase encodes.
- FIG. 5A provides a one-dimensional spectroscopic image of three test tubes using conventional MR spectroscopic image reconstruction methods.
- the x-axis of the figure represents spatial location in units of pixels, so each of the peaks corresponds to one test tube.
- the y-axis represents the total spectral power in the test tube at that x position, which is the integral of the squared magnitude of the magnetization over a range of temporal frequencies.
- 257 k-space locations (phase encodes) were used to generate this image.
- FIG. 5B provides a one-dimensional spectroscopic image of the three test tubes of FIG. 3A , whereby the image of the objects was reconstructed using an aspect of an embodiment of the present invention.
- 39 k-space locations were used to generate this image of the objects.
- the present invention reconstructed a substantially similar image using only a fraction of the phase encodes.
- FIG. 6 provides a block diagram showing a system on which the present invention can be implemented.
- FIG. 7A provides a photographic depiction of a two-dimensional spectroscopic image of a bottle of oil placed next to a cylinder of water, reconstructed using conventional MRSI techniques. The image was created by summing the power spectra, ⁇ f
- FIG. 7B provides a photographic depiction of a two-dimensional spectroscopic image using the same source data as used in FIG. 7A , but reconstructed using the present invention. The image was created by summing the power spectra.
- FIG. 7C provides a photographic depiction of a two-dimensional spectroscopic image formed by summing over the square root of the power spectra used to form FIG. 7A , ⁇ f
- FIG. 7D provides a photographic depiction of a two-dimensional spectroscopic image formed by summing over the square root of the power spectra to form FIG. 7B .
- FIG. 8A provides a photographic depiction of one-dimensional spectral data taken from the peak lipid signal location (voxel) of the spectroscopic image depicted in FIG. 7C .
- the spectrum was obtained using conventional MRSI techniques.
- the y-axis is the spectrum (or spectral amplitude) plotted in arbitrary units (a.u.).
- the x-axis is the frequency (also plotted in a.u.).
- FIG. 8B provides a photographic depiction of one-dimensional spectral data taken from the peak lipid signal location (voxel) of the spectroscopic image depicted in FIG. 7D .
- the spectrum of the signal was obtained using an embodiment of the present invention.
- FIG. 8C provides a photographic depiction of one-dimensional spectral data taken from the peak water signal location (voxel) of the spectroscopic image depicted in FIG. 7C .
- the spectrum was obtained using conventional MRSI techniques.
- FIG. 8D provides a photographic depiction of one-dimensional spectral data taken from the peak water signal location (voxel) of the spectroscopic image depicted in FIG. 7D .
- the spectrum of the signal was obtained using an embodiment of the present invention.
- FIG. 9A provides a photographic depiction of a simulated two-dimensional spectroscopic image reconstructed using conventional MRSI techniques and 63 ⁇ 127 phase encodes.
- FIG. 9B provides a photographic depiction of a simulated two-dimensional spectroscopic image reconstructed using an embodiment of the present invention and 63 ⁇ 63 phase encodes.
- FIG. 9C provides a photographic depiction of a simulated two-dimensional spectroscopic image reconstructed using an embodiment of the present invention and 63 ⁇ 30 phase encodes.
- FIG. 9D provides a photographic depiction of a simulated two-dimensional spectroscopic image reconstructed using an embodiment of the present invention and 63 ⁇ 25 phase encodes.
- FIG. 9E provides a photographic depiction of the spectrum taken from a voxel of FIG. 9B containing water.
- the y-axis is the spectrum (or spectral amplitude) plotted in arbitrary units (a.u.).
- the x-axis is the frequency (also plotted in a.u.).
- FIG. 9F provides a photographic depiction of the spectrum taken from a voxel of FIG. 9B containing a lipid (lipid spin species) and water.
- FIG. 9G provides a photographic depiction of the spectrum taken from a water spin species from FIG. 9D . Coherence artifacts cause interference between the water and lipid signals.
- FIG. 9H provides a photographic depiction of the spectrum taken from a lipid spin species from FIG. 9D . Coherence artifacts cause interference between the water and lipid signals.
- An aspect of an embodiment of the present invention may begin, for example, by collecting temporal k-space MRSI readouts, S(k,t), of an underlying object, s(r,f).
- S(k,t) temporal k-space MRSI readouts
- s(r,f) temporal k-space MRSI readouts
- the number of k-space locations (phase encodes) measured can be significantly fewer than would be required using conventional methods for reasons described below.
- An aspect of an embodiment of the present invention creates a new domain by temporally cross-correlating different k-space locations from the existing readouts of S(k,t).
- the Van Cittert-Zernike and Wiener-Khinchin theorems are often used in radio astronomy for interferometry purposes. It should be appreciated that other types of spectral theorems, interferometric theorems, and mathematical transforms may be employed within the context of the present invention.
- the Van Cittert-Zernike theorem applies only to spatially incoherent sources; any two voxels that oscillate at the same frequency will interfere and confound each other in subsequent transformations of the data.
- An aspect of an embodiment of the present invention makes the k-space locations spatially incoherent in the spectral domain by applying a magnetic gradient during data collection.
- the information from sufficiently long readout times from a quasi-monochromatic source i.e., readouts longer than one over the spectral linewidth
- the application of the Van Cittert-Zernike theorem is possible.
- an aspect of an embodiment obtains the squared image of the object,
- An aspect of the embodiment may also obtain a reconstruction of the image by applying an inverse Fourier transform to ⁇ ( ⁇ k,t) and summing over a square root.
