+

US9764018B2 - Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells - Google Patents

Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells Download PDF

Info

Publication number
US9764018B2
US9764018B2 US14/462,261 US201414462261A US9764018B2 US 9764018 B2 US9764018 B2 US 9764018B2 US 201414462261 A US201414462261 A US 201414462261A US 9764018 B2 US9764018 B2 US 9764018B2
Authority
US
United States
Prior art keywords
galnac
und
seq
glcnac
coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/462,261
Other versions
US20150190492A1 (en
Inventor
Michael Wacker
Charles Waechter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
Glycovaxyn AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glycovaxyn AG filed Critical Glycovaxyn AG
Priority to US14/462,261 priority Critical patent/US9764018B2/en
Publication of US20150190492A1 publication Critical patent/US20150190492A1/en
Assigned to GLYCOVAXYN AG reassignment GLYCOVAXYN AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WACKER, MICHAEL, WAECHTER, CHARLES
Application granted granted Critical
Publication of US9764018B2 publication Critical patent/US9764018B2/en
Assigned to GLAXOSMITHKLINE BIOLOGICALS SA reassignment GLAXOSMITHKLINE BIOLOGICALS SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLYCOVAXYN AG
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0283Shigella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • A61K47/4833
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the use of a biosynthetic system and proteins for preparing a vaccine.
  • the invention relates to a recombinant prokaryotic biosynthetic system having an epimerase that initiates the synthesis of an oligo- or polysaccharide with a specified monosaccharide at the reducing terminus.
  • the invention further relates to N-glycosylated proteins produced with glycans in an expression system and bioconjugate vaccines made from said N-glycosylated proteins comprising immunogenic glycans, and provides methods for producing N-glycosylated proteins.
  • Glycoproteins are proteins that have one or more covalently attached sugar polymers.
  • N-linked protein glycosylation is an essential and conserved process occurring in the endoplasmic reticulum of eukaryotic organisms. It is important for protein folding, oligomerization, stability, quality control, sorting and transport of secretory and membrane proteins (Helenius. A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019-1049).
  • Protein glycosylation has a profound influence on the immunogenicity, the stability and the half-life of a protein.
  • glycosylation can assist the purification of proteins by chromatography, e.g. affinity chromatography with lectin ligands bound to a solid phase interacting with glycosylated moieties of the protein. It is therefore established practice to produce many glycosylated proteins recombinantly in eukaryotic cells to provide biologically and pharmaceutically useful glycosylation patterns.
  • WO 200307467 (Aebi et al.) demonstrated that the food-borne pathogen Campylobacter jejuni , which is a bacterium, could N-glycosylate its proteins, which was a unique feature among known prokaryotic organisms except for certain species of archaea.
  • the machinery required for glycosylation is encoded by 12 genes that are clustered in the so-called pgl locus. Disruption of N-glycosylation affects invasion and pathogenesis of C. jejuni but is not lethal as in most eukaryotic organisms (Burda P. and M. Aebi, (1999).
  • the dolichol pathway of N-linked glycosylation was not limited to the food-borne pathogen Campylobacter jejuni , which is a bacterium, could N-glycosylate its proteins, which was a unique feature among known prokaryotic organisms except for certain species of archaea.
  • the machinery required for glycosylation
  • N-glycans have a glycan attached to a consensus sequence in a protein.
  • the known N-glycosylation consensus sequence in a protein allows for the N-glycosylation of recombinant target proteins in prokaryotic organisms.
  • Such organisms comprise an oligosaccharyl transferase (“OT”; “OTase”), such as, for example, an oligosaccharyl transferase of C. jejuni , which is an enzyme that transfers the glycan to the consensus sequence of the protein.
  • WO 200307467 (Aebi et al.) teaches a prokaryotic organism into which is introduced a nucleic acid encoding for (i) specific glycosyltransferases for the assembly of an oligosaccharide on a lipid carrier, (ii) a recombinant target protein comprising a consensus sequence “N-X-S/T”, wherein X can be any amino acid except proline, and (iii) an oligosaccharyl transferase, such as, for example, an oligosaccharyl transferase of C. jejuni that covalently links said oligosaccharide to the consensus sequence of the target protein.
  • Said prokaryotic Organism produces N-glycans with a specific structure which is defined by the type of the specific glycosyltransferases.
  • WO 2006/119987 (Aebi et al.) describes proteins, as well as means and methods for producing proteins, with efficiency for N-glycosylation in prokaryotic organisms in vivo. It further describes an efficient introduction of N-glycans into recombinant proteins for modifying immunogenicity, stability, biological, prophylactic and/or therapeutic activity of said proteins, and the provision of a host cell that efficiently displays recombinant N-glycosylated proteins of the present invention on its surface. In addition, it describes a recombinant N-glycosylated protein comprising one or more of the following N-glycosylated optimized amino acid sequence(s):
  • X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated partial amino acid sequence(s) is introduced.
  • LPS Lipopolysaccharides
  • LPS LPS
  • the synthesis of LPS starts with the addition of a monosaccharide to the carrier lipid undecaprenyl phosphate (“Und-P-P”) at the cytoplasmic side of the membrane.
  • the antigen is built up by sequential addition of monosaccharides from activated sugar nucleotides by different glycosyltransferases, and the lipid-linked polysaccharide is flipped through the membrane by a flippase.
  • the antigen-repeating unit is polymerized by an enzymatic reaction.
  • the polysaccharide is then transferred to the Lipid A by the Ligase WaaL forming the LPS that is exported to the surface, whereas the capsular polysaccharide is released from the carrier lipid after polymerization and exported to the surface.
  • the biosynthetic pathway of these polysaccharides enables the production of LPS bioconjugates in vivo, capturing the polysaccharides in the periplasm to a protein carrier.
  • Such synthesized complexes of oligo- or polysaccharides (i.e., sugar residues) and proteins (i.e., protein carriers) can be used as conjugate vaccines to protect against a number of bacterial infections.
  • Conjugate vaccines have been successfully used to protect against bacterial infections.
  • the conjugation of an antigenic polysaccharide to a protein carrier is required for protective memory response, as polysaccharides are T-cell independent immunogens.
  • Polysaccharides have been conjugated to protein carriers by different chemical methods, using activation reactive groups in the polysaccharide as well as the protein carrier.
  • Conjugate vaccines can be administered to children to protect against bacterial infections and also can provide a long lasting immune response to adults.
  • Constructs of WO 2009/04074 (Fernandez, et al.) have been found to generate an IgG response in animals. It has been found that an IgG response to a Shigella O-specific polysaccharide-protein conjugate vaccine in humans correlates with immune protection in humans. (Passwell, J. H. et al., “Safety and Immunogenicity of Improved Shigella O-Specific Polysaccharide-Protein Conjugate Vaccines in Adults in Israel” Infection and Immunity, 69(3):1351-1357 (March 2001).) It is believed that the polysaccharide (i.e.
  • sugar residues triggers a short-term immune response that is sugar-specific.
  • the human immune system generates a strong response to specific polysaccharide surface structures of bacteria, such as O-antigens and capsular polysaccharides.
  • the immune response to polysaccharides is IgM dependent, the immune system develops no memory.
  • the protein carrier that carries the polysaccharide triggers an IgG response that is T-cell dependent and that provides long lasting protection since the immune system develops memory.
  • E. coli O157 is an enterohemorrhagic strain responsible for approximately two-thirds of all recent cases of hemolytic-uremic syndrome and poses serious human health concerns (Law, D. (2000) J. App. Microbiol., 88, 729-745; Wang, L., and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551).
  • Escherichia coli strain O157 produces an O-antigen containing the repeating tetrasaccharide unit (4-N-acetyl perosamine ⁇ fucose ⁇ glucose ⁇ GalNAc) ( ⁇ -D-PerNAc- ⁇ -L-Fuc- ⁇ -D-Glc- ⁇ -D-GalNAc) (Perry, M. B., MacLean, L. and Griffith, D. W. (1986) Biochem. Cell. Biol., 64, 21-28).
  • the tetrasaccharide is preassembled on undecaprenyl pyrophosphate.
  • coli cell envelope contains an inner plasma membrane, a stress-hearing peptidoglycan layer and an asymmetric outer membrane consisting of a phospholipid inner monolayer and an outer monolayer composed of bacterial LPS.
  • LPS contains three components, the lipid A anchor, the 3-deoxy-D-manno-oct-2-ulosonic acid-containing core, and the O-antigen region (see: Raetz, C. R. H. and Whitfield, C. (2002) Annu. Rev. Biochem., 71, 635-700; Whitfield, C. (2006) Ann. Rev. Biochem. 75, 39-68; Samuel, G. and Reeves, P. R. (2003) Carbohydrate Research, 338, 2503-2519; and refs, therein for reviews on the assembly of O-antigens of bacterial LPS).
  • the O-antigen components of bacterial LPS are large, extremely diverse polysaccharides that can be either homopolymeric, composed of a single repeating monosaccharide, or heteropolymeric, containing 10-30 repeats of 3-6 sugar units (Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D., Raetz, C. R. H., and Rick, P. D. (1996) Trends Microbial., 4, 495-503).
  • O-Antigens are, Thus, the Dominant Feature of the bacterial cell surface and constitute important determinants of virulence and pathogenicity (Law, D. (2000) J. App. Microbiol., 88, 729-745; Spears, K. J., Roe, A. J. and Golly, D. L. (2006) FEMS Microbiol. Lett., 255, 187-202; Liu, B., Knirel, Y. A., Feng, L., Perepelov, A. V., Senchenkova, S. N., Wang, Q., Reeves, P. R. and Wang, L (2008) FEMS Microbiol. Rev.
  • O-antigen repeat units are pre-assembled on the cytosolic face of the inner membrane attached to undecaprenyl pyrophosphate.
  • the lipid-linked repeat units diffuse transversely (flip-flop) to the periplasmic surface of the inner membrane and are polymerized before transport to the outer membrane and ligation to LPS.
  • Most heteropolymeric O-antigen repeat units have either N-acetylglucosamine (“GlcNAc”) or N-acetylgalactosamine (“GalNAc”) at the reducing terminus.
  • E. coli O55 gne and gne1 genes were previously proposed to encode a UDP-GlcNAc 4-epimerase (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625; Guo, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609).
  • Previous reports identified two genes from E. coli O55 (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol.
  • E. coli O86 (Guo, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609), E. coli O55 gne and E. coli O86 gne1, respectively, that are 100% identical to a Z3206 gene within the same gene family.
  • the present invention relates to a recombinant prokaryotic biosynthetic system that produces all or a portion of a polysaccharide comprising an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate.
  • the invention further includes glycosyltransferases that synthesize all or a portion of a polysaccharide having GalNAc at the reducing terminus, and still further includes glycosyltransferases that synthesize all or a portion of an antigenic polysaccharide having GalNAc at the reducing terminus.
  • the invention is directed to an epimerase to produce GalNAc on undecaprenyl pyrophosphate, and, in a further aspect, the epimerase is encoded by the Z3206 gene.
  • the present invention is directed to an expression system for producing an N-glycosylated protein comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier; at least one oligo- or polysaccharide gene cluster from at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and a nucleic acid sequence encoding an epimerase.
  • the instant invention is directed to a recombinant prokaryotic biosynthetic system comprising Z3206 gene which encodes an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
  • the present invention is directed to a recombinant prokaryotic biosynthetic system comprising E. coli O55 gne gene or E. coli O86 gne1 gene which encodes an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
  • the present invention relates to an N-glycosylated protein comprising at least one introduced consensus sequence, D/E-X-N-Z-S/T, wherein X and Z can be any natural amino acid except proline, and a glycan having N-acetylgalactosamine at the reducing terminus.
  • the present invention is directed to a bioconjugate vaccine comprising an N-glycosylated protein having at least one introduced consensus sequence, D/E-X-N-Z-S/T, wherein X and Z can be any natural amino acid except proline: an immunogenic glycan having N-acetylgalactosamine at the reducing terminus; and an adjuvant.
  • the invention relates to method for producing an N-linked glycosylated protein in a host cell comprising nucleic acids encoding: glycosyltransferases that assemble at least one oligo- or polysaccharide from at least one bacterium containing GalNAc at the reducing terminus; a protein carrier; an oligosaccharyl transferase; and an epimerase.
  • the present invention relates to the use of a biosynthetic system and proteins for preparing a bioconjugate vaccine.
  • the present invention is directed to methods for producing mono-, oligo- and polysaccharides, and in a still further aspect the invention directed to methods for producing antigenic glycans and N-glycosylated proteins.
  • FIG. 1 shows the time course of [ 3 H]GlcNAc/GalNAc-P-P-Und synthesis by membrane fractions from E. coli O157.
  • the membrane fraction from E. coli strain O157 was incubated with UDP-[ 3 H]GlcNAc for the indicated times at 37° C.
  • the [ 3 H]lipid products were extracted and the incorporation of [ 3 H]GlcNAc into [ 3 H]GlcNAc-P-P-Und (O) and [ 3 H]GalNAc-P-P-Und (•) was assayed as described in Example 2.
  • FIG. 2 shows the proposed biosynthetic pathway for the formation of GalNAc-P-P-Und from GlcNAc-P-P-Und.
  • FIGS. 3A, 3B, 3C, and 3D shows purification and characterization of [ 3 H]GalNAc-P-P-Und synthesized by membrane fractions from E. coli strain O157.
  • Membrane fractions from E. coli O157 were incubated with UDP-[ 3 H]GlcNAc, and the [ 3 H]GalNAc lipids were purified as described in Example 3.
  • FIG. 3A preparative thin layer chromatogram of [ 3 H]HexNAc lipids on borate-impregnated silica gel G (Quantum 1) after purification on DEAE-cellulose is shown.
  • FIG. 1 preparative thin layer chromatogram of [ 3 H]HexNAc lipids on borate-impregnated silica gel G (Quantum 1) after purification on DEAE-cellulose is shown.
  • FIG. 3B thin layer chromatography of purified [ 3 H]GalNAc-P-P-Und on borate-impregnated silica gel G (Baker, Si250) after recovery from the preparative plate in panel A is shown.
  • FIG. 3C descending paper chromatogram (borate-impregnated Whatman No. 1 paper) of the [ 3 H]-amino sugar recovered after mild acid hydrolysis of [ 3 H]GalNAc-P-P-Und purified in FIG. 3B is shown.
  • FIG. 3D descending paper chromatogram (Whatman No. 3MM) of the [ 3 H]HexNAc-alditol produced by reduction of the [ 3 H] amino sugar from FIG. 3C with NaBH 4 .
  • FIGS. 4A and 4B shows metabolic labeling of E. coli 21546 cells and E. coli 21546 cells after transformation with pMLBAD:Z3206.
  • E. coli 21546 ( FIG. 4A ) and E. coli 21546:pMLBAD/Z3206 ( FIG. 4B ) were labeled metabolically with [ 3 H]GlcNAc for 5 min at 37° C.
  • [ 3 H]GlcNAc/GalNAc-P-P-Und were extracted, freed of water soluble contaminants and separated by thin layer chromatography on borate-impregnated silica gel plates (Baker Si250) as described in Example 3. Radioactive lipids were detected using a Bioscan chromatoscanner.
  • the chromatographic positions of GalNAc-P-P-Und and GlcNAc-P-P-Und are indicated by arrows.
  • FIGS. 5A, 5B, 5C, and 5D shows thin layer chromatography of [ 3 H]GlcNAc/GalNAc-P-P-Und formed by incubation of membrane fractions from E. coli strains with UDP-[ 3 H]GlcNAc.
  • FIGS. 6A, 6B, and 6C shows discharge of GlcNAc-P by incubation with UMP.
  • Membrane fractions from E. coli 21546:Z3206 were preincubated with UDP-[ 3 H]GlcNAc to enzymatically label GlcNAc-P-P-Und for 10 min ( FIG. 6A ) at 37° C. followed by a second incubation period with 1 mM UMP included for either 1 min ( FIG. 6B ) or 2 min ( FIG. 6C ).
  • FIGS. 7A, 7B, 7C, 7D, 7E, and 7F shows conversion of exogenous [ 3 H]GlcNAc-P-P-Und and [ 3 H]GalNAc-P-P-Und to the pertinent [ 3 H]HexNAc-P-P-Und product catalyzed by membranes from strain 21546 expressing Z3206.
  • Membrane fractions from E. coli strain 21546 ( FIG. 7B and FIG. 7E ) and 215461:pMLBAD/Z3206 ( FIG. 7C and FIG. 7F ) were incubated with purified [ 3 H]GlcNAc-P-P-Und ( FIG. 7A , FIG. 7B , and FIG.
  • FIG. 8 shows SDS-PAGE analysis of unglycosylated and glycosylated AcrA protein.
  • Periplasmic extracts prepared from E. coli DH5 ⁇ cells carrying the AcrA expression plasmid and the pgl operon Agile complemented with pMLBAD:Z3206 (lane 1), pMLBAD:gne (lane 2) or the vector control pMLBAD (lane 3) were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes.
  • AcrA and its glycosylated forms were detected with anti AcrA antisera.
  • the position of bands corresponding to unglycosylated (AcrA) and glycosylated AcrA (gAcrA) is indicated.
  • FIG. 9 shows the genes that have been identified by Liu B et al. ( Structure and genetics of Shigella O antigens FEMS Microbiology Review, 2008. 32: p. 27).
  • FIG. 10 is a scheme showing the DNA region containing the genes required to synthesize the S. flexneri 6 O antigen.
  • FIG. 11 shows expression of the S. flexneri 6 O antigen in E. coli .
  • LPS was visualized by either silver staining or by transfer to nitrocellulose membranes and detection by antibodies directed against S. flexneri 6.
  • FIG. 12 shows HPLC of O antigen. LLO analysis of E. coli cells (SCM3) containing S. flexneri —Z3206, E. coli cells (SCM3) containing S. flexneri +Z3206 or empty E. coli (SCM3) cells.
  • FIG. 13 shows Western blot of Nickel purified proteins from E. coli cells expressing EPA, pglB and S. flexneri 6 O-antigen+/ ⁇ Z3206.
  • the present invention encompasses a recombinant prokaryotic biosynthetic system comprising nucleic acids encoding an epimerase that synthesizes an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus, and N-glycosylated proteins having N-acetylgalactosamine at the reducing terminus of the glycan.
  • partial amino acid sequence(s) is also referred to as “optimized consensus sequence(s)” or “consensus sequence(s).”
  • the optimized consensus sequence is N-glycosylated by an oligosaccharyl transferase (“OST,” “OTase”), much more efficiently than the regular consensus sequence “N-X-ST.”
  • the term “recombinant N-glycosylated protein” refers to any poly- or oligopeptide produced in a host cell that does not naturally comprise the nucleic acid encoding said protein.
  • this term refers to a protein produced recombinantly in a prokaryotic host cell, for example, Escherichia spp., Campylobacter spp., Salmonella spp., Shigella spp., Helicobacter spp., Pseudomonas spp., Bacillus spp., and in further embodiments Escherichia cell, Campylobacter jejuni, Salmonella typhimurium etc., wherein the nucleic acid encoding said protein has been introduced into said host cell and wherein the encoded protein is N-glycosylated by the OTase, said transferase enzyme naturally occurring in or being introduced recombinantly into said host cell.
  • Proteins according to the invention comprise one or more of an optimized consensus sequence(s) D/E-X-N-Z-S/T that is/are introduced into the protein and N-glycosylated.
  • the proteins of the present invention differ from the naturally occurring C. jejuni N-glycoproteins which also contain the optimized consensus sequence but do not comprise any additional (introduced) optimized consensus sequences.
  • the introduction of the optimized consensus sequence can be accomplished by the addition, deletion and/or substitution of one or more amino acids.
  • the addition, deletion and/or substitution of one or more amino acids for the purpose of introducing the optimized consensus sequence can be accomplished by chemical synthetic Strategies, which, in view of the instant invention, would be well known to those skilled in the art such as solid phase-assisted chemical peptide synthesis.
  • the proteins of the present invention can be prepared by recombinant techniques that would be art-standard techniques in light of the invention.
  • the proteins of the present invention have the advantage that they may be produced with high efficiency and in any host.
  • the host comprises a functional pgl operon from Campylobacter spp., for example, from C. jejuni .
  • oligosaccharyl transferases from Campylobacter spp. for practicing the invention are from Campylobacter coli or Campylobacter lari .
  • oligosaccharyl transferases would be apparent to one of skill in the art. For example, oligosaccharyl transferases are disclosed in references such as Szymanski, C. M. and Wren, B. W.
  • the functional pgl operon may be present naturally when said prokaryotic host is Campylobacter spp., or, for example, C. jejuni . However, as demonstrated before in the art and mentioned above, the pgl operon can be transferred into cells and remain functional in said new cellular environment.
  • the term “functional pgl operon from Campylobacter spp., preferably C. jejuni ” is meant to refer to the cluster of nucleic acids encoding the functional oligosaccharyl transferase (OTase) of Campylobacter spp., for example, C. jejuni , and one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier, and wherein said oligosaccharide can be transferred from the lipid carrier to the target protein having one or more optimized amino acid sequence(s): D/E-X-N-Z-S/T by the OTase.
  • OTase oligosaccharyl transferase
  • the term “functional pgl operon from Campylobacter spp., preferably C. jejuni ” in the context of this invention does not necessarily refer to an operon as a singular transcriptional unit.
  • the term merely requires the presence of the functional components for N-glycosylation of the recombinant protein in one host cell. These components may be transcribed as one or more separate mRNAs and may be regulated together or separately.
  • the term also encompasses functional components positioned in genomic DNA and plasmid(s) in one host cell. For the purpose of efficiency, in one embodiment all components of the functional pgl operon are regulated and expressed simultaneously.
  • the oligosaccharyl transferase can originate, in some embodiments, from Campylobacter spp., and in other embodiments, from C. jejuni .
  • the oligosaccharyl transferase can originate from other organisms which are known to those of skill in the art as having an oligosaccharyl transferase, such as, for example, Wolinella spp. and eukaryotic organisms.
  • the one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier may originate from the host cell or be introduced recombinantly into said host cell, the only functional limitation being that the oligosaccharide assembled by said glycosyltransferases can be transferred from the lipid carrier to the target protein having one or more optimized consensus sequences by the OTase.
  • the selection of the host cell comprising specific glycosyltransferases naturally and/or replacing specific glycosyltransferases naturally present in said host as well as the introduction of heterologous specific glycosyltransferases will enable those skilled in the art to vary the N-glycans bound to the optimized N-glycosylation consensus site in the proteins of the present invention.
  • the present invention provides for the individual design of N-glycan-patterns on the proteins of the present invention.
  • the proteins can therefore be individualized in their N-glycan pattern to suit biological, pharmaceutical and purification needs.
  • the proteins may comprise one but also more than one, such as at least two, at least 3 or at least 5 of said N-glycosylated optimized amino acid sequences.
  • N-glycosylated optimized amino acid sequence(s) in the proteins of the present invention can be of advantage for increasing their immunogenicity, increasing their stability, affecting their biological activity, prolonging their biological half-life and/or simplifying their purification.
  • the optimized consensus sequence may include any amino acid except proline in position(s) X and Z.
  • any amino acids is meant to encompass common and rare natural amino acids as well as synthetic amino acid derivatives and analogs that will still allow the optimized consensus sequence to be N-glycosylated by the OTase.
  • Naturally occurring common and rare amino acids are preferred for X and Z.
  • X and Z may be the same or different.
  • X and Z may differ for each optimized consensus sequence in a protein according to the present invention.
  • the N-glycan hound to the optimized consensus sequence will be determined by the specific glycosyltransferases and their interaction when assembling the oligosaccharide on a lipid carrier for transfer by the OTase.
  • those skilled in the art would be able to design the N-glycan by varying the type(s) and amount of the specific glycosyltransferases present in the desired host cell.
  • “Monosaccharide” as used herein refers to one sugar residue. “Oligo- and polysaccharide” refer to two or more sugar residues.
  • the term “glycans” as used herein refers to mono-, oligo- or polysaccharides. “N-glycans” are defined herein as mono-, oligo- or polysaccharides of variable compositions that are linked to an ⁇ -amide nitrogen of an asparagine residue in a protein via an N-glycosidic linkage.
  • the N-glycans transferred by the OTase are assembled on an undecaprenol pyrophosphate (“Und-P-P”) lipid-anchor that is present in the cytoplasmic membrane of gram-negative or positive bacteria. They are involved in the synthesis of O antigen, O polysaccharide and peptidoglycan (Bugg, T. D., and Brandish, P. E. (1994). From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119, 255-262; Valvano, M. A. (2003). Export of O-specific lipopolysaccharide. Front Biosci 8, s452-471).
  • Und-P-P undecaprenol pyrophosphate
  • strain O157 when membrane fractions from strain O157 were incubated with UDP-[ 3 H]GlcNAc, two enzymatically labeled products were observed with the chemical and chromatographic properties of [ 3 H]GlcNAc-P-P-Und and [ 3 H]GalNAc-P-P-Und, confirming that strain O157 contained an epimerase capable of interconverting GlcNAc-P-P-Und and GalNAc-P-P-Und. The presence of an epimerase was also confirmed by showing that exogenous [ 3 H]GlcNAc-P-P-Und was converted to [ 3 H]GalNAc-P-P-Und when incubated with membranes from strain O157.
  • GalNAc-P-P-Und The initiating reaction of E. coli O157 O-antigen subunit assembly was investigated to confirm that GalNAc-P-P-Und synthesis is catalyzed by some previously unknown mechanism rather than by WecA.
  • the evidence presented herein shows that GalNAc-P-P-Und is not synthesized by GalNAc-P transfer from UDP-GalNAc catalyzed by WecA but rather by the reversible epimerization of the 4-OH of GlcNAc-P-P-Und catalyzed by an epimerase encoded by the Z3206 gene in E. coli O157.
  • the invention encompasses a novel biosynthetic pathway for the assembly of an important bacterial cell surface component as well as a new biosynthetic route for the synthesis of GalNAc-P-P-Und.
  • a further embodiment of the invention includes the bacterial epimerase as a new target for antimicrobial agents.
  • E. coli O157 synthesizes an O-antigen with the repeating tetrasaccharide structure (4-N-acetyl perosamine ⁇ fucose ⁇ glucose ⁇ GalNAc). It is shown herein that the biosynthesis of the lipid-linked tetrasaccharide intermediate was not initiated by the enzymatic transfer of GalNAc-P from UDP-GalNAc to Und-P catalyzed by WecA, contrary to earlier genetic studies (Wang. L. and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551).
  • the invention described herein obtained by homology searches and then confirmed by results from genetic, enzymology, and metabolic labeling experiments, demonstrates that WecA does not utilize UDP-GalNAc as a substrate, but that WecA is required to synthesize GlcNAc-P-P-Und which is then reversibly converted to GalNAc-P-P-Und by an epimerase encoded by the Z3206 gene in strain O157.
  • the Z3206 gene of the present invention belongs to a family of genes present in several strains that produce surface O-antigen repeat units containing GalNAc residues at their reducing termini (Table 1).
  • the Z3206 gene sequence is shown in SEQ ID NO: 1.
  • Previous reports identified two genes from E. coli O55 (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625) and E. coli O86 (Gun, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Comm., 356, 604-609), E. coli O55 gne and E.
  • E. coli O86 gne1 respectively, that are 100% identical to a Z3206 gene (Table 1).
  • the E. coli O55 gne gene sequence is shown as SEQ ID NO: 3
  • E. coli O86 gne1 gene sequence is shown as SEQ ID NO: 5.
  • E. coli O55 gne and E. coli O86 gne1 also encode epimerases capable of converting GlcNAc-P-P-Und to GalNAc-P-P-Und in strains O55 and O86, respectively, which also produce O-antigen repeat units with GalNAc at the reducing termini (Table 1).
  • E. coli O55 gne gene from strain O55 was also assayed for epimerase activity by incubating crude extracts with UDP-GalNAc and indirectly assaying the conversion to UDP-GlcNAc by measuring an increase in reactivity with p-dimethylaminobenzaldehyde after acid hydrolysis. In both studies, the formation of the product was based on changes in reactivity with p-dimethylaminobenzaldehyde, and not a definitive characterization of the sugar nucleotide end product.
  • a 90% pure polyhistidine-tagged E. coli O86 gne1 was also shown to have a low level of UDP-glucose epimerase activity relative to Gne2 in a coupled assay.
  • an embodiment of the invention is directed to a recombinant prokaryotic biosynthetic system containing Z3206 gene, E. coli O55 gne gene or E. coli O86 gne1 gene that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
  • E. coli O86 which synthesizes an O-antigen containing two GalNAc residues, which would presumably require UDP-GalNAc as the glycosyl donor for the additional, non-reducing terminal GalNAc, also possesses an additional GlcNAc 4-epimerase gene, termed gne2, within the O-antigen gene cluster (Guo. B, Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609).
  • This additional epimerase gene has high homology with the galE gene of the colanic acid gene cluster and appears to be a UDP-GlcNAc 4-epimerase capable of synthesizing UDP-GalNAc.
  • the Z3206 gene appears to be highly conserved in E. coli O-serotypes initiated with GalNAc.
  • Z3206 was detected in 16 of the 22 E. coli strains that were known to contain GalNAc, and in only 4 of the 40 strains lacking GalNAc.
  • E. coli O157 Z3206 has significant sequence homology with the short-chain dehydrogenase/reductase family of oxido-reductases including the GXXGXXG motif (Rossman fold), consistent with the NAD(P) binding pocket (Allard, S. T. M., Giraud, M. F., and Naismith, J. H. (2001) Cell. Mol. Life Sci. 58, 1650-1655) and the conserved SX 24 YX 3 K sequence, involved in proton abstraction and donation (Field, R. A. and Naismith, J. H. (2003) Biochemistry 42, 7637-7647).
  • Arabinosyl-P-decaprenol is formed via a two-step oxidation/reduction reaction requiring two mycobacterial proteins, Rv3790 and Rv3791. Although epimerization was modestly stimulated by the addition of NAD and NADP, neither Rv3790 nor Rv3791 contain either the Rossman fold or the SX 24 YXXXK motif, characteristic of the short-chain dehydrogenase/reductase family (Allard, S. T. M., Giraud, M.-F. and Naismith, J. H. (2001) Cell. Mal. Life Sci. 58, 1650-1655; Field, R. A. and Naismith, J. H. (2003) Biochemistry 42, 7637-7647).
  • An embodiment of the present invention involves an epimerase that converts GlcNAc-P-P-Und (N-acetylglucosaminylpyrophosphorylundecaprenol) to GalNAc-P-P-Und (N-acetylgalactosaminylpyrophosphorylundecaprenol) in E. coli O157.
  • a still further exemplary aspect of the invention involves the initiation of synthesis of lipid-bound repeating tetrasaccharide having GalNAc at the reducing terminus.
  • Campylobacter jejuni contains a general N-linked protein glycosylation system.
  • Various proteins of C. jejuni have been shown to be modified by a heptasaccharide.
  • This heptasaccharide is assembled on undecaprenyl pyrophosphate, the carrier lipid, at the cytoplasmic side of the inner membrane by the stepwise addition of nucleotide activated monosaccharides catalyzed by specific glycosyltransferases.
  • the lipid-linked oligosaccharide then flip-flops (diffuses transversely) into the periplasmic space by a flippase, e.g., PglK.
  • the oligosaccharyltransferase e.g., PglB
  • the oligosaccharyltransferase catalyzes the transfer of the oligosaccharide from the carrier lipid to asparagine (Asn) residues within the consensus sequence D/E-X-N-Z-S/T, where the X and Z can be any amino acid except Pro.
  • the glycosylation cluster for the heptasaccharide had been successfully transferred into E. coli and N-linked glycoproteins of Campylobacter had been produced.
  • PglB does not have a strict specificity for the lipid-linked sugar substrate.
  • the antigenic polysaccharides assembled on undecaprenyl pyrophosphate are captured by PglB in the periplasm and transferred to a protein carrier (Feldman, 2005; Wacker, M., et al., Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl. Acad Sci USA. 2006. 103(18): p.
  • the enzyme will also transfer a diverse array of undecaprenyl pyrophosphate (UPP) linked oligosaccharides if they contain an N-acetylated hexosamine at the reducing terminus.
  • UPP undecaprenyl pyrophosphate
  • one embodiment of the invention involves a recombinant N-glycosylated protein comprising: one or more of an introduced consensus sequence.
  • D/E-X-N-Z-S/T wherein X and Z can be any natural amino acid except proline; and an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus and N-linked to each of said one or more introduced consensus sequences by an N-glycosidic linkage.
  • the present invention is directed to a recombinant prokaryotic biosynthetic system for producing all or a portion of a polysaccharide comprising an epimerase that synthesizes N-acetylgalactosamine (“GalNAc”) on undecaprenyl pyrophosphate.
  • GalNAc N-acetylgalactosamine
  • all or a portion of the polysaccharide is antigenic.
  • the present invention is directed to a recombinant prokaryotic biosynthetic system comprising: an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate; and glycosyltransferases that synthesize a polysaccharide having GalNAc at the reducing terminus.
  • An embodiment of the invention further comprises a recombinant prokaryotic biosynthetic system comprising an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate and glycosyltransferases that synthesize a polysaccharide, wherein said polysaccharide has the following structure: ⁇ -D-PerNAc- ⁇ -L-Fuc- ⁇ -D-Glc- ⁇ -D-GalNAc; and wherein GalNAc is at the reducing terminus of said polysaccharide.
  • the recombinant prokaryotic biosynthetic system can produce mono-, oligo- or polysaccharides of various origins.
  • Embodiments of the invention are directed to oligo- and polysaccharides of various origins.
  • Such oligo- and polysaccharides can be of prokaryotic or eukaryotic origin.
  • Oligo- or polysaccharides of prokaryotic origin may be from gram-negative or gram-positive bacteria.
  • the oligo- or polysaccharide is from E. coli .
  • said oligo- or polysaccharide is from E. coli O157.
  • said oligo- or polysaccharide comprises the following structure: ⁇ -D-PerNAc- ⁇ -L-Fuc-P-D-Glc- ⁇ -D-GalNAc.
  • the oligo- or polysaccharide is from Shigella flexneri .
  • the oligo- or polysaccharide is from Shigella flexneri 6.
  • said oligo- or polysaccharide comprises the following structure:
  • Embodiments of the invention further include proteins of various origins.
  • proteins include proteins native to prokaryotic and eukaryotic organisms.
  • the protein carrier can be, for example, AcrA or a protein carrier that has been modified to contain the consensus sequence for protein glycosylation, i.e., D/E-X-N-Z-S/T, wherein X and Z can be any amino acid except proline (e.g., a modified Exotoxin Pseudomonas aeruginosa (“EPA”)).
  • EPA Exotoxin Pseudomonas aeruginosa
  • the protein is Pseudomonas aeruginosa EPA.
  • a further aspect of the invention involves novel bioconjugate vaccines having GalNAc at the reducing terminus of the N-glycan.
  • An additional embodiment of the invention involves a novel approach for producing such bioconjugate vaccines that uses recombinant bacterial cells that contain an epimerase which produces GalNAc on undecaprenyl pyrophosphate.
  • bioconjugate vaccines can be used to treat or prevent bacterial diseases.
  • bioconjugate vaccines may have therapeutic and/or prophylactic potential for cancer or other diseases.
  • a typical vaccination dosage for humans is about 1 to 25 ⁇ g, preferably about 1 ⁇ g to about 10 ⁇ g, most preferably about 10 ⁇ g.
  • a vaccine such as a bioconjugate vaccine of the present invention, includes an adjuvant.
  • the present invention is directed to an expression system for producing a bioconjugate vaccine against at least one bacterium comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier; at least one polysaccharide gene cluster from the at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and a nucleic acid sequence encoding an epimerase.
  • the polysaccharide gene cluster encodes an antigenic polysaccharide.
  • the present invention is directed to an expression system for producing a bioconjugate vaccine against at least one bacterium comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier comprising at least one inserted consensus sequence, D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except proline; at least one polysaccharide gene cluster from the at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and the Z3206 gene.
  • the polysaccharide gene cluster encodes an antigenic polysaccharide.
  • the present invention is directed to a bioconjugate vaccine comprising: a protein carrier; at least one immunogenic polysaccharide chain linked to the protein carrier, wherein said polysaccharide has GalNAc at the reducing terminus, and further wherein said GalNAc is directly linked to the protein carrier; and an adjuvant.
  • the present invention is directed to a bioconjugate vaccine comprising: a protein carrier comprising at least one inserted consensus sequence, D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except proline; least one immunogenic polysaccharide from at least one bacterium, linked to the protein carrier, wherein the at least one immunogenic polysaccharide contains GalNAc at the reducing terminus directly linked to the protein carrier; and, optionally, an adjuvant.
  • Another embodiment of the invention is directed to a method of producing a bioconjugate vaccine, said method comprising: assembling a polysaccharide having GalNAc at the reducing terminus in a recombinant organism through the use of glycosyltransferases; linking said GalNAc to an asparagine residue of one or more target proteins in said recombinant organism, wherein said one or more target proteins contain one or more T-cell epitopes.
  • the present invention is directed to a method of producing a bioconjugate vaccine, said method comprising: introducing genetic information encoding for a metabolic apparatus that carries out N-glycosylation of a target protein into a prokaryotic organism to produce a modified prokaryotic organism; wherein the genetic information required for the expression of one or more recombinant target proteins is introduced into said prokaryotic organism; wherein the genetic information required for the expression of E.
  • the metabolic apparatus comprises glycosyltransferases of a type that assembles a polysaccharide having GalNAc at the reducing terminus on a lipid carrier, and an oligosaccharyltransferase, the oligosaccharyltransferase covalently linking GalNAc of the polysaccharide to an asparagine residue of the target protein, and the target protein containing at least one T-cell epitope; producing a culture of the modified prokaryotic organism; and obtaining glycosylated proteins from the culture medium.
  • a further aspect of the present invention relates to a pharmaceutical composition.
  • An additional aspect of the invention involves a pharmaceutical composition comprising at least one N-glycosylated protein according to the invention.
  • the preparation of medicaments comprising proteins would be well known in the art.
  • a still further aspect of the invention relates to a pharmaceutical composition comprising an antibiotic that inhibits an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
  • the pharmaceutical composition of the invention comprises a pharmaceutically acceptable excipient, diluent and/or adjuvant.
  • excipients Suitable excipients, diluents and/or adjuvants are well-known in the art.
  • An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient.
  • An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient.
  • One of ordinary skill in the art in the field of preparing compositions can readily select the proper form and mode of administration depending upon the particular characteristics of the product selected, the disease or condition to be treated, the stage of the disease or condition, and other relevant circumstances (Remington's Pharmaceutical Sciences, Mack Publishing Co. (1990)).
  • the proportion and nature of the pharmaceutically acceptable diluent or excipient are determined by the solubility and chemical properties of the pharmaceutically active compound selected, the chosen route of administration, and standard pharmaceutical practice.
  • the pharmaceutical preparation may be adapted for oral, parenteral or topical use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.
  • the pharmaceutically active compounds of the present invention while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable salts, such as acid addition salts or base addition salts, for purposes of stability, convenience of crystallization, increased solubility, and the like.
  • sequences are at least 85% homologous. In another embodiment, such sequences are at least 90% homologous. In still further embodiments, such sequences are at least 95% homologous.
  • a variant of a nucleic acid can be substantially identical, that is, at least 80% identical, for example, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99.5% identical, to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO:
  • Nucleic acid variants of a sequence that contains SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 28 or SEQ ID NO: 29 include nucleic acids with a substitution, variation, modification, replacement, deletion, and/or addition of one or more nucleotides (for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175 or 200 nucleotides) from a sequence that contains SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ
  • such variants include nucleic acids that encode an epimerase which converts GlcNAc-P-P-Und to GalNAc-P-P-Und and that i) are expressed in a host cell, such as, for example, E. coli and ii) are substantially identical to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9, or parts thereof.
  • Nucleic acids described herein include recombinant DNA and synthetic (e.g., chemically synthesized) DNA. Nucleic acids can be double-stranded or single-stranded. In the case of single-stranded nucleic acids, the nucleic acid can be a sense strand or antisense strand. Nucleic acids can be synthesized using oligonucleotide analogs or derivatives.
  • Plasmids that include a nucleic acid described herein can be transfected or transformed into host cells for expression. Techniques for transfection and transformation are known to those of skill in the art.
  • E. coli strains PR4019 (Rush, J. S., Rick, P. D. and Waechter, C. J. (1997) Glycobiology, 7, 315-322) and PR21546 (Meier-Dieter, U., Starman, R., Barr, K., Mayer, H. and Rick, P. I). (1990) J. Biol. Chem., 265, 13490-13497) were generous gifts from Dr. Paul Rick, Bethesda, Md., and E. coli O157:H45 (Stephan, R., Borel, N., Zweifel, C., Blanco, M, and Blanco, J. E. (2004) BMC Microbiol 4:10) was a gift from Dr. Claudio Zweifel, Veterinary Institute, University of Zurich, E. coli DH5 ⁇ (Invitrogen) was used as the host for cloning experiments and for protein glycosylation analysis. Plasmids used are listed in Table 2.
  • [1,6- 3 H]GlcNAc (30 Ci/mmol), UDP-[1- 3 H]GlcNAc (20 Ci/mmol) and UDP-[6- 3 H]GalNAc (20 Ci/mmol) were obtained from American Radiolabeled Chemicals (St. Louis, Mo.).
  • Quantum 1 silica gel G thin layer plates are a product of Quantum Industries (Fairfield, N.J.), and Baker Si250 Silica Gel G plates are manufactured by Mallinekrodt Chemical Works.
  • Yeast extract and Bacto-peptone were products of BD Biosciences. All other chemicals were obtained from standard commercial sources. Trimethoprim (50 ⁇ g/ml), chloramphenicol (20 ⁇ g/ml), ampicillin (100 ⁇ g/ml), and kanamycin (50 ⁇ g/ml) were added to the media as needed.
  • E. coli strain DH5 ⁇ was used for DNA cloning experiments and constructed plasmids were verified by DNA sequencing.
  • the Z3206 gene was amplified from E. coli O157:H45 by PCR with oligonucleotides Z3206-Fw and Z3206-RvHA (AAA CCCGGG ATGAACGATAACG TTTTGCTC (SEQ ID NO: 17) and AAA TCTAGA TTAAGCGTAATCTGGAACATCGTATGGGTACTCAGAAACAA ACGTTATGTC (SEQ ID NO: 18): restriction sites are underlined).
  • the PCR fragment was digested with SmaI and XbaI and ligated into SmaI-XbaI cleaved pMLBAD vector (Lefebre, M. D. and Valvano M. A. (2002) Appl Environ Microbiol 68: 5956-5964). This resulted in plasmid pMLBAD:Z3206 (SEQ ID NO: 23) encoding Z3206 with a C-terminal hemagglutinin tag.
  • the gne gene was amplified from pACYCpgl (Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wrenn, B. W., Aebi, M.
  • the PCR product was digested with NcoI and XbaI and ligated into the same sites of pMLBAD to generate plasmid pMLBAD:gne (SEQ ID NO: 24) which encodes One with a C-terminal hemagglutinin tag (Table 2).
  • E. coli strains were cultured in Luria-Bertani medium (1% yeast extract, 2% Bacto-peptone, 0.6% NaCl) at 37° C. with vigorous shaking. Arabinose inducible expression was achieved by adding arabinose at a final concentration of 0.02-0.2% (w/v) to E. coli cells grown up to an A 600 of 0.05-0.4. The same amount of arabinose was added again 5 h post-induction, and incubation continued for 4-15 h.
  • Luria-Bertani medium 1% yeast extract, 2% Bacto-peptone, 0.6% NaCl
  • Protein concentrations were determined using the BCA protein assay (Pierce) after precipitation of membrane proteins with deoxycholate and trichloroacetic acid according to the Pierce Biotechnology bulletin “Eliminate Interfering Substances from Samples for BCA Protein Assay.” Samples were analyzed for radioactivity by scintillation spectrometry in a Packard Tri-Carb 2100TR liquid scintillation spectrometer after the addition of 0.5 ml of 1% SDS and 4 ml of Econosafe Economical Biodegradable Counting Mixture (Research Products International, Corp., Mount Prospect, Ill.).
  • GalNAc-P-P-Und is formed by the epimerization of the 4-OH of GlcNAc-P-P-Und catalyzed by the previously unknown action of a 4-epimerase.
  • GlcNAc-P-P-Und is formed by the transfer of GlcNAc-P from UDP-GlcNAc, catalyzed by WecA, and then GlcNAc-P-P-Und is epimerized to GalNAc-P-P-Und by GlcNAc-P-P-Und-4-epimerase, which was a previously unknown pathway ( FIG. 2 .
  • the gene encoding a candidate for the GlcNAc-P-P-Und 4-epimerase was identified by DNA homology searches. Homology searches were performed using the U.S. National Library of Medicine databases found at http:blast.ncbi.nlm.nih.govBlast.cgi. Genomic sequences of different bacteria encoding O antigen repeating units having a GalNAc at the reducing terminus were screened. One group with a repeating unit containing a GalNAc at the reducing terminus, and a second group lacking a terminal GalNAc in the repeating unit were compared to identify potential epimerases. Using these criteria, Z3206 was identified as a candidate GlcNAc-P-P-Und 4-epimerase (Table 1).
  • the GlcNAc 4-epimerase genes present in E. coli strains with O-antigen repeat units containing GalNAc can be separated into two homology groups as shown in Table 1. It was surprisingly discovered that one homology group (containing grid) clearly was correlated with the presence of GalNAc as the initiating sugar on the O-antigen repeat unit. It was further surprisingly discovered that the second group (containing gne2) exhibits a high degree of similarity to the UDP-Glc epimerase, GalE, and is found in E. coli strains that do not initiate O-antigen repeat unit synthesis with GalNAc. Z3206 in E.
  • coli O157 a gene with a high degree of homology to gne1, was identified as a candidate GlcNAc-P-P-Und 4-epimerase.
  • the genomic location of the Z3206 gene is consistent with a role in this pathway, as it resides between galF of the O-antigen cluster and wcaM which belongs to the colanic acid cluster.
  • UDP-GalNAc is not a Substrate for E. coli WecA (GlcNAc-phosphotransferase)
  • E. coli WecA will utilize UDP-GalNAc as a GalNAc-P donor to form GalNAc-P-P-Und
  • membrane fractions from E. coli strains K12, PR4019, a WecA-overexpressing strain, and O157, which synthesize a tetrasaccharide O-antigen repeat unit with GalNAc at the reducing terminus presumably initiated by the synthesis of GalNAc-P-P-Und were incubated with UDP-[ 3 H]GalNAc.
  • Bacterial cells were collected by centrifugation at 1,000 ⁇ g for 10 min, washed once in ice-cold phosphate-buffered saline, once with cold water, and once with 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose. The cells were resuspended to a density of ⁇ 200 A 600 units/ml in 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 10 mM EDTA containing 0.2 mg/ml lysozyme, and incubated at 30° C. for 30 min.
  • Bacterial cells were recovered by centrifugation at 1,000 ⁇ g for 10 min, quickly resuspended in 40 volumes of ice-cold 10 mM Tris-HCl, pH 7.4, and placed on ice. After 10 min the cells were homogenized with 15 strokes with a tight-fitting Dounce homogenizer and supplemented with 0.1 mM phenylmethylsulfonyl fluoride and sucrose to a final concentration of 0.25 M. Unbroken cells were removed by centrifugation at 1,000 ⁇ g for 10 min, and cell envelopes were recovered by centrifugation at 40,000 ⁇ g for 20 min.
  • the membrane fraction was resuspended in 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 1 mM EDTA and again sedimented at 40,000 ⁇ g and resuspended in the same buffer to a protein concentration of ⁇ 20 mg/ml. Membrane fractions were stored at ⁇ 20° C. until needed.
  • Reaction mixtures for the synthesis of GlcNAc-P-P-Und and GalNAc-P-P-Und contained 50 mM Tris-HCl, pH 8, 40 mM MgCl 2 , 5 mM dithiothreitol, 5 mM 5′ AMP.
  • E. coli membrane fraction 50-200 ⁇ g membrane protein, and either 5 ⁇ m UDP-[ 3 H]GlcNAc/GalNAc (500-2500 dpm/pmol) in a total volume of 0.05 ml.
  • the lipid extract was dried under a stream of nitrogen, redissolved in a small volume of CHCl 3 /CH 3 OH (2:1), and spotted on a 10 ⁇ 20-cm borate-impregnated Baker Si250 silica gel plate, and the plate was developed with CHCl 3 , CH 3 OH, H 2 O, 0.2 M sodium borate (65:25:2:2).
  • Individual glycolipids were detected with a Bioscan AR2000 Imaging Scanner (Bioscan, Washington, D.C.). The biosynthetic rates for each glycolipid were calculated by multiplying the total amount of radioactivity in [ 3 H]GlcNAc/GalNAc-P-P-Und by the percentage of the individual [ 3 H] glycolipids.
  • GlcNAc-P-P-Und is formed by the transfer of GlcNAc-P from UDP-GlcNAc, catalyzed by WecA, and then GlcNAc-P-P-Und is epimerized by the action of a previously unknown 4-epimerase to produce GalNAc-P-P-Und.
  • [ 3 H]GalNAc-P-P-Und was clearly resolved from [ 3 H]GalNAc-P-P-Und by thin layer chromatography on borate-impregnated silica gel G (Kean, E. L. (1966) J. Lipid Res. 7, 149-452) and purified by preparative TLC as shown in FIG. 3A and FIG. 3B .
  • the glycans of the individual glycolipids were characterized by descending paper chromatography after release by mild acid hydrolysis.
  • the GlcNAc/GalNAc lipids were dried under a stream of nitrogen in a conical screw-cap tube and heated to 100° C., 15 min in 0.2 ml 0.01 M HCl. After hydrolysis the samples were applied to a 0.8-ml mixed-bed ion-exchange column containing 0.4 ml of AG50WX8 (H + ) and 0.4 ml AG1X8 (acetate form) and eluted with 1.5 ml water.
  • the eluate was dried under a stream of nitrogen, redissolved in a small volume of H 2 O (0.02 ml), spotted on a 30-cm strip of borate-impregnated Whatman No. 1 paper, and developed in descending mode with butanol/pyridine/water (6:4:3) for 40-50 h. After drying, the paper strips were cut into 1-cm zones and analyzed for radioactivity by scintillation spectrometry. GlcNAc and GalNAc standards were detected using an aniline-diphenylamine dip reagent (Schwimmer, S. and Benvenue, A. (1956) Science 123, 543-544).
  • Glycan products were converted to their corresponding alditols by reduction with 0.1 M NaBH 4 in 0.1 M NaOH (final volume ml) following mild acid hydrolysis as described above. After incubation at room temperature overnight, the reactions were quenched with several drops of glacial acetic acid and dried under a stream of nitrogen out of methanol containing 1 drop of acetic acid, several times.
  • the alditols were dissolved in water, desalted by passage over 0.5 ml columns of AG50WX8 (H+) and AG1X8 (acetate), dried under nitrogen, and spotted on 30-cm strips of Whatman No. 3MM paper. The Whatman No.
  • the paper strips were dipped in acetone, 0.1 M NaIO 4 (95:5), allowed to air dry for 3 min, and then dipped in acetone/acetic acid/H 2 O/o-tolidine (96:0.6:4.4:0.2 gm). Alditols containing cis-diols stain as yellow spots on a blue background.
  • MS Mass Spectrometry
  • E. coli strain 21546 (Meier-Dieter, U., Starman, R., Barr, K., Mayer, H. and Rick, P. D. (1990) J. Biol. Chem., 265, 13490-13497) expressing the Z3206 gene was labeled metabolically with [ 3 H]GlcNAc and analyzed for [ 3 H]GlcNAc/GalNAc-P-P-Und formation.
  • E. coli cells were cultured with vigorous shaking in Luria-Bertani medium at 37° C. to an A 600 of 0.5-1.
  • [ 3 H]GlcNAc was added to a final concentration of 1 ⁇ Ci/ml and the incubation was continued for 5 min at 37° C.
  • the incorporation of radiolabel into glycolipids was terminated by the addition of 0.5 gm/ml crushed ice, and the cultures were thoroughly mixed.
  • the bacterial cells were recovered by centrifugation at 4000 ⁇ g for 10 min, and the supernatant was discarded.
  • the cells were washed with ice-cold phosphate-buffered saline two times, resuspended by vigorous vortex mixing in 10 volumes (cell pellet) of methanol, and sonicated briefly with a probe sonicator at 40% full power. After sonication, 20 volumes of chloroform were added, and the extracts were mixed vigorously and allowed to stand at room temperature for 15 min. The insoluble material was sedimented by centrifugation, and the pellet was re-extracted with a small volume of CHCl 3 /CH 3 OH (2:1) twice. The combined organic extracts were then processed as described below.
  • GlcNAc/GalNAc-P-P-Und was extracted with CHCl 3 /CH 3 OH (2:1) and freed of water-soluble material by partitioning as described elsewhere (Waechter, C. J., Kennedy, J. L. and Harford, J. B. (1976) Arch. Biochem. Biophys. 174, 726-737).
  • the organic extract was then dried under a stream of nitrogen, and the bulk glycerophospholipids were destroyed by deacylation in toluene/methanol (1:3) containing 0.1 N KOH at 0° C. for 60 min.
  • the deacylation reaction was neutralized with acetic acid, diluted with 4 volumes of CHCl 3 /CH 3 OH (2:1), and washed with 15 volume of 0.9% NaCl.
  • the organic (lower) phase was washed with 13 volume of CHCl 3 , CH 3 OH, 0.9% NaCl (3:48:47), and the aqueous phase was discarded.
  • the organic phase was diluted with sufficient methanol to accommodate the residual aqueous phase in the organic phase and applied to a DEAE-cellulose column (5 ml) equilibrated with CHCl 3 /CH 3 OH (2:1).
  • E. coli strain 21546 was selected as the host for the Z3206 expression studies because a mutation in UDP-ManNAcA synthesis results in a block in the utilization of GlcNAc-P-P-Und for the synthesis of the enterobacterial common antigen. Because E. coli 21546 is derived from E. coli K12 it does not synthesize an O-antigen repeat as well (Stevenson, G., Neal, B., Liu, D., Hobbs, M., Packer, N. H., Batley, M., Redmond, J. W., Lindquist, L. and Reeves, P. (1994) J.
  • Example 5 Membrane Fractions from E. coli Cells Expressing the Z3206 Gene Synthesize GalNAc-P-P-Und In Vitro
  • GalNAc-P-P-Und is synthesized from GlcNAc-P-P-Und, and not by the action of WecA using UDP-GalNAc as a glycosyl donor, the effect of discharging endogenous, pre-labeled [ 3 H]GlcNAc-P-P-Und and [ 3 H]GalNAc-P-P-Und with UMP was examined.
  • the GlcNAc-phosphotransferase reaction catalyzed by WecA is freely reversible by the addition of excess UMP re-synthesizing UDP-GlcNAc and releasing Und-P.
  • membrane fractions from E. coli strain 21546 expressing Z3206 were pre-labeled for 10 min with UDP-[ 3 H]GlcNAc followed by the addition of 1 mM UMP, and the amount of each labeled glycolipid remaining was determined.
  • the results illustrated in FIG. 6A show the relative amounts of [ 3 H]GlcNAc-P-P-Und and [ 3 H]GalNAc-P-P-Und at the end of the 10 min labeling period. After incubation with 1 mM UMP for 1 min it can be seen that there is a substantial loss of [ 3 H]GalNAc-P-P-Und, whereas the [ 3 H]GalNAc-P-P-Und peak is relatively unchanged ( FIG.
  • Example 7 Interconversion of Exogenous, Purified [ 3 H]GlcNAc-P-P-Und and [ 3 H]GalNAc-P-P-Und Catalyzed by Membranes from E. Coli Cells Expressing Z3206
  • the glycolipids are unaffected by incubation with membrane fractions from E. coli 21546.
  • incubation of the purified glycolipids with membrane fractions from E. coli 21546 expressing Z3206 catalyzes the conversion of exogenous [ 3 H]GlcNAc-P-P-Und to [ 3 H]GalNAc-P-P-Und ( FIG. 7C ) and the conversion of [ 3 H]GalNAc-P-P-Und to [ 3 H]GlcNAc-P-P-Und ( FIG. 7F ).
  • Example 8 E. coli Z3206 is not a UDP-GlcNAc 4-Epimerase
  • the N-glycosylation apparatus from C. jejuni was expressed in E. coli .
  • glycosylation of the target protein AcrA is dependent on the presence of the pgl locus (Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wrenn, B. W., Aebi, M.
  • E. coli cell extracts were prepared for immunodetection analysis using cells at a concentration equivalent to 1 A 600 unit that were resuspended in 100 ⁇ l of SDS loading buffer (Laemmli, U. (1970) Nature 227, 680-685). Aliquots of 10 ⁇ l were loaded on 10% SDS-PAGE. Periplasmic extracts of E. coli cells were prepared by lysozyme treatment (Feldman, M. F., Wacker, M., Hernandez, M., Hitchen, P. G., Marolda, C. L., Kowarik, M., Morris, H. R., Dell, A., Valvano, M. A., Aebi, M.
  • the glycosylated protein which migrates slower than the unglycosylated form, was formed only when cells expressing pgl locus ⁇ gne were complemented by One (lane 2).
  • Z3206 was unable to restore glycosylation of the reporter glycoprotein ( FIG. 8 , lane 1). Accordingly, Z3206 does not complement glycosylation of AcrA in a Gne dependent glycosylation system. Expression of Gne and membrane-associated Z3206 were confirmed by immunodctection.
  • FIG. 9 are depicted some of the genes required for the biosynthesis of the Shigella flexneri 6 O-antigen: genes encoding enzymes for biosynthesis of nucleotide sugar precursors; genes encoding glycosyltransferases; genes encoding O antigen processing proteins; and genes encoding proteins responsible for the O-acetylation.
  • the structure of the O antigen has been elucidated by Dmitriev, B. A. et al (Dmitriev. B. A., et al Somatic Antigens of Shigella Eur J Biochem, 1979. 98: p. 8; Liu B et al Structure and genetics of Shigella O antigens FEMS Microbiology Review, 2008. 32: p. 27).
  • S. flexneri 6 genomic DNA was isolated using a Macherey-Nagel NucleoSpin® Tissue Kit following the protocol for DNA isolation from bacteria. DNA was isolated from five S. flexneri 6 overnight cultures at 2 ml each and final elution was done with 100 ⁇ l elution buffer (5 mM Tris/HCl, pH 8.5). The eluted fractions were pooled, precipitated by isopropanol and the final pellet was resuspended in 52 ⁇ l TE buffer of which the total volume was subjected to end-repair according to the protocol given by CopyControlTM Fosmid Library Production Kit (EPICENTRE).
  • EPICENTRE CopyControlTM Fosmid Library Production Kit
  • End-repaired DNA was purified on a 1% low melting point agarose gel run with 1 ⁇ TAE buffer, recovered and precipitated by ethanol as described in the kit protocol. Resuspension of the precipitated DNA was done in 7 ⁇ l TE buffer of which 0.15 ⁇ l DNA was ligated into pCC1FOS (SEQ ID NO: 27) according to the EPICENTRE protocol. Packaging of the ligation product into phage was performed according to protocol and the packaged phage was diluted 1:1 in phage dilution buffer of which 10 ⁇ l were used to infect 100 ⁇ l EPI300-T1 cells that were previous grown as described by EPICENTRE. Cells (110 ⁇ l) were plated six times with approximately 100 colonies per plate such that the six plates contain the entire S. flexneri 6 genomic library. Plates were developed by colony blotting and positive/negative colonies were western blotted and silver stained.
  • a nitrocellulose membrane was laid over the solid agar plate, removed, washed three times in 1 ⁇ PBST and treated in the same manner.
  • the membrane was first blocked in 10% milk for one hour at room temperature after which it was incubated for one hour at room temperature in 2 ml 1% milk (in PBST) with the anti-type VI antiserum (primary antibody). After three washes in PBST at 10 minutes each, the membrane was incubated for another hour at room temperature in the secondary antibody, 1:20000 peroxidase conjugated goat-anti-rabbit IgG (BioRad) in 2 ml 1% milk (in PBST).
  • the membrane was developed in a UVP Chemi Doc Imaging System with a 1:1 mix of luminol and peroxide buffer provided by the SuperSignal® West Dura Extended Duration Substrate Kit (Thermo Scientific).
  • the clone reacting with S. flexneri 6 antiserum following production of a S. flexneri 6 genomic library was sequenced by primer walking out of the region previously sequenced by Liu et al. (Liu et al., 2008) reaching from rmlB to wtbZ ( FIG. 9 ).
  • Primers rmlB_rev and wfbZ_fwd S. flexneri —Z3206) annealed in rmlB and wfbZ and were used to sequence the insert of the clone until wcaM and hisI/F were reached ( S. flexneri +Z3206), respectively ( FIG. 10 ).
  • LPS is produced in E. coli cells + or ⁇ Z3206.
  • the O antigen can be produced without Z3206 however with lower production yield, which indicates that the efficiency of polysaccharide production without the epimerase (Z3206) is lower.
  • E. coli cells expressing S. flexeneri antigen+/ ⁇ Z3206 were pelleted, washed once in 50 ml 0.9% NaCl and the final pellets were lyophilized overnight. The pellets were washed once in 30 ml 85-95% methanol, reextracted with 10:10:3 chloroform-methanol-water (v/v/v) and the extracts were converted to a two-phase Bligh/Dyer system by addition of water, resulting in a final ratio of 10:10:9 (C:M:W).
  • Phases were separated by centrifugation and the upper aqueous phases were loaded each on a C18 Sep-Pak cartridge conditioned with 10 ml methanol and equilibrated with 10 ml 3:48:47 (C:M:W). Following loading, the cartridges were washed with 10 ml 3:48:47 (C:M:W) and eluted with 5 ml 10:10:3 (C:M:W). 20 OD samples of the loads, flow-throughs, washes and elutions of the C18 column were dried in an Eppendorf Concentrator Plus, washed with 250 ⁇ l methanol, reevaporated and washed a further three times with 30 ⁇ l ddH2O.
  • glycolipid samples from the wash of the C18 column were hydrolysed by dissolving the dried samples in 2 ml n-propanol:2 M trifluoroacetic acid (1:1), heating to 50° C. for 15 minutes and evaporating to dryness under N2.
  • the plasmids expressing the S. flexneri O-antigen with (SEQ ID NO: 29) or without (SEQ ID NO: 28) Z3206 were transformed into SCM3 cells ( FIG. 10 ). Traces at late elution volumes shows a difference between the curves of the two samples containing the S. flexneri O antigen+/ ⁇ Z3206 ( FIG. 12 ). This difference in the elution pattern can be explained by a different oligosaccharide structure carrying a different monosaccharide at the reducing end: GlcNAc or GalNAc depending on the presence of the epimerase (Z3206).
  • the O antigen is still produced and detected, but with lower production yield, which indicates that the efficiency of polysaccharide production without the epimerase is lower.
  • PRT Organism Shigella boydii O18 Sequence: SEQ ID NO: 8 mndnvlliga sgfvgtrile taiadfnikn ldkggshfyp aitqigdvrd qqaldqalag fdtvvliaae hrddvsptsi yydvnvqgtr nvlaamekng vkniiftssv avyglnkhnp denhphdpfn hygkskwqae evirewynka ptersltiir ptvifgernr gnvynllkqi aggkfmmvga gtnyksmayv gnivefikyk lknvaagyev ynyvdkpdln mn

