US9721812B2 - Optical device with precoated underfill - Google Patents
Optical device with precoated underfill Download PDFInfo
- Publication number
- US9721812B2 US9721812B2 US14/947,855 US201514947855A US9721812B2 US 9721812 B2 US9721812 B2 US 9721812B2 US 201514947855 A US201514947855 A US 201514947855A US 9721812 B2 US9721812 B2 US 9721812B2
- Authority
- US
- United States
- Prior art keywords
- underfill material
- chip
- degrees
- underfill
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 238000001459 lithography Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims 3
- 238000005476 soldering Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 18
- 239000000758 substrate Substances 0.000 description 10
- CFAKWWQIUFSQFU-UHFFFAOYSA-N 2-hydroxy-3-methylcyclopent-2-en-1-one Chemical compound CC1=C(O)C(=O)CC1 CFAKWWQIUFSQFU-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000001837 2-hydroxy-3-methylcyclopent-2-en-1-one Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/138—Integrated optical circuits characterised by the manufacturing method by using polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4853—Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3178—Coating or filling in grooves made in the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49866—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
- H01L23/49894—Materials of the insulating layers or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12104—Mirror; Reflectors or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/4232—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/0345—Physical vapour deposition [PVD], e.g. evaporation, or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/03452—Chemical vapour deposition [CVD], e.g. laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/731—Location prior to the connecting process
- H01L2224/73101—Location prior to the connecting process on the same surface
- H01L2224/73103—Bump and layer connectors
- H01L2224/73104—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/94—Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06524—Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12043—Photo diode
Definitions
- the present invention relates to optical devices, and more particularly to optical device integration using an underfill material to eliminate losses between a photonics device and an optical component.
- An optical multi-chip module includes optical waveguides on an organic substrate where optical devices such as vertical cavity surface emitting laser (VCSEL) or photodiode (PD) chips are mounted.
- VCSEL vertical cavity surface emitting laser
- PD photodiode
- TIR total internal reflection
- the VCSEL/PD chips are encapsulated by an underfill when placed on the organic substrate.
- the underfill material enters mirror cavities located on a same side as the chips so that the TIR mirrors do not function properly. Loss can also be caused by an inclination of the VCSEL/PD chips when electrodes are located slightly off a chip center and cannot be well-controlled when they are mounted.
- a method for fabricating an optical multi-chip module includes temporarily curing an underfill material on a chip including an optical device to prevent flow of the underfill material.
- the chip is flip-chip mounted on a waveguide module having a mirror for directing light to or from the chip, wherein the underfill material is disposed between the chip and the waveguide module.
- the underfill material is cured to adhere the chip to the waveguide module.
- Another method for fabricating an optical multi-chip module includes depositing an underfill material over a wafer having a plurality of chips with raised electrodes, the plurality of chips including optical devices; removing the underfill material from the raised electrodes; temporarily curing the underfill material; dicing the wafer to separate the plurality of chips; flip-chip mounting a chip of the plurality of chips on a waveguide module having a mirror for directing light to or from the chip, wherein the underfill material is disposed between the chip and the waveguide module; and curing the underfill material to adhere the chip to the waveguide module.
- An optical multi-chip module includes a waveguide module having a cavity with a mirror.
- the mirror is configured to direct light into or from a waveguide formed in the waveguide module.
- a chip flip-chip is mounted on the waveguide module to have a light input or output formed on the chip aligned with the mirror.
- a reflowable underfill material is disposed between the chip and the waveguide module to adhere the chip to the waveguide module without filling the cavity.
- FIG. 1 is a side view of a wafer covered by an underfill material and having optical devices, such as, vertical cavity surface emitting laser (VCSEL) or photodiode (PD) chips formed therein with raised electrodes in accordance with the present principles;
- VCSEL vertical cavity surface emitting laser
- PD photodiode
- FIG. 2 is a side view of the wafer of FIG. 1 showing the underfill material of the wafer being processed with a mask during a lithography process to remove the underfill material from the raised electrodes in accordance with the present principles;
- FIG. 3 is a side view of the wafer of FIG. 2 showing the underfill material removed from the raised electrodes and temporarily cured in accordance with the present principles;
- FIG. 4 is a side view of a chip diced from the wafer of FIG. 3 in accordance with the present principles
- FIG. 5 is a cross-sectional view of an optical multi-chip module (MCM) including a cured underfill material adhering the chip of FIG. 4 to a waveguide module without interfering with a light cavity in the waveguide module in accordance with the present principles; and
- MCM optical multi-chip module
- FIG. 6 is a block/flow diagram showing a method for forming an optical multi-chip module in accordance with illustrative embodiments.