- is formed by summing over a square root after applying the inverse Fourier transform. Reconstructing the image in this manner generates the absolute value of the image, s
- step 10 includes applying a magnetic gradient to object, and maintain gradient during data collection.
- Step 20 includes collecting magnetic resonance imaging data from object.
- Step 30 includes temporally cross-relating multiple k-space locations of the data to map a new correlation domain, ⁇ k.
- Step 40 includes applying an Inverse Fourier transform to ⁇ k to form an image of the object.
- FIGS. 2A and 2B provide photographic depictions portraying an image and its simulated square, respectively.
- FIGS. 2A and 2B reveal that the square of the image performs the same function as the underlying image itself—the underlying structure of the object in the squared image can be appreciated with equal clarity and resolution as the underlying image.
- may be obtained by summing over a square root as described herein.
- Gamma does not map the coherence function to the relative position of receiver elements as it might in radio astronomy. Rather, Gamma is dependent on the relative difference in two k-space locations, k 1 and k 2 .
- FIGS. 3A-3G provide an illustration that demonstrates how cross-correlating different locations in k-space can generate a larger domain in a new space, defined as ⁇ k.
- the lines drawn between the two domains indicate the k-space locations that are being subtracted and the ⁇ k locations that are being generated.
- FIGS. 3A-3G illustrate a progression whereby a large ⁇ k domain can be generated from a smaller domain k through a series of permutations of k 1 and k 2 . While the lines drawn in the figures only portray the generation of negative ⁇ k values, the generation of positive ⁇ k values can be obtained using the same method.
- FIG. 4 provides a graphical representation of the maximum possible ⁇ k-locations that can be generated using a given number of phase encodes. While images using ⁇ k locations may create images that differ from images derived from k-space locations, these differences have been experimentally shown to be trivial. See FIGS. 5A and 5B .
- FIG. 5B provides a one-dimensional spectroscopic image of the three test tubes of FIG. 5A , whereby the image of the objects was reconstructed using an aspect of an embodiment of the present invention.
- 39 k-space locations (phase encodes) were used to generate this spectroscopic image of the objects.
- the present invention reconstructed a substantially similar image using only a fraction of the phase encodes.
- ⁇ k will perform adequately in the place of k. This process of calculating and using ⁇ k in the place of k harnesses untapped information in k-space phase encodes, and results in a more efficient use of MR spectroscopic imaging data.
- FIGS. 9A-9D provide photographic representations of two-dimensional spectroscopic images of simulated data reconstructed using progressively fewer phase encodes.
- the spectroscopic image provided by FIG. 9A was reconstructed using conventional MRSI techniques and 63 ⁇ 127 phase encodes.
- FIGS. 9B-9D were generated using only 63 ⁇ 63, 63 ⁇ 30, and 60 ⁇ 25 phase encodes, respectively.
- These figures indicate that an embodiment of the present invention can generate comparable results to conventional MRSI methods using a fraction of the phase encodes, thereby saving a great deal of time.
- the coherence artifacts in FIGS. 9C-9D is a function of fewer phase encodes, and that ramping up the gradient pushes the ghost out of the view of view
- FIG. 6 provides a schematic block diagram of a magnetic resonance system 100 .
- the system 100 or selected parts thereof, can be referred to as an MR scanner.
- the diagram provides a system 100 on which various embodiments as disclosed herein, or any other applicable embodiments as desired or required, can be implemented.
- the magnetic resonance system 100 depicts an imaging system 100 having magnet 105 .
- the magnet 105 can provide a biasing magnetic field.
- a coil 115 and subject 110 are positioned within the field of magnet 105 .
- the subject 110 can include a human body, an animal, a phantom, or other specimen.
- the coil 115 can include a transmit coil, a receive coil, a separate transmit coil and receive coil, or a transceiver coil.
- the coil 115 is in communication with a transmitter/receiver unit 120 and with a processor 130 .
- the coil 115 both transmits and receives radio frequency (RF) signals relative to subject 110 .
- the transmitter/receiver unit 120 can include a transmit/receive switch, an analog-to-digital converter (ADC), a digital-to-analog converter (DAC), an amplifier, a filter, or other modules configured to excite coil 115 and to receive a signal from the coil 115 .
- Transmitter/receiver unit 120 is coupled to the processor 330 .
- the processor 130 can include a digital signal processor, a microprocessor, a controller, or other module.
- the processor 130 in one example, is configured to generate an excitation signal (for example, a pulse sequence) for the coil 115 .
- the processor 130 in one example, is configured to perform a post-processing operation on the signal received from the coil 115 .
- the processor 130 is also coupled to storage 125 , display 135 and output unit 140 .
- the storage 125 can include a memory for storing data.
- the data can include image data as well as results of processing performed by the processor 130 .
- the storage 125 provides storage for executable instructions for use by the processor 130 .
- the instructions can be configured to generate and deliver a particular pulse sequence or to implement a particular algorithm.
- the display 135 can include a screen, a monitor, or other device to render a visible image corresponding to the subject 110 .
- the display 135 can be configured to display a radial projection, a Cartesian coordinate projection, photographic or video depictions, one-dimensional or two-dimensional images, or other view corresponding to subject 110 .
- the output unit 140 can include a printer, a storage device, a network interface or other device configured to receive processed data.