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The invention is directed to bioconjugate vaccines comprising N-glycosylated proteins. Further, the present invention is directed to a recombinant prokaryotic biosynthetic system comprising nucleic acids encoding an epimerase that synthesizes an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus. The invention is further directed to N-glycosylated proteins containing an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus and an expression system and methods for producing such N-glycosylated proteins.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/272,931, filed Nov. 19, 2009, herein incorporated by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates to the use of a biosynthetic system and proteins for preparing a vaccine. In addition, the invention relates to a recombinant prokaryotic biosynthetic system having an epimerase that initiates the synthesis of an oligo- or polysaccharide with a specified monosaccharide at the reducing terminus. The invention further relates to N-glycosylated proteins produced with glycans in an expression system and bioconjugate vaccines made from said N-glycosylated proteins comprising immunogenic glycans, and provides methods for producing N-glycosylated proteins.
BACKGROUND OF THE INVENTION
Glycoproteins are proteins that have one or more covalently attached sugar polymers. N-linked protein glycosylation is an essential and conserved process occurring in the endoplasmic reticulum of eukaryotic organisms. It is important for protein folding, oligomerization, stability, quality control, sorting and transport of secretory and membrane proteins (Helenius. A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019-1049).
Protein glycosylation has a profound influence on the immunogenicity, the stability and the half-life of a protein. In addition, glycosylation can assist the purification of proteins by chromatography, e.g. affinity chromatography with lectin ligands bound to a solid phase interacting with glycosylated moieties of the protein. It is therefore established practice to produce many glycosylated proteins recombinantly in eukaryotic cells to provide biologically and pharmaceutically useful glycosylation patterns.
WO 200307467 (Aebi et al.) demonstrated that the food-borne pathogen Campylobacter jejuni, which is a bacterium, could N-glycosylate its proteins, which was a unique feature among known prokaryotic organisms except for certain species of archaea. The machinery required for glycosylation is encoded by 12 genes that are clustered in the so-called pgl locus. Disruption of N-glycosylation affects invasion and pathogenesis of C. jejuni but is not lethal as in most eukaryotic organisms (Burda P. and M. Aebi, (1999). The dolichol pathway of N-linked glycosylation. Biochem Biophys Acta 1426(2):239-57). It is possible to reconstitute the N-glycosylation of C. jejuni proteins by recombinantly expressing the pgl locus and acceptor glycoprotein in E. coli the same time (Wacker et al. (2002). N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790-1793).
N-glycans have a glycan attached to a consensus sequence in a protein. The known N-glycosylation consensus sequence in a protein allows for the N-glycosylation of recombinant target proteins in prokaryotic organisms. Such organisms comprise an oligosaccharyl transferase (“OT”; “OTase”), such as, for example, an oligosaccharyl transferase of C. jejuni, which is an enzyme that transfers the glycan to the consensus sequence of the protein.
WO 200307467 (Aebi et al.) teaches a prokaryotic organism into which is introduced a nucleic acid encoding for (i) specific glycosyltransferases for the assembly of an oligosaccharide on a lipid carrier, (ii) a recombinant target protein comprising a consensus sequence “N-X-S/T”, wherein X can be any amino acid except proline, and (iii) an oligosaccharyl transferase, such as, for example, an oligosaccharyl transferase of C. jejuni that covalently links said oligosaccharide to the consensus sequence of the target protein. Said prokaryotic Organism produces N-glycans with a specific structure which is defined by the type of the specific glycosyltransferases.
WO 2006/119987 (Aebi et al.) describes proteins, as well as means and methods for producing proteins, with efficiency for N-glycosylation in prokaryotic organisms in vivo. It further describes an efficient introduction of N-glycans into recombinant proteins for modifying immunogenicity, stability, biological, prophylactic and/or therapeutic activity of said proteins, and the provision of a host cell that efficiently displays recombinant N-glycosylated proteins of the present invention on its surface. In addition, it describes a recombinant N-glycosylated protein comprising one or more of the following N-glycosylated optimized amino acid sequence(s):
D/E-X-N-Z-S/T (optimized consensus sequence),
wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated partial amino acid sequence(s) is introduced. The introduction of specific partial amino acid sequence(s) (optimized consensus sequence(s)) into proteins leads to proteins that are efficiently N-glycosylated by an oligosaccharyl transferase in these introduced positions.
The biosynthesis of different polysaccharides is conserved in bacterial cells. The polysaccharides are assembled on carrier lipids from common precursors (activated sugar nucleotides) at the cytoplasmic membrane by different glycosyltransferases with defined specificity. Lipopolysaccharides (“LPS”) are provided in gram-negative bacteria only, e.g. Shigella spp., Pseudomonas spp. and E. coli (ExPEC, EHEC).
The synthesis of LPS starts with the addition of a monosaccharide to the carrier lipid undecaprenyl phosphate (“Und-P-P”) at the cytoplasmic side of the membrane. The antigen is built up by sequential addition of monosaccharides from activated sugar nucleotides by different glycosyltransferases, and the lipid-linked polysaccharide is flipped through the membrane by a flippase. The antigen-repeating unit is polymerized by an enzymatic reaction. The polysaccharide is then transferred to the Lipid A by the Ligase WaaL forming the LPS that is exported to the surface, whereas the capsular polysaccharide is released from the carrier lipid after polymerization and exported to the surface. The biosynthetic pathway of these polysaccharides enables the production of LPS bioconjugates in vivo, capturing the polysaccharides in the periplasm to a protein carrier.
Such synthesized complexes of oligo- or polysaccharides (i.e., sugar residues) and proteins (i.e., protein carriers) can be used as conjugate vaccines to protect against a number of bacterial infections. Conjugate vaccines have been successfully used to protect against bacterial infections. The conjugation of an antigenic polysaccharide to a protein carrier is required for protective memory response, as polysaccharides are T-cell independent immunogens. Polysaccharides have been conjugated to protein carriers by different chemical methods, using activation reactive groups in the polysaccharide as well as the protein carrier.
Conjugate vaccines can be administered to children to protect against bacterial infections and also can provide a long lasting immune response to adults. Constructs of WO 2009/04074 (Fernandez, et al.) have been found to generate an IgG response in animals. It has been found that an IgG response to a Shigella O-specific polysaccharide-protein conjugate vaccine in humans correlates with immune protection in humans. (Passwell, J. H. et al., “Safety and Immunogenicity of Improved Shigella O-Specific Polysaccharide-Protein Conjugate Vaccines in Adults in Israel” Infection and Immunity, 69(3):1351-1357 (March 2001).) It is believed that the polysaccharide (i.e. sugar residues) triggers a short-term immune response that is sugar-specific. Indeed, the human immune system generates a strong response to specific polysaccharide surface structures of bacteria, such as O-antigens and capsular polysaccharides. However, since the immune response to polysaccharides is IgM dependent, the immune system develops no memory. The protein carrier that carries the polysaccharide triggers an IgG response that is T-cell dependent and that provides long lasting protection since the immune system develops memory.
E. coli O157 is an enterohemorrhagic strain responsible for approximately two-thirds of all recent cases of hemolytic-uremic syndrome and poses serious human health concerns (Law, D. (2000) J. App. Microbiol., 88, 729-745; Wang, L., and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551).
Escherichia coli strain O157 produces an O-antigen containing the repeating tetrasaccharide unit (4-N-acetyl perosamine→fucose→glucose→GalNAc) (α-D-PerNAc-α-L-Fuc-β-D-Glc-α-D-GalNAc) (Perry, M. B., MacLean, L. and Griffith, D. W. (1986) Biochem. Cell. Biol., 64, 21-28). The tetrasaccharide is preassembled on undecaprenyl pyrophosphate. The E. coli cell envelope contains an inner plasma membrane, a stress-hearing peptidoglycan layer and an asymmetric outer membrane consisting of a phospholipid inner monolayer and an outer monolayer composed of bacterial LPS. LPS contains three components, the lipid A anchor, the 3-deoxy-D-manno-oct-2-ulosonic acid-containing core, and the O-antigen region (see: Raetz, C. R. H. and Whitfield, C. (2002) Annu. Rev. Biochem., 71, 635-700; Whitfield, C. (2006) Ann. Rev. Biochem. 75, 39-68; Samuel, G. and Reeves, P. R. (2003) Carbohydrate Research, 338, 2503-2519; and refs, therein for reviews on the assembly of O-antigens of bacterial LPS).
The O-antigen components of bacterial LPS are large, extremely diverse polysaccharides that can be either homopolymeric, composed of a single repeating monosaccharide, or heteropolymeric, containing 10-30 repeats of 3-6 sugar units (Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D., Raetz, C. R. H., and Rick, P. D. (1996) Trends Microbial., 4, 495-503). O-Antigens are, Thus, the Dominant Feature of the bacterial cell surface and constitute important determinants of virulence and pathogenicity (Law, D. (2000) J. App. Microbiol., 88, 729-745; Spears, K. J., Roe, A. J. and Golly, D. L. (2006) FEMS Microbiol. Lett., 255, 187-202; Liu, B., Knirel, Y. A., Feng, L., Perepelov, A. V., Senchenkova, S. N., Wang, Q., Reeves, P. R. and Wang, L (2008) FEMS Microbiol. Rev. 32, 627-653; Stenutz, R., Weintraub, A. and Widmalm, G. (2006) FEMS Microbiol. Rev. 30, 382-403). E. coli strains with more than 180 individual O-serotypes, attributed to unique O-antigen structures, have been identified (Stenutz, R., Weintraub, A. and Widmalm, G. (2006) FEMS Microbiol. Rev. 30, 382-403).
O-antigen repeat units are pre-assembled on the cytosolic face of the inner membrane attached to undecaprenyl pyrophosphate. The lipid-linked repeat units diffuse transversely (flip-flop) to the periplasmic surface of the inner membrane and are polymerized before transport to the outer membrane and ligation to LPS. Most heteropolymeric O-antigen repeat units have either N-acetylglucosamine (“GlcNAc”) or N-acetylgalactosamine (“GalNAc”) at the reducing terminus.
It had been assumed that the biosynthesis of the lipid intermediates is initiated by the transfer of GlcNAc-9 or GalNAc-P from their respective sugar nucleotide derivatives to undecaprenyl monophosphate (“Und-P”) catalyzed by WecA (Samuel, G. and Reeves, P. R. (2003) Carbohydrate Research, 338, 2503-2519; Alexander, D. C. and Valvano, M. A. (1994) J. Bacteriol., 176, 7079-7084; Zhang, L., Radziejewska-Lebrecht, J., Krajewska-Pietrasik, D., Tolvanen, P. and Skurkik. M. (1997) Mol. Microbiol. 23, 63-76; Amor, P. A. and Whitfield, C. (1997) Mol. Microbiol. 26 (145-161); Wang, L. and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551). Although the properties and specificity of the GlcNAc-phosphotransferase activity of WecA have been characterized (Rush, J. S., Rick, P. D. and Waechter, C. J. (1997) Glycobiology, 7, 315-322), the conclusion that WecA catalyzes the synthesis of GalNAc-P-P-Und was based on genetic studies (Wang, L. and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551). Such earlier genetic studies indicated that the biosynthesis of the lipid-linked tetrasaccharide intermediate was initiated by the enzymatic transfer of GalNAc-P from UDP-GalNAc to Und-P catalyzed by WecA (Wang, L. and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551). However, there was no direct enzymological evidence demonstrating that WecA utilizes UDP-GalNAc as a GalNAc-P donor.
Furthermore, the E. coli O55 gne and gne1 genes were previously proposed to encode a UDP-GlcNAc 4-epimerase (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625; Guo, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609). Previous reports identified two genes from E. coli O55 (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625) and E. coli O86 (Guo, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609), E. coli O55 gne and E. coli O86 gne1, respectively, that are 100% identical to a Z3206 gene within the same gene family.
Accordingly, one of skill would have been led to believe that the Z3206 gene also encodes a UDP-GlcNAc/UDP-GalNAc epimerase.
BRIEF SUMMARY OF THE INVENTION
It has now been surprisingly discovered that an epimerase encoded by the 3206 gene in E. coli O157 catalyzes a reaction that synthesizes N-acetylgalactosamine (“GalNAc”) undecaprenyl pyrophosphate, which initiates the formation of an oligo- or polysaccharide.
In one aspect, the present invention relates to a recombinant prokaryotic biosynthetic system that produces all or a portion of a polysaccharide comprising an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate. The invention further includes glycosyltransferases that synthesize all or a portion of a polysaccharide having GalNAc at the reducing terminus, and still further includes glycosyltransferases that synthesize all or a portion of an antigenic polysaccharide having GalNAc at the reducing terminus.
In another aspect, the invention is directed to an epimerase to produce GalNAc on undecaprenyl pyrophosphate, and, in a further aspect, the epimerase is encoded by the Z3206 gene.
In an additional aspect, the present invention is directed to an expression system for producing an N-glycosylated protein comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier; at least one oligo- or polysaccharide gene cluster from at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and a nucleic acid sequence encoding an epimerase.
In a still further aspect, the instant invention is directed to a recombinant prokaryotic biosynthetic system comprising Z3206 gene which encodes an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
In yet an additional aspect, the present invention is directed to a recombinant prokaryotic biosynthetic system comprising E. coli O55 gne gene or E. coli O86 gne1 gene which encodes an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
In yet another aspect, the present invention relates to an N-glycosylated protein comprising at least one introduced consensus sequence, D/E-X-N-Z-S/T, wherein X and Z can be any natural amino acid except proline, and a glycan having N-acetylgalactosamine at the reducing terminus.
In still another aspect, the present invention is directed to a bioconjugate vaccine comprising an N-glycosylated protein having at least one introduced consensus sequence, D/E-X-N-Z-S/T, wherein X and Z can be any natural amino acid except proline: an immunogenic glycan having N-acetylgalactosamine at the reducing terminus; and an adjuvant.
In an addition aspect, the invention relates to method for producing an N-linked glycosylated protein in a host cell comprising nucleic acids encoding: glycosyltransferases that assemble at least one oligo- or polysaccharide from at least one bacterium containing GalNAc at the reducing terminus; a protein carrier; an oligosaccharyl transferase; and an epimerase.
In a further aspect, the present invention relates to the use of a biosynthetic system and proteins for preparing a bioconjugate vaccine.
In an additional aspect, the present invention is directed to methods for producing mono-, oligo- and polysaccharides, and in a still further aspect the invention directed to methods for producing antigenic glycans and N-glycosylated proteins.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the time course of [3H]GlcNAc/GalNAc-P-P-Und synthesis by membrane fractions from E. coli O157. The membrane fraction from E. coli strain O157 was incubated with UDP-[3H]GlcNAc for the indicated times at 37° C. The [3H]lipid products were extracted and the incorporation of [3H]GlcNAc into [3H]GlcNAc-P-P-Und (O) and [3H]GalNAc-P-P-Und (•) was assayed as described in Example 2.
FIG. 2 shows the proposed biosynthetic pathway for the formation of GalNAc-P-P-Und from GlcNAc-P-P-Und.
FIGS. 3A, 3B, 3C, and 3D shows purification and characterization of [3H]GalNAc-P-P-Und synthesized by membrane fractions from E. coli strain O157. Membrane fractions from E. coli O157 were incubated with UDP-[3H]GlcNAc, and the [3H]GalNAc lipids were purified as described in Example 3. FIG. 3A, preparative thin layer chromatogram of [3H]HexNAc lipids on borate-impregnated silica gel G (Quantum 1) after purification on DEAE-cellulose is shown. FIG. 3B, thin layer chromatography of purified [3H]GalNAc-P-P-Und on borate-impregnated silica gel G (Baker, Si250) after recovery from the preparative plate in panel A is shown. FIG. 3C. descending paper chromatogram (borate-impregnated Whatman No. 1 paper) of the [3H]-amino sugar recovered after mild acid hydrolysis of [3H]GalNAc-P-P-Und purified in FIG. 3B is shown. FIG. 3D, descending paper chromatogram (Whatman No. 3MM) of the [3H]HexNAc-alditol produced by reduction of the [3H] amino sugar from FIG. 3C with NaBH4.
FIGS. 4A and 4B shows metabolic labeling of E. coli 21546 cells and E. coli 21546 cells after transformation with pMLBAD:Z3206. E. coli 21546 (FIG. 4A) and E. coli 21546:pMLBAD/Z3206 (FIG. 4B) were labeled metabolically with [3H]GlcNAc for 5 min at 37° C. [3H]GlcNAc/GalNAc-P-P-Und were extracted, freed of water soluble contaminants and separated by thin layer chromatography on borate-impregnated silica gel plates (Baker Si250) as described in Example 3. Radioactive lipids were detected using a Bioscan chromatoscanner. The chromatographic positions of GalNAc-P-P-Und and GlcNAc-P-P-Und are indicated by arrows.
FIGS. 5A, 5B, 5C, and 5D shows thin layer chromatography of [3H]GlcNAc/GalNAc-P-P-Und formed by incubation of membrane fractions from E. coli strains with UDP-[3H]GlcNAc. Membrane fractions from E. coli strains K12 (FIG. 5A), O157 (FIG. 5B), 21546 (FIG. 5C), and 21546:pMLBAD/Z3206 (FIG. 5D) were incubated with UDP-[3H]GlcNAc for 10 min at 37° C., and the [3H]lipid products were extracted, freed of water-soluble contaminants by partitioning, and separated by thin layer chromatography on borate-impregnated silica gel plates (Baker Si250) as described in Example 3. The chromatographic positions of GalNAc-P-P-Und and GlcNAc-P-P-Und are indicated by arrows.
FIGS. 6A, 6B, and 6C shows discharge of GlcNAc-P by incubation with UMP. Membrane fractions from E. coli 21546:Z3206 were preincubated with UDP-[3H]GlcNAc to enzymatically label GlcNAc-P-P-Und for 10 min (FIG. 6A) at 37° C. followed by a second incubation period with 1 mM UMP included for either 1 min (FIG. 6B) or 2 min (FIG. 6C). After the indicated incubation periods [3H]GlcNAc/GalNAc-P-P-Und were extracted and resolved by thin layer chromatography on borate-impregnated silica gel plates (Baker Si250) as described in Example 3. The chromatographic positions of GalNAc-P-P-Und and GlcNAc-P-P-Und are indicated by arrows.
FIGS. 7A, 7B, 7C, 7D, 7E, and 7F shows conversion of exogenous [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und to the pertinent [3H]HexNAc-P-P-Und product catalyzed by membranes from strain 21546 expressing Z3206. Membrane fractions from E. coli strain 21546 (FIG. 7B and FIG. 7E) and 215461:pMLBAD/Z3206 (FIG. 7C and FIG. 7F) were incubated with purified [3H]GlcNAc-P-P-Und (FIG. 7A, FIG. 7B, and FIG. 7C) or [3H]GalNAc-P-P-Und (panels at FIG. 7D, FIG. 7E, and FIG. 7F) (dispersed ultrasonically in 1% Triton X-100) for 1 min at 37° C. [3H]GlcNAc/GalNAc-P-P-Und were extracted, resolved by thin layer chromatography on borate-impregnated silica gel plates (Baker Si250) and detected with a Bioscan AR2000 radiochromatoscanner as described in Example 3.
FIG. 8 shows SDS-PAGE analysis of unglycosylated and glycosylated AcrA protein. Periplasmic extracts prepared from E. coli DH5α cells carrying the AcrA expression plasmid and the pgl operon Agile complemented with pMLBAD:Z3206 (lane 1), pMLBAD:gne (lane 2) or the vector control pMLBAD (lane 3) were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes. AcrA and its glycosylated forms were detected with anti AcrA antisera. The position of bands corresponding to unglycosylated (AcrA) and glycosylated AcrA (gAcrA) is indicated.
FIG. 9 shows the genes that have been identified by Liu B et al. (Structure and genetics of Shigella O antigens FEMS Microbiology Review, 2008. 32: p. 27).
FIG. 10 is a scheme showing the DNA region containing the genes required to synthesize the S. flexneri 6 O antigen.
FIG. 11 shows expression of the S. flexneri 6 O antigen in E. coli. LPS was visualized by either silver staining or by transfer to nitrocellulose membranes and detection by antibodies directed against S. flexneri 6.
FIG. 12 shows HPLC of O antigen. LLO analysis of E. coli cells (SCM3) containing S. flexneri—Z3206, E. coli cells (SCM3) containing S. flexneri+Z3206 or empty E. coli (SCM3) cells.
FIG. 13 shows Western blot of Nickel purified proteins from E. coli cells expressing EPA, pglB and S. flexneri 6 O-antigen+/−Z3206.
DETAILED DESCRIPTION OF THE INVENTION
The present invention encompasses a recombinant prokaryotic biosynthetic system comprising nucleic acids encoding an epimerase that synthesizes an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus, and N-glycosylated proteins having N-acetylgalactosamine at the reducing terminus of the glycan.
The term “partial amino acid sequence(s)” is also referred to as “optimized consensus sequence(s)” or “consensus sequence(s).” The optimized consensus sequence is N-glycosylated by an oligosaccharyl transferase (“OST,” “OTase”), much more efficiently than the regular consensus sequence “N-X-ST.”
In general, the term “recombinant N-glycosylated protein” refers to any poly- or oligopeptide produced in a host cell that does not naturally comprise the nucleic acid encoding said protein. In the context of the present invention, this term refers to a protein produced recombinantly in a prokaryotic host cell, for example, Escherichia spp., Campylobacter spp., Salmonella spp., Shigella spp., Helicobacter spp., Pseudomonas spp., Bacillus spp., and in further embodiments Escherichia cell, Campylobacter jejuni, Salmonella typhimurium etc., wherein the nucleic acid encoding said protein has been introduced into said host cell and wherein the encoded protein is N-glycosylated by the OTase, said transferase enzyme naturally occurring in or being introduced recombinantly into said host cell.
In accordance with the internationally accepted one letter code for amino acids the abbreviations D, E, N, S and T denote aspartic acid, glutamic acid, asparagine, serine, and threonine, respectively.
Proteins according to the invention comprise one or more of an optimized consensus sequence(s) D/E-X-N-Z-S/T that is/are introduced into the protein and N-glycosylated. Hence, the proteins of the present invention differ from the naturally occurring C. jejuni N-glycoproteins which also contain the optimized consensus sequence but do not comprise any additional (introduced) optimized consensus sequences.
The introduction of the optimized consensus sequence can be accomplished by the addition, deletion and/or substitution of one or more amino acids. The addition, deletion and/or substitution of one or more amino acids for the purpose of introducing the optimized consensus sequence can be accomplished by chemical synthetic Strategies, which, in view of the instant invention, would be well known to those skilled in the art such as solid phase-assisted chemical peptide synthesis. Alternatively, and preferred for larger polypeptides, the proteins of the present invention can be prepared by recombinant techniques that would be art-standard techniques in light of the invention.
The proteins of the present invention have the advantage that they may be produced with high efficiency and in any host. In one embodiment of the invention, the host comprises a functional pgl operon from Campylobacter spp., for example, from C. jejuni. In further embodiments, oligosaccharyl transferases from Campylobacter spp. for practicing the invention are from Campylobacter coli or Campylobacter lari. In view of the invention, oligosaccharyl transferases would be apparent to one of skill in the art. For example, oligosaccharyl transferases are disclosed in references such as Szymanski, C. M. and Wren, B. W. (2005) Protein glycosylation in bacterial mucosal pathogens, Nat. Rev. Microbiol. 3:225-237. The functional pgl operon may be present naturally when said prokaryotic host is Campylobacter spp., or, for example, C. jejuni. However, as demonstrated before in the art and mentioned above, the pgl operon can be transferred into cells and remain functional in said new cellular environment.
The term “functional pgl operon from Campylobacter spp., preferably C. jejuni” is meant to refer to the cluster of nucleic acids encoding the functional oligosaccharyl transferase (OTase) of Campylobacter spp., for example, C. jejuni, and one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier, and wherein said oligosaccharide can be transferred from the lipid carrier to the target protein having one or more optimized amino acid sequence(s): D/E-X-N-Z-S/T by the OTase. It to be understood that the term “functional pgl operon from Campylobacter spp., preferably C. jejuni” in the context of this invention does not necessarily refer to an operon as a singular transcriptional unit. The term merely requires the presence of the functional components for N-glycosylation of the recombinant protein in one host cell. These components may be transcribed as one or more separate mRNAs and may be regulated together or separately. For example, the term also encompasses functional components positioned in genomic DNA and plasmid(s) in one host cell. For the purpose of efficiency, in one embodiment all components of the functional pgl operon are regulated and expressed simultaneously.
The oligosaccharyl transferase can originate, in some embodiments, from Campylobacter spp., and in other embodiments, from C. jejuni. In additional embodiments, the oligosaccharyl transferase can originate from other organisms which are known to those of skill in the art as having an oligosaccharyl transferase, such as, for example, Wolinella spp. and eukaryotic organisms.
The one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier may originate from the host cell or be introduced recombinantly into said host cell, the only functional limitation being that the oligosaccharide assembled by said glycosyltransferases can be transferred from the lipid carrier to the target protein having one or more optimized consensus sequences by the OTase. Hence, the selection of the host cell comprising specific glycosyltransferases naturally and/or replacing specific glycosyltransferases naturally present in said host as well as the introduction of heterologous specific glycosyltransferases will enable those skilled in the art to vary the N-glycans bound to the optimized N-glycosylation consensus site in the proteins of the present invention.
As a result of the above, the present invention provides for the individual design of N-glycan-patterns on the proteins of the present invention. The proteins can therefore be individualized in their N-glycan pattern to suit biological, pharmaceutical and purification needs.
In embodiments of the present invention, the proteins may comprise one but also more than one, such as at least two, at least 3 or at least 5 of said N-glycosylated optimized amino acid sequences.
The presence of one or more N-glycosylated optimized amino acid sequence(s) in the proteins of the present invention can be of advantage for increasing their immunogenicity, increasing their stability, affecting their biological activity, prolonging their biological half-life and/or simplifying their purification.
The optimized consensus sequence may include any amino acid except proline in position(s) X and Z. The term “any amino acids” is meant to encompass common and rare natural amino acids as well as synthetic amino acid derivatives and analogs that will still allow the optimized consensus sequence to be N-glycosylated by the OTase. Naturally occurring common and rare amino acids are preferred for X and Z. X and Z may be the same or different.
It is noted that X and Z may differ for each optimized consensus sequence in a protein according to the present invention.
The N-glycan hound to the optimized consensus sequence will be determined by the specific glycosyltransferases and their interaction when assembling the oligosaccharide on a lipid carrier for transfer by the OTase. In view of the instant invention, those skilled in the art would be able to design the N-glycan by varying the type(s) and amount of the specific glycosyltransferases present in the desired host cell.
“Monosaccharide” as used herein refers to one sugar residue. “Oligo- and polysaccharide” refer to two or more sugar residues. The term “glycans” as used herein refers to mono-, oligo- or polysaccharides. “N-glycans” are defined herein as mono-, oligo- or polysaccharides of variable compositions that are linked to an ε-amide nitrogen of an asparagine residue in a protein via an N-glycosidic linkage. In an embodiment, the N-glycans transferred by the OTase are assembled on an undecaprenol pyrophosphate (“Und-P-P”) lipid-anchor that is present in the cytoplasmic membrane of gram-negative or positive bacteria. They are involved in the synthesis of O antigen, O polysaccharide and peptidoglycan (Bugg, T. D., and Brandish, P. E. (1994). From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119, 255-262; Valvano, M. A. (2003). Export of O-specific lipopolysaccharide. Front Biosci 8, s452-471).
Studies were conducted to determine whether the biosynthesis of a lipid-linked repeating tetrasaccharide (4-N-acetyl perosamine→fucose→glucose→GalNAc) was initiated by the formation of GalNAc-P-P-Und by WecA. When membrane fractions from E. coli strains K12, 0157, and PR4019, a WecA-overexpressing strain, were incubated with UDP-[3H]GalNAc, neither the enzymatic synthesis of [3H]GlcNAc-P-P-Und nor [3H]GalNAc-P-P-Und was detected. However, when membrane fractions from strain O157 were incubated with UDP-[3H]GlcNAc, two enzymatically labeled products were observed with the chemical and chromatographic properties of [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und, confirming that strain O157 contained an epimerase capable of interconverting GlcNAc-P-P-Und and GalNAc-P-P-Und. The presence of an epimerase was also confirmed by showing that exogenous [3H]GlcNAc-P-P-Und was converted to [3H]GalNAc-P-P-Und when incubated with membranes from strain O157. When strain O157 was metabolically labeled with [3H]GlcNAc, both [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und were detected. Transformation of E. coli strain 21546 with the Z3206 gene enabled these cells to synthesize GalNAc-P-P-Und in vivo and in vitro. The reversibility of the epimerase reaction was demonstrated by showing that [3H]GlcNAc-P-P-Und was reformed when membranes from strain O157 were incubated with exogenous [3H]GalNAc-P-P-Und. The inability of Z3206 to complement the loss of the gne gene in the expression of the Campylobacter jejuni N-glycosylation system in E. coli indicated that it does not function as a UDP-GlcNAc/UDP-GalNAc epimerase. Based on these results, it was confirmed that GalNAc-P-P-Und is synthesized reversibly by a GlcNAc-P-P-Und epimerase following the formation of GlcNAc-P-P-Und by WecA in E. coli O157.
The initiating reaction of E. coli O157 O-antigen subunit assembly was investigated to confirm that GalNAc-P-P-Und synthesis is catalyzed by some previously unknown mechanism rather than by WecA. The evidence presented herein shows that GalNAc-P-P-Und is not synthesized by GalNAc-P transfer from UDP-GalNAc catalyzed by WecA but rather by the reversible epimerization of the 4-OH of GlcNAc-P-P-Und catalyzed by an epimerase encoded by the Z3206 gene in E. coli O157.
Accordingly, the invention encompasses a novel biosynthetic pathway for the assembly of an important bacterial cell surface component as well as a new biosynthetic route for the synthesis of GalNAc-P-P-Und. A further embodiment of the invention includes the bacterial epimerase as a new target for antimicrobial agents.
E. coli O157 synthesizes an O-antigen with the repeating tetrasaccharide structure (4-N-acetyl perosamine→fucose→glucose→GalNAc). It is shown herein that the biosynthesis of the lipid-linked tetrasaccharide intermediate was not initiated by the enzymatic transfer of GalNAc-P from UDP-GalNAc to Und-P catalyzed by WecA, contrary to earlier genetic studies (Wang. L. and Reeves, P. R. (1998) Infect. Immun. 66, 3545-3551). The invention described herein, obtained by homology searches and then confirmed by results from genetic, enzymology, and metabolic labeling experiments, demonstrates that WecA does not utilize UDP-GalNAc as a substrate, but that WecA is required to synthesize GlcNAc-P-P-Und which is then reversibly converted to GalNAc-P-P-Und by an epimerase encoded by the Z3206 gene in strain O157.
The Z3206 gene of the present invention belongs to a family of genes present in several strains that produce surface O-antigen repeat units containing GalNAc residues at their reducing termini (Table 1). The Z3206 gene sequence is shown in SEQ ID NO: 1. Previous reports identified two genes from E. coli O55 (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625) and E. coli O86 (Gun, H., Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Comm., 356, 604-609), E. coli O55 gne and E. coli O86 gne1, respectively, that are 100% identical to a Z3206 gene (Table 1). The E. coli O55 gne gene sequence is shown as SEQ ID NO: 3, and E. coli O86 gne1 gene sequence is shown as SEQ ID NO: 5.
TABLE 1
Correlation of Z3206 gene in bacterial strains expressing O-antigen
chains with GalNAc at the reducing termini.
GalNAc
% Identity at the reducing
with terminus of O-antigen
Z3206 repeat unit
E. coli O55 gne (SEQ ID NO: 3) 100 Yes
E. coli O86 gnel (SEQ ID NO: 5) 100 Yes
Shigella boydii O18 gne (SEQ ID 88 Yes
NO: 7)
Salmonella enterica O30 gne 94 Yes
(SEQ ID NO: 9)
C. jejuni gne (SEQ ID NO: 11) 21 No
E. coli K12 galE (SEQ ID NO: 13) 27 No
E. coli O86 gne2 (SEQ ID NO: 15) 18 Yes
Accordingly, we conclude that E. coli O55 gne and E. coli O86 gne1 also encode epimerases capable of converting GlcNAc-P-P-Und to GalNAc-P-P-Und in strains O55 and O86, respectively, which also produce O-antigen repeat units with GalNAc at the reducing termini (Table 1).
Two experimental approaches in this study indicate that the Z3206 protein does not catalyze the epimerization of UDP-GlcNAc to UDP-GalNAc in strain O157. First, when membranes from strain O157 were incubated with [3H]UDP-GalNAc, neither [3H]GlcNAc-P-P-Und nor [3H]GalNAc-P-P-Und was detected (Table 3). If Z3206 catalyzed the conversion of [3H]UDP-GalNAc to [3H]UDP-GlcNAc, it would be expected that [3H]GlcNAc-P-P-Und should be observed. Second, we have shown that hemagglutinin-tagged Z3206 was incapable of complementing the UDP-GalNAc-dependent C. jejuni N-glycosylation reporter system (FIG. 8).
E. coli O55 gne gene from strain O55 (Wang, L., Huskic, S., Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625) was also assayed for epimerase activity by incubating crude extracts with UDP-GalNAc and indirectly assaying the conversion to UDP-GlcNAc by measuring an increase in reactivity with p-dimethylaminobenzaldehyde after acid hydrolysis. In both studies, the formation of the product was based on changes in reactivity with p-dimethylaminobenzaldehyde, and not a definitive characterization of the sugar nucleotide end product. A 90% pure polyhistidine-tagged E. coli O86 gne1 was also shown to have a low level of UDP-glucose epimerase activity relative to Gne2 in a coupled assay.
Accordingly, an embodiment of the invention is directed to a recombinant prokaryotic biosynthetic system containing Z3206 gene, E. coli O55 gne gene or E. coli O86 gne1 gene that converts GlcNAc-P-P-Und to GalNAc-P-P-Und.
It is significant that E. coli O86, which synthesizes an O-antigen containing two GalNAc residues, which would presumably require UDP-GalNAc as the glycosyl donor for the additional, non-reducing terminal GalNAc, also possesses an additional GlcNAc 4-epimerase gene, termed gne2, within the O-antigen gene cluster (Guo. B, Yi, W., Li, L. and Wang, P. G. (2007) Biochem. Biophys. Res. Commun., 356, 604-609). This additional epimerase gene has high homology with the galE gene of the colanic acid gene cluster and appears to be a UDP-GlcNAc 4-epimerase capable of synthesizing UDP-GalNAc.
The Z3206 gene appears to be highly conserved in E. coli O-serotypes initiated with GalNAc. In a recent study, 62 E. coli strains, with established O-antigen repeat unit structures, were screened for expression of Z3206 by a polymerase chain reaction based method using nucleotide primers designed to specifically detect the E. coli O157 Z3206 gene (Wang, L., Huskic, Cisterne, A., Rothemund, D. and Reeves, P. R. (2002) J. Bacteriol. 184, 2620-2625). In this study Z3206 was detected in 16 of the 22 E. coli strains that were known to contain GalNAc, and in only 4 of the 40 strains lacking GalNAc. Moreover, a similar screen of the 22 GalNAc-containing strains with primers designed to detect an alternative epimerase with UDP-GlcNAc 4-epimerase activity (the GalE gene of E. coli O113) detected no strains carrying this gene, indicating that Z3206 is the GlcNAc 4-epimerase gene most commonly associated with the presence of a reducing-terminal GalNAc in O-antigen repeat units of E. coli.
Analysis of the Z3206 protein sequence by a variety of web-based topological prediction algorithms indicates that the Z3206 protein is not highly hydrophobic. The majority of the topological prediction algorithms indicate that Z3206 is a soluble 37 kDa protein, although TMPred (Hofmann, K., and Stoffel, W. (1993) Biol. Chem. Hoppe-Seyler 374, 166 (abstr.)) predicted a single weak N-terminal transmembrane helix. However, Western blotting after SDS-PAGE of cellular fractions from E. coli cells expressing hemagglutinin-tagged Z3206 clearly shows that the tagged protein is associated with the particulate fraction following hypotonic lysis of the cells. Preliminary experiments show that the protein remains associated with the particulate fraction following incubation of the membrane fraction with 1 M KCl, but is solubilized in an active form by incubation with 0.1% Triton X-100.
E. coli O157 Z3206 has significant sequence homology with the short-chain dehydrogenase/reductase family of oxido-reductases including the GXXGXXG motif (Rossman fold), consistent with the NAD(P) binding pocket (Allard, S. T. M., Giraud, M. F., and Naismith, J. H. (2001) Cell. Mol. Life Sci. 58, 1650-1655) and the conserved SX24YX3K sequence, involved in proton abstraction and donation (Field, R. A. and Naismith, J. H. (2003) Biochemistry 42, 7637-7647). Molecular modeling based on crystal structures of UDP-Glc 4-epimerase, another member of the short-chain dehydrogenase/reductase family, suggests that, after hydride abstraction, the 4-keto intermediate rotates around the β phosphate of UDP to present the opposite face of the keto intermediate and allow re-insertion of hydride from the opposite side, thus inverting the configuration of the hydroxyl at carbon 4. The presence of these conserved sequences suggests that Z3206 likely functions via a similar mechanism. Although the equilibrium distribution of the epimerase products, seen in FIG. 7, seems to favor the formation of GlcNAc-P-P-Und, the utilization of GalNAc-P-P-Und for O-antigen repeat unit assembly would drive the epimerization reaction in the direction of GalNAc-P-P-Und by mass action.