- the underfill may include, e.g., cyclotene resin, and may be pre-coated on optical chips or provided on optical waveguide-integrated organic substrates with total internal reflection (TIR) mirrors. Since the underfill is pre-coated and semi-cured in advance, there is no danger of filling mirror cavities. In addition, an optical path between the optical device and a waveguide is still filled with the underfill to eliminate any air gaps. The TIR mirror cavities remain open on the waveguides at a side where the devices are mounted, and are not filled with the underfill to maintain low-loss optical coupling.
- TIR total internal reflection
- a distance between the devices and the waveguides is minimized for low-loss optical coupling by removing the underfill at an electrode area of the device and using through-waveguide-vias instead of inserting flexible printed circuits between those two components for electric connection of the devices.
- the underfill thickness is also minimized, and no lens is employed on the optical device to further reduce cost.
- the present embodiments may include a design for an integrated circuit chip, which may be created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer may transmit the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly.
- the stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer.
- the photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
- the resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form.
- the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as an organic carrier or a ceramic carrier that has either or both surface interconnections or buried interconnections).
- the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product.
- the end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
- any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B).
- such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C).
- This may be extended, as readily apparent by one of ordinary skill in this and related arts, for as many items listed.
- the wafer 10 includes a plurality of chips 15 formed thereon.
- the chips 15 may include lasers, photodiodes or other light emitting or receiving devices, herein referred to as optical devices.
- the chips 15 include vertical cavity surface emitting laser (VCSEL) chips or photodiode (PD) chips.
- the chips 15 include one or more pads or contacts 14 for making electrical connections to the chip 15 .
- the contacts 14 may be deposited on the wafer 10 and patterned to shape the contacts 14 .
- the deposition of the contacts 14 may include any process for forming metal including, e.g., sputtering, evaporation, chemical vapor deposition, etc.
- the contacts 14 may include a solder ball 16 formed thereon for making an electrical connection to other components as will be described.
- the contacts 14 and solder balls 16 will be collectively referred to as electrodes 25 .
- the underfill 18 may include, e.g., cyclotene resin.
- the underfill 18 may be applied using a spin on process, although other processes may be employed to apply the underfill 18 on the wafer.
- the underfill thickness is adjustable by controlling a rotation speed of a spin coater. The thickness of the underfill 18 is provided in accordance with a gap distance needed between a chip and a waveguide.
- a soft bake process may be performed to harden the underfill 18 .
- the wafer 10 with the underfill 18 is baked at a temperature of between about 60 degrees C. and about 80 degrees C. for about 90 seconds.
- the underfill 18 over the electrodes 25 is removed by a photolithography process.
- the photolithography process may include positioning a mask 20 over the wafer 10 , exposing the underfill 18 to light in accordance with the mask 20 to cause cross-linking, and developing the underfill layer 18 to remove portions of the underfill 18 over the electrodes 25 .
- the underfill 18 is subjected to a temporary hardening process by subjecting the underfill 18 to a reflow at between 100 degrees C. to about 140 degrees C., and preferably about 125 degree C. for about 3 minutes.
- the underfill 18 is allowed to cool.
- each chip 40 includes its own electrodes 25 , which will be employed in making electrical connections to other components.
- a flip-chip assembly is performed to couple the chip 40 to a waveguide 44 formed on a substrate 42 to form an optical multi-chip module (MCM) 100 .
- the substrate 42 may include an organic material.
- the waveguide 44 is formed between cladding layers 48 .
- a contact connection 50 receives the electrode 25 therein and includes conductive material to create electrical connections to the chip 40 .
- a light emitting or receiving region 52 on the chip 40 is aligned with a mirror 45 .
- the mirror 45 such as a total internal reflection (TIR) mirror is employed to redirect light into the waveguide 44 from the light emitting or receiving region 52 of the chip 40 .
- a cavity 46 for the mirror 45 may be formed by laser ablation to be at a 45 degree angle relative to the surface of the chip 40 .
- the mirror 45 is provided in close proximity to the light emission position of the chip 40 .
- the chip 40 may be employed to cover the cavity 46 for the mirror 45 .
- a curing process is performed, which may include adhesion of the underfill 18 by a reflow process.
- the reflow process may include subjecting the underfill to a temperature of between about 130 degrees C. to about 160 degrees C., preferably about 150 degrees C. for about 5 minutes.