- the system 100 may include the MRI coil 115 for taking raw image data from the subject, the processor 130 may be capable for performing any of the operations described above or herein disclosed, the output 140 may be capable for outputting the image, and the display 135 may be capable for displaying the image.
- the output 140 can include one or more of a printer, storage device and a transmission line for transmitting the image to a remote location. Code for performing the above operations can be supplied to the processor 130 on a machine-readable medium or any suitable computer-readable storage medium.
- the machine-readable medium includes executable instructions stored thereon for performing any of the methods disclosed herein or as desired or required for practicing the present invention or aspects of the present invention.
- One common method is to provide an interactive view of a particular spectrum of interest (SOI). For instance, one may display or output the spectrum of a voxel of interest by selecting that voxel with a mouse click, mouseover, touch event, keyboard selection, or any other similar means of selecting a particular voxel. Regions of voxels may be analyzed in the same manner.
- SOI can be displayed or output in high resolution, and can be subject to further post-processing steps such as, inter alia, apodization or phase correction.
- the SOI can be interactive in other ways, such as displaying or outputting data about a particular point or region of the spectrum (e.g., position, spectral power, or point spread function).
- the spectrum can be overlaid on top of the (anatomical) image to form a hybrid image, or provide an error map as to indicate the regions of low spectral integrity.
- Antonin Skoch et al. Spectroscopic imaging: Basic principles, 67 European Journal of Radiology 230-239 (2008), of which is hereby incorporated by reference herein in its entirety. It should be noted that the particular methods herein listed are for exemplary purposes only and are provided to merely illustrate some of the more common ways spectral or other image data can be transmitted to an output or display device.
- MRSI related methodologies and systems discussed throughout this disclosure may be implemented using MR non-spectroscopic imaging.
- the object may be a subject, as well as an inanimate object.
- the subject may be a human or any animal.
- an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc.
- the animal may be a laboratory animal specifically selected to have certain characteristics similar to human (e.g. rat, dog, pig, monkey), etc.
- the subject may be any applicable human patient, for example.
- any of the components, units, or modules referred to with regards to any of the present invention embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented integrally or separately.
- the various components may be communicated locally and/or remotely with any technician/user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardware.
- One-dimensional spectroscopic images of three test tubes were reconstructed using conventional spectroscopic methods and an embodiment of the present invention.
- the conventional method reconstruction utilized 257 phase encodes, while the embodiment of the present invention reconstruction utilized only 39 phase encodes.
- the spectroscopic images, as shown in FIGS. 5A (conventional reconstruction) and 5 B (present invention reconstruction), are substantially similar.
- an embodiment of the present invention is capable of imaging objects with a high degree of accuracy and detail with a fraction of the phase encodes.
- FIGS. 7C and 7D provide graphical representations of the spectroscopic image formed by summing over a square root using conventional methods and as aspect of the embodiment of the present invention, respectively.
- the experiment demonstrated that the present invention is capable of imaging objects with higher resolution than convention techniques, when utilizing an equal number of phase encodes.
- FIG. 8A provides a photographic depiction of one-dimensional spectral data taken from the peak lipid signal location (voxel) of the spectroscopic image depicted in FIG. 7C .
- the spectrum was obtained using conventional MRSI techniques.
- FIG. 8B provides a photographic depiction of one-dimensional spectral data taken from the peak lipid signal location of the spectroscopic image depicted in FIG. 7D .
- the spectrum of the signal was obtained using an embodiment of the present invention.
- the streaking of the water signal was stronger under an embodiment of the present invention ( FIG. 8B ) than for the conventional method ( FIG. 8A ).
- FIGS. 8A provides a photographic depiction of one-dimensional spectral data taken from the peak lipid signal location (voxel) of the spectroscopic image depicted in FIG. 7C .
- the spectrum was obtained using conventional MRSI techniques.
- FIG. 8B provides a photographic depiction of one-dimensional spectral data taken from the peak
- FIGS. 7C and 7D depict the water spectra obtained from the voxel containing the peak water signal from the spectroscopic images depicted by FIGS. 7C and 7D , respectively.
- FIGS. 7C and 7D demonstrate that the spectral data generated by an embodiment of the present invention is substantially similar to that of conventional methods.
- FIGS. 9A-9D provide photographic representations of two-dimensional spectroscopic images of simulated data reconstructed using progressively fewer phase encodes.
- the spectroscopic image provided by FIG. 9A was reconstructed using conventional MRSI techniques and 63 ⁇ 127 phase encodes.
- the spectroscopic image provided by FIG. 9B was reconstructed using an embodiment of the present invention and only 63 ⁇ 63 phase encodes.
- FIGS. 9C and 9D provide reconstructions using an embodiment of the present invention and 63 ⁇ 30 and 63 ⁇ 25 phase encodes, respectively. Coherence artifacts emerged in FIGS. 9C and 9D but could be mitigated by increasing the magnitude of the applied gradient. Alternatively, coherence artifacts may be mitigated by using more phase encodes to reconstruct the spectroscopic image, as in FIG. 9B .
- FIGS. 9E-9H provide photographic representations of one-dimensional spectral data obtained from particular voxels in FIGS. 9B and 9D .
- FIG. 9E provides a depiction of the spectrum taken from a voxel in FIG. 9B containing water spin species (i.e., a voxel representing water).
- FIG. 9F provides a depiction of the spectrum taken from a voxel in FIG. 9B containing lipid spin species (as indicated by the arrows in the figure).