Epimerization of the glycosyl moieties of polyisoprenoid lipid intermediates has not been widely reported in nature. In one previous study the 2-epimerization of ribosyl-P-decaprenol to form arabinosyl-P-decaprenol, an arabinosyl donor in arabinogalactan biosynthesis in mycobacteria, was reported (Mikusová, K., Huang, H., Yagi, T., Holsters, M., Vereecke, D., D'Haeze, W., Scherman, M. S., Brennan, P. J., McNeil, M. R., and Crick, D. C. (2005) J. Bacterial. 187, 8020-8025). Arabinosyl-P-decaprenol is formed via a two-step oxidation/reduction reaction requiring two mycobacterial proteins, Rv3790 and Rv3791. Although epimerization was modestly stimulated by the addition of NAD and NADP, neither Rv3790 nor Rv3791 contain either the Rossman fold or the SX24YXXXK motif, characteristic of the short-chain dehydrogenase/reductase family (Allard, S. T. M., Giraud, M.-F. and Naismith, J. H. (2001) Cell. Mal. Life Sci. 58, 1650-1655; Field, R. A. and Naismith, J. H. (2003) Biochemistry 42, 7637-7647).
In summary, a novel biosynthetic pathway for the formation of GalNAc-P-P-Und by the epimerization of GlcNAc-P-P-Und, is described.
Several antibiotics have been shown to inhibit the synthesis of GlcNAc-P-P-Und, but are limited in their utility because they also block the synthesis of GlcNAc-P-P-dolichol, the initiating dolichol-linked intermediate of the protein N-glycosylation pathway. Although GlcNAc-P-P-dolichol is a structurally related mammalian counterpart of the bacterial glycolipid intermediate, GlcNAc-P-P-Und, there is no evidence for a similar epimerization reaction converting GlcNAc-P-P-dolichol to GalNAc-P-P-dolichol in eukaryotic cells. Thus, this raises the possibility that in strains where the surface O-antigen containing GalNAc at the reducing termini are involved in a pathological process, O-antigen synthesis could potentially be blocked by inhibiting the bacterial epimerases.
An embodiment of the present invention involves an epimerase that converts GlcNAc-P-P-Und (N-acetylglucosaminylpyrophosphorylundecaprenol) to GalNAc-P-P-Und (N-acetylgalactosaminylpyrophosphorylundecaprenol) in E. coli O157. A still further exemplary aspect of the invention involves the initiation of synthesis of lipid-bound repeating tetrasaccharide having GalNAc at the reducing terminus.
The basis of another aspect of the invention includes the discovery that Campylobacter jejuni contains a general N-linked protein glycosylation system. Various proteins of C. jejuni have been shown to be modified by a heptasaccharide. This heptasaccharide is assembled on undecaprenyl pyrophosphate, the carrier lipid, at the cytoplasmic side of the inner membrane by the stepwise addition of nucleotide activated monosaccharides catalyzed by specific glycosyltransferases. The lipid-linked oligosaccharide then flip-flops (diffuses transversely) into the periplasmic space by a flippase, e.g., PglK. In the final step of N-linked protein glycosylation, the oligosaccharyltransferase (e.g., PglB) catalyzes the transfer of the oligosaccharide from the carrier lipid to asparagine (Asn) residues within the consensus sequence D/E-X-N-Z-S/T, where the X and Z can be any amino acid except Pro. The glycosylation cluster for the heptasaccharide had been successfully transferred into E. coli and N-linked glycoproteins of Campylobacter had been produced.
It had been demonstrated that PglB does not have a strict specificity for the lipid-linked sugar substrate. The antigenic polysaccharides assembled on undecaprenyl pyrophosphate are captured by PglB in the periplasm and transferred to a protein carrier (Feldman, 2005; Wacker, M., et al., Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl. Acad Sci USA. 2006. 103(18): p. 7088-93.) The enzyme will also transfer a diverse array of undecaprenyl pyrophosphate (UPP) linked oligosaccharides if they contain an N-acetylated hexosamine at the reducing terminus. The nucleotide sequence for pglB and the amino acid sequence for pglB are published at WO2009/04074.
Accordingly, one embodiment of the invention involves a recombinant N-glycosylated protein comprising: one or more of an introduced consensus sequence. D/E-X-N-Z-S/T, wherein X and Z can be any natural amino acid except proline; and an oligo- or polysaccharide having N-acetylgalactosamine at the reducing terminus and N-linked to each of said one or more introduced consensus sequences by an N-glycosidic linkage.
In a further embodiment, the present invention is directed to a recombinant prokaryotic biosynthetic system for producing all or a portion of a polysaccharide comprising an epimerase that synthesizes N-acetylgalactosamine (“GalNAc”) on undecaprenyl pyrophosphate. In a further embodiment, all or a portion of the polysaccharide is antigenic.
In another embodiment, the present invention is directed to a recombinant prokaryotic biosynthetic system comprising: an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate; and glycosyltransferases that synthesize a polysaccharide having GalNAc at the reducing terminus.
An embodiment of the invention further comprises a recombinant prokaryotic biosynthetic system comprising an epimerase that synthesizes GalNAc on undecaprenyl pyrophosphate and glycosyltransferases that synthesize a polysaccharide, wherein said polysaccharide has the following structure: α-D-PerNAc-α-L-Fuc-β-D-Glc-α-D-GalNAc; and wherein GalNAc is at the reducing terminus of said polysaccharide.
The recombinant prokaryotic biosynthetic system can produce mono-, oligo- or polysaccharides of various origins. Embodiments of the invention are directed to oligo- and polysaccharides of various origins. Such oligo- and polysaccharides can be of prokaryotic or eukaryotic origin. Oligo- or polysaccharides of prokaryotic origin may be from gram-negative or gram-positive bacteria. In one embodiment of the invention, the oligo- or polysaccharide is from E. coli. In a further aspect of the invention, said oligo- or polysaccharide is from E. coli O157. In another embodiment, said oligo- or polysaccharide comprises the following structure: α-D-PerNAc-α-L-Fuc-P-D-Glc-α-D-GalNAc. In a further embodiment of the invention, the oligo- or polysaccharide is from Shigella flexneri. In a still further embodiment, the oligo- or polysaccharide is from Shigella flexneri 6. In a still further aspect, said oligo- or polysaccharide comprises the following structure:
Figure US09764018-20170919-C00001
Embodiments of the invention further include proteins of various origins. Such proteins include proteins native to prokaryotic and eukaryotic organisms. The protein carrier can be, for example, AcrA or a protein carrier that has been modified to contain the consensus sequence for protein glycosylation, i.e., D/E-X-N-Z-S/T, wherein X and Z can be any amino acid except proline (e.g., a modified Exotoxin Pseudomonas aeruginosa (“EPA”)). In one embodiment of the invention, the protein is Pseudomonas aeruginosa EPA.
A further aspect of the invention involves novel bioconjugate vaccines having GalNAc at the reducing terminus of the N-glycan. An additional embodiment of the invention involves a novel approach for producing such bioconjugate vaccines that uses recombinant bacterial cells that contain an epimerase which produces GalNAc on undecaprenyl pyrophosphate. In one embodiment, bioconjugate vaccines can be used to treat or prevent bacterial diseases. In further embodiments, bioconjugate vaccines may have therapeutic and/or prophylactic potential for cancer or other diseases.
A typical vaccination dosage for humans is about 1 to 25 μg, preferably about 1 μg to about 10 μg, most preferably about 10 μg. Optionally, a vaccine, such as a bioconjugate vaccine of the present invention, includes an adjuvant.
In an additional embodiment, the present invention is directed to an expression system for producing a bioconjugate vaccine against at least one bacterium comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier; at least one polysaccharide gene cluster from the at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and a nucleic acid sequence encoding an epimerase. In a further embodiment, the polysaccharide gene cluster encodes an antigenic polysaccharide.
In still a further embodiment, the present invention is directed to an expression system for producing a bioconjugate vaccine against at least one bacterium comprising: a nucleotide sequence encoding an oligosaccharyl transferase; a nucleotide sequence encoding a protein carrier comprising at least one inserted consensus sequence, D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except proline; at least one polysaccharide gene cluster from the at least one bacterium, wherein the polysaccharide contains GalNAc at the reducing terminus; and the Z3206 gene. In a further embodiment, the polysaccharide gene cluster encodes an antigenic polysaccharide.
In yet another embodiment, the present invention is directed to a bioconjugate vaccine comprising: a protein carrier; at least one immunogenic polysaccharide chain linked to the protein carrier, wherein said polysaccharide has GalNAc at the reducing terminus, and further wherein said GalNAc is directly linked to the protein carrier; and an adjuvant.
In yet an additional embodiment, the present invention is directed to a bioconjugate vaccine comprising: a protein carrier comprising at least one inserted consensus sequence, D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except proline; least one immunogenic polysaccharide from at least one bacterium, linked to the protein carrier, wherein the at least one immunogenic polysaccharide contains GalNAc at the reducing terminus directly linked to the protein carrier; and, optionally, an adjuvant.
Another embodiment of the invention is directed to a method of producing a bioconjugate vaccine, said method comprising: assembling a polysaccharide having GalNAc at the reducing terminus in a recombinant organism through the use of glycosyltransferases; linking said GalNAc to an asparagine residue of one or more target proteins in said recombinant organism, wherein said one or more target proteins contain one or more T-cell epitopes.
In a further embodiment, the present invention is directed to a method of producing a bioconjugate vaccine, said method comprising: introducing genetic information encoding for a metabolic apparatus that carries out N-glycosylation of a target protein into a prokaryotic organism to produce a modified prokaryotic organism; wherein the genetic information required for the expression of one or more recombinant target proteins is introduced into said prokaryotic organism; wherein the genetic information required for the expression of E. coli strain O157 epimerase is introduced into said prokaryotic organism; and wherein the metabolic apparatus comprises glycosyltransferases of a type that assembles a polysaccharide having GalNAc at the reducing terminus on a lipid carrier, and an oligosaccharyltransferase, the oligosaccharyltransferase covalently linking GalNAc of the polysaccharide to an asparagine residue of the target protein, and the target protein containing at least one T-cell epitope; producing a culture of the modified prokaryotic organism; and obtaining glycosylated proteins from the culture medium.
A further aspect of the present invention relates to a pharmaceutical composition. An additional aspect of the invention involves a pharmaceutical composition comprising at least one N-glycosylated protein according to the invention. In light of the disclosure herein, the preparation of medicaments comprising proteins would be well known in the art. A still further aspect of the invention relates to a pharmaceutical composition comprising an antibiotic that inhibits an epimerase that converts GlcNAc-P-P-Und to GalNAc-P-P-Und. In a preferred embodiment, the pharmaceutical composition of the invention comprises a pharmaceutically acceptable excipient, diluent and/or adjuvant.
Suitable excipients, diluents and/or adjuvants are well-known in the art. An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient. One of ordinary skill in the art in the field of preparing compositions can readily select the proper form and mode of administration depending upon the particular characteristics of the product selected, the disease or condition to be treated, the stage of the disease or condition, and other relevant circumstances (Remington's Pharmaceutical Sciences, Mack Publishing Co. (1990)). The proportion and nature of the pharmaceutically acceptable diluent or excipient are determined by the solubility and chemical properties of the pharmaceutically active compound selected, the chosen route of administration, and standard pharmaceutical practice. The pharmaceutical preparation may be adapted for oral, parenteral or topical use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like. The pharmaceutically active compounds of the present invention, while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable salts, such as acid addition salts or base addition salts, for purposes of stability, convenience of crystallization, increased solubility, and the like.
In instances where specific nucleotide or amino acid sequences are noted, it will be understood that the present invention encompasses homologous sequences that still embody the same functionality as the noted sequences. In an embodiment of the invention, such sequences are at least 85% homologous. In another embodiment, such sequences are at least 90% homologous. In still further embodiments, such sequences are at least 95% homologous.
The determination of percent identity between two nucleotide or amino acid sequences is known to one of skill in the art.
Nucleic acid sequences described herein, such as those described in the sequence listing below, are examples only, and it will be apparent to one of skill in the art that the sequences can be combined in different ways. Additional embodiments of the invention include variants of nucleic acids. A variant of a nucleic acid (e.g., a codon-optimized nucleic acid) can be substantially identical, that is, at least 80% identical, for example, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99.5% identical, to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 28 or SEQ ID NO: 29. Nucleic acid variants of a sequence that contains SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 28 or SEQ ID NO: 29 include nucleic acids with a substitution, variation, modification, replacement, deletion, and/or addition of one or more nucleotides (for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175 or 200 nucleotides) from a sequence that contains SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 28 or SEQ ID NO: 29, or parts thereof.
For example, in an embodiment of the instant invention, such variants include nucleic acids that encode an epimerase which converts GlcNAc-P-P-Und to GalNAc-P-P-Und and that i) are expressed in a host cell, such as, for example, E. coli and ii) are substantially identical to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9, or parts thereof.
Nucleic acids described herein include recombinant DNA and synthetic (e.g., chemically synthesized) DNA. Nucleic acids can be double-stranded or single-stranded. In the case of single-stranded nucleic acids, the nucleic acid can be a sense strand or antisense strand. Nucleic acids can be synthesized using oligonucleotide analogs or derivatives.
Plasmids that include a nucleic acid described herein can be transfected or transformed into host cells for expression. Techniques for transfection and transformation are known to those of skill in the art.
All publications mentioned herein are incorporated by reference in their entirety. It is to be understood that the term “or,” as used herein, denotes alternatives that may, where appropriate, be combined; that is, the term “or” includes each listed alternative separately as well as their combination. As used herein, unless the context clearly dictates otherwise, references to the singular, such as the singular forms “a,” an,” and “the,” include the plural, and references to the plural include the singular.
The invention is further defined by reference to the following examples that further describe the compositions and methods of the present invention, as well as its utility. It will be apparent to those skilled in the art that modifications, both to compositions and methods, may be practiced which are within the scope of the invention.
EXAMPLES
Bacterial Strains and Plasmids—
E. coli strains PR4019 (Rush, J. S., Rick, P. D. and Waechter, C. J. (1997) Glycobiology, 7, 315-322) and PR21546 (Meier-Dieter, U., Starman, R., Barr, K., Mayer, H. and Rick, P. I). (1990) J. Biol. Chem., 265, 13490-13497) were generous gifts from Dr. Paul Rick, Bethesda, Md., and E. coli O157:H45 (Stephan, R., Borel, N., Zweifel, C., Blanco, M, and Blanco, J. E. (2004) BMC Microbiol 4:10) was a gift from Dr. Claudio Zweifel, Veterinary Institute, University of Zurich, E. coli DH5α (Invitrogen) was used as the host for cloning experiments and for protein glycosylation analysis. Plasmids used are listed in Table 2.
TABLE 2
Plasmids used in Examples
Plasmid Description Ref
pMLBAD Cloning vector, TmpR Lefebre &
Valvano
(2002)
pMLBAD:Z3206 Z3206 in pMLBAD, TmpR, expression Examples
(SEQ ID NO: 23) controlled by arabinose-inducible herein
promoter
pMLBAD:gne gne in pMLBAD, TmpR, expression Examples
(SEQ ID NO: 24) controlled by arabinose-inducible herein
promoter
pACYCpgl C. jejuni pgl cluster CmR Wacker,
et al.
(2002)
pACYCgne::kan C. jejuni pgl cluster containing a kan Linton, et
cassette in gne, CmR, KanR al. (2005)
pWA2 Soluble periplasmic hexa-His-tagged Feldman,
AcrA under control of Tet promoter in et al.
pBR322, AmpR (2005)
Materials—
[1,6-3H]GlcNAc (30 Ci/mmol), UDP-[1-3H]GlcNAc (20 Ci/mmol) and UDP-[6-3H]GalNAc (20 Ci/mmol) were obtained from American Radiolabeled Chemicals (St. Louis, Mo.). Quantum 1 silica gel G thin layer plates are a product of Quantum Industries (Fairfield, N.J.), and Baker Si250 Silica Gel G plates are manufactured by Mallinekrodt Chemical Works. Yeast extract and Bacto-peptone were products of BD Biosciences. All other chemicals were obtained from standard commercial sources. Trimethoprim (50 μg/ml), chloramphenicol (20 μg/ml), ampicillin (100 μg/ml), and kanamycin (50 μg/ml) were added to the media as needed.
Construction of Recombinant Plasmids—
E. coli strain DH5α was used for DNA cloning experiments and constructed plasmids were verified by DNA sequencing. The Z3206 gene was amplified from E. coli O157:H45 by PCR with oligonucleotides Z3206-Fw and Z3206-RvHA (AAACCCGGGATGAACGATAACG TTTTGCTC (SEQ ID NO: 17) and AAATCTAGATTAAGCGTAATCTGGAACATCGTATGGGTACTCAGAAACAA ACGTTATGTC (SEQ ID NO: 18): restriction sites are underlined). The PCR fragment was digested with SmaI and XbaI and ligated into SmaI-XbaI cleaved pMLBAD vector (Lefebre, M. D. and Valvano M. A. (2002) Appl Environ Microbiol 68: 5956-5964). This resulted in plasmid pMLBAD:Z3206 (SEQ ID NO: 23) encoding Z3206 with a C-terminal hemagglutinin tag.
The gne gene was amplified from pACYCpgl (Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wrenn, B. W., Aebi, M. (2002) Science 298, 1790-1793), encoding Campylobacter jejuni pgl cluster, with oligonucleotides gne-Fw and gne-RV (AAACCATGGATGAAAATTCTTATTAGCGG (SEQ ID NO: 19) and AAATCTAGATTAAGCGTAATCTGGAACATCGTATGGGTAGCACTGTTTTTC CCAATC (SEQ ID NO: 20); restriction sites are underlined). The PCR product was digested with NcoI and XbaI and ligated into the same sites of pMLBAD to generate plasmid pMLBAD:gne (SEQ ID NO: 24) which encodes One with a C-terminal hemagglutinin tag (Table 2).
Growth Conditions, Protein Expression and Immunodetection—
E. coli strains were cultured in Luria-Bertani medium (1% yeast extract, 2% Bacto-peptone, 0.6% NaCl) at 37° C. with vigorous shaking. Arabinose inducible expression was achieved by adding arabinose at a final concentration of 0.02-0.2% (w/v) to E. coli cells grown up to an A600 of 0.05-0.4. The same amount of arabinose was added again 5 h post-induction, and incubation continued for 4-15 h.
Analytical Procedures—
Protein concentrations were determined using the BCA protein assay (Pierce) after precipitation of membrane proteins with deoxycholate and trichloroacetic acid according to the Pierce Biotechnology bulletin “Eliminate Interfering Substances from Samples for BCA Protein Assay.” Samples were analyzed for radioactivity by scintillation spectrometry in a Packard Tri-Carb 2100TR liquid scintillation spectrometer after the addition of 0.5 ml of 1% SDS and 4 ml of Econosafe Economical Biodegradable Counting Mixture (Research Products International, Corp., Mount Prospect, Ill.).
Example 1: Identification of an E. coli O157 Gene Encoding GlcNAc-P-P-Und 4-Epimerase
We describe herein the surprising discovery of a new biosynthetic pathway in which GalNAc-P-P-Und is formed by the epimerization of the 4-OH of GlcNAc-P-P-Und catalyzed by the previously unknown action of a 4-epimerase. In this pathway, GlcNAc-P-P-Und is formed by the transfer of GlcNAc-P from UDP-GlcNAc, catalyzed by WecA, and then GlcNAc-P-P-Und is epimerized to GalNAc-P-P-Und by GlcNAc-P-P-Und-4-epimerase, which was a previously unknown pathway (FIG. 2.
The gene encoding a candidate for the GlcNAc-P-P-Und 4-epimerase was identified by DNA homology searches. Homology searches were performed using the U.S. National Library of Medicine databases found at http:blast.ncbi.nlm.nih.govBlast.cgi. Genomic sequences of different bacteria encoding O antigen repeating units having a GalNAc at the reducing terminus were screened. One group with a repeating unit containing a GalNAc at the reducing terminus, and a second group lacking a terminal GalNAc in the repeating unit were compared to identify potential epimerases. Using these criteria, Z3206 was identified as a candidate GlcNAc-P-P-Und 4-epimerase (Table 1).
The GlcNAc 4-epimerase genes present in E. coli strains with O-antigen repeat units containing GalNAc can be separated into two homology groups as shown in Table 1. It was surprisingly discovered that one homology group (containing grid) clearly was correlated with the presence of GalNAc as the initiating sugar on the O-antigen repeat unit. It was further surprisingly discovered that the second group (containing gne2) exhibits a high degree of similarity to the UDP-Glc epimerase, GalE, and is found in E. coli strains that do not initiate O-antigen repeat unit synthesis with GalNAc. Z3206 in E. coli O157, a gene with a high degree of homology to gne1, was identified as a candidate GlcNAc-P-P-Und 4-epimerase. The genomic location of the Z3206 gene is consistent with a role in this pathway, as it resides between galF of the O-antigen cluster and wcaM which belongs to the colanic acid cluster.
The research described in Examples 2-11 further confirms the above discoveries, including identifying the GlcNAc 4-epimerase (E. coli O157 Z3206) as catalyzing the formation of GalNAc-P-P-Und.
Example 2: UDP-GalNAc is not a Substrate for E. coli WecA (GlcNAc-phosphotransferase)
To determine if E. coli WecA will utilize UDP-GalNAc as a GalNAc-P donor to form GalNAc-P-P-Und, membrane fractions from E. coli strains K12, PR4019, a WecA-overexpressing strain, and O157, which synthesize a tetrasaccharide O-antigen repeat unit with GalNAc at the reducing terminus presumably initiated by the synthesis of GalNAc-P-P-Und, were incubated with UDP-[3H]GalNAc.
Preparation of E. coli Membranes—
Bacterial cells were collected by centrifugation at 1,000×g for 10 min, washed once in ice-cold phosphate-buffered saline, once with cold water, and once with 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose. The cells were resuspended to a density of ˜200 A600 units/ml in 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 10 mM EDTA containing 0.2 mg/ml lysozyme, and incubated at 30° C. for 30 min. Bacterial cells were recovered by centrifugation at 1,000×g for 10 min, quickly resuspended in 40 volumes of ice-cold 10 mM Tris-HCl, pH 7.4, and placed on ice. After 10 min the cells were homogenized with 15 strokes with a tight-fitting Dounce homogenizer and supplemented with 0.1 mM phenylmethylsulfonyl fluoride and sucrose to a final concentration of 0.25 M. Unbroken cells were removed by centrifugation at 1,000×g for 10 min, and cell envelopes were recovered by centrifugation at 40,000×g for 20 min. The membrane fraction was resuspended in 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 1 mM EDTA and again sedimented at 40,000×g and resuspended in the same buffer to a protein concentration of ˜20 mg/ml. Membrane fractions were stored at −20° C. until needed.
Assay for the Biosynthesis of [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und in E. coli Membranes In Vitro—
Reaction mixtures for the synthesis of GlcNAc-P-P-Und and GalNAc-P-P-Und contained 50 mM Tris-HCl, pH 8, 40 mM MgCl2, 5 mM dithiothreitol, 5 mM 5′ AMP. E. coli membrane fraction (50-200 μg membrane protein, and either 5 μm UDP-[3H]GlcNAc/GalNAc (500-2500 dpm/pmol) in a total volume of 0.05 ml. After incubation at 37° C., reactions were terminated by the addition of 40 volumes of CHCl3/CH3OH (2:1), and the total lipid extract containing [3H]HexNAc-P-P-undecaprcnols was prepared as described previously (Waechter. C. J., Kennedy, J. L. and Harford, J. B. (1976) Arch. Biochem, Biophys. 174, 726-737). After partitioning, the organic phase was dried under a stream of nitrogen and redissolved in 1 ml CHCl3/CH3OH (2:1), and an aliquot (0.2 ml) was removed, dried in a scintillation vial, and analyzed for radioactivity by liquid scintillation spectrometry in a Packard Tri-Carb 2100 TR liquid scintillation spectrometer. To determine the rate of synthesis of [3H]GlcNAc-P-P-Und or [3H]GalNAc-P-P-Und, the lipid extract was dried under a stream of nitrogen, redissolved in a small volume of CHCl3/CH3OH (2:1), and spotted on a 10×20-cm borate-impregnated Baker Si250 silica gel plate, and the plate was developed with CHCl3, CH3OH, H2O, 0.2 M sodium borate (65:25:2:2). Individual glycolipids were detected with a Bioscan AR2000 Imaging Scanner (Bioscan, Washington, D.C.). The biosynthetic rates for each glycolipid were calculated by multiplying the total amount of radioactivity in [3H]GlcNAc/GalNAc-P-P-Und by the percentage of the individual [3H] glycolipids.
Membrane fractions from different E. coli strains (K12, PR4019 and O157) were incubated with either UDP-[3H]GlcNAc or UDP-[3H]GalNAc and the incorporation into [3H]GlcNAc/GalNAc-P-P-Und was determined as described above. As seen in Table 3, no labeled glycolipids were detected after the incubation with UDP-[3H]GalNAc, only GlcNAc-P-P-Und was detectable when membrane fractions were incubated with UDP-[3H]GlcNAc
TABLE 3
Synthesis of [3H]GlcNAc/GalNAc-P-P-undecaprenol in E. coli membrane
fractions using either UDP-[3H]GlcNAc or UDP-[3H]GalNAc as substrate
[3H]Glycolipid formed
Source of Sugar nucleotide GlcNAc-P-P-Und GalNAc-P-P-Und
membranes added (pmol/mg) (pmol/mg)
K12 UDP-[3H]GlcNAc 6.4 <0.01
K12 UDP-[3H]GalNAc <0.01 <0.01
PR4019 UDP-[3H]GlcNAc 44 <0.01
PR4019 UDP-[3H]GalNAc <0.01 <0.01
O157 UDP-[3H]GlcNAc 1.5 0.5
O157 UDP-[3H]GalNAc <0.01 <0.01
Moreover, neither the addition of exogenous Und-P to incubations with membranes from PR4019, the WecA-overexpressing strain, or the addition of cytosolic fractions from O157 cells resulted in the formation of GalNAc-P-P-Und from UDP-GalNAc. These results demonstrate that UDP-GalNAc is not a substrate for WecA and suggest that GalNAc-P-P-Und is formed by an alternative mechanism.
When membranes from strain K12 were incubated with UDP-[3H]GlcNAc, [3H]GlcNAc-P-P-Und was synthesized as expected (Rush, J. S., Rick, P. D. and Waechter, C. J. (1997) Glycobiology, 7, 315-322). However, when membranes from strain O157 were incubated with UDP-[3H]GlcNAc, in addition to [3H]GlcNAc-P-P-Und, a second labeled lipid shown to be [3H]GalNAc-P-P-Und (see below) was observed. When the time course for the formation of the two glycolipids was examined, the incorporation of radioactivity into [3H]GlcNAc-P-P-Und (FIG. 1, O) occurred more quickly and to a higher extent than into [3H]GalNAc-P-P-Und (FIG. 1, ●), compatible with a precursor-product relationship (FIG. 2).
The observation that E. coli O157 membranes do not utilize UDP-GalNAc as a GalNAc-P donor for the synthesis of GalNAc-P-P-Und is one example which confirms the biosynthetic pathway for the formation of GalNAc-P-P-Und illustrated in FIG. 2. In this scheme, GlcNAc-P-P-Und is formed by the transfer of GlcNAc-P from UDP-GlcNAc, catalyzed by WecA, and then GlcNAc-P-P-Und is epimerized by the action of a previously unknown 4-epimerase to produce GalNAc-P-P-Und.
Example 3: Characterization of [3H]GalNAc-P-P-Und Formed In Vitro with Membrane Fractions from E. coli Strain O157
Consistent with the additional O157-specific glycolipid product detected in FIG. 1, as GalNAc-P-P-Und, it was stable to mild alkaline methanolysis (toluene/methanol 1:3, containing 0.1 N KOH, 0° C., 60 min), retained by DEAE-cellulose equilibrated in CHCl3/CH3OH/H2O (10:10:3), and eluted with CHCl3/CH3OH/H2O (10:10:3) containing 20 mM ammonium acetate as reported previously for [3H]GlcNAc1-2-P-P-Dol (Waechter, J. and Harford, B. (1977) Arch. Biochem. Biophys. 181, 185-198).
[3H]GalNAc-P-P-Und was clearly resolved from [3H]GalNAc-P-P-Und by thin layer chromatography on borate-impregnated silica gel G (Kean, E. L. (1966) J. Lipid Res. 7, 149-452) and purified by preparative TLC as shown in FIG. 3A and FIG. 3B.
Preparation of Borate-Impregnated Thin Layer Plates and Whatman No. 1 Paper—
Silica gel thin layer plates were impregnated with sodium borate by briefly immersing the plates in 2.5% Na2B4O7.10 H2O in 95% methanol as described by Kean (Kean, E. L. (1966) J. Lipid Res. 7.449-452). The borate-impregnated TLC plates were dried overnight at room temperature and stored in a vacuum dessicator over Drierite until use. Immediately before chromatography, the plates were activated by heating briefly (˜10-15 min) to 100° C. Whatman No. 1 paper was impregnated with sodium borate by dipping 20×30-cm sheets of Whatman 1 paper in 0.2 M Na2B4O7.10H2O. The Whatman No. 1 paper sheets were pressed firmly between two sheets of Whatman No. 3MM paper and allowed to dry at room temperature for several days, as described by Cardini and Leloir (Cardini, C. E. and Leloir, L. F. (1957) J. Biol. Chem. 225, 317-324).
Characterization of Glycan Products Formed in In Vitro Reactions—
The glycans of the individual glycolipids ([3H]GalNAc-P-P-Und and [3H]GlcNAc-P-P-Und) were characterized by descending paper chromatography after release by mild acid hydrolysis. The GlcNAc/GalNAc lipids were dried under a stream of nitrogen in a conical screw-cap tube and heated to 100° C., 15 min in 0.2 ml 0.01 M HCl. After hydrolysis the samples were applied to a 0.8-ml mixed-bed ion-exchange column containing 0.4 ml of AG50WX8 (H+) and 0.4 ml AG1X8 (acetate form) and eluted with 1.5 ml water. The eluate was dried under a stream of nitrogen, redissolved in a small volume of H2O (0.02 ml), spotted on a 30-cm strip of borate-impregnated Whatman No. 1 paper, and developed in descending mode with butanol/pyridine/water (6:4:3) for 40-50 h. After drying, the paper strips were cut into 1-cm zones and analyzed for radioactivity by scintillation spectrometry. GlcNAc and GalNAc standards were detected using an aniline-diphenylamine dip reagent (Schwimmer, S. and Benvenue, A. (1956) Science 123, 543-544).
Glycan products were converted to their corresponding alditols by reduction with 0.1 M NaBH4 in 0.1 M NaOH (final volume ml) following mild acid hydrolysis as described above. After incubation at room temperature overnight, the reactions were quenched with several drops of glacial acetic acid and dried under a stream of nitrogen out of methanol containing 1 drop of acetic acid, several times. The alditols were dissolved in water, desalted by passage over 0.5 ml columns of AG50WX8 (H+) and AG1X8 (acetate), dried under nitrogen, and spotted on 30-cm strips of Whatman No. 3MM paper. The Whatman No. 3 MM strips were developed overnight in descending mode with ethyl acetate, pyridine, 0.1 M boric acid (65:25:20), dried, cut into 1-cm zones, and analyzed for radioactivity by scintillation spectrometry. GlcNAcitol and GalNAcitol standards were visualized using a modification of the periodate-benzidine dip procedure (Gordon, H. T., Thornburg, W. and Werum, L. N. (1956) Anal. Chem. 28, 849-855). The paper strips were dipped in acetone, 0.1 M NaIO4 (95:5), allowed to air dry for 3 min, and then dipped in acetone/acetic acid/H2O/o-tolidine (96:0.6:4.4:0.2 gm). Alditols containing cis-diols stain as yellow spots on a blue background.
Mass Spectrometry (“MS”) of Glycolipids—
Purified glycolipids were analyzed using an ABI/MDS Sciex 4000 Q-Trap hybrid triple quadrupole linear ion trap mass spectrometer with an ABI Turbo V electrospray ionsource (ABIMDS-Sciex, Toronto, Canada). In brief, samples were infused at 10 μl/min with ion source settings determined empirically, and MS/MS (mass spectroscopy in a second dimension) information was obtained by fragmentation of the molecular ion in linear ion trap mode.
When the glycolipid was treated with mild acid (0.01 N HCl, 100° C., 15 min), the water-soluble product co-chromatographed with [3H]GalNAc on descending paper chromatography with borate-impregnated Whatman No. 1 paper (FIG. 3C). In addition, when the labeled sugar was reduced, it was converted to [3H]alditol, GalNAc-OH (FIG. 3D). Moreover, negative-ion MS analysis yielded the [M-H]-ion of m/z=1128, expected for GalNAc-P-P-Und, and the MS/MS daughter ion spectrum showed a prominent ion at m/z=907, expected for a glycolipid containing P-P-Und (Guan, Z., Breazeale, S. D. and Raetz, C. R. (2005) Anal. Biochem. 345, 336-339). The identification of the glycolipid product formed by strain O157 as GalNAc-P-P-Und is also supported by its formation from exogenous GlcNAc-P-P-Und (see Example 7).
Example 4: Metabolic Labeling of [3H]GalNAc-P-P-Und (In Vivo) with [3H]GlcNAc in E. coli Cells Expressing the Z3206 Gene
To investigate whether expression of the E. coli O157 Z3206 gene enabled cells to synthesize GalNAc-P-P-Und, E. coli strain 21546 (Meier-Dieter, U., Starman, R., Barr, K., Mayer, H. and Rick, P. D. (1990) J. Biol. Chem., 265, 13490-13497) expressing the Z3206 gene was labeled metabolically with [3H]GlcNAc and analyzed for [3H]GlcNAc/GalNAc-P-P-Und formation.
Metabolic Labeling of Bacterial Cells—
E. coli cells were cultured with vigorous shaking in Luria-Bertani medium at 37° C. to an A600 of 0.5-1. [3H]GlcNAc was added to a final concentration of 1 μCi/ml and the incubation was continued for 5 min at 37° C. The incorporation of radiolabel into glycolipids was terminated by the addition of 0.5 gm/ml crushed ice, and the cultures were thoroughly mixed. The bacterial cells were recovered by centrifugation at 4000×g for 10 min, and the supernatant was discarded. The cells were washed with ice-cold phosphate-buffered saline two times, resuspended by vigorous vortex mixing in 10 volumes (cell pellet) of methanol, and sonicated briefly with a probe sonicator at 40% full power. After sonication, 20 volumes of chloroform were added, and the extracts were mixed vigorously and allowed to stand at room temperature for 15 min. The insoluble material was sedimented by centrifugation, and the pellet was re-extracted with a small volume of CHCl3/CH3OH (2:1) twice. The combined organic extracts were then processed as described below.
Purification of GlcNAc-P-P-Und and GalNAc-P-P-Und—
GlcNAc/GalNAc-P-P-Und was extracted with CHCl3/CH3OH (2:1) and freed of water-soluble material by partitioning as described elsewhere (Waechter, C. J., Kennedy, J. L. and Harford, J. B. (1976) Arch. Biochem. Biophys. 174, 726-737). The organic extract was then dried under a stream of nitrogen, and the bulk glycerophospholipids were destroyed by deacylation in toluene/methanol (1:3) containing 0.1 N KOH at 0° C. for 60 min. The deacylation reaction was neutralized with acetic acid, diluted with 4 volumes of CHCl3/CH3OH (2:1), and washed with 15 volume of 0.9% NaCl. The organic (lower) phase was washed with 13 volume of CHCl3, CH3OH, 0.9% NaCl (3:48:47), and the aqueous phase was discarded. The organic phase was diluted with sufficient methanol to accommodate the residual aqueous phase in the organic phase and applied to a DEAE-cellulose column (5 ml) equilibrated with CHCl3/CH3OH (2:1). The column was washed with 20 column volumes of CHCl3/CH3OH/H2O (10:10:3) and then eluted with CHCl3/CH3OH/H2O (10:10:3) containing 20 mM ammonium acetate. Fractions (2 ml) were collected and monitored for either radioactivity, or GlcNAc/GalNAc-P-P-Und using an anisaldehyde spray reagent (Dunphy, P. J., Kerr, J. D., Pennock, J. F., Whittle, K. J., and Feeney, J. (1967) Biochim. Biophys. Acta 136, 136-147) after resolution by thin layer chromatography on borate-impregnated silica plates (as described earlier).
E. coli strain 21546 was selected as the host for the Z3206 expression studies because a mutation in UDP-ManNAcA synthesis results in a block in the utilization of GlcNAc-P-P-Und for the synthesis of the enterobacterial common antigen. Because E. coli 21546 is derived from E. coli K12 it does not synthesize an O-antigen repeat as well (Stevenson, G., Neal, B., Liu, D., Hobbs, M., Packer, N. H., Batley, M., Redmond, J. W., Lindquist, L. and Reeves, P. (1994) J. Bacterial., 176, 4144-4156), and thus, larger amounts of GlcNAc-P-P-Und accumulate for the conversion to GalNAc-P-P-Und. When strain 21546 and the transformant expressing the Z3206 gene were labeled with [3H]GlcNAc and the radiolabeled lipids were analyzed by thin layer chromatography on borate-impregnated silica gel plates, the parental strain (FIG. 4A) synthesized only one labeled lipid, GlcNAc-P-P-Und. However, 21546 cells expressing the Z3206 gene (FIG. 4B) also synthesized an additional labeled lipid shown to be GalNAc-P-P-Und.
Example 5: Membrane Fractions from E. coli Cells Expressing the Z3206 Gene Synthesize GalNAc-P-P-Und In Vitro
To corroborate that the protein encoded by the E. coli O157 Z3206 gene catalyzed the synthesis of GalNAc-P-P-Und, membrane fractions from E. coli cells expressing the Z3206 gene were incubated with [3H]UDP-GlcNAc and the [3H]glycolipid products were analyzed by thin layer chromatography (chromatographic preparation and characterization methods are described in Example 3) on borate-impregnated silica gel plates as shown in FIG. 5. When membrane fractions from E. coli K12 or the host strain E. coli 21546 cells were incubated with UDP-[3H]GlcNAc, only [3H]GlcNAc-P-P-Und was observed (FIG. 5A and FIG. 5C). However, membrane fractions from E. Coli O157 and E. coli 21546 expressing Z3206 formed GalNAc-P-P-Und as well (FIG. 5B and FIG. 5D).
Example 6: Formation of GlcNAc-P-P-Und, but not GalNAc-P-P-Und, is Reversed in the Presence of UMP
To provide additional evidence that GalNAc-P-P-Und is synthesized from GlcNAc-P-P-Und, and not by the action of WecA using UDP-GalNAc as a glycosyl donor, the effect of discharging endogenous, pre-labeled [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und with UMP was examined. The GlcNAc-phosphotransferase reaction catalyzed by WecA is freely reversible by the addition of excess UMP re-synthesizing UDP-GlcNAc and releasing Und-P.
In this experiment membrane fractions from E. coli strain 21546 expressing Z3206 were pre-labeled for 10 min with UDP-[3H]GlcNAc followed by the addition of 1 mM UMP, and the amount of each labeled glycolipid remaining was determined. The results illustrated in FIG. 6A show the relative amounts of [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und at the end of the 10 min labeling period. After incubation with 1 mM UMP for 1 min it can be seen that there is a substantial loss of [3H]GalNAc-P-P-Und, whereas the [3H]GalNAc-P-P-Und peak is relatively unchanged (FIG. 6B) (chromatographic preparation and characterization methods are described in Example 5), This observation is consistent with the results in Table 3 indicating that WecA does not catalyze the transfer of GalNAc-P into GalNAc-P-P-Und from UDP-GalNAc. It is noteworthy that during the second minute of incubation with UMP (FIG. 6C), the loss of GlcNAc-P-P-Und slows, and there is a slight reduction in the peak of [3H]GalNAc-P-P-Und, suggesting that [3H]GalNAc-P-P-Und is re-equilibrating with the [3H]GlcNAc-P-P-Und pool by reversal of the epimerase reaction (see Example 7).
Example 7: Interconversion of Exogenous, Purified [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und Catalyzed by Membranes from E. Coli Cells Expressing Z3206
To provide direct evidence that GlcNAc-P-P-Und and GalNAc-P-P-Und can be directly interconverted by membrane fractions from E. coli cells expressing Z3260, purified [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und were tested as exogenous substrates.
Purified [3H]GlcNAc-P-P-Und/[3H]GalNAc-P-P-Und were prepared as in Example 4 (Metabolic Labeling of Bacterial Cells and Purification of GlcNAc-P-P-Und and GalNAc-P-P-Und). [3H]HexNAc-P-P-undecaprenols (2000 dpm/pmol, dispersed in 1% Triton X-100, final concentration 0.1%) were incubated with E. coli membranes as in Example 2 in Assay For the Biosynthesis of [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und in E. coli Membranes In Vitro.