- a hardening process is performed at a temperature of between about 200 degrees C. and about 220 degrees C., preferably about 210 degrees C. for about 40 minutes.
- Solder bonding of the electrode 25 to the contact connection is performed by a 240 degrees C. to about 260 degrees C. solder reflow process.
- the underfill 18 By pre-coating the chip 40 with the underfill 18 , the underfill 18 remains well-controlled. A thickness of the underfill 18 is controlled at its deposition and forms a highly controlled gap dimension 54 . In addition, reflowing the underfill 18 does not permit the underfill material 18 to flow and fill in the cavity 46 . Instead, the underfill 18 is softened and provides adhesion without the ill-effects of conventional devices, which fill the cavity and result in optical losses.
- the underfill is pre-coated and cured in advance, there is no danger of filling mirror cavities. Air gaps between the chip 40 and the top cladding layer 48 are virtually eliminated between the chip 40 and the mirror 45 .
- the present principles provide a low cost solution with a yield improvement for optical MCM manufacturing by preventing underfill 18 from entering TIR mirror cavities 46 .
- the pre-coating with underfill 18 is concurrently provided on multiple optical devices by wafer-level processing.
- the optical MCM 100 provides low power consumption (e.g., optical coupling loss reduction) since distance between the chip 40 and the waveguide 44 is reduced by underfill thickness control.
- gap distances 54 of less than about 5 microns are provided.
- inclination of the chip 40 relative a waveguide module 60 is reduced or eliminated.
- the chip 40 and waveguide cladding 48 surfaces are stuck together flat with the underfill 18 acting as an adhesive. This also improves the interfaces (and therefore light transmission) through the underfill 18 .
- Underfill ( 18 ) was dispensed and cured on polymer waveguides for confirming adhesion and evaluating optical properties.
- a pre-coat of underfill on a glass substrate by a spin process (rotational speed of spin coater being 3000 rotations per minute (rpm)) was performed.
- a soft bake at 70 degrees C. for 90 seconds and a temporary cure at 125 degrees C. for 3 minutes were performed.
- a waveguide-integrated substrate on glass was attached and fixed using a clip.
- An underfill adhesion includes 150 degrees C. for 5 minutes, and a cure at 210 degrees C. for 40 minutes.
- Insertion loss measurement results were taken for the following two configurations.
- the first configuration included a waveguide and a glass substrate with index matching fluid (IMF) dispensed between a waveguide and a glass.
- the loss measured by a photodetector (1 cm) was ⁇ 0.46 dB.
- the second configuration included a waveguide with underfill in accordance with the present principles.
- the loss measured by a photodetector (1 cm) was ⁇ 0.40 dB with no insertion loss degradation after underfill cure (the 0.06 dB improvement is within the measurement error range). This means that no air layer existed between the waveguide and underfill.
- the present principles do not require a lens or flexible printed circuit (FPC) between the chip 40 and the cavity 46 . While no lens or FPC is needed, these components may be employed in some embodiments depending on the application. However, these components add costs and complexity to the manufacturing process.
- FPC flexible printed circuit
- MCM optical multi-chip module
- the functions noted in the blocks may occur out of the order noted in the figures.
- two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
- each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
- an underfill material is applied to a wafer or chip. This may include a spin-on process or other deposition process. The application of the underfill material is controlled to control a gap distance.
- the wafer includes chips.
- the chip or chips include optical devices, such as photodiodes and/or lasers.
- the underfill material includes a semi-curable and reflowable resin. Semi-curable refers to a material that is stable being partially (temporarily or semi-) cured and then can be fully cured at a later point. Reflowable refers to the material as being capable of melting and re-solidifying.
- the underfill material includes a cyclotene resin.
- a soft bake may be performed to provide some structure to the underfill material.
- the soft bake may include, e.g., heating at 70 degrees C. for about 90 seconds.
- the underfill material may be removed from raised electrodes formed on the wafer or chip. This may include a lithography process to expose the underfill material through a mask and remove/develop uncross-linked portions to expose the raised electrodes.
- the underfill material is temporarily cured on the wafer or chip to prevent flow of the underfill material.
- Temporary curing the underfill material may include hardening the underfill material at between 100 degrees C. to about 140 degrees C.
- the wafer is diced or separated into chips.
- the chip is flip-chip mounted on a waveguide module.
- the light emitting or receiving chip is aligned with a mirror for directing light from/to the chip.
- the underfill material is disposed between the chip and the waveguide module. Since the chip is pre-coated with a solid or hardened underfill material, the underfill material does not interfere with a cavity in the waveguide module by flowing into the cavity and causing light attenuation.