- FIGS. 9G and 9H depict water and lipid spectra taken from the indicated voxels in FIG. 9D .
- the voxels represent water and lipid spin species, respectively.
- coherence artifacts (“ghosting”) emerged due to interference. These artifacts could be mitigated or moved out of the view of view by increasing the strength of the applied magnetic gradient or using more phase encodes.
- Incoherence is a necessary aspect of an embodiment of the present invention imaging method and related system.
- the coherence and incoherence may be defined in a traditional way with respect to interferometry, and may be further defined as provided below.
- no two voxels can resonate at the same frequency, or their signal will confound with each other. Accordingly, the gradient is added during readout, and that enforces that two voxels are not resonating together. For instance, in FIGS. 9G-9H , with lipid and water there is coherence and the signal is confounded as is evident by the ghosts.
- incoherence/coherence we note the source coherence function, for example, as well as the following interferometry related references of which are hereby incorporated by reference herein in their entirety herein: 1) Beran, Mark J., and Geroge B Jr. Parrent. 1974. Theory of partial coherence . Second. Society of Photo-optical Instrumentation Engineers; 2) Parrent, Geroge B Jr. 1959. “Studies in the Theory of Partial Coherence.” Optica Acta 6 (3) (July): 285-296. doi:10.1080/713826290; 3) Swenson, G. W., and N. C. Mathur. 1968.
- c(r1,r2,tau) is 1 for all values of tau and for all pairs of points, then the source is completely coherent. If the value of c is 0 for all values of tau and for all pairs of points, then the source is completely incoherent. Everything in between those two states are considered partially coherent. In a very strict sense, a signal can be neither completely coherent nor incoherent, but without the gradient our situation is very near complete coherence. With the gradient we get a nearly incoherent source, which can have some parts exhibiting coherence and causes ghosts.
- Example 1 includes method for reconstructing a spectroscopic image of an object, the method comprising:
- Example 2 may optionally include the method of example 1, further comprising transmitting spectra from the formed spectroscopic image to an output module or display module or combination thereof.
- Example 3 may optionally include the method of example 1 (as well as subject matter of example 2), wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 5 may optionally include the method of examples any one of 1, 2, 3 or 4, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating spatial incoherence in the spectral domain.
- Example 6 may optionally include the method of example 5 (as well as subject matter of one or more of any combination of examples 1-4), wherein the incoherence creating means includes applying a magnetic gradient.
- Example 7 may optionally include the method of example 5 (as well as subject matter of one or more of any combination of examples 1-6), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 8 may optionally include the method of example 1 (as well as subject matter of one or more of any combination of examples 1-7), wherein:
- the magnetic resonance imaging data is obtained by collecting multiple temporal k-space readouts, S(k,t);
- the magnetic resonance imaging data is obtained while a magnetic gradient is applied to the object as a means of creating spatial incoherence in the spectral domain;
- Example 9 may optionally include the method of example 8 (as well as subject matter of one or more of any combination of examples 1-8), wherein a square root is taken of the square of the spectroscopic image,
- Example 10 includes a system for reconstructing a spectroscopic image of an object, the system comprising:
- Example 11 may optionally include the system of example 10, wherein the processor is configured for providing spectra to be received by the output module or display module or combination thereof.
- Example 12 may optionally include the system of example 10 (as well as subject matter of example 11), wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 14 may optionally include the system of examples any one of 10, 11, 12 or 13, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating spatial incoherence in the spectral domain.
- Example 15 may optionally include the system of example 14 (as well as subject matter of one or more of any combination of examples 10-14), wherein the incoherence creating means includes applying a magnetic gradient.
- Example 16 may optionally include the system of example 14 (as well as subject matter of one or more of any combination of examples 10-15), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 17 may optionally include the system of example 10 (as well as subject matter of one or more of any combination of examples 11-16), wherein:
- the magnetic resonance imaging data is obtained by collecting multiple temporal k-space readouts, S(k,t);
- the magnetic resonance imaging data is obtained while a magnetic gradient is applied to the object as a means of creating spatial incoherence in the spectral domain;
- Example 18 may optionally include the method of example 17 (as well as subject matter of one or more of any combination of examples 10-16), wherein a square root is taken of the square,
- Example 19 includes a machine readable medium having executable instructions stored thereon for performing a method for reconstructing a spectroscopic image of an object, the method comprising:
- Example 20 may optionally include the machine-readable medium of example 19, wherein the method further comprises providing spectra from the formed spectroscopic image to an output module or display module or combination thereof.
- Example 21 may optionally include the machine-readable medium of example 19 (as well as subject matter of example 20), wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 23 may optionally include the machine-readable medium of any one of examples 19, 20, 21, or 22, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating spatial incoherence in the spectral domain.
- Example 24 may optionally include the machine-readable medium of example 23 (as well as subject matter of one or more of any combination of examples 19-22), wherein the incoherence creating means includes applying a magnetic gradient.
- Example 25 may optionally include the machine readable medium of example 23 (as well as subject matter of one or more of any combination of examples 19-24), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 26 may optionally include the machine readable medium of example 19 (as well as subject matter of one or more of any combination of examples 20-25), wherein:
- the magnetic resonance imaging data is obtained by collecting multiple temporal k-space readouts, S(k,t);
- the magnetic resonance imaging data is obtained while a magnetic gradient is applied to the object as a means of creating spatial incoherence in the spectral domain;
- Example 27 may optionally include the machine-readable medium of example 26 (as well as subject matter of one or more of any combination of examples 19-25), wherein a square root is taken of the square of the spectroscopic image,
- Example 28 includes a method for reconstructing an image of an object, the method comprising:
- Example 29 may optionally include the method of example 28, further comprising transmitting the formed image to an output module or display module or combination thereof.