Preliminary experiments showed that the epimerase was active when exogenous [3H]GalNAc-P-P-Und was added to the reaction mixtures dispersed in Triton X-100, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid), Nonidet P-40, or octylglucoside and exhibited a pH optimum in the range 7-8.5. The chromatographic mobility of the purified [3H]GlcNAc-P-P-Und and [3H]GalNAc-P-P-Und before incubation with membrane fractions is shown in FIG. 7A and FIG. 7D. As seen in FIG. 7B and FIG. 7E, the glycolipids are unaffected by incubation with membrane fractions from E. coli 21546. However, incubation of the purified glycolipids with membrane fractions from E. coli 21546 expressing Z3206 catalyzes the conversion of exogenous [3H]GlcNAc-P-P-Und to [3H]GalNAc-P-P-Und (FIG. 7C) and the conversion of [3H]GalNAc-P-P-Und to [3H]GlcNAc-P-P-Und (FIG. 7F). These results demonstrate directly that GlcNAc-P-P-Und and GalNAc-P-P-Und can be enzymatically interconverted in E. coli strains expressing the Z3206.
Example 8: E. coli Z3206 is not a UDP-GlcNAc 4-Epimerase
To determine if Z3206 can catalyze the formation of UDP-GalNAc, the N-glycosylation apparatus from C. jejuni was expressed in E. coli. In this reporter system, glycosylation of the target protein AcrA is dependent on the presence of the pgl locus (Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wrenn, B. W., Aebi, M. (2002) Science 298, 1790-1793), including a functional Gne UDP-Glc/UDP-GlcNAc epimerase (Bernatchez, S., Szymanski, C. M., Ishiyama, N., Li, J., Jarrell, H. C., Lau, P. C., Berghuis, A. M., Young, N. M., Wakarchuk, W. W. (2005) J. Biol. Chem. 280, 4792-4802). Glycosylation of AcrA is lost if the pgl cluster contains a deletion of gne (Linton, D., Dorrell, N., Hitchen, P. G., Amber, S., Karlyshev, A. V., Morris, H. R., Dell, A., Valvano, M. A., Aebi, M. and Wren, B. W. (2005) Mol Microbiol. 55, 1695-1703). The ability of Z3206 to restore AcrA-glycosylation in the presence of the pgl operon Δgne was investigated in vivo by expressing AcrA (pWA2) together with the pgl locus Δgne complemented by either Gne (pMLBAD:gne) or Z3206 (pMLBAD:Z3206).
Total E. coli cell extracts were prepared for immunodetection analysis using cells at a concentration equivalent to 1 A600 unit that were resuspended in 100 μl of SDS loading buffer (Laemmli, U. (1970) Nature 227, 680-685). Aliquots of 10 μl were loaded on 10% SDS-PAGE. Periplasmic extracts of E. coli cells were prepared by lysozyme treatment (Feldman, M. F., Wacker, M., Hernandez, M., Hitchen, P. G., Marolda, C. L., Kowarik, M., Morris, H. R., Dell, A., Valvano, M. A., Aebi, M. (2005) Proc Natl Acad Sci USA 102, 3016-3021), and 10 μl of the final sample (corresponding to 0.2 A600 units of cells) was analyzed by SDS-PAGE. After being blotted on nitrocellulose membrane, sample was immunostained with the specific antiserum (Aebi, M., Gasscnhuber, J., Domdey, H., and te Heesen, S. (1996) Glycobiology 6, 439-444). Anti-AcrA (Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wrenn, B. W., Aebi, M. (2002) Science 298, 1790-1793) antibodies were used. Anti-rabbit IgG-HRP (Bio-Rad) was used as secondary antibody. Detection was carried out with ECL™ Western blotting detection reagents (Amersham Biosciences).
As shown in FIG. 8, the glycosylated protein, which migrates slower than the unglycosylated form, was formed only when cells expressing pgl locus Δgne were complemented by One (lane 2). Z3206 was unable to restore glycosylation of the reporter glycoprotein (FIG. 8, lane 1). Accordingly, Z3206 does not complement glycosylation of AcrA in a Gne dependent glycosylation system. Expression of Gne and membrane-associated Z3206 were confirmed by immunodctection.
Example 9: Analysis of S. flexneri 6+/− Z3206 LPS
In FIG. 9 are depicted some of the genes required for the biosynthesis of the Shigella flexneri 6 O-antigen: genes encoding enzymes for biosynthesis of nucleotide sugar precursors; genes encoding glycosyltransferases; genes encoding O antigen processing proteins; and genes encoding proteins responsible for the O-acetylation. The structure of the O antigen has been elucidated by Dmitriev, B. A. et al (Dmitriev. B. A., et al Somatic Antigens of Shigella Eur J Biochem, 1979. 98: p. 8; Liu B et al Structure and genetics of Shigella O antigens FEMS Microbiology Review, 2008. 32: p. 27).
To identify all the genes required for the biosynthesis of the Shigella flexneri 6 O-antigen a genomic library was constructed.
Cloning of S. flexneri 6 genomic DNA
S. flexneri 6 genomic DNA was isolated using a Macherey-Nagel NucleoSpin® Tissue Kit following the protocol for DNA isolation from bacteria. DNA was isolated from five S. flexneri 6 overnight cultures at 2 ml each and final elution was done with 100 μl elution buffer (5 mM Tris/HCl, pH 8.5). The eluted fractions were pooled, precipitated by isopropanol and the final pellet was resuspended in 52 μl TE buffer of which the total volume was subjected to end-repair according to the protocol given by CopyControl™ Fosmid Library Production Kit (EPICENTRE). End-repaired DNA was purified on a 1% low melting point agarose gel run with 1×TAE buffer, recovered and precipitated by ethanol as described in the kit protocol. Resuspension of the precipitated DNA was done in 7 μl TE buffer of which 0.15 μl DNA was ligated into pCC1FOS (SEQ ID NO: 27) according to the EPICENTRE protocol. Packaging of the ligation product into phage was performed according to protocol and the packaged phage was diluted 1:1 in phage dilution buffer of which 10 μl were used to infect 100 μl EPI300-T1 cells that were previous grown as described by EPICENTRE. Cells (110 μl) were plated six times with approximately 100 colonies per plate such that the six plates contain the entire S. flexneri 6 genomic library. Plates were developed by colony blotting and positive/negative colonies were western blotted and silver stained.
Colony Blotting
For colony blots a nitrocellulose membrane was laid over the solid agar plate, removed, washed three times in 1×PBST and treated in the same manner. The membrane was first blocked in 10% milk for one hour at room temperature after which it was incubated for one hour at room temperature in 2 ml 1% milk (in PBST) with the anti-type VI antiserum (primary antibody). After three washes in PBST at 10 minutes each, the membrane was incubated for another hour at room temperature in the secondary antibody, 1:20000 peroxidase conjugated goat-anti-rabbit IgG (BioRad) in 2 ml 1% milk (in PBST). After a final three washes with PBST (10 minutes each) the membrane was developed in a UVP Chemi Doc Imaging System with a 1:1 mix of luminol and peroxide buffer provided by the SuperSignal® West Dura Extended Duration Substrate Kit (Thermo Scientific).
The clone reacting with S. flexneri 6 antiserum following production of a S. flexneri 6 genomic library was sequenced by primer walking out of the region previously sequenced by Liu et al. (Liu et al., 2008) reaching from rmlB to wtbZ (FIG. 9). Primers rmlB_rev and wfbZ_fwd (S. flexneri—Z3206) annealed in rmlB and wfbZ and were used to sequence the insert of the clone until wcaM and hisI/F were reached (S. flexneri+Z3206), respectively (FIG. 10).
In order to establish whether O antigen synthesis is maintained in clones lacking Z3206 (thus hindering epimerization of und-GlcNAc to und-GalNAc), two plasmids were constructed (SEQ ID NO. 28 and SEQ ID NO. 29) (FIG. 10), transformed into E. coli cells and analyzed by silver staining and western blot.
As shown in FIG. 11, LPS is produced in E. coli cells + or −Z3206. The O antigen can be produced without Z3206 however with lower production yield, which indicates that the efficiency of polysaccharide production without the epimerase (Z3206) is lower.
Example 10: Analysis of S. flexneri 6+/− Z3206 LLO
Purification of Undecaprenol-PP-O Antigen by C18 Column Chromatography
E. coli cells expressing S. flexeneri antigen+/− Z3206 were pelleted, washed once in 50 ml 0.9% NaCl and the final pellets were lyophilized overnight. The pellets were washed once in 30 ml 85-95% methanol, reextracted with 10:10:3 chloroform-methanol-water (v/v/v) and the extracts were converted to a two-phase Bligh/Dyer system by addition of water, resulting in a final ratio of 10:10:9 (C:M:W). Phases were separated by centrifugation and the upper aqueous phases were loaded each on a C18 Sep-Pak cartridge conditioned with 10 ml methanol and equilibrated with 10 ml 3:48:47 (C:M:W). Following loading, the cartridges were washed with 10 ml 3:48:47 (C:M:W) and eluted with 5 ml 10:10:3 (C:M:W). 20 OD samples of the loads, flow-throughs, washes and elutions of the C18 column were dried in an Eppendorf Concentrator Plus, washed with 250 μl methanol, reevaporated and washed a further three times with 30 μl ddH2O.
Glycolipid Hydrolysis
The glycolipid samples from the wash of the C18 column were hydrolysed by dissolving the dried samples in 2 ml n-propanol:2 M trifluoroacetic acid (1:1), heating to 50° C. for 15 minutes and evaporating to dryness under N2.
Oligosaccharide Labeling with 2-Aminobenzoate and HPLC
Labeling was done according to Bigge et al. (Bigge, 1995) and glycan cleanup was performed using the paper disk method described in Merry et al. (2002) (Merry et al., 2002). Separation of 2-AB labeled glycans was performed by HPLC using a GlycoSep-N normal phase column according to Royle et al. (Royle, 2002) but modified to a three solvent system. Solvent A was 10 mM ammonium formate pH 4.4 in 80% acetonitrole. Solvent B was 30 mM ammonium formate pH 4.4. in 40% acetonitrile. Solvent C was 0.5% formic acid. The column temperature was 30° C. and 2-AB labeled glycans were detected by fluorescence (λex=330 nm, λem=420 nm). Gradient conditions were a linear gradient of 100% A to 100% B over 160 minutes at a flow rate of 0.4 ml/min, followed by 2 minutes 100% B to 100% C, increasing the flow rate to 1 ml/min. The column was washed for 5 minutes with 100% C, returning to 100% A over 2 minutes and running for 15 minutes at 100% A at a flow rate of 1 ml/min, then returning the flow rate to 0.4 ml/min for 5 minutes. All samples were injected in water.
The plasmids expressing the S. flexneri O-antigen with (SEQ ID NO: 29) or without (SEQ ID NO: 28) Z3206 were transformed into SCM3 cells (FIG. 10). Traces at late elution volumes shows a difference between the curves of the two samples containing the S. flexneri O antigen+/−Z3206 (FIG. 12). This difference in the elution pattern can be explained by a different oligosaccharide structure carrying a different monosaccharide at the reducing end: GlcNAc or GalNAc depending on the presence of the epimerase (Z3206).
Example 11: Analysis of pglB Specificity by Production and Characterization of Bioconjugate Produced from S. flexneri 6+/−Z3206
To assess whether pglB can transfer oligosaccharides having GlcNAc (S. flexneri 6 O-antigen) at the reducing end to the carrier protein EPA Nickel purified extracts from E. coli cells expressing EPA (SEQ ID NO: 25), PglB (SEQ ID NO: 26) and S. flexneri 6 O-antigen+/−Z3206 (SEQ ID NO: 29/SEQ ID NO: 28) were analyzed by western blot using anti EPA and anti type VI antibodies. The S. flexneri O6 antigen with and without GalNAc at the reducing end was transferred to EPA by PglB as detected by antiEPA and anti VI antisera (FIG. 13).
The O antigen is still produced and detected, but with lower production yield, which indicates that the efficiency of polysaccharide production without the epimerase is lower.
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the invention encompassed by the claims. Such various changes that will be understood by those skilled in the art as covered within the scope of the invention include, in particular, N-glycosylated proteins and bioconjugates comprising a glycan other than those from E. coli and S. flexneri with GalNAc at the reducing terminus.
Sequence Listing
Applicant: GlycoVaxyn AG
Title: Biosynthetic System That Produces Immunogenic
Polysaccharides In Prokaryotic Cells
Number of SEQ ID NOs: 29
Nucleotide Sequence for E. coli O157 Z3206
Length: 993
Type: DNA
Organism: E. coli O157
Sequence:
SEQ ID NO: 1
ATGAACGATAACGTTTTGCTCATAGGAGCTTCCGGATTCGTAGGAACCCGACTACTTGAAACGG
CAATTGCTGACTTTAATATCAAGAAGCTGGACAAACAGCAGAGCCACTTTTATCCAGAAATCAC
ACAGATTGGCGATGTTCGCCATCAACAGGCACTGGACCAGGCGTTAGTCGGTTTTGACACTGTT
GTACTACTGGCAGCGGAACACCGCGATGACGTCAGCCCTACTTCTCTCTATTATGATGTCAACG
TTCAGGGTAGCCGCAATGTGCTGGCGGCCATGGAAAAAAATGGCGTTAAAAATATCATCTTTAC
CAGTTCCGTTGCTGTTTATGGTTTGAACAAACACAACCCTGACGAAAACCATCCACACGACCCT
TTGAACCACTACGGCAAAAGTAAGTGGCAGGCAGAGGAAGTGCTGCGTGAATGGTATAACAAAG
CACCAACAGAACGTTCATTAACCATCATCCGTGCTACCGTTATCTTCGGTGAACGCAACCGCGG
TAACGTCTATAACTTGCTGAAACAGATCGGTGGCGGCAAGTTTATGATGGTGGGCGCAGGGACT
AACTATAAGTCCATGGCTTATGTTGGAAACATTGTTGAGTTTATGAAGTACAAACTGAAGAATG
TTGCCGCAGGTTATGAGGTTTATAACTACGTTGATAAGCCAGACCTGAACATGAACCAGTTGGT
TGCTGAAGTTGAACAAAGCCTGAACAAAAAGATCCCTTCTATGCACTTGCCTTACCCACTAGGA
ATGCTGGGTGGATATTGCTTTGATATCCTGAGCAAAATTACGGGCAAAAAATACGCTGTCAGCT
CAGTGCGCGTGAAAAAATTCTGCGCAACAACACAGTTTGACGCAACGAAAGTGCATTCTTCAGG
TTTTGTGGCACCGTATACGCTGTCGCAAGGTCTGGATCGAAGACTGCAGTATGAATTCGTTCAT
GCCAAAAAAGACGACATAACGTTTGTTTCTGAG
Amino Acid Sequence for Z3206
Length: 331
Type: PRT
Organism: E coli O157
Sequence:
SEQ ID NO: 2
MNDNVLLIGASGFVGTRLLETAIADFNIKNLDKQQSHFYPEITQIGDVRDQQALDQALVGFDTV
VLLAAEHRDDVSPTSLYYDVNVQGTRNVLAAMEKNGVKNIIFTSSVAVYGLNKHNPDENHPHDP
FNHYGKSKWQAEEVLREWYNKAPTERSLTIIRPTVIFGERNRGNVYNLLKQIAGGKFMMVGAGT
NYKSMAYVGNIVEFIKYKLKNVAAGYEVYNYVDKPDLNMNQLVAEVEQSLNKKIPSMHLPYPLG
MLGGYCFDILSKITGKKYAVSSVRVKKFCATTQFDATKVHSSGFVAPYTLSQGLDRTLQYEFVH
AKKDDITFVSE
Nucleotide Sequence for E. coli O55 gne
Locus AF461121_1 BCT 2 May 2002
Definition (UDP-GlcNAc 4-epimerase Gne [Escherichia coil])
Accession AAL67550
Length: 993
Type: DNA
Organism: E. coli O55
Sequence:
SEQ ID NO: 3
ATGAACGATA ACGTTTTGCT CATAGGAGCT TCCGGATTCG TAGGAACCCG
ACTACTTGAA ACGGCAATTG CTGACTTTAA TATCAAGAAC CTGGACAAAC
AGCAGAGCCA CTTTTATCCA GAAATCACAC AGATTGGTGA TOTTCGTGAT
CAACAGGCAC TCGACCAGGC GTTAGCCGGT TTTGACACTG TTGTGCTACT
GGCAGCGGAA CACCGCGATG ACGTCAGCCC TACTTCTCTC TATTATGATG
TCAACGTTCA GGGTACCCGC AATGTGCTGG CGGCCATGGA AAAAAATGGC
GTTAAAAATA TCATCTTTAC CAGTTCCGTT GCTGTTTATG GTTTGAACAA
ACACAACCCT GACGAAAACC ATCCACACGA TCCTTTCAAC CACTACGGCA
AAAGTAAGTG GCAGGCAGAG GAAGTGCTGC GTGAATGGTA TAACAAAGCA
CCAACAGAAC GTTCATTAAC CATCATCCGT CCTACCGTTA TCTTCGGTGA
ACGGAACCGC GGTAACGTCT ATAACTTGCT GAAACAGATC GCTGGCGGCA
AGTTTATGAT GGTGGGCGCA GGGACTAACT ATAAGTCCAT GGCTTATGTT
GGAAACATTG TTGAGTTTAT CAAGTACAAA CTGAAGAATG TTGCCGCAGG
TTACGAGGTT TATAACTACG TTGATAAGCC AGACCTGAAC ATGAACCAGT
TGGTTGCTGA AGTTGAACAA AGCCTGAACA AAAAGATCCC TTCTATGCAC
TTGCCTTACC CACTAGGAAT GCTGGGTGGA TATTGCTTTG ATATCCTGAG
CAAAATTACG GGCAAAAAAT ACGCTGTCAG CTCTGTGCGC GTGAAAAAAT
TCTGCGCAAC AACACAGTTT GACGCAACGA NAGTGCATTC TTCAGGTTTT
GTGGCACCGT ATACGCTGTC GCAAGGTCTG GATCGAACTC TGCAGTATGA
ATTCGTCCAT GCCAAAAAAG ACGACATAAC GTTTGTTTCT GAG
Amino Acid Sequence for E. coli O55 UDP-GlcNAc 4-epimerase Gne
Locus AF461121_1
Definition (UDP-GlcNAc 4-epimerase Gne [Escherichia coli])
Accession AAL67550
Length: 331 aa linear
Type: PRT
Organism: E. coli O55
Sequence:
SEQ ID NO: 4
mndnvlliga sgfvgtrlle taiadfnikn ldkqqshfyp eitqigdvrd
qqaldqalag fdtvvllaae hrddvsptsl yydvnvqgtr nvlaamekng
vkniiftssv avyglnkhnp denhphdpfn hygkskwqae evirewynka
ptersltiir ptvifgernr gnvynllkqi aggkfmmvga gtnyksmayv
gnivefikyk lknvaagyev ynyvdkpdln mnqlvaeveq sinkkipsmh
lpyplgmlgg ycfdilskit gkkyayssvr vkkfcattqf datkvhssgf
vapytlsqgl drtlqyefvh akkdditfvs e
Nucleotide Sequence for E. coli O86 gne1
Locus AAO37706 BCT 6 Dec. 2005
Definition UDP-GlcNAc C4-epimerase [Escherichia coli O86].
Accession AAO37706
Length: 993
Type: DNA
Organism: E. coli O86
Sequence:
SEQ ID NO. 5
ATGAACGATA ACGTTTTGCT CATAGGAGCT TCCGGATTCG TAGGAACCCG
ACTACTTGAA ACGGCAATTG CTGACTTTAA TATCAAGAAC CTGGACAAAC
AGCAGAGCCA CTTTTATCCA GAAATCACAC AGATTGGTGA TGTTCGTGAT
CAACAGGCAC TCGACCAGGC GTTAGCCGGT TTTGACACTG TTGTACTACT
GGCAGCGGAA CACCGCGATG ACGTCAGCCC TACTTCTCTC TATTATGATG
TCAACGTTCA GGGTACCCGC AATGTGCTGG CGGCCATGGA AAAAAATGGC
GTTAAAAATA TCATCTTTAC CAGTTCCGTT GCTGTTTATG GTTTGAACAA
ACACAACCCT GACGAAAACC ATCCACACGA CCCTTTCAAC CACTACGGCA
AAAGCAAGTG GCAGGCGGAG GAAGTGCTGC GTGAATGGTA TAACAAAGCA
CCAACAGAAC GTTCATTAAC TATCATCCGT CCTACCGTTA TCTTCGGTGA
ACGCAACCGC GGTAACGTCT ATAACTTGCT GAAACAGATC GCTGGCGGCA
AGTTTATGAT GGTGGGCGCA GGGACTAACT ATAAGTCCAT GGCTTATGTT
GGAAACATTG TTGAGTTTAT CAAGTACAAA CTGAAGAATG TTGCCGCAGG
TTACGAGGTT TATAACTACG TTGATAAGCC AGACCTGAAC ATGAACCAGT
TGGTTGCTGA AGTTGAACAA AGCCTGAACA AAAAGATCCC TTCTATGCAC
TTGCCTTACC CACTAGGAAT GCTGGGTGGA TATTGCTTTG ATATCCTGAG
CAAAATTACG GGCAAAAAAT ACGCTGTCAG CTCTGTGCGC GTGAAAAAAT
TCTGCGCAAC AACACAGTTT GACGCAACGA AAGTGCATTC TTCAGGTTTT
GTGGCACCGT ATACGCTGTC GCAAGGTCTG GATCGAACTC TGCAGTATGA
ATTCGTCCAT GCCAAAAAAG ACGACATAAC GTTTGTTTCT GAG
Amino Acid Sequence for E. coli O86 UDP-GlcNAc C4-epimerase
Locus AA037706
Definition UDP-GlcNAc C4-epimerase [Escherichia coli O86].
Accession AAO37706
Length: 331 aa linear
Type: PRT
Organism: E. coli O86
Sequence:
SEQ ID NO: 6
mndnvlliga sgfvgtrlle taiadfnikn ldkqqshfyp eitqigdvrd
qqaldqalag fdtvvllaae hrddvsptsl yydvnvqgtr nvlaamekng
vkniiftssv avyglnkhnp denhphdpfn hygkskwqae evlrewynka
ptersltiir ptvifgernr gnvynllkqi aggkfmmvga gtnyksmayv
gnivefikyk lknvaagyev ynyvdkpdln mnqlvaeveq slnkkipsmh
lpyplgmlgg ycfdilskit gkkyayssvr vkkfcattqf datkvhssgf
vapytlsqgl drtlqyefvh akkdditfvs e
Nucleotide Sequence for Shigella boydii O18 gne
Locus ACD09753 BCT 5 May 2008
Definition UDP-N-acetylglucosamine 4-epimerase 
[Shigella boydii CDC 3083-94].
Accession ACD09753
Length: 993
Type: DNA
Organism: Shigella boydii O18
Sequence:
SEQ ID NO: 7
ATGAACGATA ACGTTTTGCT CATAGGAGCT TCCGGATTCG TAGGAACCCG
ACTACTTGAA ACGGCAATTG CTGACTTTAA TATCAAGAAC CTGGACAAAC
AGCAGAGCCA TTTTTATCCA GCAATCACAC AGATTGGCGA TGTTCGTGAT
CAACAGGCAC TCGACCAGGC GTTAGCCGGT TTTGACACTG TTGTACTACT
GGCAGCGGAA CACCGCGATG ACGTCAGCCC TACTTCTCTC TATTATGATG
TCAACGTTCA GGGTACCCGC AATGTGCTGG CGGCCATGGA AAAAAATGGC
GTTAAAAATA TCATCTTTAC CAGTTCCGTT GCTGTTTATG GTTTGAACAA
ACACAACCCT GACGAAAACC ATCCACACGA CCCTTTCAAC CACTACGGCA
AAAGTAAGTG GCAGGCAGAG GAAGTGCTGC GTGAATGGTA TAACAAAGCA
CCAACAGAAC GTTCATTAAC CATCATCCGT CCTACCGTTA TCTTCGGTGA
ACGCAACCGC GGTAACGTCT ATAACTTGCT GAAACAGATC GCTGGCGGCA
AGTTTATGAT GGTGGGCGCA GGGACTAACT ATAAGTCCAT GGCTTATGTT
GGAAACATTG TTGAGTTTAT CAAGTACAAA CTGAAGAATG TTGCCGCAGG
TTATGAGGTT TATAACTATG TTGATAAGCC AGACCTGAAC ATGAACCAGT
TGGTTGCTGA AGTTGAACAA AGCCTGAACA AAAAGATCCC TTCTATGCAC
TTGCCTTACC CACTAGGAAT GCTGGGTGGA TATTGCTTTG ATATCCTGAG
CAAAATTACG GGCAAAAAAT ACGCTGTCAG CTCTGTGCGC GTGAAAAAAT
TCTGCGCAAC AACACAGTTT GACGCAACGA AAGTGCATTC TTCAGGTTTT
GTGGCACCGT ATACGCTGTC GCAAGGTCTG GATCGAACTC TGCAGTATGA
ATTCGTCCAT GCCAAAAAAG ACGACATAAC GTTTGTTTCT GAG
Amino Acid Sequence for Shigella boydii O18 UDP-N-
acetylglucosamine 4-epimerase
Locus ACD09753
Definition UDP-N-acetylglucosamine 4-epimerase 
[Shigella boydii CDC 3083-94].
Accession ACD09753
Length: 331 aa linear
Type: PRT
Organism: Shigella boydii O18
Sequence:
SEQ ID NO: 8
mndnvlliga sgfvgtrile taiadfnikn ldkggshfyp aitqigdvrd
qqaldqalag fdtvvliaae hrddvsptsi yydvnvqgtr nvlaamekng
vkniiftssv avyglnkhnp denhphdpfn hygkskwqae evirewynka
ptersltiir ptvifgernr gnvynllkqi aggkfmmvga gtnyksmayv
gnivefikyk lknvaagyev ynyvdkpdln mnqlvaeveq sinkkipsmh
lpyplgmlgg ycfdilskit gkkyayssvr vkkfcattqf datkvhssgf
vapytlsggl drtlqyefvh akkdditfvs
Nucleotide Sequence for Salmonella enterica O30 gne
Locus AAV34516 BCT 25 Oct. 2004
Definition UDP-GlcNAc 4-epimerase 
[Salmonella enterica subsp. salamae serovar Greenside].
Accession AAV34516
Length: 993
Type: DNA
Organism: Salmonella enterica O30
Sequence:
SEQ ID NO: 9
ATGAACGATA ACGTTTTGCT CATTGGTGCT TCCGGATTCG TAGGAACCCG
ACTCCTTGAA ACGGCAGTGG ATGATTTTAA TATCAAGAAC CTGGATAAAC
AGCAAAGCCA TTTCTACCCA GAGATTACAC ACATTGGCGA TGTTCGTGAC
CAACAAATCC TTGACCAGAC GTTGGTGGGT TTTGACACCG TAGTACTATT
GGCTGCGGAG CATCGTGATG ATGTTAGTCC TACCTCGCTT TATTATGATG
TCAACGTCCA GGGAACGCGT AATGTACTGG CGGCGATGGA AAAAAATGGT
GTAAAAAATA TCATTTTTAC CAGTTCCGTT GCAGTTTATG GACTCAACAA
GAAAAATCCT GACGAAACGC ACCCTCACGA TCCCTTTAAT CATTACGGAA
AAAGTAAATG GCAAGCAGAA GAAGTTCTGC GTGAGTGGCA TGCTAAAGCG
CCGAATGAGC GTTCTTTGAC CATAATTCGT CCTACCGTTA TTTTCGGGGA
GCGTAACCGC GGTAATGTAT ACAATCTCTT GAAACAGATC GCTGGTGGTA
AATTTGCGAT GGTTGGTCCG GGAACTAACT ATAAATCAAT GGCTTATGTT
GGTAATATCG TTGAGTTTAT CAAATTCAAA CTCAAGAATG TTACGGCGGG
CTATGAAGTT TATAATTATG TTGATAAACC TGATCTGAAT ATGAATCAAT
TGGTTGCTGA AGTAGAGCAG AGCCTGGGCA AAAAAATACC ATCGATGCAC
CTTCCATATC CATTAGGTAT GCTGGGGGGT TACTGTTTCG ATATCCTGAG
CAAAGTAACG GGCAAGAAGT ACGCTGTAAG TTCGGTTCGT GTTAAAAAAT
TCTGTGCGAC AACGCAGTTT GATGCAACAA AAGTGCATTC TTCTGGTTTT
GTTGCGCCAT ACACCTTATC TCAGGGGTTG GATCGTACAC TGCAATATGA
ATTTGTTCAT GCAAAGAAAG ATGACATTAC ATTCGTTTCA GAG
Amino Acid Sequence for Salmonella enterica O30 UDP-
GlcNAc 4-epimerase
Locus AAV34516
Definition UDP-GlcNAc 4-epimerase
[Salmonella enterica subsp. salamae serovar Greenside].
Accession AAV34516
Length: 331 aa linear
Type: PRT
Organism: Salmonella enterica O30
Sequence:
SEQ ID NO: 10
mndnviliga sgfvgtrlle tavddfnikn ldkggshfyp eithigdvrd
ggildgtivg fdtvvilaae hrddvsptsl yydvnvqgtr nvlaamekng
vkniiftssv avyglnkknp dethphdpfn hygkskwgae evlrewhaka
pnersltiir ptvifgernr gnvyralkgi aggkfamvgp gtnyksmayv
gnivefikfk lknvtagyev ynywdkpdln mnglvaeveg slgkkipsmh
lpyplgmlgg ycfdilskvt gkkyayssvr vkkfcattqf datkvhssgf
vapytlsggl drtlgyefvh akkdditfvs e
Nucleotide Sequence for C. jejuni gne
Locus YP_002344524 BCT 14 Sep. 2010
Definition UDP-GlcNAc/Glc 4-epimerase 
[Campylobacter jejuni subsp. jejuni
Accession YP_002344524
Length: 987
Type: DNA
Organism: C. jejuni
Sequence:
SEQ ID NO: 11
ATGAAAATTCTTATTAGCGGTGGTGCAGGTTATATAGGTTCTCATACTTTAAGACAATT
TTTAAAAACAGATCATGAAATTTGTGTTTTAGATAATCTTTCTAAGGGTTCTAAAATCG
CAATAGAAGATTTGCAAAAAACAAGAGCTTTTAAATTTTTCGAACAAGATTTAAGTGAT
TTTCAAGGCGTAAAAGCATTGTTTGAGAGAGAAAAATTTGACGCTATTGTGCATTTTGC
AGCAAGCATTGAAGTTTTTGAAAGTATGCAAAATCCTTTAAAATATTATATGAACAACA
CTGTTAATACGACAAATCTCATCGAAACTTGTTTGCAAACTGGAGTGAATAAATTTATA
TTTTCTTCAACGGCGGCCACTTATGGCGAACCACAAACTCCCGTTGTGAGCGAAACAAG
TCCTTTAGCACCTATTAATCCTTATGGGCGTAGTAAGCTTATGAGTGAAGAAGTTTTGC
GTGATGCAAGTATGGCAAATCCTGAATTTAAGCATTGTATTTTAAGATATTTTAATGTT
GCAGGTGCTTGTATGGATTATACTTTAGGACAACGCTATCCAAAAGCGACTTTGCTTAT
AAAAGTTGCAGCTGAATGTGCCGCAGGAAAACGTGATAAACTTTTCATATTTGGCGATG
ATTATGATACAAAAGATGGTACTTGCATAAGAGATTTTATCCATGTAGATGATATTTCA
AGTGCACATTTAGCGGCTTTGGATTATTTAAAAGAGAATGAAAGCAATGTTTTTAATGT
AGGTTATGGACATGGTTTTAGCGTAAAAGAAGTGATTGAAGCGATGAAAAAAGTTAGCG
GAGTGGATTTTAAAGTAGAACTTGCCCCACGCCGTGCGGGTGATCCTAGTGTATTGATT
TCTGATGCAAGTAAAATCAGAAATCTTACTTCTTGGCAGCCTAAATATGATGATTTAGA
GCTTATTTGTAAATCTGCTTTTGATTGGGAAAAACAGTGTTAA
Amino Acid Sequence for C. jejuni UDP-GlcNAc/Glc 4-epimerase
Locus YP_002344524
Definition UDP-GlcNAc/Glc 4-epimerase 
[Campylobacter jejuni subsp. jejuni
Accession YP_002344524
Length: 328 aa linear
Type: PRT
Organism: C. jejuni
Sequence:
SEQ ID NO: 12
mkilisggag yigshtlrqf lktdheicvl dnlskgskia iedlqktraf
kffeqdlsdf qgvkalfere kfdaivhfaa sievfesmqn plkyymnntv
nttnlietcl gtgvnkfifs staatygepq tpvvsetspl apinpygrsk
imseevirda smanpefkhc ilryfnvaga cmdytlaqry pkatllikva
aecaagkrdk ififgddydt kdgtcirdfi hvddissahi aaldylkene
snvfnvgygh gfsvkeviea mkkvsgvdfk velaprragd psvlisdask
irnltswqpk yddlelicks afdwekqc
Nucleotide Sequence for E. coli K12 galE
Locus AP_001390 BCT 30 Apr. 2010
Definition UDP-galactose-4-epimerase 
[Escherichia coli str. K-12 substr. W3110].
Accession AP_001390
Length: 1,017
Type: DNA
Organism: E. coli K12
Sequence:
SEQ ID NO: 13
ATGAGAGTTCTGGTTACCGGTGGTAGCGGTTACATTGGAAGTCATACCTGTGTGCAA
TTACTGCAAAACGGTCATGATGTCATCATTCTTGATAACCTCTGTAACAGTAAGCGC
AGCGTACTGCCTGTTATCGAGCCTTTTAGGCGGCAAACATCCAACGTTTGTTGAAGG
CGATATTCGTAACGAAGCGTTGATGACCGAGATCCTGCACGATCACGCTATCGACAC
CGTGATCCACTTCGCCGGGCTGAAAGCCGTGGGCGAATCGGTACAAAAACCGCTGGA
ATATTACGACAACAATGTCAACGGCACTCTGCGCCTGATTAGCGCCATGCGCGCCGC
TAACGTCAAAAACTTTATTTTTAGCTCCTCCGCCACCGTTTATGGCGATCAGCCCAA
AATTCCATACGTTGAAAGCTTCCCGACCGGCACACCGCAAAGCCCTTACGGCAAAAG
CAAGCTGATGGTGGAACAGATCCTCACCGATCTGCAAAAAGCCCAGCCGGACTGGAG
CATTGCCCTGCTGCGCTACTTCAACCCGGTTGGCGCGCATCCGTCGGGCGATATGGG
CGAAGATCCGCAAGGCATTCCGAATAACCTGATGCCATACATCGCCCAGGTTGCTGT
AGGCCGTCGCGACTCGCTGGCGATTTTTGGTAACGATTATCCGACCGAAGATGGTAC
TGGCGTACGCGATTACATCCACGTAATGGATCTGGCGGACGGTCACGTCGTGGCGAT
GGAAAAACTGGCGAACAAGCCAGGCGTACACATCTACAACCTCGGCGCTGGCGTAGG
CAACAGCGTGCTGGACGTGGTTAATGCCTTCAGCAAAGCCTGCGGCAAACCGGTTAA
TTATCATTTTGCACCGCGTCGCGAGGGCGACCTTCCGGCCTACTGGGCGGACGCCAG
CAAAGCCGACCGTGAACTGAACTGGCGCGTAACGCGCACACTCGATGAAATGGCGCA
GGACACCTGGCACTGGCAGTCACGCCATCCACAGGGATATCCCGATTAA
Amino Acid Sequence for E. coli K12 UDP-galactose-4-epimerase
Locus AP_001390
Definition UDP-galactose-4-epimerase
[Escherichia coli str. K-12 substr. W3110].
Accession AP_001390
Length: 338 aa linear
Type: PRT
Organism: E. coli K12
Sequence:
SEQ ID NO: 14
mrvlvtqgsgyigshtcvqllqnghdviildnlcnskrsvlpvierlggkhptfvegdi
rnealmteilhdhaidtvihfaglkavgesvqkpleyydnnvngtlrlisamraanvkn
fifsssatvygdqpkipyvesfptgtpqspygksklmveqi1tdlqkaqpdwsiallry
fnpvgahpsgdmgedpqgipnnlmpyiaqvavgrrdslaifgndyptedgtgvrdyihv
mdladghvvameklankpgvhiynigagvgnsvldvvnafskacgkpvnyhfaprregd
lpaywadaskadrelnwrvtrtldemaqdtwhwqsrhpqgypd
Nucleotide Sequence for E. coli O86 gne2
Locus AAV85952 BCT 27 Mar. 2005
Definition Gne [Escherichia coli O86[.
Accession AAV85952
Length: 1,020
Type: DNA
Organism: E. coli O86
Sequence:
SEQ ID NO: 15
ATGGTGATTT TCGTAACAGG CGGTGCAGGA TATATTGGAT CCCATACCAT
ACTTGAGTTA CTTAATAATC GTCATGATGT CGTTTCGATA GATAATTTTG
TCAATTCCTC TATAGAATCA TTAAAAAGAC TAGAGCAAAT AACTAATAAG
AAAATTATTT CTTATCAAGG TGATATCCGT GATAAAAATC TACTTGATGA
GATTTTTTCA AGACACCATA TCCATGCTGT AATTCACTTT GCATCGTTAA
AATCTGTAGG TGAGTCTAAG TTAAAGCCCT TAGAGTATTA TTCTAATAAT
GTTGGTGGAA CTTTAGTATT ACTTCAATGC ATGAAGAGAT ATAACATTAA
TAAAATGATA TTTAGCTCTT CTGCTACTGT TTATGGGAGT AACAGTATCC
CTCCCCATAC GGAAGATAGA CGAATTGGTG AAACTACAAA CCCATATGGG
ACATCGAAAT TTATAATAGA AATAATTTTG AGTGATTATT GTGATAGTGA
TAATAATAAA TCAGTAATTG CACTGCGTTA CTTTAATCCA ATCGGAGCAC
ATAAGTCCGG GATGATTGGT GAAAATCCTA ACGGGATCCC TAATAATCTG
GTTCCTTATA TATCTAAAGT TGCACAAAAT CAACTTCCTG TATTAAATAT
TTATGGCAAC GATTATCCAA CTAAAGATGG TACAGGAGTA AGAGACTATA
TACATGTCTG TGATTTGGCT AAAGGGCATG TTAAAGCATT AGAATATATG
TTTTTAAATG ATGTCAATTA TGAAGCTTTT AATTTAGGTA CTGGTCAAGG
TTATTCTGTT TTAGAGATTG TAAAAATGTT TGAGATAGTC ACTAAAAAGA
GTATACCTGT TGCTATTTGT AATAGACGTG AGGGGGATGT TGCGGAGTCA
TGGGCGTCTG CTGATTTGGC ACATAAAAAG CTTTCCTGGA AAGCGCAAAA
AAATTTGAAA GAAATGATCG AAGATGTATG GCGTTGGCAA ACAAACAATC
CAAATGGATA TAAAAAATAA
Amino Acid Sequence for E. coli O86 Gne
Locus AAV85952
Definition Gne [Escherichia coli O86].
Accession AAV85952
Length: 339 aa (gne2) linear
Type: PRT
Organism: E. coli O86
Sequence:
SEQ ID NO: 16
mvifvtggag yigshtilel innghdvvsi dnfvnssies lkrvegitnk
kiisyggdir dknlldeifs rhhidavihf aslksvgesk lkpleyysnn
vgctivllec mkryninkmi fsssatvygs nsipphtedr rigettnpyg
tskfiieiil sdycdsdnnk svialryfnp igahksgmig enpngipnnl
vpyiskvaqn qlpviniygn dyptkdgtgv rdyihvcdla kghvkaleym
findvnyeaf nlgtgqgysv leivkmfeiv tkksipvaic nrregdvaes
wasadlahkk lswkaeknlk emiedvwrwq tnnpngykk
Nucleotide Sequence for synthetic oligonucleotide Z3206-
Fw (primer) encoding an end of Z3206; restriction sites underlined
Length: 30
Type: DNA
Sequence:
SEQ ID NO: 17
AAACCCGGGATGAACGATAACGTTTTGCTC
Nucleotide Sequence for synthetic oligonucleotide Z3206-
RvHA (primer) encoding an end of Z3206 with a hemoaglutinin 
tag (HA tag); restriction sites underlined
Length: 60
Type: DNA
Organism:
Sequence: 
SEQ ID NO: 18
AAATCTAGATTAAGCGTAATCTGGAACATCGTATGGGTACTCAGAAACAAACGTTATGTC
Nucleotide Sequence for synthetic oligonucleotide gne-Fw
(primer) with restriction sites underlined
Length: 29
Type: DNA
Organism:
Sequence:
SEQ ID NO: 19
AAACCATGGATGAAAATTCTTATTAGCGG
Nucleotide Sequence for synthetic oligonucleotide gne-RV
(primer) with restriction sites underlined
Length: 57
Type: DNA
Organism:
Sequence: 
SEQ ID NO: 20
AAATCTAGATTAAGCGTAATCTGGAACATCGTATGGGTAGCACTGTTTTTCCCAATC
Nucleotide Sequence for oligonucleotide containing
restriction sites for NheI restriction enzyme
Length: 11
Type: DNA
Organism:
Sequence:
SEQ ID NO: 21
AAAAAGCTAGC
Nucleotide Sequence for oligonucleotide containing
restriction sites for AscI restriction enzyme
Length: 8
Type: DNA
Organism:
Sequence:
SEQ ID NO: 22
CCGCGCGG
Nucleotide Sequence for plasmid pMLBAD: Z3206 (E. coli O157 
insert in plasmid) encoding Z3206 with a C-terminal hemagglutinin tag
Definition Ligation of product into Z3206-pMLBAD*
Features     Location/Qualifiers
CDS     2105..3098
/label=Z3206
CDS     3098..3127
/label=HA
Length: 7794 bp
Type: DNA circular UNA
Sequence:
SEQ ID NO: 23
    1 TCTACGGGGT CTGACGCTCA GTGGAACGAA ATCGATGAGC TCGCACGAAC CCAGTTGACA
   61 TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC
  121 AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT
  181 GACTGTTTTT TTGTACAGTC TAGCCTCGGG CATCCAAGCT AGCTAAGCGC GTTACGCCGT
  241 GGGTCGATGT TTGATGTTAT GGAACAGCAA CGATGTTACG CAGCAGGGTA GTCGCCCTAA
  301 AACAAAGTTA GGCAGCCGTT GTGCTGGTGC TTTCTAGTAG TTGTTGTGGG GTAGGCAGTC
  361 AGAGCTCGAT TTGCTTGTCG CCATAATAGA TTCACAAGAA GGATTCGACA TGGGTCAAAG
  421 TAGCGATGAA GCCAACGCTC CCGTTGCAGG GCAGTTTGCG CTTCCCCTGA GTGCCACCTT
  481 TGGCTTAGGG GATCGCGTAC GCAAGAAATC TGGTGCCGCT TGGCAGGGTC AAGTCGTCGG
  541 TTGGTATTGC ACAAAACTCA CTCCTGAAGG CTATGCGGTC GAGTCCGAAT CCCACCCAGG
  601 CTCAGTGCAA ATTTATCCTG TGGCTGCACT TGAACGTGTG GCCTAAGCGA TATCTTAGGA
  661 TCTCCCATCG GTGATGTCGG CGATATAGGC GCCAGCAACC GCACCTGTGG CGCCGGTGAT
  721 GCCGGCCACG ATGCGTCCGG CGTAGAGGAT CTGCTCATGT TTGACAGCTT ATCATCGATG
  781 CATAATGTGC CTGTCAAATG GACGAAGCAG GGATTCTGCA AACCCTATGC TACTCCGTCA
  841 AGCCGTCAAT TGTCTGAATC GTTACCAATT ATGACAACTT GACGGCTACA TCATTCACTT
  901 TTTCTTCACA ACCGGCACGG AACTCGCTCG GGCTGGCCCC GGTGCATTTT TTAAATACCC
  961 GCGAGAAATA GAGTTGATCG TCAAAACCAA CATTGCGACC GACGGTGGCG ATAGGCATCC
 1021 GGGTGGTGCT CAAAAGCAGC TTCGCCTGGC TGATACGTTG GTCCTCGCGC CAGCTTAAGA
 1081 CGCTAATCCC TAACTGCTGG CGGAAAAGAT GTGACAGACG CGACGGCGAC AAGCAAACAT
 1141 GCTGTGCGAC GCTGGCGATA TCAAAATTGC TGTCTGCCAG GTGATCGCTG ATGTACTGAC
 1201 AAGCCTCGCG TACCCGATTA TCCATCGGTG GATGGAGCGA CTCGTTAATC GCTTCCATGC
 1261 GCCGCAGTAA CAATTGCTCA AGCAGATTTA TCGCCAGCAG CTCCGAATAG CGCCCTTCCC
 1321 CTTGCCCGGC GTTAATGATT TGCCCAAACA GGTCGCTGAA ATGCGGCTGG TGCGCTTCAT
 1381 CCGGGCGAAA GAACCCCGTA TTGGCAAATA TTGACGGCCA GTTAAGCCAT TCATGCCAGT
 1441 AGGCGCGCGG ACGAAAGTAA ACCCACTGGT GATACCATTC GCGAGCCTCC GGATGACGAC
 1501 CGTAGTGATG AATCTCTCCT GGCGGGAACA GCAAAATATC ACCCGGTCGG CAAACAAATT
 1561 CTCGTCCCTG ATTTTTCACC ACCCCCTGAC CGCGAATGGT GAGATTGAGA ATATAACCTT
 1621 TCATTCCCAG CGGTCGGTCG ATAAAAAAAT CGAGATAACC GTTGGCCTCA ATCGGCGTTA
 1681 AACCCGCCAC CAGATGGGCA TTAAACGAGT ATCCCGGCAG CAGGGGATCA TTTTGCGCTT
 1741 CAGCCATACT TTTCATACTC CCGCCATTCA GAGAAGAAAC CAATTGTCCA TATTGCATCA
 1301 GACATTGCCG TCACTGCGTC TTTTACTGGC TCTTCTCGCT AACCAAACCG GTAACCCCGC
 1861 TTATTAAAAG CATTCTGTAA CAAAGCGGGA CCAAAGCCAT GACAAAAACG CGTAACAAAA
 1921 GTGTCTATAA TCACGGCAGA AAAGTCCACA TTGATTATTT GCACGGCGTC ACACTTTGCT
 1981 ATGCCATAGC ATTTTTATCC ATAAGATTAG CGGATCCTAC CTGACGCTTT TTATCGCAAC
 2041 TCTCTACTGT TTCTCCATAC CCGTTTTTTT GGGCTAGCAG GAGGAATTCA CCATGGTACC
 2101 CGGGATGAAC GATAACGTTT TGCTCATAGG AGCTTCCGGA TTCGTAGGAA CCCGACTACT
 2161 TGAAACGGCA ATTGCTGACT TTAATATCAA GAACCTGGAC AAACAGCAGA GCCACTTTTA
 2221 TCCAGAAATC ACACAGATTG GCGATGTTCG CGATCAACAG GCACTCGACC AGGCGTTAGT
 2281 CGGTTTTGAC ACTGTTGTAC TACTGGCAGC GGAACACCGC GATGACGTCA GCCCTACTTC
 2341 TCTCTATTAT GATGTCAACG TTCAGGGTAC CCGCAATGTG CTGGCGGCCA TGGAAAAAAA
 2401 TGGCGTTAAA AATATCATCT TTACCAGTTC CGTTGCTGTT TATGGTTTGA ACAAACACAA
 2461 CCCTGACGAA AACCATCCAC ACGACCCTTT CAACCACTAC GGCAAAAGTA AGTGGCAGGC
 2521 AGAGGAAGTG CTGCGTGAAT GGTATAACAA AGCACCAACA GAACGTTCAT TAACCATCAT
 2581 CCGTCCTACC GTTATCTTCG GTGAACGCAA CCGCGGTAAC GTCTATAACT TGCTGAAACA
 2641 GATCGCTGGC GGCAAGTTTA TGATGGTGGG CGCAGGGACT AACTATAAGT CCATGGCTTA
 2701 TGTTGGAAAC ATTGTTGAGT TTATCAAGTA CAAACTGAAG AATGTTGCCG CAGGTTATGA
 2761 GGTTTATAAC TACGTTGATA AGCCAGACCT GAACATGAAC CAGTTGGTTG CTGAAGTTGA
 2821 ACAAAGCCTG AACAAAAAGA TCCCTTCTAT GCACTTGCCT TACCCACTAG GAATGCTGGG
 2881 TGGATATTGC TTTGATATCC TGAGCAAAAT TACGGGCAAA AAATACGCTG TCAGCTCAGT
 2941 GCGCGTGAAA AAATTCTGCG CAACAACACA GTTTGACGCA ACGAAAGTGC ATTCTTCAGG
 3001 TTTTGTGGCA CCGTATACGC TGTCGCAAGG TCTGGATCGA ACACTGCAGT ATGAATTCGT
 3061 TCATGCCAAA AAAGACGACA TAACGTTTGT TTCTGAGTAC CCATACGATG TTCCAGATTA
 3121 CGCTTAATCT AGAGTCGACC TGCAGGCATG CAAGCTTGGC TGTTTTGGCG GATGAGAGAA
 3181 GATTTTCAGC CTGATACAGA TTAAATCAGA ACGCAGAAGC GGTCTGATAA AACAGAATTT
 3241 GCCTGGCGGC AGTAGCGCGG TGGTCCCACC TGACCCCATG CCGAACTCAG AAGTGAAACG
 3301 CCGTAGCGCC GATGGTAGTG TGGGGTCTCC CCATGCGAGA GTAGGGAACT GCCAGGCATC
 3361 AAATAAAACG AAAGGCTCAG TCGAAAGACT GGGCCTTTCG TTTTATCTGT TGTTTGTCGG
 3421 TGAACGCTCT CCTGAGTAGG ACAAATCCGC CGGGAGCGGA TTTGAACGTT GCGAAGCAAC
 3481 GGCCCGGAGG GTGGCGGGCA GGACGCCCGC CATAAACTGC CAGGCATCAA ATTAAGCAGA
 3541 AGGCCATCCT GACGGATGGC CTTTTTGCGT TTCTACAAAC TCTTCCACTC ACTACAGCAG
 3601 AGCCATTTAA ACAACATCCC CTCCCCCTTT CCACCGCGTC AGACGCCCGT AGCAGCCCGC
 3661 TACGGGCTTT TTCATGCCCT GCCCTAGCGT CCAAGCCTCA CGGCCGCGCT CGGCCTCTCT
 3721 GGCGGCCTTC TGGCGCTGAG GTCTGCCTCG TGAAGAAGGT GTTGCTGACT CATACCAGGC
 3781 CTGAATCGCC CCATCATCCA GCCAGAAAGT GAGGGAGCCA CGGTTGATGA GAGCTTTGTT
 3841 GTAGGTGGAC CAGTTGGTGA TTTTGAACTT TTGCTTTGCC ACGGAACGGT CTGCGTTGTC
 3901 GGGAAGATGC GTGATCTGAT CCTTCAACTC AGCAAAAGTT CGATTTATTC AACAAAGCCG
 3961 CCGTCCCGTC AAGTCAGCGT AATGCTCTGC CAGTGTTACA ACCAATTAAC CAATTCTGAT
 4021 TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATTTAT TCATATCAGG ATTATCAATA
 4081 CCATATTTTT GAAAAAGCCG TTTCTGTAAT GAAGGAGAAA ACTCACCGAG GCAGTTCCAT
 4141 AGGATGGCAA GATCCTGGTA TCGGTCTGCG ATTCCGACTC GTCCAACATC AATACAACCT
 4201 ATTAATTTCC CCTCGTCAAA AATAAGGTTA TCAAGCGAGA AATCACCATG AGTGACGACT
 4261 GAATCCGGTG AGAATGGCAA AAGCTAAAAA GGCCGTAATA TCCAGCTGAA CGGTCTGGTT
 4321 ATAGGTACAT TGAGCAACTG ACTGAAATGC CTCAAAATGT TCTTTACGAT GCCATTGGGA
 4381 TATATCAACG GTGGTATATC CAGTGATTTT TTTCTCCATT TTAGCTTCCT TAGCTCCTGA
 4441 AAATCTCGAT AACTCAAAAA ATACGCCCGG TAGTGATCTT ATTTCATTAT GGTGAAAGTT
 4501 GGAACCTCTT ACGTGCCGAT CAACGTCTCA TTTTCGCCAA AAGTTGGCCC AGGGCTTCCC
 4561 GGTATCAACA GGGACACCAG GATTTATTTA TTCTGCGAAG TGATCTTCCG TCACAGGTAT
 4621 TTATTCGAAG ACGAAAGGGC CTCGTGATAC GCCTATTTTT ATAGGTTAAT GTCATGATAA
 4681 TAATGGTTTC TTAGACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGCC CGCGTTCCTG
 4741 CTGGCGCTGG GCCTGTTTCT GGCGCTGGAC TTCCCGCTGT TCCGTCAGCA GCTTTTCGCC
 4801 CACGGCCTTG ATGATCGCGG CGGCCTTGGC CTGCATATCC CGATTCAACG GCCCCAGGGC
 4861 GTCCAGAACG GGCTTCAGGC GCTCCCGAAG GTCTCGGGCC GTCTCTTGGG CTTGATCGGC
 4921 CTTCTTGCGC ATCTCACGCG CTCCTGCGGC GGCCTGTAGG GCAGGCTCAT ACCCCTGCCG
 4981 AACCGCTTTT GTCAGCCGGT CGGCCACGGC TTCCGGCGTC TCAACGCGCT TTGAGATTCC
 5041 CAGCTTTTCG GCCAATCCCT GCGGTGCATA GGCGCGTGGC TCGACCGCTT GCGGGCTGAT
 5101 GGTGACGTGG CCCACTGGTG GCCGCTCCAG GGCCTCGTAG AACGCCTGAA TGCGCGTGTG
 5161 ACGTGCCTTG CTGCCCTCGA TGCCCCGTTG CAGCCCTAGA TCGGCCACAG CGGCCGCAAA
 5221 CGTGGTCTGG TCGCGGGTCA TCTGCGCTTT GTTGCCGATG AACTCCTTGG CCGACAGCCT
 5281 GCCGTCCTGC GTCAGCGGCA CCACGAACGC GGTCATGTGC GGGCTGGTTT CGTCACGGTG
 5341 GATGCTGGCC GTCACGATGC GATCCGCCCC GTACTTGTCC GCCAGCCACT TGTGCGCCTT
 5401 CTCGAAGAAC GCCGCCTGCT GTTCTTGGCT GGCCGACTTC CACCATTCCG GGCTGGCCGT
 5461 CATGACGTAC TCGACCGCCA ACACAGCGTC CTTGCGCCGC TTCTCTGGCA GCAACTCGCG
 5521 CAGTCGGCCC ATCGCTTCAT CGGTGCTGCT GGCCGCCCAG TGCTCGTTCT CTGGCGTCCT
 5581 GCTGGCGTCA GCGTTGGGCG TCTCGCGCTC GCGGTAGGCG TGCTTGAGAC TGGCCGCCAC
 5641 GTTGCCCATT TTCGCCAGCT TCTTGCATCG CATGATCGCG TATGCCGCCA TGCCTGCCCC
 5701 TCCCTTTTGG TGTCCAACCG GCTCGACGGG GGCAGCGCAA GGCGGTGCCT CCGGCGGGCC
 5761 ACTCAATGCT TGAGTATACT CACTAGACTT TGCTTCGCAA AGTCGTGACC GCCTACGGCG
 5821 GCTGCGGCGC CCTACGGGCT TGCTCTCCGG GCTTCGCCCT GCGCGGTCGC TGCGCTCCCT
 5881 TGCCAGCCCG TGGATATGTG GACGATGGCC GCGAGCGGCC ACCGGCTGGC TCGCTTCGCT
 5941 CGGCCCGTGG ACAACCCTGC TGGACAAGCT GATGGACAGG CTGCGCCTGC CCACGAGCTT
 6001 GACCACAGGG ATTGCCCACC GGCTACCCAG CCTTCGACCA CATACCCACC GGCTCCAACT
 6061 GCGCGGCCTG CGGCCTTGCC CCATCAATTT TTTTAATTTT CTCTGGGGAA AAGCCTCCGG
 6121 CCTGCGGCCT GCGCGCTTCG CTTGCCGGTT GGACACCAAG TGGAAGGCGG GTCAAGGCTC
 6181 GCGCAGCGAC CGCGCAGCGG CTTGGCCTTG ACGCGCCTGG AACGACCCAA GCCTATGCGA
 6241 GTGGGGGCAG TCGAAGGCGA AGCCCGCCCG CCTGCCCCCC GAGCCTCACG GCGGCGAGTG
 6301 CGGGGGTTCC AAGGGGGCAG CGCCACCTTG GGCAAGGCCG AAGGCCGCGC AGTCGATCAA
 6361 CAAGCCCCGG AGGGGCCACT TTTTGCCGGA GGGGGAGCCG CGCCGAAGGC GTGGGGGAAC
 6421 CCCGCAGGGG TGCCCTTCTT TGGGCACCAA AGAACTAGAT ATAGGGCGAA ATGCGAAAGA
 6481 CTTAAAAATC AACAACTTAA AAAAGGGGGG TACGCAACAG CTCATTGCGG CACCCCCCGC
 6541 AATAGCTCAT TGCGTAGGTT AAAGAAAATC TGTAATTGAC TGCCACTTTT ACGCAACGCA
 6601 TAATTGTTGT CGCGCTGCCG AAAAGTTGCA GCTGATTGCG CATGGTGCCG CAACCGTGCG
 6661 GCACCCTACC GCATGGAGAT AAGCATGGCC ACGCAGTCCA GAGAAATCGG CATTCAAGCC
 6721 AAGAACAAGC CCGGTCACTG GGTGCAAACG GAACGCAAAG CGCATGAGGC GTGGGCCGGG
 6781 CTTATTGCGA GGAAACCCAC GGCGGCAATG CTGCTGCATC ACCTCGTGGC GCAGATGGGC
 6841 CACCAGAACG CCGTGGTGGT CAGCCAGAAG ACACTTTCCA AGCTCATCGG ACGTTCTTTG
 6901 CGGACGGTCC AATACGCAGT CAAGGACTTG GTGGCCGAGC GCTGGATCTC CGTCGTGAAG
 6961 CTCAACGGCC CCGGCACCGT GTCGGCCTAC GTGGTCAATG ACCGCGTGGC GTGGGGCCAG
 7021 CCCCGCGACC AGTTGCGCCT GTCGGTGTTC AGTGCCGCCG TGGTGGTTGA TCACGACGAC
 7081 CAGGACGAAT CGCTGTTGGG GCATGGCGAC CTGCGCCGCA TCCCGACCCT GTATCCGGGC
 7141 GAGCAGCAAC TACCGACCGG CCCCGGCGAG GAGCCGCCCA GCCAGCCCGG CATTCCGGGC
 7201 ATGGAACCAG ACCTGCCAGC CTTGACCGAA ACGGAGGAAT GGGAACGGCG CGGGCAGCAG
 7261 CGCCTGCCGA TGCCCGATGA GCCGTGTTTT CTGGACGATG GCGAGCCGTT GGAGCCGCCG
 7321 ACACGGGTCA CGCTGCCGCG CCGGTAGCAC TTGGGTTGCG CAGCAACCCG TAAGTGCGCT
 7381 GTTCCAGACT ATCGGCTGTA GCCGCCTCGC CGCCCTATAC CTTGTCTGCC TCCCCGCGTT
 7441 GCGTCGCGGT GCATGGAGCC GGGCCACCTC GACCTGAATG GAAGCCGGCG GCACCTCGCT
 7501 AACGGATTCA CCGTTTTTAT CAGGCTCTGG GAGGCAGAAT AAATGATCAT ATCGTCAATT
 7561 ATTACCTCCA CGGGGAGAGC CTGAGCAAAC TGGCCTCAGG CATTTGAGAA GCACACGGTC
 7621 ACACTGCTTC CGGTAGTCAA TAAACCGGTA AACCAGCAAT AGACATAAGC GGCTATTTAA
 7681 CGACCCTGCC CTGAACCGAC GACCGGGTCG AATTTGCTTT CGAATTTCTG CCATTCATCC
 7741 GCTTATTATC ACTTATTCAG GCGTAGCACC AGGCGTTTAA GTCGACCAAT AACC
Nucleotide Sequence for pMLBAD: gne (E. coli O157 insert
in plasmid) which encodes Gne with a C-terminal hemagglutinin tag
Locus gne-pMLBAD
Definition Ligation of dig galE into pmlbad did (NcoI-XbaI)
Features     Location/Qualifiers
CDS     2097..3080
/label=galE
CDS     3081..3107
/label=HA
Region     3108..3110
/label=stop
Length: 7776 bp
Type: DNA circular UNA
Sequence:
SEQ ID NO: 24
    1 TCTACGGGGT CTGACGCTCA GTGGAACGAA ATCGATGAGC TCGCACGAAC CCAGTTGACA
   61 TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC
  121 AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT
  181 GACTGTTTTT TTGTACAGTC TAGCCTCGGG CATCCAAGCT AGCTAAGCGC GTTACGCCGT
  241 GGGTCGATGT TTGATGTTAT GGAACAGCAA CGATGTTACG CAGCAGGGTA GTCGCCCTAA
  301 AACAAAGTTA GGCAGCCGTT GTGCTGGTGC TTTCTAGTAG TTGTTGTGGG GTAGGCAGTC
  361 AGAGCTCGAT TTGCTTGTCG CCATAATAGA TTCACAAGAA GGATTCGACA TGGGTCAAAG
  421 TAGCGATGAA GCCAACGCTC CCGTTGCAGG GCAGTTTGCG CTTCCCCTGA GTGCCACCTT
  481 TGGCTTAGGG GATCGCGTAC GCAAGAAATC TGGTGCCGCT TGGCAGGGTC AAGTCGTCGG
  541 TTGGTATTGC ACAAAACTCA CTCCTGAAGG CTATGCGGTC GAGTCCGAAT CCCACCCAGG
  601 CTCAGTGCAA ATTTATCCTG TGGCTGCACT TGAACGTGTG GCCTAAGCGA TATCTTAGGA
  661 TCTCCCATCG GTGATGTCGG CGATATAGGC GCCAGCAACC GCACCTGTGG CGCCGGTGAT
  721 GCCGGCCACG ATGCGTCCGG CGTAGAGGAT CTGCTCATGT TTGACAGCTT ATCATCGATG
  781 CATAATGTGC CTGTCAAATG GACGAAGCAG GGATTCTGCA AACCCTATGC TACTCCGTCA
  841 AGCCGTCAAT TGTCTGATTC GTTACCAATT ATGACAACTT GACGGCTACA TCATTCACTT
  901 TTTCTTCACA ACCGGCACGG AACTCGCTCG GGCTGGCCCC GGTGCATTTT TTAAATACCC
  961 GCGAGAAATA GAGTTGATCG TCAAAACCAA CATTGCGACC GACGGTGGCG ATAGGCATCC
 1021 GGGTGGTGCT CAAAAGCAGC TTCGCCTGGC TGATACGTTG GTCCTCGCGC CAGCTTAAGA
 1081 CGCTAATCCC TAACTGCTGG CGGAAAAGAT GTGACAGACG CGACGGCGAC AAGCAAACAT
 1141 GCTGTGCGAC GCTGGCGATA TCAAAATTGC TGTCTGCCAG GTGATCGCTG ATGTACTGAC
 1201 AAGCCTCGCG TACCCGATTA TCCATCGGTG GATGGAGCGA CTCGTTAATC GCTTCCATGC
 1261 GCCGCAGTAA CAATTGCTCA AGCAGATTTA TCGCCAGCAG CTCCGAATAG CGCCCTTCCC
 1321 CTTGCCCGGC GTTAATGATT TGCCCAAACA GGTCGCTGAA ATGCGGCTGG TGCGCTTCAT
 1381 CCGGGCGAAA GAACCCCGTA TTGGCAAATA TTGACGGCCA GTTAAGCCAT TCATGCCAGT
 1441 AGGCGCGCGG ACGAAAGTAA ACCCACTGGT GATACCATTC GCGAGCCTCC GGATGACGAC
 1501 CGTAGTGATG AATCTCTCCT GGCGGGAACA GCAAAATATC ACCCGGTCGG CAAACAAATT
 1561 CTCGTCCCTG ATTTTTCACC ACCCCCTGAC CGCGAATGGT GAGATTGAGA ATATAACCTT
 1621 TCATTCCCAG CGGTCGGTCG ATAAAAAAAT CGAGATAACC CTTGGCCTCA ATCGGCGTTA
 1681 AACCCGCCAC CAGATGGGCA TTAAACGAGT ATCCCGGCAG CAGGGGATCA TTTTGCGCTT
 1741 CAGCCATACT TTTCATACTC CCGCCATTCA GAGAAGAAAC CAATTGTCCA TATTGCATCA
 1801 GACATTGCCG TCACTGCGTC TTTTACTGGC TCTTCTCGCT AACCAAACCG GTAACCCCGC
 1861 TTATTAAAAG CATTCTGTAA CAAAGCGGGA CCAAAGCCAT GACAAAAACG CGTAACAAAA
 1921 GTGTCTATAA TCACGGCAGA AAAGTCCACA TTGATTATTT GCACGGCGTC ACACTTTGCT
 1981 ATGCCATAGC ATTTTTATCC ATAAGATTAG CGGATCCTAC CTGACGCTTT TTATCGCAAC
 2041 TCTCTACTGT TTCTCCATAC CCGTTTTTTT GGGCTAGCAG GAGGAATTCA CCATGGATGA
 2101 AAATTCTTAT TAGCGGTGGT GCAGGTTATA TAGGTTCTCA TACTTTAAGA CAATTTTTAA
 2161 AAACAGATCA TGAAATTTGT GTTTTAGATA ATCTTTCTAA GGGTTCTAAA ATCGCAATAG
 2221 AAGATTTGCA AAAAATAAGA ACTTTTAAAT TTTTTGAACA AGATTTAAGT GATTTTCAAG
 2281 GCGTAAAAGC ATTGTTTGAG AGAGAAAAAT TTGACGCTAT TGTGCATTTT GCAGCGAGCA