- the cavity may include a mirror and a waveguide depending on the design.
- the underfill material is fully cured to adhere the chip to the waveguide module.
- the full cure may include reflowing the underfill material at a temperature of between about 130 degrees C. to about 160 degrees C. to provide adhesion in block 216 , and hardening the underfill material at a temperature of between about 200 degrees C. and about 220 degrees C. in block 218 .
- solder joints are reflowed to make solder connections between the light emitting or receiving chip and the waveguide module.
- processing may continue to complete the device/module.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Geometry (AREA)
- Ceramic Engineering (AREA)
Abstract
Description
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/947,855 US9721812B2 (en) | 2015-11-20 | 2015-11-20 | Optical device with precoated underfill |
US15/287,582 US20170146741A1 (en) | 2015-11-20 | 2016-10-06 | Optical device with precoated underfill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/947,855 US9721812B2 (en) | 2015-11-20 | 2015-11-20 | Optical device with precoated underfill |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/287,582 Division US20170146741A1 (en) | 2015-11-20 | 2016-10-06 | Optical device with precoated underfill |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170148646A1 US20170148646A1 (en) | 2017-05-25 |
US9721812B2 true US9721812B2 (en) | 2017-08-01 |
Family
ID=58721023
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/947,855 Expired - Fee Related US9721812B2 (en) | 2015-11-20 | 2015-11-20 | Optical device with precoated underfill |
US15/287,582 Abandoned US20170146741A1 (en) | 2015-11-20 | 2016-10-06 | Optical device with precoated underfill |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/287,582 Abandoned US20170146741A1 (en) | 2015-11-20 | 2016-10-06 | Optical device with precoated underfill |
Country Status (1)
Country | Link |
---|---|
US (2) | US9721812B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10690867B1 (en) * | 2019-02-12 | 2020-06-23 | International Business Machines Corporation | Optical device with adhesive connection of recess or side protrusion |
US10754070B2 (en) | 2018-12-05 | 2020-08-25 | International Business Machines Corporation | Microlens array assembling process |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10025044B1 (en) * | 2017-01-17 | 2018-07-17 | International Business Machines Corporation | Optical structure |
JP7118731B2 (en) | 2018-05-18 | 2022-08-16 | 新光電気工業株式会社 | Optical waveguide mounting board, optical transceiver |
US10338325B1 (en) | 2018-06-01 | 2019-07-02 | International Business Machines Corporation | Nanofiller in an optical interface |
JP2021063921A (en) * | 2019-10-15 | 2021-04-22 | 日東電工株式会社 | Photo-electric composite transmission module |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0905797A2 (en) * | 1997-09-29 | 1999-03-31 | Siemens Aktiengesellschaft | Semiconductor light source and method of fabrication |
US6066574A (en) * | 1998-11-06 | 2000-05-23 | Advanced Micro Devices, Inc. | Hot plate cure process for BCB low k interlevel dielectric |
US20040082107A1 (en) * | 2002-10-28 | 2004-04-29 | Intel Corporation | Flip-chip system and method of making same |
US20040159923A1 (en) * | 2003-02-15 | 2004-08-19 | Sergei Skokov | Using benzocyclobutene based polymers as underfill materials |
US20070029545A1 (en) * | 2003-02-24 | 2007-02-08 | Ignis Innovation Inc | Pixel having an organic light emitting diode and method of fabricating the pixel |
US7245023B1 (en) * | 2004-06-11 | 2007-07-17 | Bridge Semiconductor Corporation | Semiconductor chip assembly with solder-attached ground plane |
US20090017566A1 (en) * | 2007-07-09 | 2009-01-15 | Philips Lumileds Lighting Company Llc | Substrate Removal During LED Formation |
US7538415B1 (en) * | 2003-11-20 | 2009-05-26 | Bridge Semiconductor Corporation | Semiconductor chip assembly with bumped terminal, filler and insulative base |
US20090302429A1 (en) * | 2006-05-19 | 2009-12-10 | Osram Opto Semiconductors Gmbh | Electrically Conducting Connection with Insulating Connection Medium |