- Example 30 may optionally include the method of examples 28 (as well as subject matter of example 29), wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 32 may optionally include the method of any one of examples 28, 29, 30, or 31, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating incoherence in at least one of the following domains: relaxation, perfusion, diffusion, velocity, or temperature.
- Example 33 may optionally include the method of example 32 (as well as subject matter of one or more of any combination of examples 28-31), wherein the incoherence creating means includes applying a magnetic gradient or introducing a shim.
- Example 34 may optionally include the method of example 32 (as well as subject matter of one or more of any combination of examples 28-33), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 35 may optionally include the method of example 32 (as well as subject matter of one or more of any combination of examples 28-34), wherein the incoherence creating means provides inhomogeneity within the domains.
- Example 36 includes a system for reconstructing an image of an object, the system comprising:
- Example 37 may optionally include the system of example 36, wherein the processor is configured for providing the formed image to be received by the output module or display module or combination thereof.
- Example 38 may optionally include the system of example 36 (as well as subject matter of example 37), wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 40 may optionally include the system of any one of examples 36, 37, 38, or 39, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating incoherence in at least one of the following domains: relaxation, perfusion, diffusion, velocity, or temperature.
- Example 41 may optionally include the system of example 40 (as well as subject matter of one or more of any combination of examples 36-39), wherein the incoherence creating means includes applying a magnetic gradient or introducing a shim.
- Example 42 may optionally include the system of example 40 (as well as subject matter of one or more of any combination of examples 36-41), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 43 may optionally include the system of example 40 (as well as subject matter of one or more of any combination of examples 36-42), wherein the incoherence creating means provides inhomogeneity within the domains.
- Example 44 includes a machine readable medium having executable instructions stored thereon for performing a method for reconstructing a spectroscopic image of an object, the method comprising:
- Example 45 may optionally include the machine-readable medium of example 44, wherein the executable instructions are configured for a computer processor.
- Example 46 may optionally include the machine-readable medium of example 45, wherein the multiple k-space locations comprise two k-space locations, ⁇ right arrow over (k) ⁇ 1 and ⁇ right arrow over (k) ⁇ 2 .
- Example 48 may optionally include the machine-readable medium of any one of examples 44, 45, 46, or 47, wherein the magnetic resonance imaging data is obtained with a means for creating or simulating incoherence in at least one of the following domains: relaxation, perfusion, diffusion, velocity, or temperature.
- Example 49 may optionally include the machine-readable medium of example 48 (as well as subject matter of one or more of any combination of examples 44-47), wherein the incoherence creating means includes applying a magnetic gradient or introducing a shim.
- Example 50 may optionally include the machine readable medium of example 48 (as well as subject matter of one or more of any combination of examples 44-49), wherein the incoherence creating means includes collecting the magnetic resonance imaging data over sufficiently long readout times.
- Example 51 may optionally include the machine readable medium of example 48 (as well as subject matter of one or more of any combination of examples 44-50), wherein the incoherence creating means provides inhomogeneity within the domains.
- any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particularly interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Γ(k 1 ,k 2,τ)=∫S(k 1 ,t)S*(k 2 ,t−τ)dt,
where the asterisk denotes the complex conjugate. An aspect of an embodiment of the present invention combines the application of the van Cittert-Zernike theorem for a spatially incoherent source with intensity I(r),
Γ(k,t)=∫∫I(r)e −πir·k drdr,
with the Wiener-Khinchin theorem for power spectral density Φx(f) of a function x(t),
Φx(f)=∫x(t)x*(t−τ)e −2πiτf dt.
The resulting mutual coherence function is equivalent to the Fourier transform of the image squared:
Γ(Δk,τ)=∫∫|s(r,f)|2 e ir·Δk−iτf drdf.
The Van Cittert-Zernike and Wiener-Khinchin theorems are often used in radio astronomy for interferometry purposes. It should be appreciated that other types of spectral theorems, interferometric theorems, and mathematical transforms may be employed within the context of the present invention. Strictly, the Van Cittert-Zernike theorem applies only to spatially incoherent sources; any two voxels that oscillate at the same frequency will interfere and confound each other in subsequent transformations of the data. An aspect of an embodiment of the present invention makes the k-space locations spatially incoherent in the spectral domain by applying a magnetic gradient during data collection. Alternatively, the information from sufficiently long readout times from a quasi-monochromatic source (i.e., readouts longer than one over the spectral linewidth) will behave in an incoherent manner. Using either method, the application of the Van Cittert-Zernike theorem is possible.