 2341 TTGAAGTTTT TGAAAGTATG CAAAACCCTT TAAAGTATTA TATGAATAAC ACTGTTAATA
 2401 CGACAAATCT CATCGAAACT TGTTTGCAAA CTGGAGTGAA TAAATTTATA TTTTCTTCAA
 2461 CGGCAGCCAC TTATGGCGAA CCACAAACTC CCGTTGTGAG CGAAACAAGT CCTTTAGCAC
 2521 CTATTAATCC TTATGGGCGT AGTAAGCTTA TGAGCGAAGA GGTTTTGCGT GATGCAAGTA
 2581 TGGCAAATCC TGAATTTAAG CATTGTATTT TAAGATATTT TAATGTTGCA GGTGCTTGCA
 2641 TGGATTATAC TTTAGGACAA CGCTATCCAA AAGCGACTTT GCTTATAAAA GTTGCAGCTG
 2701 AATGTGCCGC AGAAAAACGT AATAAACTTT TCATATTTGG CGATGATTAT GATACAAAAG
 2761 ATGGCACTTG CATAAGAGAT TTTATCCATG TGGATGATAT TTCAAGTGCG CATTTATCGG
 2821 CTTTGGATTA TTTAAAAGAG AATGAAAGCA ATGTTTTTAA TGTAGGTTAT GGACATGGTT
 2881 TTAGCGTAAA AGAAGTGATT GAAGCGATGA AAAAAGTTAG CGGAGTGGAT TTTAAAGTAG
 2941 AACTTGCCCC ACGCCGTGCG GGTGATCCTA GTGTATTGAT TTCTGATGCA AGTAAAATCA
 3001 GAAATCTTAC TTCTTGGCAG CCTAAATATG ATGATTTAGG GCTTATTTGT AAATCTGCTT
 3061 TTGATTGGGA AAAACAGTGC TACCCATACG ATGTTCCAGA TTACGCTTAA TCTAGAGTCG
 3121 ACCTGCAGGC ATGCAAGCTT GGCTGTTTTG GCGGATGAGA GAAGATTTTC AGCCTGATAC
 3181 AGATTAAATC AGAACGCAGA AGCGGTCTGA TAAAACAGAA TTTGCCTGGC GGCAGTAGCG
 3241 CGGTGGTCCC ACCTGACCCC ATGCCGAACT CAGAAGTGAA ACGCCGTAGC GCCGATGGTA
 3301 GTGTGGGGTC TCCCCATGCG AGAGTAGGGA ACTGCCAGGC ATCAAATAAA ACGAAAGGCT
 3361 CAGTCGAAAG ACTGGGCCTT TCGTTTTATC TGTTGTTTGT CGGTGAACGC TCTCCTGAGT
 3421 AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGCGAAGC AACGGCCCGG AGGGTGGCGG
 3481 GCAGGACGCC CGCCATAAAC TGCCAGGCAT CAAATTAAGC AGAAGGCCAT CCTGACGGAT
 3541 GGCCTTTTTG CGTTTCTACA AACTCTTCCA CTCACTACAG CAGAGCCATT TAAACAACAT
 3601 CCCCTCCCCC TTTCCACCGC GTCAGACGCC CGTAGCAGCC CGCTACGGGC TTTTTCATGC
 3661 CCTGCCCTAG CGTCCAAGCC TCACGGCCGC GCTCGGCCTC TCTGGCGGCC TTCTGGCGCT
 3721 GAGGTCTGCC TCGTGAAGAA GGTGTTGCTG ACTCATACCA GGCCTGAATC GCCCCATCAT
 3781 CCAGCCAGAA AGTGAGGGAG CCACGGTTGA TGAGAGCTTT GTTGTAGGTG GACCAGTTGG
 3841 TGATTTTGAA CTTTTGCTTT GCCACGGAAC GGTCTGCGTT GTCGGGAAGA TGCGTGATCT
 3901 GATCCTTCAA CTCAGCAAAA GTTCGATTTA TTCAACAAAG CCGCCGTCCC GTCAAGTCAG
 3961 CGTAATGCTC TGCCAGTGTT ACAACCAATT AACCAATTCT GATTAGAAAA ACTCATCGAG
 4021 CATCAAATGA AACTGCAATT TATTCATATC AGGATTATCA ATACCATATT TTTGAAAAAG
 4081 CCGTTTCTGT AATGAAGGAG AAAACTCACC GAGGCAGTTC CATAGGATGG CAAGATCCTG
 4141 GTATCGGTCT GCGATTCCGA CTCGTCCAAC ATCAATACAA CCTATTAATT TCCCCTCGTC
 4201 AAAAATAAGG TTATCAAGCG AGAAATCACC ATGAGTGACG ACTGAATCCG GTGAGAATGG
 4261 CAAAAGCTAA AAAGGCCGTA ATATCCAGCT GAACGGTCTG GTTATAGGTA CATTGAGCAA
 4321 CTGACTGAAA TGCCTCAAAA TGTTCTTTAC GATGCCATTG GGATATATCA ACGGTGGTAT
 4381 ATCCAGTGAT TTTTTTCTCC ATTTTAGCTT CCTTAGCTCC TGAAAATCTC GATAACTCAA
 4441 AAAATACGCC CGGTAGTGAT CTTATTTCAT TATGGTGAAA GTTGGAACCT CTTACGTGCC
 4501 GATCAACGTC TCATTTTCGC CAAAAGTTGG CCCAGGGCTT CCCGGTATCA ACAGGGACAC
 4561 CAGGATTTAT TTATTCTGCG AAGTGATCTT CCGTCACAGG TATTTATTCG AAGACGAAAG
 4621 GGCCTCGTGA TACGCCTATT TTTATAGGTT AATGTCATGA TAATAATGGT TTCTTAGACG
 4681 TCAGGTGGCA CTTTTCGGGG AAATGTGCGC GCCCGCGTTC CTGCTGGCGC TGGGCCTGTT
 4741 TCTGGCGCTG GACTTCCCGC TGTTCCGTCA GCAGCTTTTC GCCCACGGCC TTGATGATCG
 4801 CGGCGGCCTT GGCCTGCATA TCCCGATTCA ACGGCCCCAG GGCGTCCAGA ACGGGCTTCA
 4861 GGCGCTCCCG AAGGTCTCGG GCCGTCTCTT GGGCTTGATC GGCCTTCTTG CGCATCTCAC
 4921 GCGCTCCTGC GGCGGCCTGT AGGGCAGGCT CATACCCCTG CCGAACCGCT TTTGTCAGCC
 4981 GGTCGGCCAC GGCTTCCGGC GTCTCAACGC GCTTTGAGAT TCCCAGCTTT TCGGCCAATC
 5041 CCTGCGGTGC ATAGGCGCGT GGCTCGACCG CTTGCGGGCT GATGGTGACG TGGCCCACTG
 5101 GTGGCCGCTC CAGGGCCTCG TAGAACGCCT GAATGCGCGT GTGACGTGCC TTGCTGCCCT
 5161 CGATGCCCCG TTGCAGCCCT AGATCGGCCA CAGCGGCCGC AAACGTGGTC TGGTCGCGGG
 5221 TCATCTGCGC TTTGTTGCCG ATGAACTCCT TGGCCGACAG CCTGCCGTCC TGCGTCAGCG
 5281 GCACCACGAA CGCGGTCATG TGCGGGCTGG TTTCGTCACG GTGGATGCTG GCCGTCACGA
 5341 TGCGATCCGC CCCGTACTTG TCCGCCAGCC ACTTGTGCGC CTTCTCGAAG AACGCCGCCT
 5401 GCTGTTCTTG GCTGGCCGAC TTCCACCATT CCGGGCTGGC CGTCATGACG TACTCGACCG
 5461 CCAACACAGC GTCCTTGCGC CGCTTCTCTG GCAGCAACTC GCGCAGTCGG CCCATCGCTT
 5521 CATCGGTGCT GCTGGCCGCC CAGTGCTCGT TCTCTGGCGT CCTGCTGGCG TCAGCGTTGG
 5581 GCGTCTCGCG CTCGCGGTAG GCGTGCTTGA GACTGGCCGC CACGTTGCCC ATTTTCGCCA
 5641 GCTTCTTGCA TCGCATGATC GCGTATGCCG CCATGCCTGC CCCTCCCTTT TGGTGTCCAA
 5701 CCGGCTCGAC GGGGGCAGCG CAAGGCGGTG CCTCCGGCGG GCCACTCAAT GCTTGAGTAT
 5761 ACTCACTAGA CTTTGCTTCG CAAAGTCGTG ACCGCCTACG GCGGCTGCGG CGCCCTACGG
 5821 GCTTGCTCTC CGGGCTTCGC CCTGCGCGGT CGCTGCGCTC CCTTGCCAGC CCGTGGATAT
 5881 GTGGACGATG GCCGCGAGCG GCCACCGGCT GGCTCGCTTC GCTCGGCCCG TGGACAACCC
 5941 TGCTGGACAA GCTGATGGAC AGGCTGCGCC TGCCCACGAG CTTGACCACA GGGATTGCCC
 6001 ACCGGCTACC CAGCCTTCGA CCACATACCC ACCGGCTCCA ACTGCGCGGC CTGCGGCCTT
 6061 GCCCCATCAA TTTTTTTAAT TTTCTCTGGG GAAAAGCCTC CGGCCTGCGG CCTGCGCGCT
 6121 TCGCTTGCCG GTTGGACACC AAGTGGAAGG CGGGTCAAGG CTCGCGCAGC GACCGCGCAG
 6181 CGGCTTGGCC TTGACGCGCC TGGAACGACC CAAGCCTATG CGAGTGGGGG CAGTCGAAGG
 6241 CGAAGCCCGC CCGCCTGCCC CCCGAGCCTC ACGGCGGCGA GTGCGGGGGT TCCAAGGGGG
 6301 CAGCGCCACC TTGGGCAAGG CCGAAGGCCG CGCAGTCGAT CAACAAGCCC CGGAGGGGCC
 6361 ACTTTTTGCC GGAGGGGGAG CCGCGCCGAA GGCGTGGGGG AACCCCGCAG GGGTGCCCTT
 6421 CTTTGGGCAC CAAAGAACTA GATATAGGGC GAAATGCGAA AGACTTAAAA ATCAACAACT
 6481 TAAAAAAGGG GGGTACGCAA CAGCTCATTG CGGCACCCCC CGCAATAGCT CATTGCGTAG
 6541 GTTAAAGAAA ATCTGTAATT GACTGCCACT TTTACGCAAC GCATAATTGT TGTCGCGCTG
 6601 CCGAAAAGTT GCAGCTGATT GCGCATGGTG CCGCAACCGT GCGGCACCCT ACCGCATGGA
 6661 GATAAGCATG GCCACGCAGT CCAGAGAAAT CGGCATTCAA GCCAAGAACA AGCCCGGTCA
 6721 CTGGGTGCAA ACGGAACGCA AAGCGCATGA GGCGTGGGCC GGGCTTATTG CGAGGAAACC
 6781 CACGGCGGCA ATGCTGCTGC ATCACCTCGT GGCGCAGATG GGCCACCAGA ACGCCGTGGT
 6841 GGTCAGCCAG AAGACACTTT CCAAGCTCAT CGGACGTTCT TTGCGGACGG TCCAATACGC
 6901 AGTCAAGGAC TTGGTGGCCG AGCGCTGGAT CTCCGTCGTG AAGCTCAACG GCCCCGGCAC
 6961 CGTGTCGGCC TACGTGGTCA ATGACCGCGT GGCGTGGGGC CAGCCCCGCG ACCAGTTGCG
 7021 CCTGTCGGTG TTCAGTGCCG CCGTGGTGGT TGATCACGAC GACCAGGACG AATCGCTGTT
 7081 GGGGCATGGC GACCTGCGCC GCATCCCGAC CCTGTATCCG GGCGAGCAGC AACTACCGAC
 7141 CGGCCCCGGC GAGGAGCCGC CCAGCCAGCC CGGCATTCCG GGCATGGAAC CAGACCTGCC
 7201 AGCCTTGACC GAAACGGAGG AATGGGAACG GCGCGGGCAG CAGCGCCTGC CGATGCCCGA
 7261 TGAGCCGTGT TTTCTGGACG ATGGCGAGCC GTTGGAGCCG CCGACACGGG TCACGCTGCC
 7321 GCGCCGGTAG CACTTGGGTT GCGCAGCAAC CCGTAAGTGC GCTGTTCCAG ACTATCGGCT
 7381 GTAGCCGCCT CGCCGCCCTA TACCTTGTCT GCCTCCCCGC GTTGCGTCGC GGTGCATGGA
 7441 GCCGGGCCAC CTCGACCTGA ATGGAAGCCG GCGGCACCTC GCTAACGGAT TCACCGTTTT
 7501 TATCAGGCTC TGGGAGGCAG AATAAATGAT CATATCGTCA ATTATTACCT CCACGGGGAG
 7561 AGCCTGAGCA AACTGGCCTC AGGCATTTGA GAAGCACACG GTCACACTGC TTCCGGTAGT
 7621 CAATAAACCG GTAAACCAGC AATAGACATA AGCGGCTATT TAACGACCCT GCCCTGAACC
 7681 GACGACCGGG TcGAATrTGc ETTCGAATTT CTGCCATTCA TCCGCTTATT ATCACTTATT
 7741 CAGGCGTAGC ACCAGGCGTT TAAGTCGACC AATAAC
Amino Acid Sequence for modified EPA with signal sequence
Disclosed in WO 2009/104074 (as SEQ ID NO. 6)
Type: PRT
Organism: Artificial
/note=“Description of Artificial Sequence: Synthetic polypeptide”
Length: 643
Sequence:
SEQ ID NO: 25
Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala Phe Ser
1               5                   10                  15
Ala Ser Ala Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys
            20                  25                  30
Ala Cys Val Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser
        35                  40                  45
Val Asp Pro Ala Ile Ala Asp Thr Asn Gly Gin Gly Val Leu His Tyr
    50                  55                  60
Ser Met Val Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp
65                  70                  75                  80
Asn Ala Leu Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly
                85                  90                  95
Gly Val Glu Pro Asn Lys Pro Val Arg Tyr Ser Tyr Thr Arg Gin Ala
            100                 105                 110
Arg Gly Ser Trp Ser Leu Asn Trp Leu Val Pro Ile Gly His Glu Lys
        115                 120                 125
Pro Ser Asn Ile Lys Val Phe Ile His Glu Leu Asn Ala Gly Asn Gin
    130                 135                 140
Leu Ser His Met Ser Pro Ile Tyr Thr Ile Glu Met Gly Asp Glu Leu
145                 150                 155                 160
Leu Ala Lys Leu Ala Arg Asp Ala Thr Phe Phe Val Arg Ala His Glu
                165                 170                 175
Ser Asn Glu Met Gln Pro Thr Leu Ala Ile Ser His Ala Gly Val Ser
            180                 185                 190
Val Val Met Ala Gln Ala Gln Pro Arg Arg Glu Lys Arg Trp Ser Glu
        195                 200                 205
Trp Ala Ser Gly Lys Val Leu Cys Leu Leu Asp Pro Leu Asp Gly Val
    210                 215                 220
Tyr Asn Tyr Leu Ala Gln Gln Arg Cys Asn Leu Asp Asp Thr Trp Glu
225                 230                 235                 240
Gly Lys Ile Tyr Arg Val Leu Ala Gly Asn Pro Ala Lys His Asp Leu
                245                 250                 255
Asp Ile Lys Asp Asn Asn Asn Ser Thr Pro Thr Val Ile Ser His Arg
            260                 265                 270
Leu His Phe Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln
        275                 280                 285
Ala Cys His Leu Pro Leu Glu Ala Phe Thr Arg His Arg Gln Pro Arg
    290                 295                 300
Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val
305                 310                 315                 320
Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gin Val Asp Gln Val
                325                 330                 335
Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu
            340                 345                 350
Ala Ile Arg Glu Gln Pre Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala
        355                 360                 365
Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu
    370                 375                 380
Ala Gly Ala Ala Ser Ala Asp Val Val Ser Leu Thr Cys Pro Val Ala
385                 390                 395                 400
Lys Asp Gln Asn Arg Thr Lys Gly Glu Cys Ala Gly Pro Ala Asp Ser
                405                 410                 415
Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu
            420                 425                 430
Gly Asp Gly Gly Asp Val Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp
        435                 440                 445
Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly
    450                 455                 460
Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser
465                 470                 475                 480
Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile
                485                 490                 495
Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr
            500                 505                 510
Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala
        515                 520                 525
Leu Leu Arg Val Tyr Val Pro Arg Trp Ser Leu Pro Gly Phe Tyr Arg
    530                 535                 540
Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg
545                 550                 555                 560
Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro
                565                 570                 575
Glu Glu Glu Gly Gly Arg Val Thr Ile Leu Gly Trp Pro Leu Ala Glu
            580                 585                 590
Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val
        595                 600                 605
Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile
    610                 615                 620
Ser Ala Leu Pro Asp Tyr Ala Ser Gin Pro Gly Lys Pro Pro Arg Glu
625                 630                 635                 640
Asp Leu Lys
Amino Acid Sequence for PglB
Disclosed in WO 2009/104074 (as SEQ ID NO. 2)
Length: 722
Type: PRT
Organism: Campylobacter jejuni
Sequence:
SEQ ID NO: 26
Met Leu Lys Lys Glu Tyr Leu Lys Asn Pro Tyr Leu Val Leu Phe Ala
1               5                   10                  15
Met Ile TIe Leu Ala Tyr Val Phe Ser Val Phe Cys Arg Phe Tyr Trp
            20                  25                  30
Val Trp Trp Ala Ser Glu Phe Asn Glu Tyr Phe Phe Asn Asn Gln Leu
        35                  40                  45
Met Ile Ile Ser Asn Asp Gly Tyr Ala Phe Ala Glu Gly Ala Arg Asp
    50                  55                  60
Met Ile Ala Gly Phe His Gln Pro Asn Asp Leu Ser Tyr Tyr Gly Ser
65                  70                  75                  80
Ser Leu Ser Ala Leu Thr Tyr Trp Leu Tyr Lys Ile Thr Pro Phe Ser
                85                  90                  95
Phe Glu Ser Ile Ile Leu Tyr Met Ser Thr Phe Leu Ser Ser Leu Val
            100                 105                 110
Val Ile Pro Thr Ile Leu Leu Ala Asn Glu Tyr Lys Arg Pro Leu Met
        115                 120                 125
Gly Phe Val Ala Ala Leu Leu Ala Ser Ile Ala Asn Ser Tyr Tyr Asn
    130                 135                 140
Arg Thr Met Ser Gly Tyr Tyr Asp Thr Asp Met Leu Val Ile Val Leu
145                 150                 155                 160
Pro Met Phe Ile Leu Phe Phe Met Val Arg Met Ile Leu Lys Lys Asp
                165                 170                 175
Phe Phe Ser Leu Ile Ala Leu Pro Leu Phe Ile Gly Ile Tyr Leu Trp
            180                 185                 190
Trp Tyr Pro Ser Ser Tyr Thr Leu Asn Val Ala Leu Ile Gly Leu Phe
        195                 200                 205
Leu Ile Tyr Thr Leu Ile Phe His Arg Lys Glu Lys Ile Phe Tyr Ile
    210                 215                 220
Ala Val Ile Leu Ser Ser Leu Thr Leu Ser Asn Ile Ala Trp Phe Tyr
225                 230                 235                 240
Gln Ser Ala Ile Ile Val Ile Leu Phe Ala Leu Phe Ala Leu Glu Gln
                245                 250                 255
Lys Arg Leu Asn Phe Met Ile Ile Gly Ile Leu Gly Ser Ala Thr Leu
            260                 265                 270
Ile Phe Leu Ile Leu Ser Gly Gly Val Asp Pro Ile Leu Tyr Gln Leu
        275                 280                 285
Lys Phe Tyr Ile Phe Arg Ser Asp Glu Ser Ala Asn Leu Thr Gln Gly
    290                 295                 300
Phe Met Tyr Phe Asn Val Asn Gln Thr Ile Gln Glu Val Glu Asn Val
305                 310                 315                 320
Asp Leu Ser Glu Phe Met Arg Arg Ile Ser Gly Ser Glu Ile Val Phe
                325                 330                 335
Leu Phe Ser Leu Phe Gly Phe Val Trp Leu Leu Arg Lys His Lys Ser
            340                 345                 350
Met Ile Met Ala Leu Pro Ile Leu Val Leu Gly Phe Leu Ala Leu Lys
        355                 360                 365
Gly Gly Leu Arg Phe Thr Ile Tyr Ser Val Pro Val Met Ala Leu Gly
    370                 375                 380
Phe Gly Phe Leu Leu Ser Glu Phe Lys Ala Ile Met Val Lys Lys Tyr
385                 390                 395                 400
Ser Gln Leu Thr Ser Asn Val Cys Ile Val Phe Ala Thr Ile Leu Thr
                405                 410                 415
Leu Ala Pro Val Phe Ile His Ile Tyr Asn Tyr Lys Ala Pro Thr Val
            420                 425                 430
Phe Ser Gln Asn Glu Ala Ser Leu Leu Asn Gln Leu Lys Asn Ile Ala
        435                 440                 445
Asn Arg Glu Asp Tyr Val Val Thr Trp Ala Ala Tyr Gly Tyr Pro Val
    450                 455                 460
Arg Tyr Tyr Ser Asp Val Lys Thr Leu Val Asp Gly Gly Lys His Leu
465                 470                 475                 480
Gly Lys Asp Asn Phe Phe Pro Ser Phe Ala Leu Ser Lys Asp Glu Gln
                485                 490                 495
Ala Ala Ala Asn Met Ala Arg Leu Ser Val Glu Tyr Thr Glu Lys Ser
            500                 505                 510
Phe Tyr Ala Pro Gln Asn Asp Ile Leu Lys Thr Asp Ile Leu Gln Ala
        515                 520                 525
Met Met Lys Asp Tyr Asn Gln Ser Asn Val Asp Leu Phe Leu Ala Ser
    530                 535                 540
Leu Ser Lys Pro Asp Phe Lys Ile Asp Thr Pro Lys Thr Arg Asp Ile
545                 550                 555                 560
Tyr Leu Tyr Met Pro Ala Arg Met Ser Leu Ile Phe Ser Thr Val Ala
                565                 570                 575
Ser Phe Ser Phe Ile Asn Leu Asp Thr Gly Val Leu Asp Lys Pro Phe
            580                 585                 590
Thr Phe Ser Thr Ala Tyr Pro Leu Asp Val Lys Asn Gly Glu Ile Tyr
        595                 600                 605
Leu Ser Asn Gly Val Val Leu Ser Asp Asp Phe Arg Ser Phe Lys Ile
    610                 615                 620
Gly Asp Asn Val Val Ser Val Asn Ser Ile Val Glu Ile Asn Ser Ile
625                 630                 635                 640
Lys Gln Gly Glu Tyr Lys Ile Thr Pro Ile Asp Asp Lys Ala Gln Phe
                645                 650                 555
Tyr Ile Phe Tyr Leu Lys Asp Ser Ala Ile Pro Tyr Ala Gln Phe Ile
            660                 665                 670
Leu Met Asp Lys Thr Met Phe Asn Ser Ala Tyr Val Gln Met Phe Phe
        675                 680                 685
Leu Gly Asn Tyr Asp Lys Asn Leu Phe Asp Leu Val Ile Asn Ser Arg
    690                 695                 700
Asp Ala Lys Val Phe Lys Leu Lys Ile Tyr Pro Tyr Asp Val Pro Asp
705                 710                 715                 720
Tyr Ala
Nucleotide Sequence for pCC1FOS Empty plasmid
Locus pCC1FOS with MCS cassette
Features     Location/Qualifiers
Region     230..256
/label=“pCC1/pEpiFOS fwd”
Region     311..330
/label=“T7 promoter”
Region     complement(504..529)
/label=“pCC1pEpiFOS rv”
CDS     complement(805..1464)
/label=cat
CDS     1683..2030
/label=redF
CDS     3425..4180
/label=repE
CDS     4759..5934
/label=parA
CDS     5934..6905
/label=parB
ORIGIN
Length: 8171 bp
Type: DNA circular TNA
Organism: Artificial
Sequence:
SEQ ID NO: 27
    1 GCGGCCGCAA GGGGTTCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG
   61 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT
  121 GCGTAAGGAG AAAATACCGC ATCAGGCGCC ATTCGCCATT CAGCTGCGCA ACTGTTGGGA
  181 AGGGCGATCG GTGCGGGCCT CTTCGCTATT ACGCCAGCTG GCGAAAGGGG GATGTGCTGC
  241 AAGGCGATTA AGTTGGGTAA CGCCAGGGTT TTCCCAGTCA CGACGTTGTA AAACGACGGC
  301 CAGTGAATTG TAATACGACT CACTATAGGG CGAATTCGAG CTCGGTACCC GGGGATCCCA
  361 CGTGGCGCGC CACTAGTGCT AGCGACGTCG TGGGATCCTC TAGAGTCGAC CTGCAGGCAT
  421 GCAAGCTTGA GTATTCTATA GTCTCACCTA AATAGCTTGG CGTAATCATG GTCATAGCTG
  481 TTTCCTGTGT GAAATTGTTA TCCGCTCACA ATTCCACACA ACATACGAGC CGGAAGCATA
  541 AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA CATTAATTGC GTTGCGCTCA
  601 CTGCCCGCTT TCCAGTCGGG AAACCTGTCG TGCCAGCTGC ATTAATGAAT CGGCCAACGC
  661 GAACCCCTTG CGGCCGCCCG GGCCGTCGAC CAATTCTCAT GTTTGACAGC TTATCATCGA
  721 ATTTCTGCCA TTCATCCGCT TATTATCACT TATTCAGGCG TAGCAACCAG GCGTTTAAGG
  781 GCACCAATAA CTGCCTTAAA AAAATTACGC CCCGCCCTGC CACTCATCGC AGTACTGTTG
  841 TAATTCATTA AGCATTCTGC CGACATGGAA GCCATCACAA ACGGCATGAT GAACCTGAAT
  901 CGCCAGCGGC ATCAGCACCT TGTCGCCTTG CGTATAATAT TTGCCCATGG TGAAAACGGG
  961 GGCGAAGAAG TTOTCCATAT TGGCCACGTT TAAATCAAAA CTGGTGAAAC TCACCCAGGG
 1021 ATTGGCTGAG ACGAAAAACA TATTCTCAAT AAACCCTTTA GGGAAATAGG CCAGGTTTTC
 1081 ACCGTAACAC GCCACATCTT GCGAATATAT GTGTAGAAAC TGCCGGAAAT CGTCGTGGTA
 1141 TTCACTCCAG AGCGATGAAA ACGTTTCAGT TTGCTCATGG AAAACGGTGT AACAAGGGTG
 1201 AACACTATCC CATATCACCA GCTCACCGTC TTTCATTGCC ATACGAAATT CCGGATGAGC
 1261 ATTCATCAGG CGGGCAAGAA TGTGAATAAA GGCCGGATAA AACTTGTGCT TATTTTTCTT
 1321 TACGGTCTTT AAAAAGGCCG TAATATCCAG CTGAACGGTC TGGTTATAGG TACATTGAGC
 1381 AACTGACTGA AATGCCTCAA AATGTTCTTT ACGATGCCAT TGGGATATAT CAACGGTGGT
 1441 ATATCCAGTG ATTTTTTTCT CCATTTTAGC TTCCTTAGCT CCTGAAAATC TCGATAACTC
 1501 AAAAAATACG CCCGGTAGTG ATCTTATTTC ATTATGGTGA AAGTTGGAAC CTCTTACGTG
 1561 CCGATCAACG TCTCATTTTC GCCAAAAGTT GGCCCAGGGC TTCCCGGTAT CAACAGGGAC
 1621 ACCAGGATTT ATTTATTCTG CGAAGTGATC TTCCGTCACA GGTATTTATT CGCGATAAGC
 1681 TCATGGAGCG GCGTAACCGT CGCACAGGAA GGACAGAGAA AGCGCGGATC TGGGAAGTGA
 1741 CGGACAGAAC GGTCAGGACC TGGATTGGGG AGGCGGTTGC CGCCGCTGCT GCTGACGGTG
 1801 TGACGTTCTC TGTTCCGGTC ACACCACATA CGTTCCGCCA TTCCTATGCG ATGCACATGC
 1861 TGTATGCCGG TATACCGCTG AAAGTTCTGC AAAGCCTGAT GGGACATAAG TCCATCAGTT
 1921 CAACGGAAGT CTACACGAAG GTTTTTGCGC TGGATGTGGC TGCCCGGCAC CGGGTGCAGT
 1981 TTGCGATGCC GGAGTCTGAT GCGGTTGCGA TGCTGAAACA ATTATCCTGA GAATAAATGC
 2041 CTTGGCCTTT ATATGGAAAT GTGGAACTGA GTGGATATGC TGTTTTTGTC TGTTAAACAG
 2101 AGAAGCTGGC TGTTATCCAC TGAGAAGCGA ACGAAACAGT CGGGAAAATC TCCCATTATC
 2161 GTAGAGATCC GCATTATTAA TCTCAGGAGC CTGTGTAGCG TTTATAGGAA GTAGTGTTCT
 2221 GTCATGATGC CTGCAAGCGG TAACGAAAAC GATTTGAATA TGCCTTCAGG AACAATAGAA
 2281 ATCTTCGTGC CGTGTTACGT TGAAGTGGAG CGGATTATGT CAGCAATGGA CAGAACAACC
 2341 TAATGAACAC AGAACCATGA TGTGGTCTGT CCTTTTACAG CCAGTAGTGC TCGCCGCAGT
 2401 CGAGCGACAG GGCGAAGCCC TCGGCTGGTT GCCCTCGCCG CTGGGCTGGC GGCCGTCTAT
 2461 GGCCCTGCAA ACGCGCCAGA AACGCCGTCG AAGCCGTGTG CGAGACACCG CGGCCGGCCG
 2521 CCGGCGTTGT GGATACCTCG CGGAAAACTT GGCCCTCACT GACAGATGAG GGGCGGACGT
 2581 TGACACTTGA GGGGCCGACT CACCCGGCGC GGCGTTGACA GATGAGGGGC AGGCTCGATT
 2641 TCGGCCGGCG ACGTGGAGCT GGCCAGCCTC GCAAATCGGC GAAAACGCCT GATTTTACGC
 2701 GAGTTTCCCA CAGATGATGT GGACAAGCCT GGGGATAAGT GCCCTGCGGT ATTGACACTT
 2761 GAGGGGCGCG ACTACTGACA GATGAGGGGC GCGATCCTTG ACACTTGAGG GGCAGAGTGC
 2821 TGACAGATGA GGGGCGCACC TATTGACATT TGAGGGGCTG TCCACAGGCA GAAAATCCAG
 2881 CATTTGCAAG GGTTTCCGCC CGTTTTTCGG CCACCGCTAA CCTGTCTTTT AACCTGCTTT
 2941 TAAACCAATA TTTATAAACC TTGTTTTTAA CCAGGGCTGC GCCCTGTGCG CGTGACCGCG
 3001 CACGCCGAAG GGGGGTGCCC CCCCTTCTCG AACCCTCCCG GTCGAGTGAG CGAGGAAGCA
 3061 CCAGGGAACA GCACTTATAT ATTCTGCTTA CACACGATGC CTGAAAAAAC TTCCCTTGGG
 3121 GTTATCCACT TATCCACGGG GATATTTTTA TAATTATTTT TTTTATAGTT TTTAGATCTT
 3181 CTTTTTTAGA GCGCCTTGTA GGCCTTTATC CATGCTGGTT CTAGAGAAGG TGTTGTGACA
 3241 AATTGCCCTT TCAGTGTGAC AAATCACCCT CAAATGACAG TCCTGTCTGT GACAAATTGC
 3301 CCTTAACCCT GTGACAAATT GCCCTCAGAA GAAGCTGTTT TTTCACAAAG TTATCCCTGC
 3361 TTATTGACTC TTTTTTATTT AGTGTGACAA TCTAAAAACT TGTCACACTT CACATGGATC
 3421 TGTCATGGCG GAAACAGCGG TTATCAATCA CAAGAAACGT AAAAATAGCC CGCGAATCGT
 3481 CCAGTCAAAC GACCTCACTG AGGCGGCATA TAGTCTCTCC CGGGATCAAA AACGTATGCT
 3541 GTATCTGTTC GTTGACCAGA TCAGAAAATC TGATGGCACC CTACAGGAAC ATGACGGTAT
 3601 CTGCGAGATC CATGTTGCTA AATATGCTGA AATATTCGGA TTGACCTCTG COGAAGCCAG
 3661 TAAGGATATA CGGCAGGCAT TGAAGAGTTT CGCGGGGAAG GAAGTGGTTT TTTATCGCCC
 3721 TGAACAGGAT GCCGGCGATG AAAAAGGCTA TGAATCTTTT CCTTGGTTTA TCAAACGTGC
 3781 GCACAGTCCA TCCAGAGGGC TTTACAGTGT ACATATCAAC CCATATCTCA TTCCCTTCTT
 3841 TATCGGGTTA CAGAACCGGT TTACGCAGTT CGGCTTAGTG GAAACAAAAG AAATCACCAA
 3901 TCCGTATCCC ATGCGTTTAT ACGAATCCCT GTGTCAGTAT CGTAAGCCGG ATGGCTCAGG
 3961 CATCGTCTCT CTGAAAATCG ACTGGATCAT AGAGCGTTAC CAGCTGCCTC AAAGTTACCA
 4021 GCGTATGCCT GACTTCCGCC GCCGCTTCCT GCAGGTCTGT GTTAATGAGA TCAACAGCAG
 4081 AACTCCAATG CGCCTCTCAT ACATTGAGAA AAAGAAAGGC CGCCAGACGA CTCATATCGT
 4141 ATTTTCCTTC CGCGATATCA CTTCCATGAC GACAGGATAG TCTGAGGGTT ATCTGTCACA
 4201 GATTTGAGGG TGGTTCGTCA CATTTGTTCT GACCTACTGA GGGTAATTTG TCACAGTTTT
 4261 GCTGTTTCCT TCAGCCTGCA TGGATTTTCT CATACTTTTT GAACTGTAAT TTTTAAGGAA
 4321 GCCAAATTTG AGGGCAGTTT GTCACAGTTG ATTTCCTTCT CTTTCCCTTC GTCATGTGAC
 4381 CTGATATCGG GGGTTAGTTC GTCATCATTG ATGAGGGTTG ATTATCACAG TTTATTACTC
 4441 TGAATTGGCT ATCCGCGTGT GTACCTCTAC CTGGAGTTTT TCCCACGGTG GATATTTCTT
 4501 CTTGCGCTGA GCGTAAGAGC TATCTGACAG AACAGTTCTT CTTTGCTTCC TCGCCAGTTC
 4561 GCTCGCTATG CTCGGTTACA CGGCTGCGGC GAGCGCTAGT GATAATAAGT GACTGAGGTA
 4621 TGTGCTCTTC TTATCTCCTT TTGTAGTGTT GCTCTTATTT TAAACAACTT TGCGGTTTTT
 4681 TGATGACTTT GCGATTTTGT TGTTGCTTTG CAGTAAATTG CAAGATTTAA TAAAAAAACG
 4741 CAAAGCAATG ATTAAAGGAT GTTCAGAATG AAACTCATGG AAACACTTAA CCAGTGCATA
 4801 AACGCTGGTC ATGAAATGAC GAAGGCTATC GCCATTGCAC AGTTTAATGA TGACAGCCCG
 4861 GAAGCGAGGA AAATAACCCG GCGCTGGAGA ATAGGTGAAG CAGCGGATTT AGTTGGGGTT
 4921 TCTTCTCAGG CTATCAGAGA TGCCGAGAAA GCAGGGCGAC TACCGCACCC GGATATGGAA
 4981 ATTCGAGGAC GGGTTGAGCA ACGTGTTGGT TATACAATTG AACAAATTAA TCATATGCGT
 5041 GATGTGTTTG GTACGCGATT GCGACGTGCT GAAGACGTAT TTCCACCGGT GATCGGGGTT
 5101 GCTGCCCATA AAGGTGGCGT TTACAAAACC TCAGTTTCTG TTCATCTTGC TCAGGATCTG
 5161 GCTCTGAAGG GGCTACGTGT TTTGCTCGTG GAAGGTAACG ACCCCCAGGG AACAGCCTCA
 5221 ATGTATCACG GATGGGTACC AGATCTTCAT ATTCATGCAG AAGACACTCT CCTGCCTTTC
 5281 TATCTTGGGG AAAAGGACGA TGTCACTTAT GCAATAAAGC CCACTTGCTG GCCGGGGCTT
 5341 GACATTATTC CTTCCTGTCT GGCTCTGCAC CGTATTGAAA CTGAGTTAAT GGGCAAATTT
 5401 GATGAAGGTA AACTGCCCAC CGATCCACAC CTGATGCTCC GACTGGCCAT TGAAACTCTT
 5461 GCTCATGACT ATGATGTCAT AGTTATTGAC AGCGCGCCTA ACCTGGGTAT CGGCACGATT
 5521 AATGTCGTAT GTGCTGCTGA TGTGCTGATT GTTCCCACGC CTGCTGAGTT GTTTGACTAC
 5581 ACCTCCGCAC TGCAGTTTTT CGATATGCTT CGTGATCTGC TCAAGAACGT TGATCTTAAA
 5641 GGGTTCGAGC CTGATGTACG TATTTTGCTT ACCAAATACA GCAATAGTAA TGGCTCTCAG
 5701 TCCCCGTGGA TGGAGGAGCA AATTCGGGAT GCCTGGGGAA GCATGGTTCT AAAAAATGTT
 5761 GTACGTGAAA CGGATGAAGT TGGTAAAGGT CAGATCCGGA TGAGAACTGT TTTTGAACAG
 5821 GCCATTGATC AACGCTCTTC AACTGGTGCC TGGAGAAATG CTCTTTCTAT TTGGGAACCT
 5881 GTCTGCAATG AAATTTTCGA TCGTCTGATT AAACCACGCT GGGAGATTAG ATAATGAAGC
 5941 GTGCGCCTGT TATTCCAAAA CATACGCTCA ATACTCAACC GGTTGAAGAT ACTTCGTTAT
 6001 CGACACCAGC TGCCCCGATG GTGGATTCGT TAATTGCGCG CGTAGGAGTA ATGGCTCGCG
 6061 GTAATGCCAT TACTTTGCCT GTATGTGGTC GGGATGTGAA GTTTACTCTT GAAGTGCTCC
 6121 GGGGTGATAG TGTTGAGAAG ACCTCTCGGG TATGGTCAGG TAATGAACGT GACCAGGAGC
 6181 TGCTTACTGA GGACGCACTG GATGATCTCA TCCCTTCTTT TCTACTGACT GGTCAACAGA
 6241 CACCGGCGTT CGGTCGAAGA GTATCTGGTG TCATAGAAAT TGCCGATGGG AGTCGCCGTC
 6301 GTAAAGCTGC TGCACTTACC GAAAGTGATT ATCGTGTTCT GGTTGGCGAG CTGGATGATG
 6361 AGCAGATGGC TGCATTATCC AGATTGGGTA ACGATTATCG CCCAACAAGT GCTTATGAAC
 6421 GTGGTCAGCG TTATGCAAGC CGATTGCAGA ATGAATTTGC TGGAAATATT TCTGCGCTGG
 6481 CTGATGCGGA AAATATTTCA CGTAAGATTA TTACCCGCTG TATCAACACC GCCAAATTGC
 6541 CTAAATCAGT TGTTGCTCTT TTTTCTCACC CCGGTGAACT ATCTGCCCGG TCAGGTGATG
 6601 CACTTCAAAA AGCCTTTACA GATAAAGAGG AATTACTTAA GCAGCAGGCA TCTAACCTTC
 6661 ATGAGCAGAA AAAAGCTGGG GTGATATTTG AAGCTGAAGA AGTTATCACT CTTTTAACTT
 6721 CTGTGCTTAA AACGTCATCT GCATCAAGAA CTAGTTTAAG CTCACGACAT CACTTTGCTC
 6781 CTGGAGCGAC AGTATTGTAT AAGGGCCATA AAATGGTGCT TAACCTGGAC AGGTCTCGTG
 6841 TTCCAACTGA GTGTATAGAG AAAATTGAGG CCATTCTTAA GGAACTTGAA AAGCCAGCAC
 6901 CCTGATGCGA CCACGTTTTA GTTTACTTTT ATCTGTCTTT ACTTAATGTC CTTTGTTACA
 6961 GGCCAGAAAG CATAACTGGC CTGAATATTC TCTCTGGGCC CACTGTTCCA CTTGTATCGT
 7021 CGGTCTGATA ATCAGACTGG GACCACGGTC CCACTCGTAT CGTCGGTCTG ATTATTAGTC
 7081 TGGGACCACG GTCCCACTCG TATCGTCGGT CTGATTATTA GTCTGGGACC ACGGTCCCAC
 7141 TCGTATCGTC GGTCTGATAA TCAGACTGGG ACCACGGTCC CACTCGTATC GTCGGTCTGA
 7201 TTATTAGTCT GGGACCATGG TCCCACTCGT ATCGTCGGTC TGATTATTAG TCTGGGACCA
 7261 CGGTCCCACT CGTATCGTCG GTCTGATTAT TAGTCTGGAA CCACGGTCCC ACTCGTATCG
 7321 TCGGTCTGAT TATTAGTCTG GGACCACGGT CCCACTCGTA TCGTCGGTCT GATTATTAGT
 7381 CTGGGACCAC GATCCCACTC GTGTTGTCGG TCTGATTATC GGTCTGGGAC CACGGTCCCA
 7441 CTTGTATTGT CGATCAGACT ATCAGCGTGA GACTACGATT CCATCAATGC CTGTCAAGGG
 7501 CAAGTATTGA CATGTCGTCG TAACCTGTAG AACGGAGTAA CCTCGGTGTG CGGTTGTATG
 7561 CCTGCTGTGG ATTGCTGCTG TGTCCTGCTT ATCCACAACA TTTTGCGCAC GGTTATGTGG
 7621 ACAAAATACC TGGTTACCCA GGCCGTGCCG CCACGTTAAC CGGGCTGCAT CCGATGCAAG
 7681 TGTGTCGCTG TCGACGAGCT CGCGAGCTCG GACATGAGGT TGCCCCGTAT TCAGTGTCGC
 7741 TGATTTGTAT TGTCTGAAGT TGTTTTTACG TTAAGTTGAT GCAGATCAAT TAATACGATA
 7801 CCTGCGTCAT AATTGATTAT TTGACGTGGT TTGATGGCCT CCACGCACGT TGTGATATGT
 7861 AGATGATAAT CATTATCACT TTACGGGTCC TTTCCGGTGA TCCGACAGGT TACGGGGCGG
 7921 CGACCTCGCG GGTTTTCGCT ATTTATGAAA ATTTTCCGGT TTAAGGCGTT TCCGTTCTTC
 7981 TTCGTCATAA CTTAATGTTT TTATTTAAAA TACCCTCTGA AAAGAAAGGA AACGACAGGT
 8041 GCTGAAAGCG AGCTTTTTGG CCTCTGTCGT TTCCTTTCTC TGTTTTTGTC CGTGGAATGA
 8101 ACAATGGAAG TCCGAGCTCA TCGCTAATAA CTTCGTATAG CATACATTAT ACGAAGTTAT
 8161 ATTCGATCCA C
Nucleotide Sequence for pCC1FOS cut (pFOS) and
S. flexneri 6 O-antigen without Z3206
Locus pFOS cut and O-antige cut (-Z3206)
Definition Ligation of inverted pCC1FOS with MCS cassette cut with
NheI and into S. flexneri 6 O antigen cluster amplified with 
galFNheI and wzzAscI cut with NheI and AscI
FEATURES     Location/Qualifiers
CDS     3..411
/label=′galF
CDS     784..1869
/label=rmlB
CDS     1869..2768
/label=rmlD
CDS     2826..3704
/label=rmlA
CDS     3709..4266
/label=rmlC
CDS     4263..5495
/label=wzx
CDS     5551..6738
/label=wzy
CDS     6755..7624
/label=wfbY
CDS     7621..8454
/label=wfbZ
CDS     8559..9965
/label=gnd
CDS     10187..11380
/label=ugd
CDS     complement(11416..12450)
/label=uge
CDS     12802..12828
/label=wzz′
Region     complement(12868..12887)
/label=“T7 promoter”
Region     complement(12942..12968)
/label=“pCC1/pEpiRDS fwd”
CDS     complement(14460..15431)
/label=parB
CDS     complement(15431..16606)
/label=parA
CDS     complement(7185..17940)
/label=repE
CDS     complement(19335..19682)
/label=redF
CDS     19901..20560
/label=cat
Region     20836..20861
/label=“pCC1pEpiFOS rv”
Length: 20982 bp
Type: DNA circular UNA
Sequence:
SEQ ID NO: 28
    1 CTAGCGGCAA AACGTATGCC GGGTGACCTC TCTGAATACT CCGTCATCCA GACCAAAGAA
   61 CCGCTGGATC GCGAAGGTAA AGTCAGCCGC ATTGTTGAAT TTATCGAAAA ACCGGATCAG
  121 CCGCAGACGC TGGACTCAGA CATCATGGCC GTTGGTCGCT ATGTGCTTTC TGCCGATATT
  181 TGGCCGGAAC TTGAACGTAC TCAGCCTGGT GCATGGGGAC GTATTCAGCT GACTGATGCC
  241 ATTGCCGAGC TGGCGAAAAA ACAGTCCGTT GATGCAATGC TGATGACCGG CGACAGCTAC
  301 GACTGCGGTA AAAAAATGGG CTATATGCAG GCGTTTGTGA AGTATGGGCT GCGCAACCTG
  361 AAAGAAGGGG CGAAGTTCCG TAAAGGTATT GAGAAGCTGT TAAGCGAATA ATGAAAATCT
  421 GACCGGATGT AACGGTTGAT AAGAAAATTA TAACGGCAGT GAAGATTCGT GGTGAAAGTA
  481 ATTTGTTGCG AATATTCCTG CCGTTGTTTT ATATAAACAA TCAGAATAAC AACGAGTTAG
  541 CAATAGGATT TTAGTCAAAG TTTTCCAGGA TTTTCCTTGT TTCCAGAGCG GATTGGTAAG
  601 ACAATTAGCT TTTGAATTTT TCGGGTTTAG CGCGAGTGGG TAACGCTCGT CACATCGTAG
  661 GCATGCATGC AGTGCTCTGG TAGCTGTAAA GCCAGGGGCG GTAGCGTGCA TTAATACTTC
  721 TATTAATCAA ACTGAGAGCC GCTTATTTCA CAGCATGCTC TGAAGCAATA TGGAATAAAT
  781 TAGGTGAAAA TACTTGTTAC TGGTGGCGCA GGATTTATTG GTTTTGCTGT AGTTCGTCAC
  841 ATTATAAATA ATACGCAGGA TAGTGTTGTT AATGTCGATA AATTAACGTA CGCCGGAAAC
  901 CTGGAATCAC TTGCTGATGT TTCTGATTCT GAACGCTATG TTTTTGAACA TGCGGATATT
  961 TGCGATGCAG CTGCAATGGC ACGGATTTTT GCTCAGCATC AGCCAGATGC AGTGATGCAC
 1021 CTGGCTGCTG AAAGCCATGT TGACCGTTCA ATTACAGGTC CTGCGGCATT TATTGAAACC
 1081 AATATTGTTG GTACATATGT CCTTTTGGAA GCCGCTCGCA ATTATTGGTC TGCTCTTGAT
 1141 AGCGACAAGA AAACTAGATT CCGTTTTCAT CATATTTCTA CTGACGAAGT CTATGGTGAT
 1201 TTGCCTCATC CTGACGAGGT AAATAATACA GAAGAATTAC CCTTATTTAC AGAGACAACA
 1261 GCTTACGCGC CAAGCAGCCC TTATTCCGCT TCAAAAGCAT CCAGCGATCA TTTAGTCCGC
 1321 GCGTGGAAAC GTACCTATGG TTTACCAACC ATTGTGACTA ATTGCTCTAA TAATTATGGT
 1381 CCTTATCATT TCCCGGAAAA ATTGATTCCA TTGGTTATTC TGAATGCTCT GGAAGGTAAG
 1441 GCATTACCTA TTTATGGCAA AGGGGATCAA ATTCGTGACT GGCTGTATGT TGAAGATCAT
 1501 GCGCGTGCGT TATATACCGT CGTAACCGAA GGTAAAGCGG GTGAAACTTA TAACATTGGT
 1561 GGACACAACG AAAAGAAAAA CATCGATGTA GTGCTCACTA TTTGTGATTT GCTGGATGAG
 1621 ATTGTACCGA AAGAGAAATC TTACCGCGAG CAAATTACTT ATGTTGCCGA TCGCCCGGGA
 1681 CACGATCGCC GTTATGCGAT TGATGCAGAG AAGATTAGCC GCGAATTGGG CTGGAAACCG
 1741 CAGGAAACGT TTGAGAGCGG GATTCGGAAG ACATTGGAAT GGTACCTGTC CAATACAAAA
 1801 TGGGTTGATA ATGTGAAAAG TGGTGCTTAT CAATCGTGGA TTGAACAGAA CTATGAGGGC
 1861 CGCCAGTAAT GAATATCCTC CTTTTCGGCA AAACAGGGCA GGTAGGTTGG GAACTACAGC
 1921 GTGCTCTGGC ACCTTTGGGT AATTTGATTG CTCTTGATGT TCACTCCACT GATTATTGTG
 1981 GTGATTTTAG TAATCCTGAA GGTGTAGCTG AAACAGTCAA AAGAATTCGA CCTGATGTTA
 2041 TTGTTAATGC TGCGGCTCAC ACCGCAGTAG ATAAGGCTGA GTCAGAACCC GAATTTGCAC
 2101 AATTACTCAA TGCGACTAGT GTTGAATCAA TTGCAAAAGA GGCTAATGAA GTTGGGGCTT
 2161 GGGTAATTCA TTACTCAACT GACTACGTAT TCCCTGGAAA TGGCGACACG CCATGGCTGG
 2221 AGACGGATGC AACCGCACCG CTAAATGTTT ACGGTGAAAC CAAGTTAGCC GGAGAAAAAG
 2281 CGTTACAGGA ACATTGCGCG AAGCATCTTA TTTTCCGTAC CAGCTGGGTA TACGCAGCTA
 2341 AAGGAAATAA CTTCGCCAAA ACGATGTTGC GTCTGGCAAA AGAGCGCGAA GAACTGGCTG
 2401 TGATAAATGA TCAATTTGGT GCGCCAACAG GTGCTGAGCT GCTGGCTGAT TGTACGGCAC
 2461 ATGCTATTCG TGTGGCACTG AATAAACCGG AAGTCGCAGG TTTGTACCAT CTGGTAGCCA
 2521 GTGGTACCAC AACCTGGCAC GATTATGCTG CGCTGGTTTT TGAAGAGGCG CGCAAAGCAG
 2581 GTATTCCCCT TGCACTCAAC AAGCTCAACG CAGTACCAAC AACAGCCTAT CCTACACCAG
 2641 CTCGTCGTCC ACATAACTCT CGCCTTAATA CAGAAAAATT TCAGCAGAAC TTTGCGCTTG
 2701 TCTTGCCTGA CTGGCAGGTT GGTGTGAAAC GAATGCTCAA CGAATTAATT ACGACTACAG
 2761 CAATTTAATA GTTTTTGCAT CTTGTTCGTG ATGGTGGAGC AAGATGAATT AAAAGGAATG
 2821 ATGAAATGAA AACGCGTAAA GGTATTATTT TAGCGGGTGG TTCTGGTACA CGTCTTTATC
 2881 CTGTGACTAT GGCTGTCAGT AAACAGCTAT TACCTATTTA TGATAAGCCG ATGATCTATT
 2941 ACCCGCTCTC TACACTGATG TTGGCGGGTA TTCGCGATAT TCTGATTATT AGTACGCCAC
 3001 AGGATACTCC TCGTTTTCAA CAACTGCTAG GTGACGGTAG CCAGTGGGGG CTAAATCTTC
 3061 AGTACAAAGT GCAACCGACT CCAGATGGGC TTGCGCAGGC GTTTATTATC GGTGAAGAGT
 3121 TTATCGGTGG TGATGATTGT GCTTTGGTTC TTGGTGATAA TATCTTCTAC GGTCATGATC
 3181 TGCCGAAGTT AATGGATGTC GCTGTTAACA AAGAAAGTGG TGCAACGGTA TTTGCCTATC
 3241 ACGTTAATGA TCCTGAACGC TACGGCGTCG TTGAGTTTGA TAAAAACGGT ACGGCAATAA
 3301 GCCTGGAAGA AAAACCGCTA CAACCAAAAA GTAATTATGC GGTAACCGGG CTTTATTTCT
 3361 ATGATAACGA CGTTGTCGAA ATGGCGAAAA ACCTTAAGCC TTCTGCCCGT GGTGAACTGG
 3421 AAATTACCGA TATTAACCGT ATTTATATGG AACAGGGGCG TTTATCCGTT GCCATGATGG
 3481 GGCGTGGTTA TGCATGGCTG GATACGGGGA CACATCAGAG TCTTATTGAA GCAAGCAACT
 3541 TCATTGCCAC CATTGAAGAG CGCCAGGGAC TAAAGGTTTC CTGCCCAGAA GAAATTGCTT
 3601 ACCGTAAAGG GTTTATTGAT GCTGAACAGG TGAAAGCATT AGCGGAGCCG CTGAAAAAAA
 3661 ATGCTTATGG ACAGTATCTG CTGAAAATGA TTAAAGGTTA TTAATAAAAT GAACGTAATT
 3721 AAAACAGAAA TTCCTGATGT GTTAATTTTC GAGCCGAAAG TTTTTGGTGA TGAGCGTGGT
 3781 TTCTTTATGG AAAGCTTTAA TCAGAAAGTT TTCGAAGAAG CTGTAGGACG TAAGGTTGAA
 3841 TTTGTTCAGG ATAACCATTC GAAGTCTAGT AAAGGTGTTT TACGCGGGCT GCATTATCAG
 3901 TTAGAACCTT ATGCGCAAGG GAAACTGGTA CGTTGCGTTG TTGGTGAGGT TTTTGATGTA
 3961 GCTGTTGATA TTCGTAAATC GTCGCCTACC TTTGGTAAAT GGGTTGGGGT GAATTTATCT
 4021 GCTGAGAATA AGCGGCAATT GTGGATCCCT GAGGGATTTG CACATGGTTT TTTGGTGCTG
 4081 AGCGAGACTG CGGAATTTTT ATATAAAACG ACGAACTATT ATCATCCTGA TAGTGATAGA
 4141 GGGATTGTAT GGAATGATCC TATTCTGAGC ATAAAATGGC CGACGATAGA ACATAATAAT
 4201 TATATTTTAT CGATTAAAGA TGCAAGGGCT AAAGAATTGC ATAACATGAA GGAATTATTT
 4261 TTGTGAGTAT TGTAAAGAAT ACTTTATGGA ATATAAGTGG GTATATTATA CCATCATTAA
 4321 TAGCAATTCC TGCGTTAGGT ATACTGTCTA GAATTCTAGG GACCGAGCAA TTTGGCCTTT
 4381 TTACGTTAGC TATTGCCTTA GTTGGATATG CAAGTATTTT TGATGCTGGA TTGACCAGAG
 4441 CTGTTATAAG AGAAGTATCA ATATATAAAA ATGTTCATAA AGAATTAAGA GCGATCATTT
 4501 CAACTTCAAC GGTAATTCTA ACTATATTGG GCTTGATTGG CGGTAGTGTA CTATTTTTGA
 4561 GTAGCAATGT AATTGTTAAA TTATTAAACA TTAACGCGAA TCATGTTGTA GAATCTGTCA
 4621 AAGCAATATA TATTATTTCA GCTACCATAC CCTTATACTT GTTAAACCAA GTCTGGTTGG
 4681 GGATTTTTGA GGGGATGGAA AAGTTCAGAA AAGTAAATTT AATAAAATCA ATTAACAACT
 4741 CTTTTGTGGC TGGATTACCA GTGATTTTCT GTTTTTTTCA TGGAGGATTA CTAAGTGCTA
 4801 TATATGGTTT AGTTATGGCA AGAGTCTTAT CACTTATAGT GACCTTTATA TTTAGTCGAA
 4861 AACTAATAAT ATCATCTGGG CTGTCTGTAA AAATTGTAAC AGTTAAAAGA TTAATCGGCT
 4921 TTGGAAGCTG GATAACAGTT AGCAATATTA TTAGCCCTAT TATGACATAT ATGGATCGTT
 4981 TTATTCTTTC ACACATTGTG GGGGCTGATA AAGTTTCTTT TTATACTGCT CCGTCTGAAG
 5041 GTATACAACG CTTAACGATA TTACCAAGTG CGTTGTCCAG AGCTATTTTT CCAAGATTAA
 5101 GTTCAGAATT GCAATCGGTA AAGCAAACTA AAATATTATC ATATTTTATA ATGGTTATTG
 5161 GTATACTTCC AATTGTAATG TTGATAATTA TTTTATCAGA TTTTATAATG TCCGCTTGGA
 5221 TGGGACCTAC ATATCATGGG ACGCCAGGTA TAGTATTAAA AATTCTTGCA ATAGGTTTCT
 5281 TTTTTAATTG CATTGCACAA ATCCCATTTG TTTCAGTTCA GGCTAGTGGA AGATCAAAAA
 5341 TTACAGCTAT TATTCATTTG CTCGAAGTTA TCCCATATTT ATGCATATTA TATATTTTTA
 5401 TTTATCATTG GGGAATTGTT GGAGCCGCAA TAGCATGGTC TGTAAGAACA TCGTTAGATT
 5461 TTTTGATATT ATTATTAATT GATACGAAAT ATTAATAGCG AATTGATTTT AGGGATTACT
 5521 TCCTCAAGCC CATCTAATTA GAGTGCAAAC ATGACTTCTG ATTTTTATAA CTCAAAAGAC
 5581 AAAAGTTTAA GTGTTCTTTT GTTTTTTGGG TTTATATTTT TCCTTACACG TAGCTTTCCA
 5641 TTTATTCAAT ATAGTTOGAT TATGGAGGGG TTTTTATGTC TTTGTATCAT GTCATTTACA
 5701 AAGAAAATTG CAAACGGAAT ATATCACTAT CCTGTTATTT TAATATTTCT ATTAGCTCTT
 5761 TTTATAAATT TTATTTATTC CTATATCAAG GGTAACGATA TAGCGATAAT AATTAGGTTT
 5821 TATATTATCA TATTATTTAT ATTATGTGCT TATTTCTGCT CTTATGGAAC CATCTCGATT
 5881 GTTAAAATAT TTTTATATTT AATGGTATTA CAGGCGGTTA TTATATCCAT CATTAGTATT
 5941 TATATGACAA AAACATATGG TATTGGTGAT TATTCAGCAC TAAGACATTA TTTTTTGGAG
 6001 AATGATTATG GTGATGTTTA TACATATGGA AGTGGTTTCT ATAGAGTTCA AATTAAAGGA
 6061 AATGCTCTCA TTCCATTTGC CTTTATGTTG CATATAGTCA TAAAAGATTA TTTCTATTAT
 6121 CGATTCAAAA ATACAATAAC CGTTATTCTG GCTATAGGTA CTATAGTGGC TGGTAATTTT
 6181 GCATATTTTG TTTCGATATG CTTGTTTTTT ATGTATATTA TACTATGTTC TAAATCTAAC
 6241 TCACGATACG CTAAATTAAG GAAAATTATT TTTGGGGTTT TTCTTACTGT GATTCTCCCT
 6301 TTTTTTATTA CATATTCAAT TGAGTTGATA ATCATGAAAT CAAATGGAGC TGATTCTTCT
 6361 TTAGGAGTTA GATGGGATCA GTTTACTGTA TTAATTAATG ATCTTACAGA GTCTGTATCA
 6421 AATTTTGTTA TAGGTTCTGG TTTGGGTAAT GTCATCAAAA TTCAAACTCC TATCCGTGAT
 6481 TATAGTGCAT ATATATATTA TGAATTGCAG TCAGTTTATT TTTTAAATCA ACTTGGCGTT
 6541 ATTTTATTTA CTTTGTTTTT ATTAATTAAT CTCCTTCTCA CGATTAAAAT CATAAAATAC
 6601 AGTGAGTTGT GTGTGCTATA TTTTCTATAT GTTTCTTATG CAATTACTAA TCCTTATATT
 6661 TTAGACTCTA ACCATGTTGC TGTAATAATT GTATTAGTGA CATTAAGTAA TGTTCTAAAA
 6721 AAGATGAAAG CTAAATGAAG GTTTTAAGGT GAAGATGGAC ACTGTATATG CCGTTTTGGT
 6781 TGCTTACAAC CCAGAACATA ATGATTTAAA AAATGCGGTT GAATTATTGT TGAGACAAGT
 6841 TACTAAAGTT GTCGTTTGCA ATAACTCTAC AAATGGTTAT AAATATGCTG AAAATTCTTC
 6901 AGGCGATGTA AAAATATTCA ATTTCAATGA TAATTTAGGC ATAGCAGAAG CCCAAAGTAT
 6961 AGGAATGAAA TGGGCTTTTG AAAATGGCGC TGATTTTATA TTGCAAATGG ATCAGGATAG
 7021 TATTCCTGAT CCTAAGATGG TAGAGCAGTT ACTTACTTGT TACAAAAAAT TGCTTAAACA
 7081 AAATGTCAAT GTTGGTTTAG TTGGTTCACA AGATTTTGAT AAAGTAACTG GTGAATTAAA
 7141 TAAAGCAAGG GTAAAAAAAG GGAAACCACT TACAGAAGTT TATTATGAGG TAGATAGTAC
 7201 AlTAAGTTCT GGCAGTCTAA TACCAAAAAA TAGTTGGTTG ATTGTTGGAG GAATGAAAGA
 7261 TGAGCTTTTT ATCGATGCGG TAGACCATGA ATATTGTTGG AGATTAAGAG CTGCTGGGTT
 7321 TAAAGTAATT AGGAATAAAA ATGCGTTACT TGCACATAGA CTTGGAGATG GGCGATTTAA
 7381 GATCTTAAAT ATTCTTTCTG TCGGTTTGCC AAGCCCATTT CGTCATTATT ATGCTACTCG
 7441 AAATATCTTT CTTTTATTAA ATAAAAATTA TGTACCCATC TACTGGAAAA TTTCTAGTCT
 7501 GGTTAAATTA ATTGGAAAGG TTTTTTTATA TCCTATTTTC CTTCCAAATG GTAATAAAAG
 7561 GTTATATTTT TTTTTAAAAG GCATTAATGA CGGTTTAATG GGTCGAAGTG GTAAAATGAA
 7621 ATGAATCATA GATTAGAAAA ATTCTCAGTT TTAATTAGCA TTTATAAAAA TGATCTACCG
 7681 CAATTTTTTG AGGTGGCTCT ACGCTCTATT TTTCACGATC AAACACTTAA GCCAGATCAA
 7741 ATAGTAATTG TTGCAGATGG AGAACTCCAT CAAACACACA TCGATATTAT AAATTCATTC
 7801 ATTGATGATG TTGGCAATAA AATAGTAACA TTTGTACCTT TACCTAGAAA TGTTGGATTG
 7861 GCTAATGCCT TAAATGAAGG ATTAAAGGCT TGTAGGAATG AGTTAGTGGC AAGAATGGAT
 7921 GCTGATGATA TTTCTTTGCC TCATCGGTTT GAGAAACAAA TTTCTTTTAT GATTAATAAT
 7981 TCAGAAATAG ATGTATGTGG CAGTTTTATT GATGAAATTG AAACTGTTAC TGAGGAGTTT
 8041 ATTTCAACAC GCAAAGTGCC TCTCGAACAT AGAGAAATAG TTAAATTCGC GAGGAAACGA
 8101 AGCGCAGTTA GCCATCCTTC TGTAATTTTT AGAAAGAATA CAGTATTAGC TGTTGGTGGT
 8161 TATCCTCCAT TCAGAAAATC TCAAGATTTT GCATTGTGGA GCCTATTAAT TGTACATAAT
 8221 GCAAGATTTG CAAATCTTCC AGATATTTTA TTAAAAATGC GAACTGGTCG TAATCTTATG
 8281 GCTCGACGTG GATTGTCATA TTTATTGTAC GAGTATAAAG TATTGTATTA TCAATATAAA
 8341 ATTGGTTTTA TTCGAAAAAA TGAATTAATA AGTAATGCTA TGTTGAGAAC ATTTTTTCGT
 8401 ATAATGCCAT CTAAATTAAA GGAGCTGATG TATTCAATCG TTAGGAATCG ATAATAATAA
 8461 TTTTCTGATT AAGTGTTATG GATTTATTTT TATTAGGCAT ATTCTATAAT TAAGCATAAC
 8521 CCGCATACCA CCCAGCGGTA TCCTGACAGG AGTAAACAAT GTCAAAGCAA CAGATCGGCG
 8581 TCGTCGGTAT GGCAGTGATG GGGCGCAACC TTGCGCTCAA TATCGAAAGC CGTGGTTATA
 8641 CCGTCTCTAT TTTCAACCGT TCCCGTGAAA AGACCGAAGA AGTGATTACC GAAAATCCAG
 8701 GCAAGAAACT GGTTCCTTAC TATACGGTGA AAGAATTTGT TGAATCTCTG GAAACGCCTC
 8761 GTCGCATCCT GTTAATGGTG AAAGCAGGTG CTGGCACGGA TGCTGCTATT GATTCCCTCA
 8821 AGCCATACCT CGATAAAGGT GACATCATCA TTGATGGTGG TAACACCTTC TTCCATGACA
 8881 CCATTCGTCG TAACCGTGAG CTTTCTGCAG AAGGCTTTAA CTTTATCGGT ACCGGTGTTT
 8941 CCGGTGGTGA AGAAGGTGCG CTGAAAGGTC CTTCCATTAT GCCTGGTGGG CAGAAAGAAG
 9001 CTTATGAACT GATTGCGCCG ATCCTGACCA AAATCGCCGC TGTGGCTGAA GACGGCGAAC
 9061 CGTGCGTTAC CTATATTGGT GCCGATGGTG CAGGTCATTA TGTGAAGATG GTTCACAACG
 9121 GTATTGAATA CGGTGATATG CAGCTGATTG CTGAAGCCTA TTCTCTGCTT AAAGGTGGCT
 9181 TGAACCTCAC CAACGAAGAA CTGGCGCAGA CCTTTACCGA GTGGAATAAC GGTGAACTGA
 9241 GCAGCTACCT GATCGACATC ACCAAAGATA TCTTCACCAA AAAAGATGAA GAGGGTAACT
 9301 ACCTGGTTGA TGTGATTCTG GATGAAGCAG CAAACAAAGG TACGGGCAAA TGGACCAGCC
 9361 AGAGCGCGCT GGATCTCGGC GAACCGCTGT CGCTGATTAC CGAGTCTGTG TTTGCACGTT
 9421 ATATCTCTTC TCTGAAAGAG CAGCGTGTTG CCGCATCTAA AGTTCTCTCT GGCCCGCAAG
 9481 CGCAGCCAGC TGGCGACAAT GCTGAGTTCA TCGAAAAAGT TCGCCGTGCG CTGTATCTGG
 9541 GCAAAATCGT TTCTTACGCT CAGGGCTTCT CTCAGCTACG CGCTGCGTCT GAAGAGTACA
 9601 ACTGGGATCT GAACTACGGT GAAATCGCGA AGATTTTCCG TGCTGGCTCC ATCATCCGTG
 9661 CGCAGTTCCT GCAGAAAATC ACCGATGCTT ATGCCGAAAA TCCGCAGATC GCTAACCTGT
 9721 TGCTGGCTCC TTACTTCAAG CAAATTGCCG ATGACTACCA GCAGGCGCTG CGCGATGTCG
 9781 TCGCTTACGC AGTACAGAAC GGTATCCCGG TGCCCTACCT CGCCGCTGCG GTTGCCTATT
 9841 ACGACAGCTA CCGCGCCGCT GTTCTGCCTG CGAACCTGAT CCAGGCACAG CGTGACTATT
 9901 TCGGTGCGCA TACTTATAAG CGCATTGATA AAGAAGGTGT GTTCCATACC GAATGGCTGG
 9961 ATTAATCTGA TTTAAATCAA TTAATCAAAG CAAGGCCCGG AGAAACCCTC CGGGCTTTTT
10021 TATTATACAA AGCGGCAGGT TAGGGCCTTT TTTTATAATT TATAGTTAAA AACGCGATAT
10081 AATACAGCGC CGCACAGCAG GATCGCTGCC TTGACAGTTC ATCTACATCA GCGTTAAAAA
10141 TCCCGCAGTA GATGAAGCTG TGGTGGTGGA TTAATGACCA CTCTAAATGT TTAACCGGAA
10201 GAAGTCAGAG CTAATGAAAA TAACAATTTC AGGAACAGGT TATGTTGGTC TTTCAAATGG
10261 TATTCTGATT GCGCAAAACC ACGAAGTGGT TGCACTGGAT ATCGTTCAGG CCAAAGTGGA
10321 CATGCTTAAC AAGAGGCAGT CACCGCTTGT TGATAAGGAG ATTGAAGAGT ATCTGGCGAC
10381 TAAAGATCTC AATTTCCGCG CTACGACAGA TAAGTATGAC GCGTATAAAA ATGCCGATTA
10441 CGTTATTATT GCCACACCTA CCGATTATGA TCCGAAAACA AATTACTTTA ATACCTCAAG
10501 CGTGGAAGCG GTCATTCGTG ATGTGACAGA AATTAATCCC AACGCGGTAA TGATTATAAA