US20100159644A1 (en) * | 2008-12-19 | 2010-06-24 | Rajiv Carl Dunne | Low-cost flip-chip interconnect with an integrated wafer-applied photo-sensitive adhesive and metal-loaded epoxy paste system |
US7843074B2 (en) * | 2006-09-12 | 2010-11-30 | Lumination Llc | Underfill for light emitting device |
US20110170266A1 (en) * | 2010-01-08 | 2011-07-14 | Ibm Corporation | 4d device process and structure |
US20110274388A1 (en) * | 2010-05-07 | 2011-11-10 | Shinko Electric Industries Co., Ltd | Optoelectronic composite substrate and method of manufacturing the same |
US20130259421A1 (en) * | 2012-03-30 | 2013-10-03 | Fujitsu Limited | Method of manufacturing optical waveguide device and optical waveguide device |
US20130280861A1 (en) * | 2012-04-24 | 2013-10-24 | Micron Technology, Inc. | Methods for forming semiconductor device packages |
US20140169731A1 (en) * | 2012-12-13 | 2014-06-19 | Shinko Electric Industries Co., Ltd. | Optical waveguide device and method of manufacturing the same |
US20150187720A1 (en) * | 2013-03-22 | 2015-07-02 | Renesas Electronics Corporation | Method of manufacturing semiconductor device and semiconductor device |
US20150277066A1 (en) * | 2014-03-26 | 2015-10-01 | International Business Machines Corporation | Optical device, optical connector assembly, and optical connecting method |
US20150285995A1 (en) * | 2014-04-08 | 2015-10-08 | Shinko Electric Industries Co., Ltd. | Optical waveguide device and method of manufacturing the same |
US20160042979A1 (en) * | 2014-08-11 | 2016-02-11 | International Business Machines Corporation | Multi-chip module with rework capability |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218234A (en) * | 1991-12-23 | 1993-06-08 | Motorola, Inc. | Semiconductor device with controlled spread polymeric underfill |
US5612576A (en) * | 1992-10-13 | 1997-03-18 | Motorola | Self-opening vent hole in an overmolded semiconductor device |
US5697148A (en) * | 1995-08-22 | 1997-12-16 | Motorola, Inc. | Flip underfill injection technique |
US5710071A (en) * | 1995-12-04 | 1998-01-20 | Motorola, Inc. | Process for underfilling a flip-chip semiconductor device |
US5766982A (en) * | 1996-03-07 | 1998-06-16 | Micron Technology, Inc. | Method and apparatus for underfill of bumped or raised die |
US5867368A (en) * | 1997-09-09 | 1999-02-02 | Amkor Technology, Inc. | Mounting for a semiconductor integrated circuit device |
US6057178A (en) * | 1997-09-26 | 2000-05-02 | Siemens Aktiengesellschaft | Method of padding an electronic component, mounted on a flat substrate, with a liquid filler |
JPH11186294A (en) * | 1997-10-14 | 1999-07-09 | Sumitomo Metal Smi Electron Devices Inc | Semiconductor package and manufacture thereof |
US6399178B1 (en) * | 1998-07-20 | 2002-06-04 | Amerasia International Technology, Inc. | Rigid adhesive underfill preform, as for a flip-chip device |
US6288905B1 (en) * | 1999-04-15 | 2001-09-11 | Amerasia International Technology Inc. | Contact module, as for a smart card, and method for making same |
US6490166B1 (en) * | 1999-06-11 | 2002-12-03 | Intel Corporation | Integrated circuit package having a substrate vent hole |
US6352881B1 (en) * | 1999-07-22 | 2002-03-05 | National Semiconductor Corporation | Method and apparatus for forming an underfill adhesive layer |
JP4454792B2 (en) * | 2000-05-18 | 2010-04-21 | 富士通マイクロエレクトロニクス株式会社 | Semiconductor device |
SG122743A1 (en) * | 2001-08-21 | 2006-06-29 | Micron Technology Inc | Microelectronic devices and methods of manufacture |
JP3907461B2 (en) * | 2001-12-03 | 2007-04-18 | シャープ株式会社 | Manufacturing method of semiconductor module |
US6919420B2 (en) * | 2002-12-05 | 2005-07-19 | International Business Machines Corporation | Acid-cleavable acetal and ketal based epoxy oligomers |
US6800946B2 (en) * | 2002-12-23 | 2004-10-05 | Motorola, Inc | Selective underfill for flip chips and flip-chip assemblies |
KR100784454B1 (en) * | 2003-11-07 | 2007-12-11 | 신꼬오덴기 고교 가부시키가이샤 | Electronic device and process for manufacturing same |
US7124931B2 (en) * | 2003-11-18 | 2006-10-24 | Intel Corporation | Via heat sink material |
US7092603B2 (en) * | 2004-03-03 | 2006-08-15 | Fujitsu Limited | Optical bridge for chip-to-board interconnection and methods of fabrication |
US7220622B2 (en) * | 2004-09-22 | 2007-05-22 | Intel Corporation | Method for attaching a semiconductor die to a substrate and heat spreader |
US20060068521A1 (en) * | 2004-09-29 | 2006-03-30 | Song-Hua Shi | Method of fabricating microelectronic package using no-flow underfill technology and microelectronic package formed according to the method |
US7339275B2 (en) * | 2004-11-22 | 2008-03-04 | Freescale Semiconductor, Inc. | Multi-chips semiconductor device assemblies and methods for fabricating the same |
US7736945B2 (en) * | 2005-06-09 | 2010-06-15 | Philips Lumileds Lighting Company, Llc | LED assembly having maximum metal support for laser lift-off of growth substrate |
US20070087481A1 (en) * | 2005-10-19 | 2007-04-19 | Himax Technologies, Inc. | Underfill aiding process for a tape |
US7592702B2 (en) * | 2006-07-31 | 2009-09-22 | Intel Corporation | Via heat sink material |
JP4704322B2 (en) * | 2006-11-30 | 2011-06-15 | 新光電気工業株式会社 | Manufacturing method of opto-electric hybrid board |
JP5064109B2 (en) * | 2007-05-11 | 2012-10-31 | 新光電気工業株式会社 | Optical waveguide and method for manufacturing the same, and opto-electric hybrid board and method for manufacturing the same |
JP5155596B2 (en) * | 2007-05-14 | 2013-03-06 | 新光電気工業株式会社 | Manufacturing method of opto-electric hybrid board |
JP4969379B2 (en) * | 2007-09-14 | 2012-07-04 | 新光電気工業株式会社 | Optical waveguide mounting substrate and manufacturing method thereof |
JP2009069668A (en) * | 2007-09-14 | 2009-04-02 | Shinko Electric Ind Co Ltd | Optical waveguide mounting substrate and method of manufacturing the same |
JP2009175418A (en) * | 2008-01-24 | 2009-08-06 | Shinko Electric Ind Co Ltd | Opto-electronic printed wiring board and manufacturing method of same |
JP5063430B2 (en) * | 2008-03-25 | 2012-10-31 | 新光電気工業株式会社 | Module substrate having optical transmission mechanism and manufacturing method thereof |
US20090315163A1 (en) * | 2008-06-20 | 2009-12-24 | Terry Johnson | Semiconductor Die Packages with Stacked Flexible Modules Having Passive Components, Systems Using the Same, and Methods of Making the Same |
JP2010139562A (en) * | 2008-12-09 | 2010-06-24 | Shinko Electric Ind Co Ltd | Optical waveguide, optical waveguide mounting substrate, and light transmitting and receiving device |
JP5461897B2 (en) * | 2009-06-19 | 2014-04-02 | 新光電気工業株式会社 | Optical waveguide laminated wiring board, manufacturing method thereof and mounting structure |
US7867821B1 (en) * | 2009-09-18 | 2011-01-11 | Stats Chippac Ltd. | Integrated circuit package system with through semiconductor vias and method of manufacture thereof |
JP5313849B2 (en) * | 2009-11-30 | 2013-10-09 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
JP5369301B2 (en) * | 2009-12-18 | 2013-12-18 | 新光電気工業株式会社 | Optical waveguide manufacturing method, optical waveguide, and optical transceiver |
US8574960B2 (en) * | 2010-02-03 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming cavity adjacent to sensitive region of semiconductor die using wafer-level underfill material |
JP5462073B2 (en) * | 2010-05-21 | 2014-04-02 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
JP5479310B2 (en) * | 2010-12-03 | 2014-04-23 | 新光電気工業株式会社 | Optical waveguide, manufacturing method thereof, and optical waveguide device |
JP5670169B2 (en) * | 2010-12-15 | 2015-02-18 | 新光電気工業株式会社 | Manufacturing method of optical waveguide |
JP5667862B2 (en) * | 2010-12-20 | 2015-02-12 | 新光電気工業株式会社 | Two-layer optical waveguide, its manufacturing method and mounting structure |
JP2013003224A (en) * | 2011-06-14 | 2013-01-07 | Shinko Electric Ind Co Ltd | Optical waveguide, manufacturing method thereof, and optical waveguide device |
US8963340B2 (en) * | 2011-09-13 | 2015-02-24 | International Business Machines Corporation | No flow underfill or wafer level underfill and solder columns |
AU2013201130B2 (en) * | 2012-02-29 | 2014-12-11 | Robert Bosch (Australia) Pty Ltd | Printed circuit board |
JP6137777B2 (en) * | 2012-04-17 | 2017-05-31 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Spacer resin pattern design that helps reduce light connection loss between a light-emitting element or light-receiving element on a semiconductor and an optical waveguide |
US8581406B1 (en) * | 2012-04-20 | 2013-11-12 | Raytheon Company | Flip chip mounted monolithic microwave integrated circuit (MMIC) structure |
JP5989412B2 (en) * | 2012-06-11 | 2016-09-07 | 新光電気工業株式会社 | Optical module and optical module manufacturing method |
JP2014063062A (en) * | 2012-09-21 | 2014-04-10 | Fujitsu Ltd | Optical unit and method for manufacturing the same |
US20140117469A1 (en) * | 2012-10-26 | 2014-05-01 | Texas Instruments Incorporated | Tsv-mems combination |
JP6105254B2 (en) * | 2012-10-29 | 2017-03-29 | 新光電気工業株式会社 | Optical waveguide laminated wiring board, optical module, and optical waveguide laminated wiring board manufacturing method |
JP6084027B2 (en) * | 2012-12-20 | 2017-02-22 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
JP6070349B2 (en) * | 2013-03-28 | 2017-02-01 | 富士通株式会社 | Joining apparatus and joining method |
JP6085526B2 (en) * | 2013-06-12 | 2017-02-22 | 新光電気工業株式会社 | Opto-electric hybrid board and optical module |
US9627229B2 (en) * | 2013-06-27 | 2017-04-18 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming trench and disposing semiconductor die over substrate to control outward flow of underfill material |
JP6235878B2 (en) * | 2013-11-25 | 2017-11-22 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
US9627346B2 (en) * | 2013-12-11 | 2017-04-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Underfill pattern with gap |
JP6361298B2 (en) * | 2014-06-09 | 2018-07-25 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
JP6437875B2 (en) * | 2015-04-21 | 2018-12-12 | 新光電気工業株式会社 | Optical waveguide device and manufacturing method thereof |
US10018781B1 (en) * | 2017-01-06 | 2018-07-10 | International Business Machines Corporation | Fluid control structure |
US9989713B1 (en) * | 2017-03-07 | 2018-06-05 | International Business Machines Corporation | Fluid control structure |
-
2015
- 2015-11-20 US US14/947,855 patent/US9721812B2/en not_active Expired - Fee Related
-
2016
- 2016-10-06 US US15/287,582 patent/US20170146741A1/en not_active Abandoned
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0905797A2 (en) * | 1997-09-29 | 1999-03-31 | Siemens Aktiengesellschaft | Semiconductor light source and method of fabrication |
US6066574A (en) * | 1998-11-06 | 2000-05-23 | Advanced Micro Devices, Inc. | Hot plate cure process for BCB low k interlevel dielectric |
US20040082107A1 (en) * | 2002-10-28 | 2004-04-29 | Intel Corporation | Flip-chip system and method of making same |
US20040159923A1 (en) * | 2003-02-15 | 2004-08-19 | Sergei Skokov | Using benzocyclobutene based polymers as underfill materials |
US20070029545A1 (en) * | 2003-02-24 | 2007-02-08 | Ignis Innovation Inc | Pixel having an organic light emitting diode and method of fabricating the pixel |
US7538415B1 (en) * | 2003-11-20 | 2009-05-26 | Bridge Semiconductor Corporation | Semiconductor chip assembly with bumped terminal, filler and insulative base |
US7245023B1 (en) * | 2004-06-11 | 2007-07-17 | Bridge Semiconductor Corporation | Semiconductor chip assembly with solder-attached ground plane |
US20090302429A1 (en) * | 2006-05-19 | 2009-12-10 | Osram Opto Semiconductors Gmbh | Electrically Conducting Connection with Insulating Connection Medium |
US7843074B2 (en) * | 2006-09-12 | 2010-11-30 | Lumination Llc | Underfill for light emitting device |
US20090017566A1 (en) * | 2007-07-09 | 2009-01-15 | Philips Lumileds Lighting Company Llc | Substrate Removal During LED Formation |
US7867793B2 (en) * | 2007-07-09 | 2011-01-11 | Koninklijke Philips Electronics N.V. | Substrate removal during LED formation |
US20100159644A1 (en) * | 2008-12-19 | 2010-06-24 | Rajiv Carl Dunne | Low-cost flip-chip interconnect with an integrated wafer-applied photo-sensitive adhesive and metal-loaded epoxy paste system |
US20110170266A1 (en) * | 2010-01-08 | 2011-07-14 | Ibm Corporation | 4d device process and structure |
US20110274388A1 (en) * | 2010-05-07 | 2011-11-10 | Shinko Electric Industries Co., Ltd | Optoelectronic composite substrate and method of manufacturing the same |
US20130259421A1 (en) * | 2012-03-30 | 2013-10-03 | Fujitsu Limited | Method of manufacturing optical waveguide device and optical waveguide device |
US20130280861A1 (en) * | 2012-04-24 | 2013-10-24 | Micron Technology, Inc. | Methods for forming semiconductor device packages |
US20140169731A1 (en) * | 2012-12-13 | 2014-06-19 | Shinko Electric Industries Co., Ltd. | Optical waveguide device and method of manufacturing the same |
US20150187720A1 (en) * | 2013-03-22 | 2015-07-02 | Renesas Electronics Corporation | Method of manufacturing semiconductor device and semiconductor device |
US20150277066A1 (en) * | 2014-03-26 | 2015-10-01 | International Business Machines Corporation | Optical device, optical connector assembly, and optical connecting method |
US20150285995A1 (en) * | 2014-04-08 | 2015-10-08 | Shinko Electric Industries Co., Ltd. | Optical waveguide device and method of manufacturing the same |
US20160042979A1 (en) * | 2014-08-11 | 2016-02-11 | International Business Machines Corporation | Multi-chip module with rework capability |
Non-Patent Citations (2)
Title |
---|
Anonymous, "Method for self-writing a waveguide in the underfill to couple the substrate waveguide to the VCSEL and photodetector," ip.com, Apr. 2015. (pp. 1-5). |
Takahashi, T., M. G. Dibbs, and D. C. Frye. "Benzocyclobutene Resin for Thin Film Electronic Applications." Proceedings of the Japan International SAMPE Symposium. vol. 1. Japan Chapter of SAMPE, 1993. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10754070B2 (en) | 2018-12-05 | 2020-08-25 | International Business Machines Corporation | Microlens array assembling process |
US10690867B1 (en) * | 2019-02-12 | 2020-06-23 | International Business Machines Corporation | Optical device with adhesive connection of recess or side protrusion |
Also Published As
Publication number | Publication date |
---|---|
US20170146741A1 (en) | 2017-05-25 |
US20170148646A1 (en) | 2017-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9721812B2 (en) | Optical device with precoated underfill | |
US11784175B2 (en) | Integrated circuit bridge for photonics and electrical chip integration | |
US7531375B2 (en) | Solid image-pickup device and method for manufacturing the solid image pickup device | |
US9258467B2 (en) | Camera module | |
US9786820B2 (en) | Opto-electronic module and method for manufacturing the same | |
US20180337111A1 (en) | Optical Interconnect Modules With Polymer Waveguide On Silicon Substrate | |
US6800946B2 (en) | Selective underfill for flip chips and flip-chip assemblies | |
US7860357B2 (en) | Optoelectronic device chip having a composite spacer structure and method making same | |
JP3731542B2 (en) | Optical module and optical module mounting method | |
US20120267338A1 (en) | Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system | |
CN101083255A (en) | Device package and methods for the fabrication and testing thereof | |
JPH01140104A (en) | Matching of fiber array | |
US9548434B2 (en) | Wafer level packaging of electronic device | |
US11079539B2 (en) | Semiconductor device and manufacturing method of the same | |
JP2018017927A (en) | Optical wiring module, optical transceiver, and optical coupling method | |
WO2011118116A1 (en) | Semiconductor device and method for producing same | |
KR100957338B1 (en) | Fiber engine manufacturing method | |
US20090304323A1 (en) | Optical coupling structure and substrate with built-in optical transmission function, and method of manufacturing the same | |
JP3709075B2 (en) | Optical element mounting method | |
US11948960B2 (en) | Semiconductor packaging method and semiconductor package device | |
US20090230539A1 (en) | Semiconductor device | |
CN219642829U (en) | Semiconductor Package Structure | |
JP2005010334A (en) | Compound optical element, compound optical component, and manufacturing method of compound optical element | |
WO2024185317A1 (en) | Method for producing optical module, and optical module | |
US20240264388A1 (en) | Package devices and methods of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORIBE, AKIHIRO;TOKUNARI, MASAO;REEL/FRAME:037106/0143 Effective date: 20151118 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ELPIS TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:052561/0161 Effective date: 20200306 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210801 |