g(r1,r2,tau)=\ints(r1,t)s*(r2,t−tau)dt
c(r1,r2,tau)=g(r1,r2,tau)/Sqrt[g(r1,r1,0)g(r2,r2,0)]
-
- temporally cross-correlating multiple k-space locations of the data to map a new correlation domain; and
- forming a spectroscopic image using the new correlation domain; and
-
- cross-correlating multiple k-space locations of the data to map a new correlation domain; and
- forming an image using the new correlation domain; and
- 1. U.S. Pat. No. 7,888,935, Feb. 15, 2011, K-space trajectory estimation in spiral MRI system and related method thereof, Tan, Hao, Charlottesville, Va., United States of America (US), United States of America (US); Meyer, Craig H.;
- 2. U.S. Pat. No. 7,642,777, Jan. 5, 2010, Fast automatic linear off-resonance correction method for spiral imaging, Meyer, Craig H.;
- 3. U.S. Pat. No. 7,583,082, Sep. 1, 2009, Partially parallel magnetic resonance imaging using arbitrary k-space trajectories with image reconstruction based on successive convolution operations, Hu, Peng, Meyer, Craig H.;
- 4. U.S. Pat. No. 7,558,612, Jul. 7, 2009, Motion compensated spiral FISP MRI, Meyer, Craig H.;
- 5. U.S. Pat. No. 6,020,739, Feb. 1, 2000, Rapid method of optimal gradient waveform design for MRI, Meyer, Craig, H.;
- 6. U.S. Pat. No. 5,957,843, Sep. 28, 1999, Partial flyback echo-planar imaging, Luk Pat, Gerard T., Stanford, United States of America (US); Meyer, Craig H.;
- 7. U.S. Pat. No. 5,650,723, Jul. 22, 1997, Full echo spiral-in/spiral-out magnetic resonance imaging, Meyer, Craig, H.;
- 8. U.S. Pat. No. 5,617,028, Apr. 1, 1997, Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map, Meyer, Craig, H.;
- 9. U.S. Pat. No. 5,539,313, Jul. 23, 1996, Full echo spiral-in/spiral-out magnetic resonance imaging, Meyer, Craig, H.;
- 10. U.S. Pat. No. 5,485,086, Jan. 16, 1996, Continuous fluoroscopic MRI using spiral k-space scanning, Meyer, Craig, H.;
- 11. U.S. Pat. No. 5,427,101, Jun. 27, 1995, Diminishing variance process for real-time reduction of motion artifacts in MRI, Sachs, Todd S., Beachwood, United States of America (US); Meyer, Craig H.;
- 12. U.S. Pat. No. 5,402,067, Mar. 28, 1995, Apparatus and method for rare echo imaging using k-space spiral coverage, Pauly, John, M., San Francisco, Calif., United States(US); Spielman, Daniel, M., San Jose, Calif., United States(US); Meyer, Craig, H.;
- 13. U.S. Pat. No. 5,233,301, Aug. 3, 1993, High resolution/reduced slice width magnetic resonance imaging and spectroscopy by signal combination and use of minimum phase excitation pulses, Meyer, Craig, H.;
- 14. U.S. Pat. No. 4,999,580, Mar. 12, 1991, magnetic resonance imaging and spectroscopy using a single excitation pulse for simultaneous spatial and spectral selectivity, Meyer, Craig, H.;
- 15. US Publication Application No. 2003/0193337, Oct. 16, 2003, Motion compensated spiral FISP MRI, Meyer, Craig, H.
Claims (51)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/112,737 US9811924B2 (en) | 2011-04-19 | 2012-04-19 | Interferometric techniques for magnetic resonance imaging |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161477030P | 2011-04-19 | 2011-04-19 | |
US201261618229P | 2012-03-30 | 2012-03-30 | |
PCT/US2012/034305 WO2012145547A1 (en) | 2011-04-19 | 2012-04-19 | Interferometric magnetic resonance imaging system and related method |
US14/112,737 US9811924B2 (en) | 2011-04-19 | 2012-04-19 | Interferometric techniques for magnetic resonance imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140044335A1 US20140044335A1 (en) | 2014-02-13 |
US9811924B2 true US9811924B2 (en) | 2017-11-07 |
Family
ID=47041922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/112,737 Active 2032-07-23 US9811924B2 (en) | 2011-04-19 | 2012-04-19 | Interferometric techniques for magnetic resonance imaging |
Country Status (2)
Country | Link |
---|---|
US (1) | US9811924B2 (en) |
WO (1) | WO2012145547A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11024025B2 (en) | 2018-03-07 | 2021-06-01 | University Of Virginia Patent Foundation | Automatic quantification of cardiac MRI for hypertrophic cardiomyopathy |
US11320506B2 (en) | 2019-04-08 | 2022-05-03 | University Of Virginia Patent Foundation | Multiband spiral cardiac MRI with non-cartesian reconstruction methods |
US20220215540A1 (en) * | 2019-05-28 | 2022-07-07 | Koninklijke Philips N.V. | A method for motion artifact detection |
US11644520B2 (en) | 2020-01-08 | 2023-05-09 | University Of Virginia Patent Foundation | Systems and methods for magnetic resonance based skull thermometry |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9224210B2 (en) | 2013-02-06 | 2015-12-29 | University Of Virginia Patent Foundation | Systems and methods for accelerated dynamic magnetic resonance imaging |
US9953439B2 (en) | 2014-11-25 | 2018-04-24 | University Of Virginia Patent Foundation | Systems and methods for three-dimensional spiral perfusion imaging |
US10561337B2 (en) | 2015-08-04 | 2020-02-18 | University Of Virginia Patent Foundation | Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction |
EP4146065A4 (en) * | 2020-05-04 | 2024-05-22 | Cedars-Sinai Medical Center | Generating 3d dynamic images using pre-learned spatial subspace |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999580A (en) | 1989-06-20 | 1991-03-12 | The Board Of Trustees Of The Leland Stanford Junior University | magnetic resonance imaging and spectroscopy using a single excitation pulse for simultaneous spatial and spectral selectivity |