10561 ATCAACTATC CCTGTTGGTT TTACAGAGTC CATTAAAGAA CGTTTTGGTA TTGAAAATGT
10621 GATCTTTTCG CCTGAGTTTT TGCGTGAAGG TAAAGCACTT TATGATAACT TACACCCATC
10681 ACGCATTGTG ATTGGCGAGC AGTCTGAACG CGCTAAACGT TTTGCTGCGT TATTACAGGA
10741 AGGCGCCATT AAGCAAGACA TACCAACATT GTTTACTGAC TCAACCGAGG CTGAGGCGAT
10801 TAAACTTTTT GCGAACACTT ATCTGGCGAT GCGTGTAGCG TATTTCAATG AACTTGATAG
10861 TTATGCTGAA AGCCTGGGAC TTAATTCACG CCAGATTATT GAGGGCGTAT GCCTTGACCC
10921 GCGTATCGGT AATCACTACA ACAACCCGTC ATTCGGTTAT GGTGGTTATT GTCTGCCGAA
10981 AGATACTAAG CAGTTACTGG CAAATTACCA GTCTGTGCCG AATAACCTGA TCTCGGCAAT
11041 TGTTGACGCC AACCGCACGC GCAAAGATTT TATTGCCGAT TCTATCCTTG CACGTAAACC
11101 GAAAGTTGTT GGCGTCTATC GTTTGATTAT GAAGAATGGT TCAGACAATT TTCGTGCTTC
11161 CTCGATTCAG GGTATTATGA AGCGAATCAA GGCGAAAGGT GTGCCTGTAA TCGTTTATGA
11221 GCCAGCTATG AAAGAGGACG ATTTTTTCCG GTCGCGCGTG GTACGTGATC TGGATGCGTT
11281 CAAACAAGAA GCTGATGTTA TTATTTCTAA CCGTATGTCT GCCGATCTGG CTGATGTAGC
11341 AGATAAAGTT TATACGCGCG ACTTGTTTGG CAATGATTAA TTATTTTGTT TCATTCTAAG
11401 AAAAGGCCCT AATAAATTAG GGCCTTTTCT TATGGTTTTG TAAAATCAAA CTTTATAGAA
11461 GTTACGATAC CATTCTACAA AGTTCTTTAC CCCTTCTTTA ACTGACGTTT CAGGTTTGAA
11521 TCCTATTACG TCATACAGTG CTTTTGTATC AGCACTGGTT TCCAGTACAT CACCGGGTTG
11581 GAGAGGCATC ATATTTTTGT TGGCTTCAAT ACCCAGAGCC TCTTCTAACG CATTGATATA
11641 GTCCATCAAC TCCACAGGCG AACTATTACC AATGTTATAG ACACGATATG GTGCTGAACT
11701 TGTTGCAGGC GAGCCTGTTT CTACAGCCCA CTGTGGGTTT TTTTCTGGAA TAACATCCTG
11761 TAAGCGAATA ATAGCTTCGG CAATATCATC AATGTAAGTA AAGTCACGCT TCATTTTGCC
11821 GAAGTTGTAA ACATCAATGC TTTTACCTTC CAGCATGGCT TTAGTGAATT TAAATAATGC
11881 CATATCCGGA CGTCCCCATG GACCATAAAC CGTAAAGAAA CGCAGCCCTG TGGTCGGTAA
11941 GCCATACAAA TGAGAATATG TATGGGCCAT GAGTTCATTC GCTTTTTTAG TTGCTGCATA
12001 AAGCGAAACA GGATGATCTA CAGAGTCATC TGTAGAGAAA GGCATCTTGC GGTTCATGCC
12061 ATAAACAGAA CTGGAGGAAG CGTAAAGTAG ATGCTGAACA TTATTATGGC GACATCCTTC
12121 TAGTATGTTC AGGAATCCAA TCAGGTTTGC ATCTGCATAT GCATTGGGAT TTTCAAGAGA
12181 GTAACGTACA CCGGCTTGCG CAGCGAGGTT TATTACGCGT TCGAACCGCT CGTCTGCAAA
12241 CAGTGCCGCC ATTTTCTCAC GATCGGCCAG GTCAATTTTA TAAAAACTGA AGTTGTCGTG
12301 CTTGAGTAAA TCAAGTCGTG CTTGTTTGAG GTTGACATCG TAATAATCAT TTAAGTTGTC
12361 AATGCCTACA ACCTGATGAC CAGCTGCAAG AAGCCGTTTA CTTAGATAGA AACCGATAAA
12421 GCCAGCAGCT CCCGTAACCA GAAATTTCAT TTATAATCCT CGCTCAGGCT AGAATATAGC
12481 CAATCTTCAT CTGGCATAAC TGAAAGTTAA ATTATACCGT TAGACAAGAA AAAAAGATAA
12541 TCGGTATCAG TTCTAAACTT GGCTGTTTTT TCTGGTAACG TGCTCATTTT ACAATCAAAG
12601 CTGTTCTAAG CTGACTATAC AAGCCGACGT CATTATCTCC AACCGTATGG CAGAAGAGCT
12661 TAAGGATGTG GCAGACAAAG TCTACACCCG CGATCTCTTT GGCAGTGACT AACATCCTGT
12721 TATCATGGCG ATTTTCGCCC TGATTCTCTT ATGTTCCCTT TGTAATAATT CATTATTTTT
12781 ATCATTTATC CTATAGCATT CATGGCGATT ATCGCTAAAC TATGGCGGCG CGCCACGTGG
12841 GATCCCCGGG TACCGAGCTC GAATTCGCCC TATAGTGAGT CGTATTACAA TTCACTGGCC
12901 GTCGTTTTAC AACGTCGTGA CTGGGAAAAC CCTGGCGTTA CCCAACTTAA TCGCCTTGCA
12961 GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA TCGCCCTTCC
13021 CAACAGTTGC GCAGCTGAAT GGCGAATGGC GCCTGATGCG GTATTTTCTC CTTACGCATC
13081 TGTGCGGTAT TTCACACCGC ATATGGTGCA CTCTCAGTAC AATCTGCTCT GATGCCGCAT
13141 AGTTAAGCCA GCCCCGACAC CCGCCAACAC CCGCTGACGC GAACCCCTTG CGGCCGCATC
13201 GAATATAACT TCGTATAATG TATGCTATAC GAAGTTATTA GCGATGAGCT CGGACTTCCA
13261 TTGTTCATTC CACGGACAAA AACAGAGAAA GGAAACGACA GAGGCCAAAA AGCTCGCTTT
13321 CAGCACCTGT CGTTTCCTTT CTTTTCAGAG GGTATTTTAA ATAAAAACAT TAAGTTATGA
13381 CGAAGAAGAA CGGAAACGCC TTAAACCGGA AAATTTTCAT AAATAGCGAA AACCCGCGAG
13441 GTCGCCGCCC CGTAACCTGT CGGATCACCG GAAAGGACCC GTAAAGTGAT AATGATTATC
13501 ATCTACATAT CACAACGTGC GTGGAGGCCA TCAAACCACG TCAAATAATC AATTATGACG
13561 CAGGTATCGT ATTAATTGAT CTGCATCAAC TTAACGTAAA AACAACTTCA GACAATACAA
13621 ATCAGCGACA CTGAATACGG GGCAACCTCA TGTCCGAGCT CGCGAGCTCG TCGACAGCGA
13681 CACACTTGCA TCGGATGCAG CCCGGTTAAC GTGCCGGCAC GGCCTGGGTA ACCAGGTATT
13741 TTGTCCACAT AACCGTGCGC AAAATGTTGT GGATAAGCAG GACACAGCAG CAATCCACAG
13801 CAGGCATACA ACCGCACACC GAGGTTACTC CGTTCTACAG GTTACGACGA CATGTCAATA
13861 CTTGCCCTTG ACAGGCATTG ATGGAATCGT AGTCTCACGC TGATAGTCTG ATCGACAATA
13921 CAAGTGGGAC CGTGGTCCCA GACCGATAAT CAGACCGACA ACACGAGTGG GATCGTGGTC
13981 CCAGACTAAT AATCAGACCG ACGATACGAG TGGGACCGTG GTCCCAGACT AATAATCAGA
14041 CCGACGATAC GAGTGGGACC GTGGTTCCAG ACTAATAATC AGACCGACGA TACGAGTGGG
14101 ACCGTGGTCC CAGACTAATA ATCAGACCGA CGATACGAGT GGGACCATGG TCCCAGACTA
14161 ATAATCAGAC CGACGATACG AGTGGGACCG TGGTCCCAGT CTGATTATCA GACCGACGAT
14221 ACGAGTGGGA CCGTGGTCCC AGACTAATAA TCAGACCGAC GATACGAGTG GGACCGTGGT
14281 CCCAGACTAA TAATCAGACC GACGATACGA GTGGGACCGT GGTCCCAGTC TGATTATCAG
14341 ACCGACGATA CAAGTGGAAC AGTGGGCCCA GAGAGAATAT TCAGGCCAGT TATGCTTTCT
14401 GGCCTGTAAC AAAGGACATT AAGTAAAGAC AGATAAACGT AGACTAAAAC GTGGTCGCAT
14461 CAGGGTGCTG CCTTTTCAAG TTCCTTAAGA ATGGCCTCAA TTTTCTCTAT ACACTCAGTT
14521 GGAACACGAG ACCTGTCCAG GTTAAGCACC ATTTTATCGC CCTTATACAA TACTGTCGCT
14581 CCAGGAGCAA ACTGATGTCG TGAGCTTAAA CTAGTTCTTG ATGCAGATGA CGTTTTAAGC
14641 ACAGAAGTTA AAAGAGTGAT AACTTCTTCA GCTTCAAATA TCACCCCAGC TTTTTTCTGC
14701 TCATGAAGGT TAGATGCCTG CTGCTTAAGT AATTCCTCTT TATCTGTAAA TTTTTTTTGA
14761 AGTGCATCAC CTGACCGGGC AGATAGTTCA CCGGGGTGAG AAAAAAGAGC AACAACTGAT
14821 TTAGGCAATT TGGCGGTGTT GATACAGCGG GTAATAATCT TACGTGAAAT ATTTTCCGCA
14881 TCAGCCAGCG CAGAAATATT TCCAGCAAAT TCATTCTGCA ATCGGCTTGC ATAACGCTGA
14941 CCACGTTCAT AAGCACTTGT TGGGCGATAA TCGTTACCCA ATCTGGATAA TGCAGCCATC
15001 TGCTCATCAT CCAGCTCGCC AACCAGAACA CGATAATCAC TTTCGGTAAG TGCAGCAGCT
15061 TTACGACGGC GACTCCCATC GGCAATTTCT ATGACACCAG ATACTCTTCG ACCGAACGCC
15121 GGTGTCTGTT GACCAGTCAG TAGAAAAGAA GGGATGAGAT CATCCAGTGC GTCCTCAGTA
15181 AGCAGCTCCT GGTCACGTTC ATTACCTGAC CATACCCGAG AGGTCTTCTC AACACTATCA
15241 CCCCGGAGCA CTTCAAGAGT AAACTTCACA TCCCGACCAC ATACAGGCAA AGTAATGGCA
15301 TTACCGCGAG CCATTACTCC TACGCGCGCA ATTAACGAAT CCACCATCGG GGCAGCTGGT
15361 GTCGATAACG AAGTATCTTC AACCGGTTGA GTATTGAGCG TATGTTTTGG AATAACAGGC
15421 GCACGCTTCA TTATCTAATC TCCCAGCGTG GTTTAATCAG ACGATCGAAA ATTTCATTGC
15481 AGACAGGTTC CCAAATAGAA AGAGCATTTC TCCAGGCACC AGTTGAAGAG CGTTGATCAA
15541 TGGCCTGTTC AAAAACAGTT CTCATCCGGA TCTGACCTTT ACCAACTTCA TCCGTTTCAC
15601 GTACAACATT TTTTAGAACC ATGCTTCCCC AGGCATCCCG AATTTGCTCC TCCATCCACG
15661 GGGACTGAGA GCCATTACTA TTGCTGTATT TGGTAAGCAA AATACGTACA TCAGGCTCGA
15721 ACCCTTTAAG ATCAACGTTC TTGAGCAGAT CACGAAGCAT ATCGAAAAAC TGCAGTGCGG
15781 AGGTGTAGTC AAACAACTCA GCAGGCGTGG GAACAATCAG CACATCAGCA GCACATACGA
15841 CATTAATCGT GCCGATACCC AGGTTAGGCG CGCTGTCAAT AACTATGACA TCATAGTCAT
15901 GAGCAACAGT TTCAATGGCC AGTCGGAGCA TCAGGTGTGG ATCGGTGGGC AGTTTACCTT
15961 CATCAAATTT GCCCATTAAC TCAGTTTCAA TACGGTGCAG AGCCAGACAG GAAGGAATAA
16021 TGTCAAGCCC CGGCCAGCAA GTGGGCTTTA TTGCATAAGT GACATCGTCC TTTTCCCCAA
16081 GATAGAAAGG CAGGAGAGTG TCTTCTGCAT GAATATGAAG ATCTGGTACC CATCCGTGAT
16141 ACATTGAGGC TGTTCCCTGG GGGTCGTTAC CTTCCACGAG CAAAACACGT AGCCCCTTCA
16201 GAGCCAGATC CTGAGCAAGA TGAACAGAAA CTGAGGTTTT GTAAACGCCA CCTTTATGGG
16261 CAGCAACCCC GATCACCGGT GGAAATACGT CTTCAGCACG TCGCAATCGC GTACCAAACA
16321 CATCACGCAT ATGATTAATT TGTTCAATTG TATAACCAAC ACGTTGCTCA ACCCGTCCTC
16381 GAATTTCCAT ATCCGGGTGC GGTAGTCGCC CTGCTTTCTC GGCATCTCTG ATAGCCTGAG
16441 AAGAAACCCC AACTAAATCC GCTGCTTCAC CTATTCTCCA GCGCCGGGTT ATTTTCCTCG
16501 CTTCCGGGCT GTCATCATTA AACTGTGCAA TGGCGATAGC CTTCGTCATT TCATGACCAG
16561 CGTTTATGCA CTGGTTAAGT GTTTCCATGA GTTTCATTCT GAACATCCTT TAATCATTGC
16621 TTTGCGTTTT TTTATTAAAT CTTGCAATTT ACTGCAAAGC AACAACAAAA TCGCAAAGTC
16681 ATCAAAAAAC CGCAAAGTTG TTTAAAATAA GAGCAACACT ACAAAAGGAG ATAAGAAGAG
16741 CACATACCTC AGTCACTTAT TATCACTAGC GCTCGCCGCA GCCGTGTAAC CGAGCATAGC
16801 GAGCGAACTG GCGAGGAAGC AAAGAAGAAC TGTTCTGTCA GATAGCTCTT ACGCTCAGCG
16861 CAAGAAGAAA TATCCACCGT GGGAAAAACT CCAGGTAGAG GTACACACGC GGATAGCCAA
16921 TTCAGAGTAA TAAACTGTGA TAATCAACCC TCATCAATGA TGACGAACTA ACCCCCGATA
16981 TCAGGTCACA TGACGAAGGG AAAGAGAAGG AAATCAACTG TGACAAACTG CCCTCAAATT
17041 TGGCTTCCTT AAAAATTACA GTTCAAAAAG TATGAGAAAA TCCATGCAGG CTGAAGGAAA
17101 CAGCAAAACT GTGACAAATT ACCCTCAGTA GGTCAGAACA AATGTGACGA ACCACCCTCA
17161 AATCTGTGAC AGATAACCCT CAGACTATCC TGTCGTCATG GAAGTGATAT CGCGGAAGGA
17221 AAATACGATA TGAGTCGTCT GGCGGCCTTT CTTTTTCTCA ATGTATGAGA GGCGCATTGG
17281 AGTTCTGCTG TTGATCTCAT TAACACAGAC CTGCAGGAAG CGGCGGCGGA AGTCAGGCAT
17341 ACGCTGGTAA CTTTGAGGCA GCTGGTAACG CTCTATGATC CAGTCGATTT TCAGAGAGAC
17401 GATGCCTGAG CCATCCGGCT TACGATACTG ACACAGGGAT TCGTATAAAC GCATGGCATA
17461 CGGATTGGTG ATTTCTTTTG TTTCACTAAG CCGAAACTGC GTAAACCGGT TCTGTAACCC
17521 GATAAAGAAG GGAATGAGAT ATGGGTTGAT ATGTACACTG TAAAGCCCTC TGGATGGACT
17581 GTGCGCACGT TTGATAAACC AAGGAAAAGA TTCATAGCCT TTTTCATCGC CGGCATCCTC
17641 TTCAGGGCGA TAAAAAACCA CTTCCTTCCC CGCGAAACTC TTCAATGCCT GCCGTATATC
17701 CTTACTGGCT TCCGCAGAGG TCAATCCGAA TATTTCAGCA TATTTAGCAA CATGGATCTC
17761 GCAGATACCG TCATGTTCCT GTAGGGTGCC ATCAGATTTT CTGATCTGGT CAACGAACAG
17821 ATACAGCATA CGTTTTTGAT CCCGGGAGAG ACTATATGCC GCCTCAGTGA GGTCGTTTGA
17881 CTGGACGATT CGCGGGCTAT TTTTACGTTT CTTGTGATTG ATAACCGCTG TTTCCGCCAT
17941 GACAGATCCA TGTGAAGTGT GACAAGTTTT TAGATTGTCA CACTAAATAA AAAAGAGTCA
18001 ATAAGCAGGG ATAACTTTGT GAAAAAACAG CTTCTTCTGA GGGCAATTTG TCACAGGGTT
18061 AAGGGCAATT TGTCACAGAC AGGACTGTCA TTTGAGGGTG ATTTGTCACA CTGAAAGGGC
18121 AATTTGTCAC AACACCTTCT CTAGAACCAG CATGGATAAA GGCCTACAAG GCGCTCTAAA
18181 AAAGAAGATC TAAAAACTAT AAAAAAAATA ATTATAAAAA TATCCCCGTG GATAAGTGGA
18241 TAACCCCAAG GGAAGTTTTT TCAGGCATCG TGTGTAAGCA GAATATATAA GTGCTGTTCC
18301 CTGGTGCTTC CTCGCTCACT CGACCGGGAG GGTTCGAGAA GGGGGGGCAC CCCCCTTCGG
18361 CGTGCGCGGT CACGCGCACA GGGCGCAGCC CTGGTTAAAA ACAAGGTTTA TAAATATTGG
18421 TTTAAAAGCA GGTTAAAAGA CAGGTTAGCG GTGGCCGAAA AACGGGCGGA AACCCTTGCA
18481 AATGCTGGAT TTTCTGCCTG TGGACAGCCC CTCAAATGTC AATAGGTGCG CCCCTCATCT
18541 GTCAGCACTC TGCCCCTCAA GTGTCAAGGA TCGCGCCCCT CATCTGTCAG TAGTCGCGCC
13601 CCTCAAGTGT CAATACCGCA GGGCACTTAT CCCCAGGCTT GTCCACATCA TCTGTGGGAA
18661 ACTCGCGTAA AATCAGGCGT TTTCGCCGAT TTGCGAGGCT GGCCAGCTCC ACGTCGCCGG
18721 CCGAAATCGA GCCTGCCCCT CATCTGTCAA CGCCGCGCCG GGTGAGTCGG CCCCTCAAGT
18781 GTCAACGTCC GCCCCTCATC TGTCAGTGAG GGCCAAGTTT TCCGCGAGGT ATCCACAACG
18841 CCGGCGGCCG GCCGCGGTGT CTCGCACACG GCTTCGACGG CGTTTCTGGC GCGTTTGCAG
18901 GGCCATAGAC GGCCGCCAGC CCAGCGGCGA GGGCAACCAG CCGAGGGCTT CGCCCTGTCG
18961 CTCGACTGCG GCGAGCACTA CTGGCTGTAA AAGGACAGAC CACATCATGG TTCTGTGTTC
19021 ATTAGGTTGT TCTGTCCATT GCTGACATAA TCCGCTCCAC TTCAACGTAA CACCGCACGA
19081 AGATTTCTAT TGTTCCTGAA GGCATATTCA AATCGTTTTC GTTACCGCTT GCAGGCATCA
19141 TGACAGAACA CTACTTCCTA TAAACGCTAC ACAGGCTCCT GAGATTAATA ATGCGGATCT
19201 CTACGATAAT GGGAGATTTT CCCGACTGTT TCGTTCGCTT CTCAGTGGAT AACAGCCAGC
19261 TTCTCTGTTT AACAGACAAA AACAGCATAT CCACTCAGTT CCACATTTCC ATATAAAGGC
19321 CAAGGCATTT ATTCTCAGGA TAATTGTTTC AGCATCGCAA CCGCATCAGA CTCCGGCATC
19381 GCAAACTGCA CCCGGTGCCG GGCAGCCACA TCCAGCGCAA AAACCTTCGT GTAGACTTCC
19441 GTTGAACTGA TGGACTTATG TCCCATCAGG CTTTGCAGAA CTATCAGCGG TATACCGGCA
19501 TACAGCATGT GCATCGCATA GGAATGGCGG AACGTATGTG GTGTGACCGG AACAGAGAAC
19561 GTCACACCGT CAGCAGCAGC GGCGGCAACC GCCTCCCCAA TCCAGGTCCT GACCGTTCTG
19621 TCCGTCACTT CCCAGATCCG CGCTTTCTCT GTCCTTCCTG TGCGACGGTT ACGCCGCTCC
19681 ATGAGCTTAT CGCGAATAAA TACCTGTGAC GGAAGATCAC TTCGCAGAAT AAATAAATCC
19741 TGGTGTCCCT GTTGATACCG GGAAGCCCTG GGCCAACTTT TGGCGAAAAT GAGACGTTGA
19801 TCGGCACGTA AGAGGTTCCA ACTTTCACCA TAATGAAATA AGATCACTAC CGGGCGTATT
19861 TTTTGAGTTA TCGAGATTTT CAGGAGCTAA GGAAGCTAAA ATGGAGAAAA AAATCACTGG
19921 ATATACCACC GTTGATATAT CCCAATGGCA TCGTAACTAA CATTTTGAGG CATTTCAGTC
19981 AGTTGCTCAA TGTACCTATA ACCAGACCGT TCAGCTGGAT ATTACGGCCT TTTTAAAGAC
20041 CGTAAAGAAA AATAAGCACA AGTTTTATCC GGCCTTTATT CACATTCTTG CCCGCCTGAT
20101 GAATGCTCAT CCGGAATTTC GTATGGCAAT GAAAGACGGT GAGCTGGTGA TATGGGATAG
20161 TGTTCACCCT TGTTACACCG TTTTCCATGA GCAAACTGAA ACGTTTTCAT CGCTCTGGAG
20221 TGAATACCAC GACGATTTCC GGCAGTTTCT ACACATATAT TCGCAAGATG TGGCGTGTTA
20281 CGGTGAAAAC CTGGCCTATT TCCCTAAAGG GTTTATTGAG AATATGTTTT TCGTCTCAGC
20341 CAATCCCTGG GTGAGTTTCA CCAGTTTTGA TTTAAACGTG GCCAATATGG ACAACTTCTT
20401 CGCCCCCGTT TTCACCATGG GCAAATATTA TACGCAAGGC GACAAGGTGC TGATGCCGCT
20461 GGCGATTCAG GTTCATCATG CCCTTTGTGA TGGCTTCCAT GTCGGCAGAA TGCTTAATGA
20521 ATTACAACAG TACTGCGATG AGTGGCAGGG CGGGGCGTAA TTTTTTTAAG GCAGTTATTG
20581 GTGCCCTTAA ACGCCTGGTT GCTACGCCTG AATAAGTGAT AATAAGCGGA TGAATGGCAG
20641 AAATTCGATG ATAAGCTGTC AAACATGAGA ATTGGTCGAC GGCCCGGGCG GCCGCAAGGG
20701 GTTCGCGTTG GCCGATTCAT TAATGCAGCT GGCACGACAG GTTTCCCGAC TGGAAAGCGG
20761 GCAGTGAGCG CAACGCAATT AATGTGAGTT AGCTCACTCA TTAGGCACCC CAGGCTTTAC
20821 ACTTTATGCT TCCGGCTCGT ATGTTGTGTG GAATTGTGAG CGGATAACAA TTTCACACAG
20881 GAAACAGCTA TGACCATGAT TACGCCAAGC TATTTAGGTG AGACTATAGA ATACTCAAGC
20941 TTGCATGCCT GCAGGTCGAC TCTAGAGGAT CCCACGACGT CG
Nucleotide Sequence for pCC1FOS cut (pFOS)
and S. flexneri 6 O-antigen with Z3206
Locus pFOS cut and O-antigen cut (Z3206+)
Definition Ligation of inverted S. flexneri 6 O antigen cluster
amplified with Z3206Nhe and wzzAscI cut with NheI and AscI into
pCC1FOS with MCS cassette cut with NheI and AscI
Features     Location/Qualifiers
CDS     complement(370..396)
/label=wzz′
CDS     748..1752
/label=uge
CDS     complement(1818..3011)
/label=ugd
CDS     complement(3233..4639)
/label=gnd
CDS     complement(4744..5577)
/label=wfbZ
CDS     complement(5574..6443)
/label=wfbY
CDS     complement(6460..7647)
/label=wzy
CDS     complement(7703..8935)
/label=wzx
CDS     complement(8932..9489)
/label=rmlC
CDS     complement(9494..10372)
/label=rmlA
CDS     complement(10430..11329)
/label=rmlD
CDS     complement(11329..12414)
/label=rmlB
CDS     complement(12787..13680)
/label=galF
CDS     complement(13912..14907)
/label=Z3206
CDS     complement(15065..15097)
/label=′weaM
CDS     complement(15525..16184)
/label=cat
CDS     16403..16750
/label=redF
CDS     18145..18900
/label=repE
CDS     19479..20654
/label=parA
CDS     20654..21625
/label=parB
Length: 22887 bp
Type: DNA circular UNA
Sequence:
SEQ ID NO: 29
    1 GCGGCCGCAA GGGGTTCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG
   61 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT
  121 GCGTAAGGAG AAAATACCGC ATCAGGCGCC ATTCGCCATT CAGCTGCGCA ACTGTTGGGA
  181 AGGGCGATCG GTGCGGGCCT CTTCGCTATT ACGCCAGCTG GCGAAAGGGG GATGTGCTGC
  241 AAGGCGATTA AGTTGGGTAA CGCCAGGGTT TTCCCAGTCA CGACGTTGTA AAACGACGGC
  301 CAGTGAATTG TAATACGACT CACTATAGGG CGAATTCGAG CTCGGTACCC GGGGATCCCA
  361 CGTGGCGCGC CGCCATAGTT TAGCGATAAT CGCCATGAAT GCTATAGGAT AAATGATAAA
  421 AATAATGAAT TATTACAAAG GGAACATAAG AGAATCAGGG CGAAAATCGC CATGATAACA
  481 GGATGTTAGT CACTGCCAAA GAGATCGCGG GTGTAGACTT TGTCTGCCAC ATCCTTAAGC
  541 TCTTCTGCCA TACGGTTGGA GATAATGACG TCGGCTTGTA TAGTCAGCTT AGAACAGCTT
  601 TGATTGTAAA ATGAGCACGT TACCAGAAAA AACAGCCAAG TTTAGAACTG ATACCGATTA
  661 TCTTTTTTTC TTGTCTAACG GTATAATTTA ACTTTCAGTT ATGCCAGATG AAGATTGGCT
  721 ATATTCTAGC CTGAGCGAGG ATTATAAATG AAATTTCTGG TTACGGGAGC TGCTGGCTTT
  781 ATCGGTTTCT ATCTAAGTAA ACGGCTTCTT GCAGCTGGTC ATCAGGTTGT AGGCATTGAC
  841 AACTTAAATG ATTATTACGA TGTCAACCTC AAACAAGCAC GACTTGATTT ACTCAAGCAC
  901 GACAACTTCA GTTTTTATAA AATTGACCTG GCCGATCGTG AGAAAATGGC GGCACTGTTT
  961 GCAGACGAGC GGTTCGAACG CGTAATAAAC CTCGCTGCGC AAGCCGGTGT ACGTTACTCT
 1021 CTTGAAAATC CCAATGCATA TGCAGATGCA AACCTGATTG GATTCCTGAA CATACTAGAA
 1081 GGATGTCGCC ATAATAATGT TCAGCATCTA CTTTACGCTT CCTCCAGTTC TGTTTATGGC
 1141 ATGAACCGCA AGATGCCTTT CTCTACAGAT GACTCTGTAG ATCATCCTGT TTCGCTTTAT
 1201 GCAGCAACTA AAAAAGCGAA TGAACTCATG GCCCATACAT ATTCTCATTT GTATGGCTTA
 1261 CCGACCACAG GGCTGCGTTT CTTTACGGTT TATGGTCCAT GGGGACGTCC GGATATGGCA
 1321 TTATTTAAAT TCACTAAAGC CATGCTGGAA GGTAAAAGCA TTGATGTTTA CAACTTCGGC
 1381 AAAATGAAGC GTGACTTTAC TTACATTGAT GATATTGCCG AAGCTATTAT TCGCTTACAG
 1441 GATGTTATTC CAGAAAAAAA CCCACAGTGG GCTGTAGAAA CAGGCTCGCC TGCAACAAGT
 1501 TCAGCACCAT ATCGTGTCTA TAACATTGGT AATAGTTCGC CTGTGGAGTT GATGGACTAT
 1561 ATCAATGCGT TAGAAGAGGC TCTGGGTATT GAAGCCAACA AAAATATGAT GCCTCTCCAA
 1621 CCCGGTGATG TACTGGAAAC CAGTGCTGAT ACAAAAGCAC TGTATGACGT AATAGGATTC
 1681 AAACCTGAAA CGTCAGTTAA AGAAGGGGTA AAGAACTTTG TAGAATGGTA TCGTAACTTC
 1741 TATAAAGTTT GATTTTACAA AACCATAAGA AAAGGCCCTA ATTTATTAGG GCCTTTTCTT
 1801 AGAATGAAAC AAAATAATTA ATCATTGCCA AACAAGTCGC GCGTATAAAC TTTATCTGCT
 1861 ACATCAGCCA GATCGGCAGA CATACGGTTA GAAATAATAA CATCAGCTTC TTGTTTGAAC
 1921 GCATCCAGAT CACGTACCAC GCGCGACCGG AAAAAATCGT CCTCTTTCAT AGCTGGCTCA
 1981 TAAACGATTA CAGGCACACC TTTCGCCTTG ATTCGCTTCA TAATACCCTG AATCGAGGAA
 2041 GCACGAAAAT TGTCTGAACC ATTCTTCATA ATCAAACGAT AGACGCCAAC AACTTTCGGT
 2101 TTACGTGCAA GGATAGAATC GGCAATAAAA TCTTTGCGCG TGCGGTTGGC GTCAACAATT
 2161 GCCGAGATCA GGTTATTCGG CACAGACTGG TAATTTGCCA GTAACTGCTT AGTATCTTTC
 2221 GGCAGACAAT AACCACCATA ACCGAATGAC GGGTTGTTGT AGTGATTACC GATACGCGGG
 2281 TCAAGGCATA CGCCCTCAAT AATCTGGCGT GAATTAAGTC CCAGGCTTTC AGCATAACTA
 2341 TCAAGTTCAT TGAAATACGC TACACGCATC GCCAGATAAG TGTTCGCAAA AAGTTTAATC
 2401 GCCTCAGCCT CGGTTGAGTC AGTAAACAAT GTTGGTATGT CTTGCTTAAT GGCGCCTTCC
 2461 TGTAATAACG CAGCAAAACG TTTAGCGCGT TCAGACTGCT CGCCAATCAC AATGCGTGAT
 2521 GGGTGTAAGT TATCATAAAG TGCTTTACCT TCACGCAAAA ACTCAGGCGA AAAGATCACA
 2581 TTTTCAATAC CAAAACGTTC TTTAATGGAC TCTGTAAAAC CAACAGGGAT AGTTGATTTT
 2641 ATAATCATTA CCGCGTTGGG ATTAATTTCT GTCACATCAC GAATGACCGC TTCCACGCTT
 2701 GAGGTATTAA AATAATTTGT TTTCGGATCA TAATCGGTAG GTGTGGCAAT AATAACGTAA
 2761 TCGGCATTTT TATACGCGTC ATACTTATCT GTCGTAGCGC GGAAATTGAG ATCTTTAGTC
 2821 GCCAGATACT CTTCAATCTC CTTATCAACA AGCGGTGACT GCCTCTTGTT AAGCATGTCC
 2881 ACTTTGGCCT GAACGATATC CAGTGCAACC ACTTCGTGGT TTTGCGCAAT CAGAATACCA
 2941 TTTGAAAGAC CAACATAACC TGTTCCTGAA ATTGTTATTT TCATTAGCTC TGACTTCTTC
 3001 CGGTTAAACA TTTAGAGTGG TCATTAATCC ACCACCACAG CTTCATCTAC TGCGGGATTT
 3061 TTAACGCTGA TGTAGATGAA CTGTCAAGGC AGCGATCCTG CTGTGCGGCG CTGTATTATA
 3121 TCGCGTTTTT AACTATAAAT TATAAAAAAA GGCCCTAACC TGCCGCTTTG TATAATAAAA
 3181 AAGCCCGGAG GGTTTCTCCG GGCCTTGCTT TGATTAATTG ATTTAAATCA GATTAATCCA
 3241 GCCATTCGGT ATGGAACACA CCTTCTTTAT CAATGCGCTT ATAAGTATGC GCACCGAAAT
 3301 AGTCACGCTG TGCCTGGATC AGGTTCGCAG GCAGAACAGC GGCGCGGTAG CTGTCGTAAT
 3361 AGGCAACCGC AGCGGCGAAG GTCGGCACCG GGATACCGTT CTGTACTGCG TAAGCGACGA
 3421 CATCGCGCAG CGCCTGCTGG TAGTCATCGG CAATTTGCTT GAAGTAAGGA GCCAGCAACA
 3481 GGTTAGCGAT CTGCGGATTT TCGGCATAAG CATCGGTGAT TTTCTGCAGG AACTGCGCAC
 3541 GGATGATGCA GCCAGCACGG AAAATCTTCG CGATTTCACC GTAGTTCAGA TCCCAGTTGT
 3601 ACTCTTCAGA CGCAGCGCGT AGCTGAGAGA AGCCCTGAGC GTAAGAAACG ATTTTGCCCA
 3661 GATACAGCGC ACGGCGAACT TTTTCGATGA ACTCAGCATT GTCGCCAGCT GGCTGCGCTT
 3721 GCGGGCCAGA GAGAACTTTA GATGCGGCAA CACGCTGCTC TTTCAGAGAA GAGATATAAC
 3781 GTGCAAACAC AGACTCGGTA ATCAGCGACA GCGGTTCGCC GAGATCCAGC GCGCTCTGGC
 3841 TGGTCCATTT GCCCGTACCT TTGTTTGCTG CTTCATCCAG AATCACATCA ACCAGGTAGT
 3901 TACCCTCTTC ATCTTTTTTG GTGAAGATAT CTTTGGTGAT GTCGATCAGG TAGCTGCTCA
 3961 GTTCACCGTT ATTCCACTCG GTAAAGGTCT GCGCCAGTTC TTCGTTGGTG AGGTTCAAGC
 4021 CACCTTTAAG CAGAGAATAG GCTTCAGCAA TCAGCTGCAT ATCACCGTAT TCAATACCGT
 4081 TGTGAACCAT CTTCACATAA TGACCTGCAC CATCGGCACC AATATAGGTA ACGCACGGTT
 4141 CGCCGTCTTC AGCCACAGCG GCGATTTTGG TCAGGATCGG CGCAATCAGT TCATAAGCTT
 4201 CTTTCTGCCC ACCAGGCATA ATGGAAGGAC CTTTCAGCGC ACCTTCTTCA CCACCGGAAA
 4261 CACCGGTACC GATAAAGTTA AAGCCTTCTG CAGAAAGCTC ACGGTTACGA CGAATGGTGT
 4321 CATGGAAGAA GGTGTTACCA CCATCAATGA TGATGTCACC TTTATCGAGG TATGGCTTGA
 4381 GGGAATCAAT AGCAGCATCC GTGCCAGCAC CTGCTTTCAC CATTAACAGG ATGCGACGAG
 4441 GCGTTTCCAG AGATTCAACA AATTCTTTCA CCGTATAGTA AGGAACCAGT TTCTTGCCTG
 4501 GATTTTCGGT AATCACTTCT TCGGTCTTTT CACGGGAACG GTTGAAAATA GAGACGGTAT
 4561 AACCACGGCT TTCGATATTG AGCGCAAGGT TGCGCCCCAT CACTGCCATA CCGACGACGC
 4621 CGATCTGTTG CTTTGACATT GTTTACTCCT GTCAGGATAC CGCTGGGTGG TATGCGGGTT
 4681 ATGCTTAATT ATAGAATATG CCTAATAAAA ATAAATCCAT AACACTTAAT CAGAAAATTA
 4741 TTATTATCGA TTCCTAACGA TTGAATACAT CAGCTCCTTT AATTTAGATG GCATTATACG
 4801 AAAAAATGTT CTCAACATAG CATTACTTAT TAATTCATTT TTTCGAATAA AACCAATTTT
 4861 ATATTGATAA TACAATACTT TATACTCGTA CAATAAATAT GACAATCCAC GTCGAGCCAT
 4921 AAGATTACGA CCAGTTCGCA TTTTTAATAA AATATCTGGA AGATTTGCAA ATCTTGCATT
 4981 ATGTACAATT AATAGGCTCC ACAATGCAAA ATCTTGAGAT TTTCTGAATG GAGGATAACC
 5041 ACCAACAGCT AATACTGTAT TCTTTCTAAA AATTACAGAA GGATGGCTAA CTGCGCTTCG
 5101 TTTCCTCGCG AATTTAACTA TTTCTCTATG TTCGAGAGGC ACTTTGCGTG TTGAAATAAA
 5161 CTCCTCAGTA ACAGTTTCAA TTTCATCAAT AAAACTGCCA CATACATCTA TTTCTGAATT
 5221 ATTAATCATA AAAGAAATTT GTTTCTCAAA CCGATGAGGC AAAGAAATAT CATCAGCATC
 5281 CATTCTTGCC ACTAACTCAT TCCTACAAGC CTTTAATCCT TCATTTAAGG CATTAGCCAA
 5341 TCCAACATTT CTAGGTAAAG GTACAAATGT TACTATTTTA TTGCCAACAT CATCAATGAA
 5401 TGAATTTATA ATATCGATGT GTGTTTGATG GAGTTCTCCA TCTGCAACAA TTACTATTTG
 5461 ATCTGGCTTA AGTGTTTGAT CGTGAAAAAT AGAGCGTAGA GCCACCTCAA AAAATTGCGG
 5521 TAGATCATTT TTATAAATGC TAATTAAAAC TGAGAATTTT TCTAATCTAT GATTCATTTC
 5581 ATTTTACCAC TTCGACCCAT TAAACCGTCA TTAATGCCTT TTAAAAAAAA ATATAACCTT
 5641 TTATTACCAT TTGGAAGGAA AATAGGATAT AAAAAAACCT TTCCAATTAA TTTAACCAGA
 5701 CTAGAAATTT TCCAGTAGAT GGGTACATAA TTTTTATTTA ATAAAAGAAA GATATTTCGA
 5761 GTAGCATAAT AATGACGAAA TGGGCTTGGC AAACCGACAG AAAGAATATT TAAGATCTTA
 5821 AATCGCCCAT CTCCAAGTCT ATGTGCAAGT AACGCATTTT TATTCCTAAT TACTTTAAAC
 5881 CCAGCAGCTC TTAATCTCCA ACAATATTCA TGGTCTACCG CATCGATAAA AAGCTCATCT
 5941 TTCATTCCTC CAACAATCAA CCAACTATTT TTTGGTATTA GACTGCCAGA ACTTAATGTA
 6001 CTATCTACCT CATAATAAAC TTCTGTAAGT GGTTTCCCTT TTTTTACCCT TGCTTTATTT
 6061 AATTCACCAG TTACTTTATC AAAATCTTGT GAACCAACTA AACCAACATT GACATTTTGT
 6121 TTAAGCAATT TTTTGTAACA AGTAAGTAAC TGCTCTACCA TCTTAGGATC AGGAATACTA
 6181 TCCTGATCCA TTTGCAATAT AAAATCAGCG CCATTTTCAA AAGCCCATTT CATTCCTATA
 6241 CTTTGGGCTT CTGCTATGCC TAAATTATCA TTGAAATTGA ATATTTTTAC ATCGCCTGAA
 6301 GAATTTTCAG CATATTTATA ACCATTTGTA GAGTTATTGC AAACGACAAC TTTAGTAACT
 6361 TGTCTCAACA ATAATTCAAC CGCATTTTTT AAATCATTAT GTTCTGGGTT GTAAGCAACC
 6421 AAAACGGCAT ATACAGTGTC CATCTTCACC TTAAAACCTT CATTTAGCTT TCATCTTTTT
 6481 TAGAACATTA CTTAATGTCA CTAATACAAT TATTACAGCA ACATGGTTAG AGTCTAAAAT
 6541 ATAAGGATTA GTAATTGCAT AAGAAACATA TAGAAAATAT AGCACACACA ACTCACTGTA
 6601 TTTTATGATT TTAATCGTGA GAAGGAGATT AATTAATAAA AACAAAGTAA ATAAAATAAC
 6661 GCCAAGTTGA TTTAAAAAAT AAACTGACTG CAATTCATAA TATATATATG CACTATAATC
 6721 ACGGATAGGA GTTTGAATTT TGATGACATT ACCCAAACCA GAACCTATAA CAAAATTTGA
 6781 TACAGACTCT GTAAGATCAT TAATTAATAC AGTAAACTGA TCCCATCTAA CTCCTAAAGA
 6841 AGAATCAGCT CCATTTGATT TCATGATTAT CAACTCAATT GAATATGTAA TAAAAAAAGG
 6901 GAGAATCACA GTAAGAAAAA CCCCAAAAAT AATTTTCCTT AATTTAGCGT ATCGTGAGTT
 6961 AGATTTAGAA CATAGTATAA TATACATAAA AAACAAGCAT ATCGAAACAA AATATGCAAA
 7021 ATTACCAGCC ACTATAGTAC CTATAGCCAG AATAACGGTT ATTGTATTTT TGAATCGATA
 7081 ATAGAAATAA TCTTTTATGA CTATATGCAA CATAAAGGCA AATGGAATGA GAGCATTTCC
 7141 TTTAATTTGA ACTCTATAGA AACCACTTCC ATATGTATAA ACATCACCAT AATCATTCTC
 7201 CAAAAAATAA TGTCTTAGTG CTGAATAATC ACCAATACCA TATGTTTTTG TCATATAAAT
 7261 ACTAATGATG GATATAATAA CCGCCTGTAA TACCATTAAA TATAAAAATA TTTTAACAAT
 7321 CGAGATGGTT CCATAAGAGC AGAAATAAGC ACATAATATA AATAATATGA TAATATAAAA
 7381 CCTAATTATT ATCGCTATAT CGTTACCCTT GATATAGGAA TAAATAAAAT TTATAAAAAG
 7441 AGCTAATAGA AATATTAAAA TAACAGGATA GTGATATATT CCGTTTGCAA TTTTCTTTGT
 7501 AAATGACATG ATACAAAGAC ATAAAAACCC CTCCATAATC CAACTATATT GAATAAATGG
 7561 AAAGCTACGT GTAAGGAAAA ATATAAACCC AAAAAACAAA AGAACACTTA AACTTTTGTC
 7621 TTTTGAGTTA TAAAAATCAG AAGTCATGTT TGCACTCTAA TTAGATGGGC TTGAGGAAGT
 7681 AATCCCTAAA ATCAATTCGC TATTAATATT TCGTATCAAT TAATAATAAT ATCAAAAAAT
 7741 CTAACGATGT TCTTACAGAC CATGCTATTG CGGCTCCAAC AATTCCCCAA TGATAAATAA
 7801 AAATATATAA TATGCATAAA TATGGGATAA CTTCGAGCAA ATGAATAATA GCTGTAATTT
 7861 TTGATCTTCC ACTAGCCTGA ACTGAAACAA ATGGGATTTG TGCAATGCAA TTAAAAAAGA
 7921 AACCTATTGC AAGAATTTTT AATACTATAC CTGGCGTCCC ATGATATGTA GGTCCCATCC
 7981 AAGCGGACAT TATAAAATCT GATAAAATAA TTATCAACAT TACAATTGGA AGTATACCAA
 8041 TAACCATTAT AAAATATGAT AATATTTTAG TTTGCTTTAC CGATTGCAAT TCTGAACTTA
 8101 ATCTTGGAAA AATAGCTCTG GACAACGCAC TTGGTAATAT CGTTAAGCGT TGTATACCTT
 8161 CAGACGGAGC AGTATAAAAA GAAACTTTAT CAGCCCCCAC AATGTGTGAA AGAATAAAAC
 8221 GATCCATATA TGTCATAATA GGGCTAATAA TATTGCTAAC TGTTATCCAG CTTCCAAAGC
 8281 CGATTAATCT TTTAACTGTT ACAATTTTTA CAGACAGCCC AGATGATATT ATTAGTTTTC
 8341 GACTAAATAT AAAGGTCACT ATAAGTGATA AGACTCTTGC CATAACTAAA CCATATATAG
 8401 CACTTAGTAA TCCTCCATGA AAAAAACAGA AAATCACTGG TAATCCAGCC ACAAAAGAGT
 8461 TGTTAATTGA TTTTATTAAA TTTACTTTTC TGAACTTTTC CATCCCCTCA AAAATCCCCA
 8521 ACCAGACTTG GTTTAACAAG TATAAGGGTA TGGTAGCTGA AATAATATAT ATTGCTTTGA
 8581 CAGATTCTAC AACATGATTC GCGTTAATGT TTAATAATTT AACAATTACA TTGCTACTCA
 8641 AAAATAGTAC ACTACCGCCA ATCAAGCCCA ATATAGTTAG AATTACCGTT GAAGTTGAAA
 8701 TGATCGCTCT TAATTCTTTA TGAACATTTT TATATATTGA TACTTCTCTT ATAACAGCTC
 8761 TGGTCAATCC AGCATCAAAA ATACTTGCAT ATCCAACTAA GGCAATAGCT AACGTAAAAA
 8821 GGCCAAATTG CTCGGTCCCT AGAATTCTAG ACAGTATACC TAACGCAGGA ATTGCTATTA
 8881 ATGATGGTAT AATATACCCA CTTATATTCC ATAAAGTATT CTTTACAATA CTCACAAAAA
 8941 TAATTCCTTC ATGTTATGCA ATTCTTTAGC CCTTGCATCT TTAATCGATA AAATATAATT
 9001 ATTATGTTCT ATCGTCGGCC ATTTTATGCT CAGAATAGGA TCATTCCATA CAATCCCTCT
 9061 ATCACTATCA GGATGATAAT AGTTCGTCGT TTTATATAAA AATTCCGCAG TCTCGCTCAG
 9121 CACCAAAAAA CCATGTGCAA ATCCCTCAGG GATCCACAAT TGCCGCTTAT TCTCAGCAGA
 9181 TAAATTCACC CCAACCCATT TACCAAAGGT AGGCGACGAT TTACGAATAT CAACAGCTAC
 9241 ATCAAAAACC TCACCAACAA CGCAACGTAC CAGTTTCCCT TGCGCATAAG GTTCTAACTG
 9301 ATAATGCAGC CCGCGTAAAA CACCTTTACT AGACTTCGAA TGGTTATCCT GAACAAATTC
 9361 AACCTTACGT CCTACAGCTT CTTCGAAAAC TTTCTGATTA AAGCTTTCCA TAAAGAAACC
 9421 ACGCTCATCA CCAAAAACTT TCGGCTCGAA AATTAACACA TCAGGAATTT CTGTTTTAAT
 9481 TACGTTCATT TTATTAATAA CCTTTAATCA TTTTCAGCAG ATACTGTCCA TAAGCATTTT
 9541 TTTTCAGCGC CTCCGCTAAT GCTTTCACCT GTTCAGCATC AATAAACCCT TTACGGTAAG
 9601 CAATTTCTTC TGGGCAGGAA ACCTTTAGTC CCTGGCGCTC TTCAATGGTG GCAATGAAGT
 9661 TGCTTGCTTC AATAAGACTC TGATGTGTCC CCGTATCCAG CCATGCATAA CCACGCCCCA
 9721 TCATGGCAAC GGATAAACGC CCCTGTTCCA TATAAATACG GTTAATATCG GTAATTTCCA
 9781 GTTCACCACG GGCAGAAGGC TTAAGGTTTT TCGCCATTTC GACAACGTCG TTATCATAGA
 9841 AATAAAGCCC GGTTACCGCA TAATTACTTT TTGGTTGTAG CGGTTTTTCT TCCAGGCTTA
 9901 TTGCCGTACC GTTTTTATCA AACTCAACGA CGCCGTAGCG TTCAGGATCA TTAACGTGAT
 9961 AGGCAAATAC CGTTGCACCA CTTTCTTTGT TAACAGCGAC ATCCATTAAC TTCGGCAGAT
10021 CATGACCGTA GAAGATATTA TCACCAAGAA CCAAAGCACA ATCATCACCA CCGATAAACT
10081 CTTCACCGAT AATAAACGCC TGCGCAAGCC CATCTGGAGT CGGTTGCACT TTGTACTGAA
10141 GATTTAGCCC CCACTGGCTA CCGTCACCTA GCAGTTGTTG AAAACGAGGA GTATCCTGTG
10201 GCGTACTAAT AATCAGAATA TCGCGAATAC CCGCCAACAT CAGTGTAGAG AGCGGGTAAT
10261 AGATCATCGG CTTATCATAA ATAGGTAATA GCTGTTTACT GACAGCCATA GTCACAGGAT
10321 AAAGACGTGT ACCAGAACCA CCCGCTAAAA TAATACCTTT ACGCGTTTTC ATTTCATCAT
10381 TCCTTTTAAT TCATCTTGCT CCACCATCAC GAACAAGATG CAAAAACTAT TAAATTGCTG
10441 TAGTCGTAAT TAATTCGTTG AGCATTCGTT TCACACCAAC CTGCCAGTCA GGCAAGACAA
10501 GCGCAAAGTT CTGCTGAAAT TTTTCTGTAT TAAGGCGAGA GTTATGTGGA CGACGAGCTG
10561 GTGTAGGATA GGCTGTTGTT GGTACTGCGT TGAGCTTGTT GAGTGCAAGG GGAATACCTG
10621 CTTTGCGCGC CTCTTCAAAA ACCAGCGCAG CATAATCGTG CCAGGTTGTG GTACCACTGG
10681 CTACCAGATG GTACAAACCT GCGACTTCCG GTTTATTCAG TGCCACACGA ATAGCATGTG
10741 CCGTACAATC AGCCAGCAGC TCAGCACCTG TTGGCGCACC AAATTGATCA TTTATCACAG
10801 CCAGTTCTTC GCGCTCTTTT GCCAGACGCA ACATCGTTTT GGCGAAGTTA TTTCCTTTAG
10861 CTGCGTATAC CCAGCTGGTA CGGAAAATAA GATGCTTCGC GCAATGTTCC TGTAACGCTT
10921 TTTCTCCGGC TAACTTGGTT TCACCGTAAA CATTTAGCGG TGCGGTTGCA TCCGTCTCCA
10981 GCCATGGCGT GTCGCCATTT CCAGGGAATA CGTAGTCAGT TGAGTAATGA ATTACCCAAG
11041 CCCCAACTTC ATTAGCCTCT TTTGCAATTG ATTCAACACT AGTCGCATTG AGTAATTGTG
11101 CAAATTCGGG TTCTGACTCA GCCTTATCTA CTGCGGTGTG AGCCGCAGCA TTAACAATAA
11161 CATCAGGTCG AATTCTTTTG ACTGTTTCAG CTACACCTTC AGGATTACTA AAATCACCAC
11221 AATAATCAGT GGAGTGAACA TCAAGAGCAA TCAAATTACC CAAAGGTGCC AGAGCACGCT
11281 GTAGTTCCCA ACCTACCTGC CCTGTTTTGC CGAAAAGGAG GATATTCATT ACTGGCGGCC
11341 CTCATAGTTC TGTTCAATCC ACGATTGATA AGCACCACTT TTCACATTAT CAACCCATTT
11401 TGTATTGGAC AGGTACCATT CCAATGTCTT CCGAATCCCG CTCTCAAACG TTTCCTGCGG
11461 TTTCCAGCCC AATTCGCGGC TAATCTTCTC TGCATCAATC GCATAACGGC GATCGTGTCC
11521 CGGGCGATCG GCAACATAAG TAATTTGCTC GCGGTAAGAT TTCTCTTTCG GTACAATCTC
11581 ATCCAGCAAA TCACAAATAG TGAGCACTAC ATCGATGTTT TTCTTTTCGT TGTGTCCACC
11641 AATGTTATAA GTTTCACCCG CTTTACCTTC GGTTACGACG GTATATAACG CACGCGCATG
11701 ATCTTCAACA TACAGCCAGT CACGAATTTG ATCCCCTTTG CCATAAATAG GTAATGCCTT
11761 ACCTTCCAGA GCATTCAGAA TAACCAATGG AATCAATTTT TCCGGGAAAT GATAAGGACC
11821 ATAATTATTA GAGCAATTAG TCACAATGGT TGGTAAACCA TAGGTACGTT TCCACGCGCG
11881 GACTAAATGA TCGCTGGATG CTTTTGAAGC GGAATAAGGG CTGCTTGGCG CGTAAGCTGT
11941 TGTCTCTGTA AATAAGGGTA ATTCTTCTGT ATTATTTACC TCGTCAGGAT GAGGCAAATC
12001 ACCATAGACT TCGTCAGTAG AAATATGATG AAAACGGAAT CTAGTTTTCT TGTCGCTATC
12061 AAGAGCAGAC CAATAATTGC GAGCGGCTTC CAAAAGGACA TATGTACCAA CAATATTGGT
12121 TTCAATAAAT GCCGCAGGAC CTGTAATTGA ACGGTCAACA TGGCTTTCAG CAGCCAGGTG
12181 CATCACTGCA TCTGGCTGAT GCTGAGCAAA AATCCGTGCC ATTGCAGCTG CATCGCAAAT
12241 ATCCGCATGT TCAAAAACAT AGCGTTCAGA ATCAGAAACA TCAGCAAGTG ATTCCAGGTT
12301 TCCGGCGTAC GTTAATTTAT CGACATTAAC AACACTATCC TGCGTATTAT TTATAATGTG
12361 ACGAACTACA GCAAAACCAA TAAATCCTGC GCCACCAGTA ACAAGTATTT TCACCTAATT
12421 TATTCCATAT TGCTTCAGAG CATGCTGTGA AATAAGCGGC TCTCAGTTTG ATTAATAGAA
12481 GTATTAATGC ACGCTACCGC CCCTGGCTTT ACAGCTACCA GAGCACTGCA TGCATGCCTA
12541 CGATGTGACG AGCGTTACCC ACTCGCGCTA AACCCGAAAA ATTCAAAAGC TAATTGTCTT
12601 ACCAATCCGC TCTGGAAACA AGGAAAATCC TGGAAAACTT TGACTAAAAT CCTATTGCTA
12661 ACTCGTTGTT ATTCTGATTG TTTATATAAA ACAACGGCAG GAATATTCGC AACAAATTAC
12721 TTTCACCACG AATCTTCACT GCCGTTATAA TTTTCTTATC AACCGTTACA TCCGGTCAGA
12781 TTTTCATTAT TCGCTTAACA GCTTCTCAAT ACCTTTACGG AACTTCGCCC CTTCTTTCAG
12841 GTTGCGCAGC CCATACTTCA CAAACGCCTG CATATAGCCC ATTTTTTTAC CGCAGTCGTA
12901 GCTGTCGCCG GTCATCAGCA TTGCATCAAC GGACTGTTTT TTCGCCAGCT CGGCAATGGC
12961 ATCAGTCAGC TGAATACGTC CCCATGCACC AGGCTGAGTA CGTTCAAGTT CCGGCCAAAT
13021 ATCGGCAGAA AGCACATAGC GACCAACGGC CATGATGTCT GAGTCCAGCG TCTGCGGCTG
13081 ATCCGGTTTT TCGATAAATT CAACAATGCG GCTGACTTTA CCTTCGCGAT CCAGCGGTTC
13141 TTTGGTCTGG ATGACGGAGT ATTCAGAGAG GTCACCCGGC ATACGTTTTG CCAGCACCTG
13201 GCTACGGCCC GTTTCATTGA AGCGCGCAAT CATGGCAGCA AGGTTGTAGC GTAGCGGGTC
13261 GGCGCTGGCG TCGTCGATCA CAACGTCTGG CAGCACCACG ACAAATGGAT TGTCACCAAT
13321 GGCGGGTCGT GCACACAAAA TGGAGTGACC TAAACCTAAA GGTTCGCCCT GACGCACGTT
13381 CATAATAGTC ACGCCCGGCG GGCAGATAGA TTGCACTTCC GCCAGTAGTT GACGCTTCAC
13441 GCGCTGCTCA AGGAGAGATT CTAATTCATA AGAGGTGTCG AAGTGGTTTT CGACCGCGTT
13501 CTTGGACGCA TGAGTTACCA GGAGGATTTC TTTGATCCCT GCAGCCACAA TCTCGTCAAC
13561 AATGTACTGA ATCATTGGCT TGTCGACGAT CGGTAGCATC TCTTTGGGTA TCGCCTTAGT
13621 GGCAGGCAAC ATATGCATCC CAAGACCCGC TACCGGTATA ACTGCTTTTA AATTCGTCAT
13681 TATTTTCCTA CCTCTAAGGG GCTGATAGTG CGTAAATTAT TGTCATAGGT TAGCCAAACG
13741 GTATGGCTAT ATACCAAGCA TAACTTTGAT TAAACCTTAC GATAACACTA CACACCATCA
13801 GCATCTGGGT TACTCGGATT ACTCGGAAAT CCACATACTG ATAATTTAAT CAGTACCTCT
13861 TTCCGAATAA TCGTAGTCCA ACCTGGTCCT TTTTTCTCTG ACTCGTCTGC ATTACTCAGA
13921 AACAAACGTT ATGTCGTCTT TTTTGGCATG GACGAATTCA TACTGCAGAG TTCGATCCAG
13981 ACCTTGCGAC AGCGTATACG GTGCAACAAA ACCTGAAGAA TGCACTTTCG TTGCGTCAAA
14041 CTGTGTTGTT GCGCAGAATT TTTTCACGCG CACAGAGCTG ACAGCGTATT TTTTGCCCGT
14101 AATTTTGCTC AGGATATCAA AGCAATATCC ACCCAGCATT CCTAGTGGGT AAGGCAAGTG
14161 CATAGAAGGG ATCTTTTTGT TCAGGCTTTG TTCAACTTCA GCAACCAACT GGTTCATGTT
14221 CAGGTCTGGC TTATCAACAT AGTTATAAAC CTCATAACCT GCGGCAACAT TCTTCAGTTT
14281 GTACTTGATA AACTCAACAA TGTTTCCAAC ATAAGCCATG GACTTATAGT TAGTCCCTGC
14341 GCCCACCATC ATAAACTTGC CGCCAGCGAT CTGTTTCAGC AAGTTATAGA CGTTACCGCG
14401 GTTGCGTTCA CCGAAGATAA CGGTAGGACG GATGATGGTT AATGAACGTT CTGTTGGTGC
14461 TTTGTTATAC CATTCACGCA GCACTTCCTC TGCCTGCCAC TTACTTTTGC CGTAGTGGTT
14521 GAAAGGGTCG TGTGGATGGT TTTCGTCAGG GTTGTGTTTG TTCAAACCAT AAACAGCAAC
14581 GGAACTGGTA AAGATGATAT TTTTAACGCC ATTTTTTTCC ATGGCCGCCA GCACATTGCG
14641 GGTACCCTGA ACGTTGACAT CATAATAGAG AGAAGTAGGG CTGACGTCAT CGCGGTGTTC
14701 CGCTGCCAGT AGTACAACAG TGTCAAAACC GGCTAACGCC TGGTCGAGTG CCTGTTGATC
14761 ACGAACATCA CCAATCTGTG TGATTTCTGG ATAAAAGTGG CTCTGCCGTT TGTCCAGGTT
14821 CTTGATATTA AAGTCAGCAA TTGCCGTTTC AAGTAGTCGG GTTCCTACGA ATCCGGAAGC
14881 TCCTATGAGC AAAACGTTAT TGTTCATAAA TCACTTTAGT CTGGTTGTTA CGTAAGAAAC
14941 ACAAGATAAA GATGAGTACC TTCCCTGAGT AGTCAATGCT GCCCAGCCCC AGCTTTAACA
15001 GTTAGTGTGA GGATTATAAT CTTTTAGAAC ATTATATCCA GTAAGTTTAT GAATGGTCGC
15061 AAATCTACTC TCTCCGTTCC GGCAATCTAA AGTTAATGCT AGCGACGTCG TGGGATCCTC
15121 TAGAGTCGAC CTGCAGGCAT GCAAGCTTGA GTATTCTATA GTCTCACCTA AATAGCTTGG
15181 CGTAATCATG GTCATAGCTG TTTCCTGTGT GAAATTGTTA TCCGCTCACA ATTCCACACA
15241 ACATACGAGC CGGAAGCATA AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA
15301 CATTAATTGC GTTGCGCTCA CTGCCCGCTT TCCAGTCGGG AAACCTGTCG TGCCAGCTGC
15361 ATTAATGAAT CGGCCAACGC GAACCCCTTG CGGCCGCCCG GGCCGTCGAC CAATTCTCAT
15421 GTTTGACAGC TTATCATCGA ATTTCTGCCA TTCATCCGCT TATTATCACT TATTCAGGCG
15481 TAGCAACCAG GCGTTTAAGG GCACCAATAA CTGCCTTAAA AAAATTACGC CCCGCCCTGC
15541 CACTCATCGC AGTACTGTTG TAATTCATTA AGCATTCTGC CGACATGGAA GCCATCACAA
15601 ACGGCATGAT GAACCTGAAT CGCCAGCGGC ATCAGCACCT TGTCGCCTTG CGTATAATAT
15661 TTGCCCATGG TGAAAACGGG GGCGAAGAAG TTGTCCATAT TGGCCACGTT TAAATCAAAA
15721 CTGGTGAAAC TCACCCAGGG ATTGGCTGAG ACGAAAAACA TATTCTCAAT AAACCCTTTA
15781 GGGAAATAGG CCAGGTTTTC ACCGTAACAC GCCACATCTT GCGAATATAT GTGTAGAAAC
15841 TGCCGGAAAT CGTCGTGGTA TTCACTCCAG AGCGATGAAA ACGTTTCAGT TTGCTCATGG
15901 AAAACGGTGT AACAAGGGTG AACACTATCC CATATCACCA GCTCACCGTC TTTCATTGCC
15961 ATACGAAATT CCGGATGAGC ATTCATCAGG CGGGCAAGAA TGTGAATAAA GGCCGGATAA
16021 AACTTGTGCT TATTTTTCTT TACGGTCTTT AAAAAGGCCG TAATATCCAG CTGAACGGTC
16081 TGGTTATAGG TACATTGAGC AACTGACTGA AATGCCTCAA AATGTTCTTT ACGATGCCAT
16141 TGGGATATAT CAACGGTGGT ATATCCAGTG ATTTTTTTCT CCATTTTAGC TTCCTTAGCT
16201 CCTGAAAATC TCGATAACTC AAAAAATACG CCCGGTAGTG ATCTTATTTC ATTATGGTGA
16261 AAGTTGGAAC CTCTTACGTG CCGATCAACG TCTCATTTTC GCCAAAAGTT GGCCCAGGGC
16321 TTCCCGGTAT CAACAGGGAC ACCAGGATTT ATTTATTCTG CGAAGTGATC TTCCGTCACA
16381 GGTATTTATT CGCGATAAGC TCATGGAGCG GCGTAACCGT CGCACAGGAA GGACAGAGAA
16441 AGCGCGGATC TGGGAAGTGA CGGACAGAAC GGTCAGGACC TGGATTGGGG AGGCGGTTGC
16501 CGCCGCTGCT GCTGACGGTG TGACGTTCTC TGTTCCGGTC ACACCACATA CGTTCCGCCA
16561 TTCCTATGCG ATGCACATGC TGTATGCCGG TATACCGCTG AAAGTTCTGC AAAGCCTGAT
16621 GGGACATAAG TCCATCAGTT CAACGGAAGT CTACACGAAG GTTTTTGCGC TGGATGTGGC
16681 TGCCCGGCAC CGGGTGCAGT TTGCGATGCC GGAGTCTGAT GCGGTTGCGA TGCTGAAACA
16741 ATTATCCTGA GAATAAATGC CTTGGCCTTT ATATGGAAAT GTGGAACTGA GTGGATATGC
16801 TGTTTTTGTC TGTTAAACAG AGAAGCTGGC TGTTATCCAC TGAGAAGCGA ACGAAACAGT
16861 CGGGAAAATC TCCCATTATC GTAGAGATCC GCATTATTAA TCTCAGGAGC CTGTGTAGCG
16921 TTTATAGGAA GTAGTGTTCT GTCATGATGC CTGCAAGCGG TAACGAAAAC GATTTGAATA
16981 TGCCTTCAGG AACAATAGAA ATCTTCGTGC GGTGTTACGT TGAAGTGGAG CGGATTATGT
17041 CAGCAATGGA CAGAACAACC TAATGAACAC AGAACCATGA TGTGGTCTGT CCTTTTACAG
17101 CCAGTAGTGC TCGCCGCAGT CGAGCGACAG GGCGAAGCCC TCGGCTGGTT GCCCTCGCCG
17161 CTGGGCTGGC GGCCGTCTAT GGCCCTGCAA ACGCGCCAGA AACGCCGTCG AAGCCGTGTG
17221 CGAGACACCG CGGCCGGCCG CCGGCGTTGT GGATACCTCG CGGAAAACTT GGCCCTCACT
17281 GACAGATGAG GGGCGGACGT TGACACTTGA GGGGCCGACT CACCCGGCGC GGCGTTGACA
17341 GATGAGGGGC AGGCTCGATT TCGGCCGGCG ACGTGGAGCT GGCCAGCCTC GCAAATCGGC
17401 GAAAACGCCT GATTTTACGC GAGTTTCCCA CAGATGATGT GGACAAGCCT GGGGATAAGT
17461 GCCCTGCGGT ATTGACACTT GAGGGGCGCG ACTACTGACA GATGAGGGGC GCGATCCTTG
17521 ACACTTGAGG GGCAGAGTGC TGACAGATGA GGGGCGCACC TATTGACATT TGAGGGGCTG
17581 TCCACAGGCA GAAAATCCAG CATTTGCAAG GGTTTCCGCC CGTTTTTCGG CCACCGCTAA
17641 CCTGTCTTTT AACCTGCTTT TAAACCAATA TTTATAAACC TTGTTTTTAA CCAGGGCTGC
17701 GCCCTGTGCG CGTGACCGCG CACGCCGAAG GGGGGTGCCC CCCCTTCTCG AACCCTCCCG
17761 GTCGAGTGAG CGAGGAAGCA CCAGGGAACA GCACTTATAT ATTCTGCTTA CACACGATGC
17821 CTGAAAAAAC TTCCCTTOGG GTTATCCACT TATCCACGGG GATATTTTTA TAATTATTTT
17881 TTTTATAGTT TTTAGATCTT CTTTTTTAGA GCGCCTTGTA GGCCTTTATC CATGCTGGTT
17941 CTAGAGAAGG TGTTGTGACA AATTGCCCTT TCAGTGTGAC AAATCACCCT CAAATGACAG
18001 TCCTGTCTGT GACAAATTGC CCTTAACCCT GTGACAAATT GCCCTCAGAA GAAGCTGTTT
18061 TTTCACAAAG TTATCCCTGC TTATTGACTC TTTTTTATTT AGTGTGACAA TCTAAAAACT
18121 TGTCACACTT CACATGGATC TGTCATGGCG GAAACAGCGG TTATCAATCA CAAGAAACGT
18181 AAAAATAGCC CGCGAATCGT CCAGTCAAAC GACCTCACTG AGGCGGCATA TAGTCTCTCC
18241 CGGGATCAAA AACGTATGCT GTATCTGTTC GTTGACCAGA TCAGAAAATC TGATGGCACC
18301 CTACAGGAAC ATGACGGTAT CTGCGAGATC CATGTTGCTA AATATGCTGA AATATTCGGA
18361 TTGACCTCTG CGGAAGCCAG TAAGGATATA CGGCAGGCAT TGAAGAGTTT CGCGGGGAAG
18421 GAAGTGGTTT TTTATCGCCC TGAAGAGGAT GCCGGCGATG AAAAAGGCTA TGAATCTTTT
18481 CCTTGGTTTA TCAAACGTGC GCACAGTCCA TCCAGAGGGC TTTACAGTGT ACATATCAAC
18541 CCATATCTCA TTCCCTTCTT TATCGGGTTA CAGAACCGGT TTACGCAGTT TCGGCTTAGT
18601 GAAACAAAAG AAATCACCAA TCCGTATGCC ATGCGTTTAT ACGAATCCCT GTGTCAGTAT
18661 CGTAAGCCGG ATGGCTCAGG CATCGTCTCT CTGAAAATCG ACTGGATCAT AGAGCGTTAC
18721 CAGCTGCCTC AAAGTTACCA GCGTATGCCT GACTTCCGCC GCCGCTTCCT GCAGGTCTGT
18781 GTTAATGAGA TCAACAGCAG AACTCCAATG CGCCTCTCAT ACATTGAGAA AAAGAAAGGC
18841 CGCCAGACGA CTCATATCGT ATTTTCCTTC CGCGATATCA CTTCCATGAC GACAGGATAG
18901 TCTGAGGGTT ATCTGTCACA GATTTGAGGG TGGTTCGTCA CATTTGTTCT GACCTACTGA
18961 GGGTAATTTG TCACAGTTTT GCTGTTTCCT TCAGCCTGCA TGGATTTTCT CATACTTTTT
19021 GAACTGTAAT TTTTAAGGAA GCCAAATTTG AGGGCAGTTT GTCACAGTTG ATTTCCTTCT
19081 CTTTCCCTTC GTCATGTGAC CTGATATCGG GGGTTAGTTC GTCATCATTG ATGAGGGTTG
19141 ATTATCACAG TTTATTACTC TGAATTGGCT ATCCGCGTGT GTACCTCTAC CTGGAGTTTT
19201 TCCCACGGTG GATATTTCTT CTTGCGCTGA GCGTAAGAGC TATCTGACAG AACAGTTCTT
19261 CTTTGCTTCC TCGCCAGTTC GCTCGCTATG CTCGGTTACA CGGCTGCGGC GAGCGCTAGT
19321 GATAATAAGT GACTGAGGTA TGTGCTCTTC TTATCTCCTT TTGTAGTGTT GCTCTTATTT
19381 TAAACAACTT TGCGGTTTTT TGATGACTTT GCGATTTTGT TGTTGCTTTG CAGTAAATTG
19441 CAAGATTTAA TAAAAAAACG CAAAGCAATG ATTAAAGGAT GTTCAGAATG AAACTCATGG
19501 AAACACTTAA CCAGTGCATA AACGCTGGTC ATGAAATGAC GAAGGCTATC GCCATTGCAC
19561 AGTTTAATGA TGACAGCCCG GAAGCGAGGA AAATAACCCG GCGCTGGAGA ATAGGTGAAG
19621 CAGCGGATTT AGTTGGGGTT TCTTCTCAGG CTATCAGAGA TGCCGAGAAA GCAGGGCGAC
19681 TACCGCACCC GGATATGGAA ATTCGAGGAC GGGTTGAGCA ACGTGTTGGT TATACAATTG
19741 AACAAATTAA TCATATGCGT GATGTGTTTG GTACGCGATT GCGACGTGCT GAAGACGTAT
19801 TTCCACCGGT GATCGGGGTT GCTGCCCATA AAGGTGGCGT TTACAAAACC TCAGTTTCTG
19861 TTCATCTTGC TCAGGATCTG GCTCTGAAGG GGCTACGTGT TTTGCTCGTG GAAGGTAACG
19921 ACCCCCAGGG AACAGCCTCA ATGTATCACG GATGGGTACC AGATCTTCAT ATTCATGCAG
19981 AAGACACTCT CCTGCCTTTC TATCTTGGGG AAAAGGACGA TGTCACTTAT GCAATAAAGC
20041 CCACTTGCTG GCCGGGGCTT GACATTATTC CTTCCTGTCT GGCTCTGCAC CGTATTGAAA
20101 CTGAGTTAAT GGGCAAATTT GATGAAGGTA AACTGCCCAC CGATCCACAC CTGATGCTCC
20161 GACTGGCCAT TGAAACTGTT GCTCATGACT ATGATGTCAT AGTTATTGAC AGCGCGCCTA
20221 ACCTGGGTAT CGGCACGATT AATGTCGTAT GTGCTGCTGA TGTGCTGATT GTTCCCACGC
20281 CTGCTGAGTT GTTTGACTAC ACCTCCGCAC TGCAGTTTTT CGATATGCTT CGTGATCTGC
20341 TCAAGAACGT TGATCTTAAA GGGTTCGAGC CTGATGTACG TATTTTGCTT ACCAAATACA
20401 GCAATAGTAA TGGCTCTCAG TCCCCGTGGA TGGAGGAGCA AATTCGGGAT GCCTGGGGAA
20461 GCATGGTTCT AAAAAATGTT GTACGTGAAA CGGATGAAGT TGGTAAAGGT CAGATCCGGA
20521 TGAGAACTGT TTTTGAACAG GCCATTGATC AACGCTCTTC AACTGGTGCC TGGAGAAATG
20581 CTCTTTCTAT TTGGGAACCT GTCTGCAATG AAATTTTCGA TCGTCTGATT AAACCACGCT
20641 GGGAGATTAG ATAATGAAGC GTGCGCCTGT TATTCCAAAA CATACGCTCA ATACTCAACC
20701 GGTTGAAGAT ACTTCGTTAT CGACACCAGC TGCCCCGATG GTGGATTCGT TAATTGCGCG
20761 CGTAGGAGTA ATGGCTCGCG GTAATGCCAT TACTTTGCCT GTATGTGGTC GGGATGTGAA
20821 GTTTACTCTT GAAGTGCTCC GGGGTGATAG TGTTGAGAAG ACCTCTCGGG TATGGTCAGG
20881 TAATGAACGT GACCAGGAGC TGCTTACTGA GGACGCACTG GATGATCTCA TCCCTTCTTT
20941 TCTACTGACT GGTCAACAGA CACCGGCGTT CGGTCGAAGA GTATCTGGTG TCATAGAAAT
21001 TGCCGATGGG AGTCGCCGTC GTAAAGCTGC TGCACTTACC GAAAGTGATT ATCGTGTTCT
21061 GGTTGGCGAG CTGGATGATG AGCAGATGGC TGCATTATCC AGATTGGGTA ACGATTATCG
21121 CCCAACAAGT GCTTATGAAC GTGGTCAGCG TTATGCAAGC CGATTGCAGA ATGAATTTGC
21181 TGGAAATATT TCTGCGCTGG CTGATGCGGA AAATATTTCA CGTAAGATTA TTACCCGCTG
21241 TATCAACACC GCCAAATTGC CTAAATCAGT TGTTGCTCTT TTTTCTCACC CCGGTGAACT
21301 ATCTGCCCGG TCAGGTGATG CACTTCAAAA AGCCTTTACA GATAAAGAGG AATTACTTAA
21361 GCAGCAGGCA TCTAACCTTC ATGAGCAGAA AAAAGCTGGG GTGATATTTG AAGCTGAAGA
21421 AGTTATCACT CTTTTAACTT CTGTGCTTAA AACGTCATCT GCATCAAGAA CTAGTTTAAG
21481 CTCACGACAT CAGTTTGCTC CTGGAGCGAC AGTATTGTAT AAGGGCGATA AAATGGTGCT
21541 TAACCTGGAC AGGTCTCGTG TTCCAACTGA GTGTATAGAG AAAATTGAGG CCATTCTTAA
21601 GGAACTTGAA AAGCCAGCAC CCTGATGCGA CCACGTTTTA GTCTACGTTT ATCTGTCTTT
21661 ACTTAATGTC CTTTGTTACA GGCCAGAAAG CATAACTGGC CTGAATATTC TCTCTGGGCC
21721 CACTGTTCCA CTTGTATCGT CGGTCTGATA ATCAGACTGG GACCACGGTC CCACTCGTAT
21781 CGTCGGTCTG ATTATTAGTC TGGGACCACG GTCCCACTCG TATCGTCGGT CTGATTATTA
21841 GTCTGGGACC ACGGTCCCAC TCGTATCGTC GGTCTGATAA TCAGACTGGG ACCACGGTCC
21901 CACTCGTATC GTCGGTCTGA TTATTAGTCT GGGACCATGG TCCCACTCGT ATCGTCGGTC
21961 TGATTATTAG TCTGGGACCA CGGTCCCACT CGTATCGTCG GTCTGATTAT TAGTCTGGAA
22021 CCACGGTCCC ACTCGTATCG TCGGTCTGAT TATTAGTCTG GGACCACGGT CCCACTCGTA
22081 TCGTCGGTCT GATTATTAGT CTGGGACCAC GATCCCACTC GTGTTGTCGG TCTGATTATC
22141 GGTCTGGGAC CACGGTCCCA CTTGTATTGT CGATCAGACT ATCAGCGTGA GACTACGATT
22201 CCATCAATGC CTGTCAAGGG CAAGTATTGA CATGTCGTCG TAACCTGTAG AACGGAGTAA
22261 CCTCGGTGTG CGGTTGTATG CCTGCTGTGG ATTGCTGCTG TGTCCTGCTT ATCCACAACA
22321 TTTTGCGCAC GGTTATGTGG ACAAAATACC TGGTTACCCA GGCCGTGCCG GCACGTTAAC
22381 CGGGCTGCAT CCGATGCAAG TGTGTCGCTG TCGACGAGCT CGCGAGCTCG GACATGAGGT
22441 TGCCCCGTAT TCAGTGTCGC TGATTTGTAT TGTCTGAAGT TGTTTTTACG TTAAGTTGAT
22501 GCAGATCAAT TAATACGATA CCTGCGTCAT AATTGATTAT TTGACGTGGT TTGATGGCCT
22561 CCACGCACGT TGTGATATGT AGATGATAAT CATTATCACT TTACGGGTCC TTTCCGGTGA
22621 TCCGACAGGT TACGGGGCGG CGACCTCGCG GGTTTTCGCT ATTTATGAAA ATTTTCCGGT
22681 TTAAGGCGTT TCCGTTCTTC TTCGTCATAA CTTAATGTTT TTATTTAAAA TACCCTCTGA
22741 AAAGAAAGGA AACGACAGGT GCTGAAAGCG AGCTTTTTGG CCTCTGTCGT TTCCTTTCTC
22801 TGTTTTTGTC CGTGGAATGA ACAATGGAAG TCCGAGCTCA TCGCTAATAA CTTCGTATAG
22861 CATACATTAT ACGAAGTTAT ATTCGAT

Claims (20)

The invention claimed is:
1. A composition comprising a bioconjugate, said bioconjugate comprising a carrier protein linked to an oligosaccharide or polysaccharide, wherein said oligosaccharide or polysaccharide comprises N-acetylgalactosamine at the reducing terminus, and wherein said carrier protein comprises the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline; and
a recombinant prokaryotic host cell that comprises
(a) a heterologous nucleic acid encoding an epimerase that synthesizes N-acetylgalactosamine on undecaprenyl pyrophosphate, wherein said epimerase comprises the amino acid sequence of SEQ ID NO. 2;
(b) a heterologous nucleic acid encoding an oligosaccharyl transferase; and
(c) a heterologous nucleic acid encoding said carrier protein.
2. The composition of claim 1, wherein said carrier protein is linked to an oligosaccharide.
3. The composition of claim 1, wherein said carrier protein is linked to a polysaccharide.
4. The composition of claim 1, wherein said oligosaccharide or polysaccharide is from a Gram-negative bacterium.
5. The composition of claim 1, wherein said oligosaccharide or polysaccharide is from E. coli.
6. The composition of claim 5, wherein said oligosaccharide or polysaccharide is from E. coli 0157.
7. The composition of claim 1, wherein said oligosaccharide or polysaccharide is from Shigella flexneri.
8. The composition of claim 7, wherein said oligosaccharide or polysaccharide is from Shigella flexneri 6.
9. The composition of claim 1, wherein said oligosaccharide or polysaccharide comprises a structure:
Figure US09764018-20170919-C00002
10. The composition of claim 1, wherein said oligosaccharide or polysaccharide comprises a structure, α-D-PerNAc-α-L-Fuc-β-D-Glc-α-D-GalNAc.
11. The composition of claim 1, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
12. The composition of claim 4, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
13. The composition of claim 5, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
14. The composition of claim 6, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
15. The composition of claim 7, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
16. The composition of claim 8, wherein said carrier protein has been modified to comprise the amino acid sequence D/E-X-N-Z-S/T (SEQ ID NO:31), wherein X and Z can be any natural amino acid except proline.
17. The composition of claim 1, wherein said carrier protein is P. aeruginosa exoprotein that has been modified to comprise the amino acid sequence D/E-X-N-ZSIT, wherein X and Z can be any natural amino acid except proline.
18. The composition of claim 1, wherein said carrier protein is the Campylobacter AcrA protein.
19. The composition of claim 1, wherein said nucleic acid encoding an oligosaccharyl transferase encodes the oligosaccharyl transferase from Campylobacter jejuni.
20. The composition of claim 1, wherein said nucleic acid encoding an oligosaccharyl transferase is heterologous to said host cell.
US14/462,261 2009-11-19 2014-08-18 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells Active US9764018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/462,261 US9764018B2 (en) 2009-11-19 2014-08-18 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27293109P 2009-11-19 2009-11-19
PCT/US2010/002980 WO2011062615A1 (en) 2009-11-19 2010-11-16 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
US201213510859A 2012-09-05 2012-09-05
US14/462,261 US9764018B2 (en) 2009-11-19 2014-08-18 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/510,859 Continuation US8846342B2 (en) 2009-11-19 2010-11-16 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
PCT/US2010/002980 Continuation WO2011062615A1 (en) 2009-11-19 2010-11-16 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells

Publications (2)

Publication Number Publication Date
US20150190492A1 US20150190492A1 (en) 2015-07-09
US9764018B2 true US9764018B2 (en) 2017-09-19

Family

ID=44059888

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/510,859 Active US8846342B2 (en) 2009-11-19 2010-11-16 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
US14/462,261 Active US9764018B2 (en) 2009-11-19 2014-08-18 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/510,859 Active US8846342B2 (en) 2009-11-19 2010-11-16 Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells

Country Status (20)

Country Link
US (2) US8846342B2 (en)
EP (1) EP2501406B8 (en)
JP (2) JP5968784B2 (en)
KR (1) KR101855380B1 (en)
CN (1) CN102724997B (en)
AU (1) AU2010322454B2 (en)
CA (1) CA2780487C (en)
CY (1) CY1119995T1 (en)
DK (1) DK2501406T3 (en)
ES (1) ES2660227T3 (en)
HR (1) HRP20180338T1 (en)
HU (1) HUE038456T2 (en)
IL (1) IL219733A (en)
LT (1) LT2501406T (en)
NO (1) NO2501406T3 (en)
PL (1) PL2501406T3 (en)
PT (1) PT2501406T (en)
SI (1) SI2501406T1 (en)
TR (1) TR201803015T4 (en)
WO (1) WO2011062615A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074687A1 (en) * 2002-03-07 2003-09-12 Eidgenössische Technische Hochschule Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
JP5968784B2 (en) * 2009-11-19 2016-08-10 グリコヴァキシン アーゲー Biosynthetic system for production of immunogenic polysaccharides in prokaryotic cells
WO2013023296A1 (en) 2011-08-12 2013-02-21 The Governors Of The University Of Alberta Method of diagnosing bacterial infections using bacterial glycoproteins
CA2879272A1 (en) 2012-07-16 2014-01-23 Robert G.K. DONALD Saccharides and uses thereof
US20150353940A1 (en) 2013-08-05 2015-12-10 Absci, Llc Vectors for use in an inducible coexpression system
EP2724730A1 (en) 2012-10-29 2014-04-30 Institut Pasteur Glycoconjugates and their use as potential vaccines against infection by Shigella Flexneri
BR112015014991B1 (en) 2013-01-17 2024-01-23 Janssen Pharmaceuticals, Inc MDR E. COLI SPECIFIC ANTIBODY, PLASMID, EXPRESSION CASSETTE, HOST CELL, METHOD OF ANTIBODY PRODUCTION, METHOD FOR IDENTIFYING A CANDIDATE ANTIBODY, PHARMACEUTICAL AND DIAGNOSTIC PREPARATION, EPITOPE, IMMUNOGEN AND NUCLEIC ACID USED
GB201301085D0 (en) * 2013-01-22 2013-03-06 London School Hygiene & Tropical Medicine Glycoconjugate Vaccine
EA201690529A1 (en) * 2013-10-11 2016-11-30 Гликоваксин Аг METHODS OF MODIFICATION OF CELL-HOST
DK3110441T5 (en) 2014-02-24 2024-10-14 Glaxosmithkline Biologicals Sa New polysaccharide and uses thereof
CA2945542C (en) * 2014-04-17 2024-03-05 Glycovaxyn Ag Modified host cells and uses thereof
KR101629656B1 (en) * 2014-10-24 2016-06-14 충남대학교산학협력단 Water soluble polysaccharide having immunological enhancement effect and composition comprising the same
US10150952B2 (en) * 2014-12-30 2018-12-11 Glaxosmithkline Biologicals S.A. Compositions and methods for protein glycosylation
TWI715617B (en) 2015-08-24 2021-01-11 比利時商葛蘭素史密斯克藍生物品公司 Methods and compositions for immune protection against extra-intestinal pathogenic e. coli
GB201518668D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Immunogenic Comosition
CN108779443A (en) 2015-11-30 2018-11-09 利玛泰克生物制品公司 The method for generating glycosylation albumen
GB201610599D0 (en) 2016-06-17 2016-08-03 Glaxosmithkline Biologicals Sa Immunogenic Composition
AR109621A1 (en) 2016-10-24 2018-12-26 Janssen Pharmaceuticals Inc FORMULATIONS OF VACCINES AGAINST GLUCOCONJUGADOS OF EXPEC
GB201721582D0 (en) 2017-12-21 2018-02-07 Glaxosmithkline Biologicals Sa S aureus antigens and immunogenic compositions
GB201721576D0 (en) 2017-12-21 2018-02-07 Glaxosmithkline Biologicals Sa Hla antigens and glycoconjugates thereof
US20220054632A1 (en) 2018-12-12 2022-02-24 Glaxosmithkline Biologicals Sa Modified carrier proteins for o-linked glycosylation
SG11202110301TA (en) 2019-03-18 2021-10-28 Janssen Pharmaceuticals Inc Bioconjugates of e. coli o-antigen polysaccharides, methods of production thereof, and methods of use thereof
KR102574882B1 (en) 2019-03-18 2023-09-04 얀센 파마슈티칼즈, 인코포레이티드 Methods for producing bioconjugates of E. coli O-antigen polysaccharides, compositions thereof and methods of use thereof
EP3770269A1 (en) 2019-07-23 2021-01-27 GlaxoSmithKline Biologicals S.A. Quantification of bioconjugate glycosylation
WO2021255684A1 (en) 2020-06-18 2021-12-23 Glaxosmithkline Biologicals Sa Shigella-tetravalent (shigella4v) bioconjugate
MX2022015734A (en) 2020-06-25 2023-01-18 Glaxosmithkline Biologicals Sa Modified exotoxin a proteins.
AU2021342797B2 (en) 2020-09-17 2024-02-08 Janssen Pharmaceuticals, Inc. Multivalent vaccine compositions and uses thereof
CN112877246B (en) * 2021-02-23 2022-01-18 山东省滨州畜牧兽医研究院 Method for efficiently preparing vibrio cholerae ghost
EP4452308A1 (en) 2021-12-22 2024-10-30 GlaxoSmithKline Biologicals S.A. Vaccine
GB202302579D0 (en) 2023-02-23 2023-04-12 Glaxosmithkline Biologicals Sa Immunogenic composition

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242809A (en) 1986-02-28 1993-09-07 Smithkline Beecham Corporation Gal operon of streptomyces
WO1994026906A2 (en) 1993-05-14 1994-11-24 The Upjohn Company CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE
US5643758A (en) 1987-03-10 1997-07-01 New England Biolabs, Inc. Production and purification of a protein fused to a binding protein
CA1340184C (en) 1984-08-01 1998-12-15 Rudolf Hauptmann Cloning and characterizing omega-interferon and related genes
CA2360205A1 (en) 1999-02-01 2000-08-10 Michel Gilbert Campylobacter glycosyltransferases for biosynthesis of gangliosides and ganglioside mimics
WO2000052135A2 (en) 1999-03-02 2000-09-08 Human Genome Sciences, Inc. Engineering intracellular sialylation pathways
WO2001088117A2 (en) 2000-05-12 2001-11-22 Neose Technologies, Inc. In vitro fucosylation recombinant glycopeptides
WO2002000856A2 (en) 2000-06-30 2002-01-03 Flanders Interuniversity Institute For Biotechnology (Vib) Protein glycosylation modification in pichia pastoris
US6365723B1 (en) 1998-12-04 2002-04-02 Wisconsin Alumni Research Foundation Sequences of E. coli O157
US20020132320A1 (en) 2001-01-10 2002-09-19 Wang Peng George Glycoconjugate synthesis using a pathway-engineered organism
US20020150968A1 (en) 2001-01-10 2002-10-17 Wang Peng G. Glycoconjugate and sugar nucleotide synthesis using solid supports
WO2003074687A1 (en) 2002-03-07 2003-09-12 Eidgenössische Technische Hochschule Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
WO2004013151A2 (en) 2002-08-01 2004-02-12 National Research Council Of Canada Campylobacter glycans and glycopeptides
US20040067557A1 (en) 2000-12-21 2004-04-08 Tetsuo Endo Process for producing udp-n-acetylgalactosamine and sacciiaride containing n-acetylgalactosamine
US20040265954A1 (en) * 2002-03-07 2004-12-30 Markus Aebi System and method for the production of recombinant proteins
WO2005116063A1 (en) 2004-05-24 2005-12-08 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Live, oral vaccine for protection against shigella dysenteriae serotype 1
WO2006119987A2 (en) 2005-05-11 2006-11-16 ETH Zürich Recombinant n-glycosylated proteins from procaryotic cells
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7541043B2 (en) 2002-01-16 2009-06-02 The United States Of America As Represented By The Department Of Health And Human Services Vaccine for protection against Shigella sonnei disease
WO2009089396A2 (en) 2008-01-08 2009-07-16 Neose Technologies, Inc. Glycoconjugation of polypeptides using oligosaccharyltransferases
WO2009104074A2 (en) 2008-02-20 2009-08-27 Glycovaxyn Ag Bioconjugates made from recombinant n-glycosylated proteins from procaryotic cells
US20110223646A1 (en) 2005-03-24 2011-09-15 Biogenerix Ag Expression of soluble, active eukaryotic glycosyltransferases in prokaryotic organisms
US20110236934A1 (en) 2005-08-26 2011-09-29 Centre National De La Recherche Scientifique (Cnrs Production of globosides oligosaccharieds using metabolically engineered microorganisms
US20110274720A1 (en) 2010-05-06 2011-11-10 Glycovaxyn Ag Capsular gram-positive bacteria bioconjugate vaccines
US20120100177A1 (en) 2009-03-27 2012-04-26 Eidge-Noessische Technische Hochschule Zurich Salmonella enterica presenting c. jejuni n-glycan or derivatives thereof
US20120156723A1 (en) * 2009-09-04 2012-06-21 Brendan Wren Protein glycosylation
US20130029413A1 (en) 2011-07-29 2013-01-31 University Of Wyoming Methods of Using a Bacterial GlcNAc-6-P 2'- Epimerase to Promote Sialylation of Glycoconjugates
US20130266604A1 (en) 2010-09-03 2013-10-10 The Governors of the University of Alberta a non-profit educational institution Peptide containing multiple n-linked glycosylation sequons
US8846342B2 (en) * 2009-11-19 2014-09-30 Glycovaxyn Ag Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
US20140336366A1 (en) * 2011-09-06 2014-11-13 Glycovaxyn Ag Bioconjugate vaccines made in prokaryotic cells
US20150273043A1 (en) * 2012-11-07 2015-10-01 Glycovaxyn Ag Production of recombinant vaccine in e.coli by enzymatic conjugation
US20150328301A1 (en) * 2013-01-22 2015-11-19 Londong School of Hygiene and Tropical Medicine Glycoconjugate vaccines
US9221898B2 (en) * 2010-02-11 2015-12-29 The Governors Of The University Of Alberta N-linked glycan compounds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142915A (en) * 1983-12-28 1985-07-29 Lion Corp Composition for oral cavity
US5665559A (en) * 1989-05-18 1997-09-09 The United States Of America As Represented By The Secretary Of The Navy Production of monoclonal antibodies to bacteroides gingivalis by hybridoma BGII, VF9/2D
US5280113A (en) * 1989-08-16 1994-01-18 Monsanto Company Method for producing synthetic N-linked glycoconjugates
US6696814B2 (en) 2001-07-09 2004-02-24 Tyco Electronics Corporation Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
CN101960017B (en) * 2008-01-03 2017-06-09 康乃尔研究基金会有限公司 Glycosylation protein expression in prokaryotes

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340184C (en) 1984-08-01 1998-12-15 Rudolf Hauptmann Cloning and characterizing omega-interferon and related genes
US5242809A (en) 1986-02-28 1993-09-07 Smithkline Beecham Corporation Gal operon of streptomyces
US5643758A (en) 1987-03-10 1997-07-01 New England Biolabs, Inc. Production and purification of a protein fused to a binding protein
WO1994026906A2 (en) 1993-05-14 1994-11-24 The Upjohn Company CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE
US6365723B1 (en) 1998-12-04 2002-04-02 Wisconsin Alumni Research Foundation Sequences of E. coli O157
CA2360205A1 (en) 1999-02-01 2000-08-10 Michel Gilbert Campylobacter glycosyltransferases for biosynthesis of gangliosides and ganglioside mimics
WO2000052135A2 (en) 1999-03-02 2000-09-08 Human Genome Sciences, Inc. Engineering intracellular sialylation pathways
WO2001088117A2 (en) 2000-05-12 2001-11-22 Neose Technologies, Inc. In vitro fucosylation recombinant glycopeptides
US20020019342A1 (en) 2000-05-12 2002-02-14 Robert Bayer In vitro modification of glycosylation patterns of recombinant glycopeptides
WO2002000856A2 (en) 2000-06-30 2002-01-03 Flanders Interuniversity Institute For Biotechnology (Vib) Protein glycosylation modification in pichia pastoris
US20040067557A1 (en) 2000-12-21 2004-04-08 Tetsuo Endo Process for producing udp-n-acetylgalactosamine and sacciiaride containing n-acetylgalactosamine
US20020132320A1 (en) 2001-01-10 2002-09-19 Wang Peng George Glycoconjugate synthesis using a pathway-engineered organism
US20020150968A1 (en) 2001-01-10 2002-10-17 Wang Peng G. Glycoconjugate and sugar nucleotide synthesis using solid supports
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7541043B2 (en) 2002-01-16 2009-06-02 The United States Of America As Represented By The Department Of Health And Human Services Vaccine for protection against Shigella sonnei disease
US8703471B2 (en) * 2002-03-07 2014-04-22 ETH Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
EP1481057A1 (en) 2002-03-07 2004-12-01 Eidgenössische Technische Hochschule Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
US20040265954A1 (en) * 2002-03-07 2004-12-30 Markus Aebi System and method for the production of recombinant proteins
US20050287628A1 (en) * 2002-03-07 2005-12-29 Markus Aebi System and method for the production of recombinant glycosylated proteins in a prokaryotic host
US20140335127A1 (en) * 2002-03-07 2014-11-13 ETH Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
CA2477794A1 (en) 2002-03-07 2003-09-12 Eidgenoessische Technische Hochschule Zuerich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
WO2003074687A1 (en) 2002-03-07 2003-09-12 Eidgenössische Technische Hochschule Zürich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
WO2004013151A2 (en) 2002-08-01 2004-02-12 National Research Council Of Canada Campylobacter glycans and glycopeptides
WO2005116063A1 (en) 2004-05-24 2005-12-08 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Live, oral vaccine for protection against shigella dysenteriae serotype 1
US20110223646A1 (en) 2005-03-24 2011-09-15 Biogenerix Ag Expression of soluble, active eukaryotic glycosyltransferases in prokaryotic organisms
US20140323700A1 (en) * 2005-05-11 2014-10-30 ETH Zürich Recombinant n-glycosylated proteins from procaryotic cells
WO2006119987A2 (en) 2005-05-11 2006-11-16 ETH Zürich Recombinant n-glycosylated proteins from procaryotic cells
US8753864B2 (en) * 2005-05-11 2014-06-17 Eth Zurich Recombinant N-glycosylated proteins from procaryotic cells
US20110236934A1 (en) 2005-08-26 2011-09-29 Centre National De La Recherche Scientifique (Cnrs Production of globosides oligosaccharieds using metabolically engineered microorganisms
WO2009089396A2 (en) 2008-01-08 2009-07-16 Neose Technologies, Inc. Glycoconjugation of polypeptides using oligosaccharyltransferases
US20150044254A1 (en) * 2008-02-20 2015-02-12 Glycovaxyn Ag Bioconjugates made from recombinant n-glycosylated proteins from procaryotic cells
US8895014B2 (en) * 2008-02-20 2014-11-25 Glycovaxyn Ag Bioconjugates made from recombinant N-glycosylated proteins from procaryotic cells
US20110097357A1 (en) 2008-02-20 2011-04-28 Glycovaxyn Ag Bioconjugates made from recombinant n-glycosylated proteins from procaryotic cells
WO2009104074A2 (en) 2008-02-20 2009-08-27 Glycovaxyn Ag Bioconjugates made from recombinant n-glycosylated proteins from procaryotic cells
US20120100177A1 (en) 2009-03-27 2012-04-26 Eidge-Noessische Technische Hochschule Zurich Salmonella enterica presenting c. jejuni n-glycan or derivatives thereof
US9309493B2 (en) * 2009-03-27 2016-04-12 Eidgenoessische Technische Hochschule Zurich Salmonella enterica presenting C. jejuni N-glycan or derivatives thereof
US20120156723A1 (en) * 2009-09-04 2012-06-21 Brendan Wren Protein glycosylation
US8846342B2 (en) * 2009-11-19 2014-09-30 Glycovaxyn Ag Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
US9221898B2 (en) * 2010-02-11 2015-12-29 The Governors Of The University Of Alberta N-linked glycan compounds
US8871491B2 (en) * 2010-05-06 2014-10-28 Glycovaxyn Ag Capsular gram-positive bacteria bioconjugate vaccines
US20110274720A1 (en) 2010-05-06 2011-11-10 Glycovaxyn Ag Capsular gram-positive bacteria bioconjugate vaccines
US20130266604A1 (en) 2010-09-03 2013-10-10 The Governors of the University of Alberta a non-profit educational institution Peptide containing multiple n-linked glycosylation sequons
US20130029413A1 (en) 2011-07-29 2013-01-31 University Of Wyoming Methods of Using a Bacterial GlcNAc-6-P 2'- Epimerase to Promote Sialylation of Glycoconjugates
US20140336366A1 (en) * 2011-09-06 2014-11-13 Glycovaxyn Ag Bioconjugate vaccines made in prokaryotic cells
US20150273043A1 (en) * 2012-11-07 2015-10-01 Glycovaxyn Ag Production of recombinant vaccine in e.coli by enzymatic conjugation
US20150328301A1 (en) * 2013-01-22 2015-11-19 Londong School of Hygiene and Tropical Medicine Glycoconjugate vaccines

Non-Patent Citations (236)

* Cited by examiner, † Cited by third party
Title
"GlycoVaxyn AG appoints renowned vaccinologist Dr. Stanley Plotkin to supervisory board", Press Release (Oct. 6, 2009) available at www.glycovaxyn.com/content/news/releases/09%2010%2006.pdf.
"GlycoVaxyn AG completes CHF 11.5 million series A financing to advance novel conjugated vaccine pipeline towards clinic", Press Release (Jul. 16, 2007) available at www.glycovaxyn.com/content/news/releases/06%2010%2019.pdf.
"GlycoVaxyn AG raises CHF 25 million in financing led by Edmond de Rothschild Investment Partners", Press Release (Mar. 5, 2009) available at www.glycovaxyn.com/downloads/GlycoVaxyn%20Financing%20Release%2005-03-09.pdf.
"GlycoVaxyn appoints Philippe Dro as CEO", Press Release (May 20, 2008) available at www.sofinnova.fr/glycovaxyn-appoints-phillippe-dro-as-cco-actu-736.php.
"GlycoVaxyn opens to partnerships; series C financing round planned for 2011, CEO says mergermarket", pp. 1-2 (Nov. 25, 2009) at www.mergermarket.com/home/.
"GlycoVaxyn phase I clinical study shows positive data with Shigella dysenteriae vaccine candidate", (Oct. 8, 2010) available at www.glycovaxyn.com/content/news/releases/10%2010%2008.pdf.
"GlycoVaxyn winner of the life sciences prize 2006", Press Release (Oct. 19, 2006) available at www.glycovaxyn.com/content/news/releases/06%2010%2019.pdf.
"GlycoVaxyn's first clinical study with bioconjugate vaccine initiated", Press Release (Feb. 23, 2010) available at www.glycovaxyn.com/content/news/releases/10%2002%2023.pdf.
Abdian et al., 2000, "Identification of essential amino acids in the bacterial α-mannosyltransferase aceA", J Biol Chem; 275(51):40568-40575.
Aebi et al., 1996, "Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae", Glycobiology; 6:439-444.
Ahmed et al., 2006, "Safety and immunogenicity of Escherichia coli O157 O-specific polysaccharide conjugate vaccine in 2-5 year old children", J Infect Dis; 193(4):515-521.
Alaimo et al., 2006, "Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides", EMBO J; 25:967-976.
Alexander et al., 1994, "Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine", J Bacteriol; 176:7079-7084.
Allard et al., 2001, "Epimerases:structure, function and mechanism", Cell Mol Life Sci; 58:1650-1665.
Altmann et al., 1999, "Insect cells as hosts for the expression of recombinant glycoproteins", Glycoconjugate Journal; 16:109-123.
Amor et al., 1997, "Molecular and functional analysis of genes required for expression of group IB K antigens in Escherichia coli: characterization of the his-region containing gene clusters for multiple cell-surface polysaccharides", Mol Microbiol; 26:145-161.
Anderson, 1983, "Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197", Infection and Immunity; 39(1):233-238.
Arbeit et al., 1984, "Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus", Diagn Microbiol Infect Dis; 2:85-91.
Avery et al., 1929, "Chemo-immunological studies on conjugated carbohydrate-proteins. II Immunological specificity of synthetic sugar-protein antigens", J Exp Med; 50(4):533-550.
Baggett et al., 2004, "Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska", J Infect Dis; 189:1565-1573.
Baneyx et al., 1999, "Recombinant protein expression in Escherichia coli", Curr Opin Biotechnol; 10:411-421.
Baqar et al., 1995, "Safety and immunogenicity of a prototype oral whole-cell killed Campylobacter vaccine administered with a mucosal adjuvant in non-human primates",Vaccine; 13(1):22-28.
Bematchez et al., 2005, "A single bifunctional UDP-ClcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni", J Biol Chem; 280:4792-4802.
Berg et al. 2001, "Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from acholeplasma laidlawii membranes", J Biol Chem; 276(25):22056-22063.
Berg et al., 1997, "2-oxo acid dehydrogenase multienzyme complexes: the central role of the lipoyl domain", Biological Chemistry; 378:617-634.
Bhasin et al., 1998, "Identification of a gene essential for o-acetylation of the Staphylococcus aureus type 5 capsular polysaccharide", Mol Microbiol; 27:9-21.
Bigge et al., 1995, "Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid", Anal Biochem; 230(2):229-238.
Bill et al., 1995, "Expression and mutagenesis of recombinant human and murine erythropoietins in Escherichia coli", Biochimica et Biophysica Acta; 1261:35-43.
Billman-Jacobe, 1996, "Expression in bacteria other than Escherichia coli", Curr Opin Biotechnol; 7:500-504.
Bligh et al., 1959, "A rapid method of total lipid extraction and purification", Can J Biochem Physiol; 37(8):911-917.
Bourne et al., 2001, "Glycoside hydrolases and glycosyltransferases: families and functional modules", Current Opinion in Structural Biology; 11:593-600.
Branden et al., 1991, "Introduction to protein structure", Garland Publishing Inc., New York; pp. 247-268.
Breton et al., 1999, "Structure/function studies of glycosyltransferases", Current Opinion in Structural Biology; 9:563-571.
Bubeck Wardenburg et al., 2008, "Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease", J Infect Dis; 198:1166-1170.
Bugg et al., 1994, "From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis", FEMS Microbiol Lett; 119:255-262.
Burda et al., 1999, "The dolichol pathway of N-linked glycosylation", Biochimica et Biophysica Acta; 1426:239-257.
Burr et al., 2005, "Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine", Vaccine; 23:4315-4321.
Butzler, 2004, "Campylobacter, from obscurity to celebrity", Clinical Microbiology and Infection; pp. 868-876.
Campbell et al., 1997, "A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities", Biochem J; 326:929-939.
Canals et al., 2006, "The UDP N-acetylgalactosamine 4-epimerase gene is essential for mesophilic Aeromaonas hydrophila serotype O34 virulence", Infect & Immun; 74(1):537-548.
Cardini et al., 1957, "Enzymatic formation of acetylgalactosamine", J Biol Chem; 225:317-327.
Casburn-Jones et al., 2004, "Traveler's diarrhea", Journal of Gastroenterology and Hepatology, 19:610-618.
CAZy (Carbohydrate-Active enZYmes) Database-GlycosylTransferase family classification (AFMB-CNRS-Universites Aix-Marseille I & II) last update: Oct. 25, 2010 at www.cazy.org/GlycosylTransferases.html.
CAZy (Carbohydrate-Active enZYmes) Database—GlycosylTransferase family classification (AFMB—CNRS—Universites Aix-Marseille I & II) last update: Oct. 25, 2010 at www.cazy.org/GlycosylTransferases.html.
CAZy (Carbohydrate-Active enZYmes) Database-Home (AFMB-CNRS-Universites Aix-Marseille I & II) last update: Oct. 25, 2010 at http://www.cazy.org.
CAZy (Carbohydrate-Active enZYmes) Database—Home (AFMB—CNRS—Universites Aix-Marseille I & II) last update: Oct. 25, 2010 at http://www.cazy.org.
Chang et al., 2003, "Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene", New Engl J Med; 348:1342-1347.
Chart et al., 1991, "Serological identification of Escherichia coli O157:H7 infection in haemolytic uraemic syndrome", The Lancet; 337:138-140.
Choi et al., 2004, "Secretory and extracellular production of recombinant proteins using Escherichia coli", Appl Microbiol Biotcchnol; 64:625-635.
Consortium for Functional Glycomics (CFG) Nature, Functional glycomics gateway-Nomenclature, last update: Apr. 28, 2010 at ww.functionalglycomics.org/static/consortium/Nomenclature.shtml.
Consortium for Functional Glycomics (CFG) Nature, Functional glycomics gateway—Nomenclature, last update: Apr. 28, 2010 at ww.functionalglycomics.org/static/consortium/Nomenclature.shtml.
Coutinho et al., 1999, "Life with no sugars?", J Mol Microbiol Biotech; 1(2):307-308.
Crooks et al., 2004, "WebLogo: A sequence logo generator", Genome Research; 14(6):1188-1190.
Cruezenet et al., 2000, "Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa sertype O6", J Biol Chem; 275(25):19060-19067.
Crushell et al., 2004, "Enteric Campylobacter: purging its secrets?" Pediatric Research; 55(1):3-12.
Cunnion et al., 2001, "Capsule production and growth phase influence binding of complement to Staphylococcus aureus", Infect Immun; 69:6796-6803.
Datsenko et al., 2000, "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", Proc Natl Acad Sci USA; 97:6640-6645.
Dean et al., 1999, "Characterization of the serogroup O11 O-antigen locus of Pseudomonas aeruginosa PA103", J Bacteriol; 181:4275-4284.
Dejonge et al., 2007, "Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants", J Pediatr; 151:260-265.
Dmitriev et al., 1979, "Somatic antigens of Shigella", Eur J Biochem, 98:309-316.
Doig et al., 1996, "Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety", Molecular Microbiology; 19(2):379-387.
Dunphy et al., 1967, "The plurality of long chain isoprenoid alcohols (polyprenols) from natural sources", Biochim Biophys Acta; 136: 136-147.
Expression Library Screening (Procaryotic) Using AP-fusion proteins (last visited Nov. 1, 2010) at www.protocol-online.org/cgi-bin/prt/view-cache.cgi?ID=2752.
Expression Library Screening (Procaryotic) Using AP-fusion proteins (last visited Nov. 1, 2010) at www.protocol-online.org/cgi-bin/prt/view—cache.cgi?ID=2752.
Fairweather et al, 1986, "Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli", Journal of Bacteriology; 165(1):21-27.
Falt et al., 1996, "Construction of recombinant aroA salmonellae stably producing the Shigella Sysenteriae sertype 1 O-antigen and structural characterization of the Salmonella/Shigella hybrid LPS", Microb Pathog; 20(1):11-30.
Faridmoayer et al., 2007, "Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation", J Bacteriol; 189(22):8088-8098.
Fass et al., 1991, "Use of high densitycultures of Escherichia coli for high level production of recombinant Pseudomonas aeruginosa exotoxin A", Applied Microbiology and Biotechnolgy, 36(1):65-69.
Fattom et al., 1990, "Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polusaccharidcs conjugated to Pseudomonas aeruginosa exotoxin A", Infect Immun; 58:2367-2374.
Fattom et al., 1993, "Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A", Infection and Immunity; 61(3):1023-1032.
Fattom et al., 1996, "A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge", Infect Immun; 64:1659-1665.
Fattom et al., 1998, "Antigenic determinants of S. aureus type 5 and type 8 capsular polysaccharide vaccines", Infect Immun; 66:4588-4592.
Feldman et al., 2005, "Engineering N-liked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli", Proc Natl Acad Sci USA; 102:3016-3021.
Feldman, Mario F et al, PNAS, pp. 3016-3021, Feb. 22, 2005, vol. 102(8), Engineering N-linked protein glycosylation with diverse ) antigen lipopolysaccharide structures in Escherichia coli. *
Feng et al., 2005, "Structural and genetic characterization of the Shigella boydii type 18 O antigen", Gene; 355:79-86.
Field et al., 2003, "Structural and mechanistic basis of bacterial sugar nucleotide-modifying enzymes", Biochemistry; 42:7637-7647.
Foster et al., 1998, "Surface protein adhesins of Staphylococcus aureus", Trends Microbiol; 6:484-488.
Foster, 2005, "Immune evasion by staphylococci", Nature Reviews Microbiology; 3:948-958.
Francisco et al., 1992, "Transport and anchoring of β-lactamase to the external surface of Escherichia coli", Proc Natl Acad Sci USA: 89:2713-2717.
Fridkin et al., 2005, "Methicillin-resistant Staphylococcus aureus disease in three communities", N Engl J Med; 352:1436-1411.
Fry et al., 1998, "The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116", Microbiology; 144:2049-2061.
Fujita et al., 2000, "Synthesis of neoglycoenzymes with homogenous N-linked oligosaccharides using immobilized endo-S-N-acetylglucosaminidase A", Biochmeical and Biophysical Research Communications, 267:134-138.
Gavel et al., 1990, "Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering", Protein Eng; 3:433-442.
Gilbert et al., 2006, "Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration", Canad Med Assoc J; 175:149-154.
Global Alliance for Vaccines and Immunization-Press releases (Mar. 11, 2006) at www.gavialliance.org/media-centre/press-releases/2006-03-09-en-pr-queenrania-delhi.php.
Global Alliance for Vaccines and Immunization—Press releases (Mar. 11, 2006) at www.gavialliance.org/media—centre/press—releases/2006—03—09—en—pr—queenrania—delhi.php.
Glover et al., 2005, "Chemoenzymatic synthesis of glycopeptides with PgIB, a bacterial oligosaccharyl transferase from Campylobacter jejuni", Chemistry & Biology; 12:1311-1316.
Glover et al., 2005, "In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation", Proc Natl Acad Sci USA; 102(40):14255-14259.
Glover, Kerney J. et al, Chemistry and Biology, vol. 12, pp. 1311-1316, Dec. 2005. *
Goebel et al., 1929, "Chemo-immunological studies on conjugated carbohydrate-proteins" Journal of Experimental Medicine; 50(4):521-531.
Goldberg et al., 1992, "Cloning and surface expression of Pseudomonas aeruginosa O antigen in Escherichia coli", Proc Natl Acad Sci USA; 89(22):10716-10720.
Gordon et al., 1956, "Rapid paper chromatography of carbohydrates and related compounds", Anal Chem; 28:849-855.
Grabenhorst et al., 1999, "Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells", Glycoconjugate Journal; 16:81-97.
Gray, 1979, "ELISA methodology for polysaccharide antigens: protein coupling of polysaccharides for adsorption to plastic tubes", J Immunol; 28:187-192.
Guan et al., 2005, "Extraction and identification by mass spectrometry of undecaprenyl diphosphate-MurNAc-pentapeptide-GlcNAc from Escherichia coli", Anal Biochem; 345:336-339.
Guerry et al., 1996, "Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin", Molecular Microbiology; 19(2):369-378.
Guo et al., 2007, "Three UDP-hexose 4-epimerases with overlapping substrate specificity coexist in E. coli O86:B7", Biochem Biophys Res Commun; 356:604-609.
Haberberger et al., 1994, "Prospects and problems for development of a vaccine against diarrhea caused by Campylobacter", Vaccine Research; 3:15-22.
Helenius et al., 2004, "Roles of N-linked glycans in the endopasmic reticulum", Annu Rev Biochem; 73:1019-1049.
Higgins et al., 2004, "Structure of the periplasmic component of a bacterial drug efflux pump", Proc Natl Acad Sci USA; 101:9994-9999.
Ho et al., 2006, "Preclinical laboratory evaluation of a bivalent Staphylococcus aureus saccharide-exotoxin A protein conjugate vaccine", Hum Vaccin; 2:89-98.
Hoffmeister et al., 2001, "Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity", Chem & Bio; 8:557-567.
Hofmann et al., 1993, "A database of membrane spanning protein segments", Biol Chem; 374:166 (abstract).
Hoiseth et al., 1981, "Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines", Nature; 291:238-239.
Ihssen et al., 2010, "Production of glycoprotein vaccines in Escherichia coli", Microbial Cell Factories; 9(1):61.
Imperiali et al., 1991, "Differences between Asn-Xaa-Thr-containing peptides; a comparison of solution conformation and substrate behavior with oligosaccharyl-transferase", Biochemistry; 30:4374-4380.
International Search Report of International application No. PCT/CH03/00153, dated May 19, 2003.
International Search Report of International application No. PCT/EP2006/004397, dated Dec. 13, 2006.
International Search Report of International application No. PCT/EP2011/057111, dated Jul. 28, 2011.
Jeong et al., 2001, "Secretory production of human granulocyte colony-stimulating factor in Escherichia coli", Protein Expression and Purification; 23:211-318.
Johnson et al., 1999, "Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps", J Mol Biol; 287:695-715.
Johnson et al., 1999, "Synthesis of oligosaccharides by bacterial enzymes", Glycoconjugate Journal; 16:141-146.
Jones et al., 2005, "Revised structures for the capsular polysaccharides from Staphylococcus aureus types 5 and 8, components of novel glycoconjugate vaccines", Carbohydr Res; 340:1097-1106.
Josefsson et al., 2001, "Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant", Journal of Infectious Diseases; 184:1572-1580.
Jursch et al., 1994, "Histidine residues near the N terminus of staphylococcal alpha-toxin as reporters of regions that are critical for oligomerization and pore formation", Infect Immum; 62(6):2249-2256.
Kaniuk et al., 2004, "Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL 'ligase' is not the sole determinant of acceptor specificity", J Biol Chem; 279:36470-36480.
Kaniuk et al., 2004, "Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL ‘ligase’ is not the sole determinant of acceptor specificity", J Biol Chem; 279:36470-36480.
Kapitonov et al., 1999, "Conserved domains of glycosyltransferases", Glycobiol; 9(10):961-978.
Karlyshev et al., 2004, "The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks", Microbiology; 150; 1957-1964.
Kazakova et al., 2005, "A clone of methicillin-resistant Staphylococcus aureus among professional football players", N Engl J Med; 352:468-475.
Kean, 1966, "Separation of gluco- and galactocerebrosides by means of borate thin-layer chromatography", J Lipid Res; 7:449-452.
King et al., 2006, "Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections", Ann Intern Med; 144:309-317.
Kiser et al., 1999, "Staphylococcus aureus cap5P encodes a UDP-N-acetylglucosamine 2-epimerase with functional redundancy", J Bacteriol; 181(16):4818-4824.
Klevens et al., 2007, "Invasive methicillin-resistant Staphylococcus aureus infections in the United States," Jama 298: 1763-71.
Knirel et al., 1988, "Somatic antigens of Shigella: structure of the O-specific polysaccharide chain of the Shigella dysenteriae type 7 lipoplysacharide."
Kollef eta l., 2005, "Epidemiology and outcomes of health-care associated pneumonia: results from a large US database of culture-positive pneumonia." Chest 128:3854-3862.
Konadu et al. 1998, "Investigational vaccine for Escherichia coli O157: phase 1 study of O157 O-specific polysaccharide-pseudomonas aeruginosa recombinant exoprotein A conjugates in adults", Journal of Infectious Diseases; 177(2):383-387.
Konadu et al., 1994, "Preparation, characterization, and immunological properties in mice of Escherichia coli O157 O-specific polysaccharide-protien conjugate vaccines", Infection and Immunity; 62(11):5048-5054.
Konadu et al., 1999, "Syntheses and immunologic properties of Escherichia coli O157 O-specific polysaccharide and shiga Toxin 1 B subunit conjugates in mice," Infection and Immunity; 67(11):6191-6193.
Kowarik et aI., 2006, "N-Linked glycosylation of folded proteins by the bacterial oIigosaccharvltransferase", Science; 314:1148-1150.
Kowarik et al., 2006, "Definition of the bacterial N-glycosylation site consensus sequence", EMBO J; 25(9):1957-1966.
Kuwajima et al., 1986, "Nucleotide sequence of the hag gene encoding flagellin of Escherichia coli", J Bacteriol; 168(3):1479-1483.
Laemmill, 1970, "Cleavage of Structural Proteins during the Assembly of the Head of bacteriophage T4." Nature 227:680-685.
Law, 2000, "Virulence factors of Escherichia coli 0157 and other Shiga Toxin-producing E-coli." J. App. Microbiol. 88:729-745.
Lee et al., 1997, "Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats." Infect Immun. 65:4146-51.
Lee et al., 1999, "Evaluation of a truncated recombinant flagellin subunit vaccine against Campy/obaeter jejuni", Infection and Immunity; 67(11):5799-5805.
Lefebre, 2002, "Construction and Evaluation of Plasmind vectors Optimized for Consitutive and Regulated Gene Expression in Burkholderia cepacia Complex Isolates," Appl. Environ Microbiol. 68:5956-5964.
Linton et al., 2002, "Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni", Molecular Microbiology; 43(2):497-508.
Linton et al., 2005, "Functional analysis of the Campylobacter jejuni N-linked protein glycoylation pathway", Molecular Microbiology; 55(6):1695-1703.
Liu et al., 2008, "Structure and genetics of Shigella O antigens." FEMS Microbiol. 32:627-653.
Lodish et al., 2000 "DNA Cloning with Plasmid vectors." Molec. Cell. Biology; 7.1 at www/ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcb&part=A1582.
Lodish et al., 2000 "Protein Glycosylation in the ER and Golgi Complex"; 17.7 at www/ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcb&part=A4816.
Lowy, 1998, "Staphylococcus aureus infections." New Eng. J Med. 339:520-32.
Lukac et al., 1988, "Toxoid of pseudomonas aeruginosa exotoxin A generated by deletion of an active-site residue", Infection and Immunity; 56(12):3095-3098.
Malissard et al., 1999, "The yeast expression system for recombinant glycosyltransferases", Glycoconjugate Journal; 16:125-139.
Maras et al., 1999, "Filamentous fungi as production organisms for glycoproteins of bio-medical interest", Glycoconjugate Journal; 16:99-107.
Marolda et al., 2006, "Interplay of the wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide O antigen", Journal of Bacteriology; 188(14):5124-5135.
Marth et al., 1999, "Essentials of Glycobiology" Chapter 7 (Varki et al. eds.) available at www/ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=glyco&part=A465.
McDevitt eta l., 1995, "Indentification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus." Molecular Microbiology 16:895-907.
McDougal et al., 2003, "Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States; establishing a national database." J. Clin. Microbiol. 41:5113-20.
Meier-Dieter, 1990, "Biosyntehsis of enterobacterial common antigen in Escherichia coli." J. Biol. Chem.; 265:13490-13497.
Menzies et al., 1996, "Passive immunization with antiserum to a nontoxic alpha-toxin mutant from Staphylococcus aureus is protective in a murine model." Infect Immun. 64:1839-41.
Merry et al., 2002, "Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by Hhydrazinolysis." Anal Biochem; 304(1):91-99.
Messner, 1997, "Bacterial glycoproteins," Glycoconjugate Journal 14:3-11.
Middlebrook et al., 1984, "Bacterial toxins: cellular mechanisms of action", Microbiological Reviews; 48(3): 199-221.
Mikusova et al., 2005, "Decaprenylphosphoryl Arabinofuranose, the Donor of the D-Arabinofuranosyl Residues of Mycobacterial Arabinan, is formed via a Two-Step Epimerization of Decaprenylphosphoryl Ribose." J. Bacteriol. 187:8020-8025.
Moreillon et al., 1995, "Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis." Infection & Immunity; 63:4738-43.
Muller et al., 2005, "An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein", Mol Microbial; 57:143-155.
Nairn et al., 1990, "Solutions, emulsions, suspensions and extracts", Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Chapter 83, pp. 1519-1544.
Nanra et al, 2009, "Heterogenous in vivo expression of clumping factor A and capsular polysacchardie Staphylococcus aureus: Implications for vaccine design." Vaccine; 27:3276-80.
Nilsson et al.m, 1997, "The role of Staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis." Infect Immun 65:4216-4221.
Nita-Lazar et al., 2005, "The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation", Glycobiology; 15(4):361-367.
O'Riordan et al., 2004, "Staphylococcus aureus capsular polysaccharides." Clin Microbiol Rev. 17(1):218-34.
Paetzel et al., 2002, "Signal peptidases", Chem Rev; 102:4549-4580.
Panina-Bordignon et al., 1989, "Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells" European Journal of Immunolgy; 19:2237-2242.
Parkhill et al., 2000, "The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences", Nature; 403:665-668.
Passwell et al., 2001, "Safety and immunogenicity of improved Shegella O-specific polysaccharide-protein conjugate vaccines in adults in Israel", Infection and Immunity, 69(3):1351-1357.
Paton & Paton, 1999, "Molecular Characterization of the Locus Encoding Biosynthesis of the Lipopolysaccharide O Antigen of Escherichia coli Serotype O113," Infect & Immun. 67(11): 5930-5937.
Pawlowski, 2000, "Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies." Vaccine 18:1873-1885.
Pearson et al., 2003, "Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays", FEBS Letter; 554: 224-230, FEBS 27782.
Perry, 1986, "Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli 0:157:h7." Biochem. Cell Biol.; 64:21-28.
Petrescu et al., 2004, "Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding", Glycobiology; 14(2):103-114.
Pozscay et al., 1999, "Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1", Proc Natl Acad Sci USA; 96:5194-5197.
Pozsgay, 1998, "Synthesis of glycoconjugate vaccines again Shigella dysenteriae type 1", Journal of Organic Chemistry; 63:5983-5999.
Qian et al., 2007, "Conjugating recombinant proteins to Psudomonas aeruglnosa Exoprotein A: A strategy for enhancing immunogenicity to malaria vaccine candidates." Vaccine 25:3923-3933.
Raetz et al., 2002, "Lipopolysaccharide endotoxins", NIH-PA author manuscript, pp. 1-57, 19-25 (published in final edited form as: Annual Rev Biochem; 71:635-700, 2002.
Reeves et al., 1996, "Bacterial polysaccharide synthesis and gene nomenclature", Reviews, Elseview Science Ltd., pp. 495-503.
Robbins et al, 2009, "Synthesis, characterization, and immunogenicity in mice on Shigella sonnei O-specific oligosacchardie-core-protein conjugates." Proc. Natl. Acad Sci USA 106:7974-7978.
Royle et al., 2002, "An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins." Anal Biochem; 304(1): 70-90.
Rubires, 1997, "A gene (wbbL) from Serratia marcesens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives" J Bacteriol 179(23):7581-7586.
Rudd et al., 1997, "Glycosylation: heterogeneity and the 3D structure of proteins", Crit Rev Biochem Mol Biol; 32:1-100.
Rush et al., 2010, "A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157", Journal of Biological Chemistry, 285(3):1671-1680.
Rush, 1997, "Polyisoprenyl phosphate specificity of UDP-GlcNAc: undecaprenyl phosphate N-acetylgluosaminyl 1-P transferase from E. coli" Glycobiology; 7:315-322.
Sambrook & Russell, "2006, Screening Bacterial Colonies by Hybridization: Small Numbers." Cold Spring Harb. Protoc; doi:10.1101/pdb.prot3925 at http://cshprotocols.cshlp.org/cgi/content/full/2006/2/pdb.prot3925.
Samuel, 2003, "Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly." Carbohydrate Res. 338: 2503-2519.
Sau et al., 1997, "The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes." Microbiology 143: 2395-405.
Schaad et al., 1991, "Safety and immunogenicity of Pseudomonas aeruginosa conjugate A vaccine in cystic fibrosis", The Lancet; 338:1236-1237.
Schaffer et al, 2008, "Vaccination and passive immunisation against Staphylococcus aureus" Ing J Antimicrob Agents 32 Suppl. 1:S71-78.
Schneerson et al., 1991, "Preparation, characterization, and immunogenicity of Haemophilus influenzae type B polysaccharide-proteins conjugates", Journal of Experimental Medicine; 152:361-376.
Schultz et al., 1998, "Prototype of a heme chaperone essential for cytochrome c maturation", Science; 281:1197-1200.
Schwimmer et al., 1956, "Reagent for Differentiation on 1,4- and 1,6-Linked Glucosaccharides." Science; 123:543-544.
Scott, 1997, "Vaccines against Campylobacter jejuni", Journal of Infectious Diseases; 176(Suppl. 2):S183-S188.
Seffernick et al., 2001, "Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different", J Bacteriol; 183(8):2405-2410.
Shorr, 2007, "Epidemiology and economic impact of meticillin-resistant Staphylococcus aureus: review and analysis of the literature." Phamacoeconomis 25: 751-68.
Simons et al., 1984, "High-level expression of human interferon gamma in Escherichia coli under control of the pL promoter of bacteriophage lambda", Gene; 28:55-64.
Spears et al., 2006, "A comparison of enterphathogenic Escherichia coli pathogenesis," FEMS Microbiol. Lett 255:187-202.
Spirig et al., 1997, "The STT3 protein is a component of the yast oligosaccharyltransferase complex." Mol. Gen Genet 356:628-637.
Stenutz, 2006, "The structures of Escherichia coli O-polysaccharide antigens." FEMS Microbiol. Rev. 30:382-403.
Stephan et al., 2004, "First isolation and further characterization of enteropathogenic Escherichia coli (EPC) O 157:H45 strains from cattle" BMC Microbiol. 4:10.
Stevenson, 1994, "Structure of the O Antigen of Escherichia coli K-12 and the Sequence of rib Gene Cluster." J Bacteriol.; 176:4144-4156.
Sullam, 1996, "Diminished platelet binding in vitro by Staphylococcus areus is associated reduced virulence in a rabbit model of infective endocarditis." Infection & Immun. 66:5183-5189.
Szu et al., 1994, "Laboratory and preliminary clinical characterization of Vi capsular polysaccharide-protein conjugate vaccines", Infection and Immunity; 62(10):4440-4444.
Szymanski et al, Mol. Microbiology, vol. 32(5), pp. 1022-1030, 1999. *
Szymanski et al., 1999, "Evidence for a system of general protein glycosylation in Campylobacter jejuni", Molecular Microbiology; 32(5):1022-1030.
Szymanski et al., 2002, "Campylobacter protein glycosyation affects host cell interactions", Infection and Immunity; 70(4):2242-2244.
Szymanski et al., 2005, "Protein glycosylation in bacterial mucosal pathogens", Nature Reviews, Microbiology; 3:225-237.
Taylor et al., 1993, "Synthesis, characterization and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei (Plesiomonas shigelloides) bound to bacterial toxoids", Infection and Immunity; 61(9):3678-3687.
Thakker et al., 1998, "Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bactermia model." Infect Immun. 66:5183-5189.
Thibault et al., 2001, "Identification of the carbohydrate moieties and glycosylation motifs in Campylobactor jejuni flagellin", J Biol Chem; 276(37):34862-34870.
Tsai et al., 1982, "A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels." Anal Biochem. 119:115-119.
Tuchscherr, 2008, "Antibodies to capsular polysaccharide and clumping factor A prevent mastitis and the emergence of uncapsulated and small-colony variants of Staphylococcus aureus in mice." Infect Immun 76:5738-44.
Unligil et al., 2000, "Glycosyltransferase structre and mechanism." Curr. Op. Struck Bio. 10:510-517.
Valvano, 2003, "Export of O-specific lipopolysaccharide", Front Biosci; 8:s452-471.
Vanbleu et al., 2004, "Genetic and physical map of the pLAFR1 vector DNA seq." 15(3): 225-227.
Vandaux et al, 1995, "Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shuts." Infect & Immunity 63:585-90.
Varki et al., 1999, "Essentials of Glycobiology", Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York pp. 85-100.
Vernachio et al., 2003, "Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis," Antimicrobial Agents & Chemotherapy, 47:3400-3406.
Wacheter et al., 1976, "Lipid Intermediates involved in the Assembly of Membrane-Associated Glycoproteins in Calf Brain White Matter." Arch Biochem Biophys.; 174:726-737.
Wacker et al., 2001, "PgIB, an oligosaccharyltransferase in the eubacterium Campylobacter jejuni?", Glycobiology; 11:871.
Wacker et al., 2002, "N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli", Science; 298:1790-1793.
Wacker et al., 2006, "Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems", Proc Natl Acad Sci; 103:7088-7093.
Waechter et al., 1977, "Evidence for the Enzymatic Transfer of N-Acetylglucosamine form UDP-N-Acetylglucosamine into Dolichol Derivates and glycoproteins by Calf Brain Membrane." Arch. Biochem. Biophys. 181:185-198.
Wang et al., 2002, "The O-Antigen gene Cluster of Escherichia coli O55:H7 and Identification of a New UDP-GlcNAc C4 Epimerase Gene." J Bacteriol 184:2620-2625.
Wang et al.,1998, "Organization of Escherichia coli 0157 O Antigen Gene cluster and Identification of its specific genes." Infect. Immune 66:3545-3551.
Watts et al. 2005, "Staphylococcus aureus strains that express serotype 5 of srotype 8 capsular polysaccharides differ in virulence," Infect Immun. 73:3502-11.
Wernerus et al., 2004, "Biotechnological applications for surface-engineered bacteria", Biotechnol Appl Biochem; 40:209-228.
Whisstock et al., 2003, "Prediction of protein function from protein sequence and structure", Q Rev Biophys; 36(3):307-340.
Whitfield et al., 1999, "Structure, assembly and regulation of express of capsules in Escherichia coli", Molecular Microbiology; 31(5):1307-1319.
Whitfield et al., 2006, "Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli." Annu Rev. Biochem. 75:39-68.
Witkowski et al., 1999, "Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine", Biochemistry; 38(36):11643-11650.
Wolfe et al., 1993, "Reactions adding Sugar Units to Proteins in the ER and Golgi Complex, Molecular and Cellular Biology." Wadsworth Publishing Co., CA 873-75.
Wyszynska et al., 2004, "Oral immunization of chickens with avirlent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter", Vaccine; 22:1379-1389.
Yao et al., 1994, "Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherance and invasion of eukaryotic cells", Molecular Microbiology; 14(5):883-893.
Young et al., 2002,"Structure of the N-linked glycan present on multiple glycoproteins in the gramnegative bacterium, Campylobacter jejuni", J Biol Chem; 277(45):42530-42539.
Zhang et al., 1997, "Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8." Mol. Microbiol. 23:63-76.
Zufferey et al., 1995, "STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo." The EMBO Journal 14(20):4949-4960.

Also Published As

Publication number Publication date
KR20120102086A (en) 2012-09-17
US20130028926A1 (en) 2013-01-31
EP2501406A4 (en) 2013-04-24
AU2010322454B2 (en) 2016-05-19
JP2013511520A (en) 2013-04-04
US8846342B2 (en) 2014-09-30
HRP20180338T1 (en) 2018-04-06
CN102724997B (en) 2016-09-21
EP2501406A1 (en) 2012-09-26
HUE038456T2 (en) 2018-10-29
JP5968784B2 (en) 2016-08-10
EP2501406B1 (en) 2017-12-20
SI2501406T1 (en) 2018-03-30
TR201803015T4 (en) 2018-03-21
JP2017018098A (en) 2017-01-26
EP2501406B8 (en) 2018-01-24
US20150190492A1 (en) 2015-07-09
DK2501406T3 (en) 2018-02-26
LT2501406T (en) 2018-03-26
PL2501406T3 (en) 2018-05-30
AU2010322454A1 (en) 2012-06-07
CA2780487A1 (en) 2011-05-26
CY1119995T1 (en) 2018-12-12
CN102724997A (en) 2012-10-10
CA2780487C (en) 2019-05-21
KR101855380B1 (en) 2018-05-08
ES2660227T3 (en) 2018-03-21
NO2501406T3 (en) 2018-05-19
PT2501406T (en) 2018-02-21
IL219733A0 (en) 2012-07-31
IL219733A (en) 2017-08-31
WO2011062615A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
US9764018B2 (en) Biosynthetic system that produces immunogenic polysaccharides in prokaryotic cells
Price et al. Glycoengineered outer membrane vesicles: a novel platform for bacterial vaccines
CN103079591B (en) Capsular gram-positive bacteria bioconjugate vaccine
AU2013343520B2 (en) Production of recombinant vaccine in E. Coli by enzymatic conjugation
US20150238596A1 (en) Bioconjugates comprising modified antigens and uses thereof
US9011871B2 (en) Broad spectrum vaccine against typhoidal and non-typhoidal Salmonella disease
CN108289944A (en) Multivalent streptococcus suis polysaccharide-protein conjugate compositions
EP1747262B1 (en) Conserved inner core lipopolysaccharide epitopes as multi-species vaccine candidates
CN101014698A (en) Conserved inner core lipopolysaccharide epitopes as multi-species vaccine candidates
Compostella et al. Antibacterial Carbohydrate Vaccines
Palmieri Investigazione di tecnologie alternative per lo sviluppo di vaccini basati su polisaccaridi
Adamo et al. Carbohydrate-based Therapeutics
US20220257751A1 (en) Quantification of bioconjugate glycosylation
WO2023118033A1 (en) Vaccine
WO2024175620A1 (en) Immunogenic composition
CN115697396A (en) Shigella-tetravalent (Shigella 4V) bioconjugates
Chen Glycoengineered vesicle vaccines against bacterial pathogens
Stevenson Engineering Bacterial Glycobiology for the Creation of Glycoconjugate Vaccines
Omari Synthesis of Campylobacter and Shigella glycoconjugate Vaccines

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLYCOVAXYN AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WACKER, MICHAEL;WAECHTER, CHARLES;SIGNING DATES FROM 20111214 TO 20111219;REEL/FRAME:036701/0366

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GLAXOSMITHKLINE BIOLOGICALS SA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLYCOVAXYN AG;REEL/FRAME:046558/0593

Effective date: 20170302

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载