US5233301A (en) | 1989-07-28 | 1993-08-03 | Board Of Trustees Of The Leland Stanford Junior University | High resolution/reduced slice width magnetic resonance imaging and spectroscopy by signal combination and use of minimum phase excitation pulses |
US5402067A (en) | 1993-08-04 | 1995-03-28 | Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for rare echo imaging using k-space spiral coverage |
US5427101A (en) | 1994-08-04 | 1995-06-27 | Board Of Trustees Of The Leland Stanford Junior University | Diminishing variance process for real-time reduction of motion artifacts in MRI |
US5485086A (en) | 1994-07-26 | 1996-01-16 | The Board Of Trustees Of The Leland Stanford Junior University | Continuous fluoroscopic MRI using spiral k-space scanning |
US5539313A (en) | 1995-08-04 | 1996-07-23 | Board Of Trustees Of The Leland Stanford Junior University | Full echo spiral-in/spiral-out magnetic resonance imaging |
US5617028A (en) | 1995-03-09 | 1997-04-01 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map |
US5957843A (en) | 1995-08-14 | 1999-09-28 | Board Of Trustees Of The Leland Stanford Junior University | Partial flyback echo-planar imaging |
US6020739A (en) | 1997-04-25 | 2000-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Rapid method of optimal gradient waveform design for MRI |
US6178271B1 (en) * | 1996-04-29 | 2001-01-23 | The Mclean Hospital Corporation | Methods and systems for registering image data |
US20030193337A1 (en) | 2002-04-16 | 2003-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Motion compensated spiral FISP MRI |
US20050001619A1 (en) | 2003-06-10 | 2005-01-06 | Berthold Kiefer | MRI method and apparatus with elimination of the ambiguity artifact |
US7583082B1 (en) | 2006-04-19 | 2009-09-01 | University Of Virginia Patent Foundation | Partially parallel magnetic resonance imaging using arbitrary k-space trajectories with image reconstruction based on successive convolution operations |
US7642777B1 (en) | 2006-08-21 | 2010-01-05 | University Of Virginia Patent Foundation | Fast automatic linear off-resonance correction method for spiral imaging |
US20100001727A1 (en) | 2005-12-21 | 2010-01-07 | Lucio Frydman | Method and apparatus for acquiring high resolution spectral data or high definition images in inhomogeneous environments |
US20100141256A1 (en) * | 2007-05-02 | 2010-06-10 | Feng Derek D | Quantum theory-based continuous precision nmr/mri: method and apparatus |
US20110006768A1 (en) * | 2009-07-09 | 2011-01-13 | Lei Ying | Systems and methods for accelerating the acquisition and reconstruction of magnetic resonance images |
US7888935B1 (en) | 2007-02-23 | 2011-02-15 | University Of Virginia Patent Foundation | K-space trajectory estimation in spiral MRI system and related method thereof |
-
2012
- 2012-04-19 US US14/112,737 patent/US9811924B2/en active Active
- 2012-04-19 WO PCT/US2012/034305 patent/WO2012145547A1/en active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999580A (en) | 1989-06-20 | 1991-03-12 | The Board Of Trustees Of The Leland Stanford Junior University | magnetic resonance imaging and spectroscopy using a single excitation pulse for simultaneous spatial and spectral selectivity |
US5233301A (en) | 1989-07-28 | 1993-08-03 | Board Of Trustees Of The Leland Stanford Junior University | High resolution/reduced slice width magnetic resonance imaging and spectroscopy by signal combination and use of minimum phase excitation pulses |
US5402067A (en) | 1993-08-04 | 1995-03-28 | Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for rare echo imaging using k-space spiral coverage |
US5485086A (en) | 1994-07-26 | 1996-01-16 | The Board Of Trustees Of The Leland Stanford Junior University | Continuous fluoroscopic MRI using spiral k-space scanning |
US5427101A (en) | 1994-08-04 | 1995-06-27 | Board Of Trustees Of The Leland Stanford Junior University | Diminishing variance process for real-time reduction of motion artifacts in MRI |
US5617028A (en) | 1995-03-09 | 1997-04-01 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map |
US5539313A (en) | 1995-08-04 | 1996-07-23 | Board Of Trustees Of The Leland Stanford Junior University | Full echo spiral-in/spiral-out magnetic resonance imaging |
US5650723A (en) | 1995-08-04 | 1997-07-22 | The Board Of Trustees Of The Leland Stanford Junior University | Full echo spiral-in/spiral-out magnetic resonance imaging |
US5957843A (en) | 1995-08-14 | 1999-09-28 | Board Of Trustees Of The Leland Stanford Junior University | Partial flyback echo-planar imaging |
US6178271B1 (en) * | 1996-04-29 | 2001-01-23 | The Mclean Hospital Corporation | Methods and systems for registering image data |
US6020739A (en) | 1997-04-25 | 2000-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Rapid method of optimal gradient waveform design for MRI |
US20030193337A1 (en) | 2002-04-16 | 2003-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Motion compensated spiral FISP MRI |
US7558612B2 (en) | 2002-04-16 | 2009-07-07 | The Board Of Trustees Of The Leland Stanford Junior University | Motion compensated spiral FISP MRI |
US20050001619A1 (en) | 2003-06-10 | 2005-01-06 | Berthold Kiefer | MRI method and apparatus with elimination of the ambiguity artifact |
US20100001727A1 (en) | 2005-12-21 | 2010-01-07 | Lucio Frydman | Method and apparatus for acquiring high resolution spectral data or high definition images in inhomogeneous environments |
US7583082B1 (en) | 2006-04-19 | 2009-09-01 | University Of Virginia Patent Foundation | Partially parallel magnetic resonance imaging using arbitrary k-space trajectories with image reconstruction based on successive convolution operations |
US7642777B1 (en) | 2006-08-21 | 2010-01-05 | University Of Virginia Patent Foundation | Fast automatic linear off-resonance correction method for spiral imaging |
US7888935B1 (en) | 2007-02-23 | 2011-02-15 | University Of Virginia Patent Foundation | K-space trajectory estimation in spiral MRI system and related method thereof |
US20100141256A1 (en) * | 2007-05-02 | 2010-06-10 | Feng Derek D | Quantum theory-based continuous precision nmr/mri: method and apparatus |
US20110006768A1 (en) * | 2009-07-09 | 2011-01-13 | Lei Ying | Systems and methods for accelerating the acquisition and reconstruction of magnetic resonance images |
Non-Patent Citations (1)
Title |
---|
BJ Fisher, "The Cross-Correlation and Wiener-Khinchin Theorems", 2008, pp. 1-3. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11024025B2 (en) | 2018-03-07 | 2021-06-01 | University Of Virginia Patent Foundation | Automatic quantification of cardiac MRI for hypertrophic cardiomyopathy |
US11813047B2 (en) | 2018-03-07 | 2023-11-14 | University Of Virginia Patent Foundation | Automatic quantification of cardiac MRI for hypertrophic cardiomyopathy |
US11320506B2 (en) | 2019-04-08 | 2022-05-03 | University Of Virginia Patent Foundation | Multiband spiral cardiac MRI with non-cartesian reconstruction methods |
US20220215540A1 (en) * | 2019-05-28 | 2022-07-07 | Koninklijke Philips N.V. | A method for motion artifact detection |
US11995825B2 (en) * | 2019-05-28 | 2024-05-28 | Koninklijke Philips N.V. | Method for motion artifact detection |
US11644520B2 (en) | 2020-01-08 | 2023-05-09 | University Of Virginia Patent Foundation | Systems and methods for magnetic resonance based skull thermometry |
Also Published As
Publication number | Publication date |
---|---|
WO2012145547A1 (en) | 2012-10-26 |
US20140044335A1 (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9811924B2 (en) | Interferometric techniques for magnetic resonance imaging | |
Feng et al. | Compressed sensing for body MRI | |
US9396562B2 (en) | MRI reconstruction with incoherent sampling and redundant haar wavelets | |
RU2557334C2 (en) | Dynamic contrast enhanced mr imaging with compressed sensing reconstruction | |
EP3387457B1 (en) | Diffusion mri method for generating a synthetic diffusion image at a high b-value | |
NL2003804C2 (en) | System and method for automated scan planning using symmetry detection and image registration. | |
US9317917B2 (en) | Method, reconstruction device, and magnetic resonance apparatus for reconstructing magnetic resonance raw data | |
US20060224062A1 (en) | Adaptive acquisition and reconstruction of dynamic MR images | |
US20080205730A1 (en) | Independent Motion Correction In Respective Signal Channels Of A Magnetic Resonance Imaging System | |
CN103260510B (en) | MR imaging apparatus and contrast strengthen image acquisition method | |
CN103027681B (en) | For the system of the parallel MRI image obtaining of reconstruct | |
CN101251583A (en) | A Localized and Highly Constrained Image Reconstruction Method | |
JP6332891B2 (en) | Parallel multi-slice MR imaging to suppress sideband artifacts | |
Liu et al. | High-performance rapid MR parameter mapping using model-based deep adversarial learning | |
US20200363485A1 (en) | Multiband spiral cardiac mri with non-cartesian reconstruction methods | |
Chen et al. | Self‐calibrating wave‐encoded variable‐density single‐shot fast spin echo imaging | |
JP2017529960A (en) | Propeller MR imaging with artifact suppression | |
Bonanno et al. | Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI: a feasibility study | |
Lee et al. | Rapid dual‐RF, dual‐echo, 3D ultrashort echo time craniofacial imaging: a feasibility study | |
CN111263896B (en) | Data-driven correction of phase-dependent artifacts in magnetic resonance imaging systems | |
US20180372827A1 (en) | Magnetic resonance imaging apparatus and medical image processing apparatus | |
US20160124065A1 (en) | Method and apparatus for correction of magnetic resonance image recordings with the use of a converted field map | |
Shah et al. | Compressively sampled MR image reconstruction using hyperbolic tangent-based soft-thresholding | |
US20140316250A1 (en) | Direct inversion for phase-based dynamic magnetic resonance measurements | |
JP4912802B2 (en) | Magnetic resonance imaging apparatus, transmission sensitivity distribution measuring apparatus, and transmission sensitivity distribution measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, KENNETH O.;MEYER, CRAIG H.;SIGNING DATES FROM 20130509 TO 20130606;REEL/FRAME:030593/0046 |
|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:030698/0630 Effective date: 20130612 |
|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, KENNETH O.;MEYER, CRAIG H.;SIGNING DATES FROM 20130509 TO 20130606;REEL/FRAME:031475/0359 Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:031475/0437 Effective date: 20130612 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:039096/0853 Effective date: 20160309 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |