US9668804B2 - Automated cell patch clamping method and apparatus - Google Patents
Automated cell patch clamping method and apparatus Download PDFInfo
- Publication number
- US9668804B2 US9668804B2 US13/676,082 US201213676082A US9668804B2 US 9668804 B2 US9668804 B2 US 9668804B2 US 201213676082 A US201213676082 A US 201213676082A US 9668804 B2 US9668804 B2 US 9668804B2
- Authority
- US
- United States
- Prior art keywords
- cell patch
- resistance
- cell
- clamping device
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A61B5/04001—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0538—Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6885—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/40—Animals
Definitions
- the present invention relates to whole-cell patch clamp electrophysiology and, in particular, to an automated in vivo whole-cell patch clamp apparatus and method.
- Whole-cell patch clamp electrophysiology of neurons is a “gold standard” technique for high-fidelity analysis of the biophysical mechanisms of neural computation and pathology.
- Whole-cell patch clamp electrophysiology of neurons in vivo enables the recording of electrical events in cells with great precision and supports a wide diversity of morphological and molecular analysis experiments important for the understanding of single-cell and network functions in the intact brain.
- high levels of skill are required in order to perform in vivo patching, and the process is time-consuming and painstaking.
- a glass pipette electrode is used to gain electrical and molecular access to the inside of a cell. It permits high-fidelity recording of electrical activity in neurons embedded within intact tissue, such as in brain slices, or in vivo.
- Whole-cell patch clamp recordings [Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391, 85-100 (1981); Margrie, T. W., Brecht, M. & Sakmann, B.
- the recordings present extremely high signal-to-noise ratios and thus can be used to reveal subthreshold responses such as synaptic or ion channel events.
- Current can be delivered into a pipette to drive or silence the cell being recorded, or to support the characterization of specific receptors or channels in the cell.
- Whole-cell patch clamping of cells in intact tissue also allows for infusion of chemicals and the extraction of cell contents.
- Molecular access to the cell enables infusion of dyes for morphological visualization, as well as extraction of cell contents for transcriptomic single-cell analysis [Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89, 3010-3014 (1992)], thus enabling integrative analysis of molecular, anatomical, and electrophysiological information about single neurons in intact tissue.
- the present invention is a simple robot that automatically performs patch clamping in vivo, algorithmically detecting cells by analyzing the temporal sequence of electrode impedance changes. It demonstrates good yield, throughput, and quality of recording in mouse cortex and hippocampus.
- the present invention is a straightforward automated methodology for carrying out in vivo patch clamping, and an automated robotic system capable of performing this methodology. By continuously monitoring the patching process and rapidly executing actions triggered by specific measurements, the robot can rapidly find neurons in the living brain and establish recordings. The performance of the robot has been validated in both the cortex and hippocampus of anesthetized mice. The robot achieves yields, cell recording qualities, and operational speeds that are comparable to, or exceed, those of experienced human investigators.
- This “autopatcher” robot not only makes broadly accessible a high-performance physiological technique, but also enables systematic assessments of single cells within neural circuits. It also provides a powerful new platform for performing single-cell analyses in other kinds of intact tissue, both natural and engineered.
- the present invention is therefore a method for automated whole-cell patch clamping using an automated apparatus for cell patch clamping.
- the method includes the steps of regionally localizing a recording electrode of a cell patch clamping device by causing the tip of the recording electrode to be lowered to an appropriate depth for neuron hunting, iteratively lowering the tip of the recording electrode by a small amount, measuring the resistance at the recording electrode tip after each iteration of the step of lowering, determining whether or not a target neuron has been encountered by constructing a temporal series of the resistance measurements after each iteration of the steps of lowering and measuring, iteratively continuing the steps of lowering, measuring, and determining until the temporal series of resistance measurements indicates monotonic increases in resistance over a threshold number of consecutive iterations and the increase in resistance over this measured temporal series is above a pre-set neuron detection threshold, stopping the motion of the recording electrode, initiating gigaseal formation, assessing whether or not gigaseal formation has been achieved, initiating break-in and formation of
- the method may also include the step of forming a gigaseal-attached patch after gigaseal formation has been achieved and verified.
- the method may also include the step of providing strong positive pressure to the cell patch clamping device during the step of regionally localizing.
- the method of may also include, after completing the step of regionally localizing, the steps of reducing the pressure provided to the cell patch clamping device to low positive pressure, measuring the resistance at the recording electrode tip, assessing whether or not the measured resistance has increased over the set tip blockage threshold, and retracting the cell patch clamping device to indicate tip blockage and failure if the measured resistance has increased over the set tip blockage threshold.
- the step of initiating gigaseal formation may also include the step of releasing the positive pressure applied to the cell patch clamping device.
- the method may also include, after the step of assessing, the steps of applying suction pressure to the cell patch clamping device if gigaseal formation has not been achieved and then re-assessing whether or not gigaseal formation has been achieved.
- the step of initiating break-in and formation further may further include applying at least one of suction and an electrical pulse to the cell patch clamping device.
- the method may also include the step of retracting the cell patch clamping device to indicate neuron location failure if a predetermined maximum level for lowering the electrode tip has been reached.
- the invention is a method for achieving and verifying neuron contact in an automated electrophysiology device by regionally localizing a recording electrode of the electrophysiology apparatus by causing the tip of the recording electrode to be lowered to an appropriate depth for neuron hunting, iteratively lowering the tip of the recording electrode by a small amount, measuring the resistance at the recording electrode tip after each iteration of the step of lowering, determining whether or not a target neuron has been encountered by constructing a temporal series of the resistance measurements after each iteration of the steps of lowering and measuring, and iteratively continuing the steps of lowering, measuring, and determining until the temporal series of resistance measurements indicates monotonic increases in resistance over a threshold number of consecutive iterations and the increase in resistance over this measured time series is above a pre-set neuron detection threshold.
- the present invention is an apparatus for automated cell patch clamping.
- the apparatus includes cell patch formation apparatus, comprising at least one cell patch clamping device with a recording electrode, a 3-axis linear actuator configured for positioning the cell patch clamping device, a patch amplifier with computer interface, a programmable linear motor configured for moving the cell patch clamping device up and down in a temporally precise fashion, and a computer interface configured for automated closed-loop control of the programmable motor based upon a temporal series of resistance measurements made at the tip of the recording electrode.
- the apparatus may also include an automated control system configured for causing the tip of the recording electrode to be lowered to an appropriate depth for neuron hunting, iteratively causing the tip of the recording electrode to be lowered by a small amount, measuring the resistance at the recording electrode tip after each iteration of the step of lowering, determining whether or not a target neuron has been encountered by constructing a temporal series of the resistance measurements after each iteration of the steps of lowering and measuring, iteratively continuing the steps of lowering, measuring, and determining until the temporal series of resistance measurements indicates monotonic increases in resistance over a threshold number of consecutive iterations and the increase in resistance over this measured temporal series is above a pre-set neuron detection threshold, stopping the motion of the recording electrode, initiating gigaseal formation, assessing whether or not gigaseal formation has been achieved, initiating break-in and formation of a whole-cell patch clamp if gigaseal formation has been achieved, and verifying formation of the whole-cell patch clamp.
- the apparatus may further include
- the invention is a method for controlling an automated cell patch clamping device.
- a cell patch formation apparatus that includes at least one cell patch clamping device with a recording electrode, a 3-axis linear actuator configured for positioning the cell patch clamping device, a patch amplifier with computer interface, a programmable linear motor configured for moving the cell patch clamping device up and down in a temporally precise fashion, and a computer interface configured for closed-loop control of the programmable motor based upon sequences of resistance measurements made at the tip of the recording electrode
- the method includes regionally localizing the recording electrode by causing the linear motor to lower the tip of the recording electrode to an appropriate depth for neuron hunting, causing the linear motor to iteratively lower the tip of the recording electrode by a small amount, measuring the resistance at the recording electrode tip after each iteration of the step of lowering, determining whether or not a target neuron has been encountered by constructing a temporal series of the resistance measurements after each iteration of the steps of lowering and measuring, iteratively continuing the steps of
- the cell patch formation apparatus may further include a controllable plurality of pneumatic valves configured for application of pressure and suction to the cell patch clamping device and the method may further include providing strong positive pressure from the controllable plurality of pneumatic valves to the cell patch clamping device during the step of regionally localizing, reducing the pressure provided to the cell patch clamping device to low positive pressure after completing the step of regionally localizing, measuring the resistance at the recording electrode tip; assessing whether or not the measured resistance has increased over the set tip blockage threshold, retracting the cell patch clamping device to indicate tip blockage and failure if the measured resistance has increased over the set tip blockage threshold, releasing the positive pressure applied to the cell patch clamping device during the step of initiating gigaseal formation, applying suction pressure from the controllable plurality of pneumatic valves to the cell patch clamping device if gigaseal formation has not been achieved, re-assessing whether or not gigaseal formation has been achieved, and initiating break-in and cell patch clamp formation by applying suction pressure from the
- FIG. 1 is a schematic depiction of a preferred embodiment of an apparatus according to, and for carrying out, the present invention
- FIG. 2 is a schematic depicting exemplary configurations of the three pneumatic valve banks of FIG. 1 during the stages of Autopatcher operation, according to one aspect of the present invention
- FIG. 3 depicts a prototype apparatus implemented according to one aspect of the present invention
- FIG. 4 is a visual depiction of the four stages of the in vivo patch process carried out using the apparatus and methodology of the present invention
- FIGS. 5A-B is a flowchart showing the steps of a preferred embodiment of the automated in vivo patch process according to one aspect of the invention, including strategies for stage execution, and quantitative milestones governing process flow and decision making;
- FIGS. 6A-B is a flowchart showing the steps of an alternate embodiment of the automated in vivo patch process according to one aspect of the invention.
- FIGS. 7A-B is an example current-clamp trace from an autopatched cortical neuron
- FIGS. 8A-B is an example current-clamp trace from an autopatched hippocampal neuron
- FIG. 9A is a plot of pipette resistance vs. time during an exemplary run of an apparatus according to the present invention.
- FIG. 9B depicts the raw current traces resulting from the continuously applied voltage pulses, from which the pipette resistances of FIG. 9A were derived;
- FIG. 10 is a histogram of execution times of the “neuron hunting” stage of the exemplary run of FIG. 9A ;
- FIG. 11 is a histogram of execution times of the “gigaseal formation” and “break-in” phases of the exemplary run of FIG. 9A ;
- FIG. 12 is a histogram of the total execution time of the exemplary run of FIG. 9A ;
- FIGS. 13A-D are exemplary plots depicting the quality of autopatched in vivo neural whole cell recordings made utilizing the prototype embodiment, including plots of access resistances obtained versus pipette depth and bar graph summaries of access resistances;
- FIG. 14 depicts histograms summarizing the whole-cell patch clamp properties of the automatically whole-cell patched neurons for which recordings were automatically established in whole cell state;
- FIG. 15 depicts histograms summarizing the whole-cell patch clamp properties of the automatically whole-cell patched neurons for which recordings were automatically established in gigaseal state followed by manual break-in;
- FIG. 16 is depicts histograms summarizing the whole-cell patch clamp properties of the automatically whole-cell patched neurons for which recordings were established by fully manual whole cell patch clamping;
- FIG. 17A-D depict raw current traces recorded during the “neuron hunting” stage using an exemplary embodiment of the invention
- FIGS. 18A-H present results obtained using the autopatcher using the ‘suction pulses’ embodiment of FIG. 6 for break-in and achieving the whole cell state;
- FIG. 19 is a circuit diagram for actuation of the solenoid valves in the prototype embodiment of FIG. 3 ;
- FIG. 20 is a screen shot of the user interface for the program that initiates serial communication with motor controller in the prototype embodiment of FIG. 3 ;
- FIG. 21 is a screen shot of the control panel tab of the Autopatcher program in the prototype embodiment of FIG. 3 ;
- FIG. 22 is a screen shot of the Neuron Hunt tab in the Autopatcher program in the prototype embodiment of FIG. 3 ;
- FIG. 23 is a screen shot of the Break-in tab in the Autopatcher program in the prototype embodiment of FIG. 3 ;
- FIG. 24 is a screen shot of the Break-in tab in the Autopatcher program in the prototype embodiment of FIG. 3 ;
- FIG. 25 is a screen shot of the settings in the Multiclamp commander before the Autopatcher program is executed in the prototype embodiment of FIG. 3 .
- the present invention is a methodology that is executed by a robotic system in order to enable automated whole-cell patch clamp neural recording in vivo.
- the “autopatching” robot of the invention greatly increases throughput, opening up patch clamp technology to a greater user base within neuroscience.
- the scalability and parallelizability enabled by an automated in vivo patching system according to the invention supports novel kinds of experiments, such as the use of such an autopatcher to systematically profile many individual cells for electrophysiological and molecular characterization in a brain disorder model, or the ability to perform novel kinds of pharmaceutical assessments that examine the impact of drugs on many individual cells in the context of the intact brain. It also opens up the ability to perform systematic single-cell analyses in intact tissue in other areas of bioengineering, biotechnology, and medicine, where the low throughput of, and high skill required for, patch clamping cells within intact tissues have remained barriers to adoption.
- a simple robot comprising a programmable linear motor and a bank of pneumatic valves is capable of identifying candidate cells to record from, and establishing quality recordings of neurons in vivo, when programmed to monitor the pipette for precise sequences of changes in electrical resistance, and to actuate the motors and valves rapidly upon recognition of these changes.
- the precision measurement and actuation of this autopatching robot is essential for performance of the methodology of the invention, as it requires quantitative measurement and analysis, as well as fast reaction times.
- the utility of the autopatching robot and methodology of the invention was demonstrated by obtaining recordings in both the cortex and hippocampus of the anesthetized mouse brain.
- the autopatcher was capable of achieving high yields of both whole-cell patch and gigaseal cell-attached patch recordings ( ⁇ 30% of overall attempts, even in deep tissue, resulted in successful recordings), exceeding yields of many trained human investigators. Acquisition of high-quality recordings proceeded rapidly (taking just 3-7 minutes each), neuron recordings could be held for an hour or longer, and recording qualities were comparable to those of trained humans (e.g., access resistances in the tens of M ⁇ ). Being a robot, its performance did not decrease over time due to declines in attention or energy.
- the robot is automated, an individual can monitor multiple rigs at once, making the number of cells recordable by a single unskilled human investigator perhaps 100 per day or greater, and thus opening up the possibility of systematic electrical and molecular analyses of single cells in intact tissue.
- the autopatcher is easy to implement on existing patch clamp rigs, requiring just one inexpensive motor and a signal acquisition board, as well as a few pneumatic control valves, making it a practical solution for labs interested in automating their existing rigs, or in newly adopting the use of patch clamp technology for intact tissue analysis at the single cell level.
- “blind” in vivo whole-cell patching of neurons, in which micropipettes are lowered until a cell is detected and then intracellularly recorded, is reduced to a reliable methodology, in which cells are detected with >90% yield, and the whole-cell state established in >40% of detected cells.
- This methodology is realized by a simple automated robot, which actuates a set of motors and valves rapidly upon recognition of specific temporal sequences of microelectrode impedance changes, achieving cell-attached or whole-cell patch clamp recordings in 3-7 minutes each.
- the robot is relatively inexpensive, and can easily be appended to an existing patch rig.
- the utility of this autopatching robot in obtaining high-quality recordings, which could be held for an hour or longer, in the cortex and hippocampus of anesthetized mouse brain has been demonstrated.
- FIG. 1 A schematic depiction of a preferred embodiment of an apparatus according to, and for carrying out, the present invention is shown in FIG. 1 .
- the system consists of a conventional in vivo patch setup, including pipette 105 , pipette holder 110 , headstage 115 , 3-axis linear actuator 120 with control joystick 122 , patch amplifier 125 plus patch amplifier computer interface board 130 , and computer 135 , shown set up for patching on headfixed mouse 140 .
- programmable linear motor 145 with linear motor controller 150 which functions to move pipette 105 up and down in a temporally precise fashion, controllable bank 155 of pneumatic valves 160 , 165 , 170 for pressure control, and secondary computer interface board 175 that enables closed-loop control of motor 145 based upon sequences of pipette resistance measurements. If the vertical axis of 3-axis linear actuator 120 is computer-controlled, programmable linear motor 145 with linear motor controller 150 can be omitted, and if patch amplifier 125 plus patch amplifier computer interface board 130 provides direct access to measurements, secondary computer interface board 175 can be omitted. While specific parts and implementation details are described herein with respect to the embodiment of FIG. 1 , it will be clear to one of skill in the art of the invention that many other comparable parts, software, and implementation methodologies exist and would be equally suitable for use in the present invention.
- the robotic system of FIG. 1 was designed both to explore the parameterization of the in vivo patch process, and to perform the autopatching methodology.
- the robot of FIG. 1 monitors pipette resistance as the pipette is lowered into the brain, and automatically moves the pipette in incremental steps via the linear actuator.
- the pipette resistance monitoring can be performed by a traditional patch amplifier and digitizer, and the 3-axis linear actuator typically used for in vivo patching can be used as the robotic actuator.
- an optional additional computer interface board was added to support pipette resistance monitoring, and an additional linear actuator for pipette movement.
- the robot also contains a set of valves connected to pressure reservoirs to provide positive pressure during pipette insertion into the brain, as well as negative pressure as necessary to result in gigaseal formation and attainment of the whole cell state.
- the process of the robot performing whole-cell patch clamp neural recording in vivo is a multi-step process.
- high pressure is applied to the pipette to prevent pipette blockage as it enters the brain, and the pipette electrical resistance is evaluated (e.g., between 3-9 M ⁇ is typical). If the pipette is of acceptable resistance, it is automatically lowered to a pre-specified target region within the brain (the stage referred to as “regional pipette localization”), followed by a second critical examination of the pipette resistance for quality control.
- This check is followed by an iterative process of lowering the pipette by small increments, while looking for a pipette resistance change indicative of proximity to a neuron suitable for recording (the “neuron hunting” stage).
- the robot looks for a specific sequence of resistance changes that indicates that a neuron is proximal, attempting to avoid false positives that would waste time and decrease cell yield.
- the robot halts movement, and begins to actuate suction and pipette voltage changes so as to form a high-quality seal connecting the pipette electrically to the outside of the cell membrane (the “gigaseal formation” stage), thus resulting in a gigaseal cell-attached recording.
- the robot then performs controlled application of suction as well as brief electrical pulses to break into the cell (the “break-in” stage).
- the robot applies a voltage square wave to the pipette (10 Hz, 10 mV alternating with 0 mV relative to pipette holding voltage), and the current is measured, in order to calculate the resistance of the pipette at a given depth or stage of the process.
- this pipette resistance is the chief indicator of pipette quality, cell presence, seal quality, and recording quality, and the algorithm attempts to make decisions—such as whether to advance to the next stage, or to restart a stage, or to halt the process—entirely on the temporal trajectory taken by the pipette resistance during the experiment.
- the performance of the robot is enabled by two critical abilities of the robot: its ability to monitor the pipette resistance quantitatively over time, and its ability to execute actions in a temporally precise fashion upon the measured pipette resistance reaching quantitative milestones.
- FIG. 2 is a schematic depicting the configurations of the pneumatic valve banks of FIG. 1 during the stages of autopatcher operation.
- “x” represents closed valves and lines depict connectivity of volumes at the same pressure.
- positive pressure 215 800-1,000 mBar
- low positive pressure 235 25-30 mBar
- suction pressure 255 ⁇ 15 to ⁇ 20 mBar; dotted line 260
- atmospheric pressure 265 solid line 270
- suction pressure 255 is also applied.
- a prototype system was implemented that comprised a 3-axis linear actuator (MC1000e, Siskiyou Inc), for holding the patch headstage, and a patch amplifier (Multiclamp 700B, Molecular Devices) that connects its patch headstage to a computer through a Digidata 1440A analog/digital interface board (Molecular Devices).
- a programmable linear motor PZC12, Newport
- the headstage was in turn mounted on the programmable linear motor through a custom mounting plate.
- the programmable linear motor was controlled using a motor controller (PZC200, Newport Inc) that was connected to the computer through a serial COM port.
- An additional data acquisition (DAQ) board (USB6259, National Instruments Inc) was connected to the computer via a USB port, and to the patch amplifier through BNC cables, for control of patch pipette voltage commands, and acquisition of pipette current data, during the execution of the autopatcher algorithm.
- DAQ data acquisition
- the USB 6259 board sent commands to the patch amplifier; after acquisition of cell-attached or whole-cell-patched neurons, the patch amplifier would instead receive commands from the Digidata.
- the patch amplifier streamed its data to the analog input ports of both the USB DAQ and the Digidata throughout and after autopatching.
- a set of three solenoid valves (2-input, 1-output, LHDA0533215H-A, Lee Company) was used.
- the autopatcher program was coded in, and run by, Labview 8.6 (National Instruments).
- the USB6259 DAQ sampled the patch amplifier at 30 KHz and with unity gain applied, and then filtered the signal using a moving average smoothening filter (half width, 6 samples, with triangular envelope), and the amplitude of the current pulses was measured using the peak-to-peak measurement function of Labview.
- a square wave of voltage was applied, 10 mV in amplitude, at 10 Hz, to the pipette via the USB6259 DAQ analog output. Resistance values were then computed, by dividing applied voltage by the peak-to-peak current observed, for 5 consecutive voltage pulses, and then these 5 values were averaged.
- FIG. 3 depicts the prototype apparatus, showing programmable linear motor 310 attached to 3-axis linear actuator 320 , low-profile holder 330 for head-fixing the mouse, headstage 340 , and stereomicroscope 350 .
- the patch algorithm takes place in four stages: “regional pipette localization,” in which the pipette is rapidly lowered to a desired depth under positive pressure; “neuron hunting,” in which the pipette is advanced more slowly at lower pressure until a neuron is detected, as reflected by a specific temporal sequence of electrode impedance changes; “gigaseal formation,” in which the pipette is hyperpolarized and suction applied to create the gigaseal; and “break-in,” in which a brief voltage pulse (“zap”) is applied to the cell to establish the whole cell state.
- regional pipette localization in which the pipette is rapidly lowered to a desired depth under positive pressure
- neuroneuron hunting in which the pipette is advanced more slowly at lower pressure until a neuron is detected, as reflected by a specific temporal sequence of electrode impedance changes
- gigaseal formation in which the pipette is hyperpolarized and suction applied to create the gigaseal
- FIG. 4 depicts visually the four stages of the in vivo patch process: regional pipette localization stage 410 , during which pipette 420 in holder 425 is lowered to target zone 427 in the brain; neuron hunting stage 430 , during which pipette 420 is advanced until neuron 440 is detected via a change in pipette resistance; gigaseal formation stage 450 , during which gigaseal cell-attached patch state 475 is achieved; and break-in stage 480 , during which the whole cell configuration is achieved.
- FIGS. 5A-B is a flowchart showing the steps of a preferred embodiment of the automated in vivo patch process according to one aspect of the invention, including strategies for stage execution, and quantitative milestones governing process flow and decision making.
- a pipette is placed 504 in the holder, excess artificial cerebrospinal fluid (ACSF) may be removed 506 from the brain surface, and strong positive pressure is provided 508 while the pipette is positioned.
- ASF cerebrospinal fluid
- the robot lowers 528 the pipette at a speed of 200 ⁇ m/s to the appropriate depth for neuron hunting and then reduces 530 the internal valve pressure to low positive pressure (see FIG.
- the robot iteratively moves 544 , 546 , 548 the pipette and measures 550 , 552 , 554 the resistance in order to determine whether or not a neuron has been encountered. If, as determined by the time series of resistance measurements 558 , no neuron has been encountered 564 after the pipette distance has been repeatedly adjusted 560 and the maximum probe depth has been reached 562 , the pipette is retracted 566 back to the surface for possible installation 504 of a new pipette.
- gigaseal formation stage 570 begins, starting with release 574 of positive pressure on the pipette and, if necessary, application 578 of suction pressure.
- break-in stage 584 begins. During break-in stage 584 , break-in is initiated by application 590 of suction and a “zap” pulse, leading hopefully to a successful whole cell patch clamp 596 .
- a gigaseal-cell attached patch may be achieved 598 .
- Abbreviations used in the steps depicted in FIGS. 5A-B and 6 A-B include: ACSF, artificial cerebrospinal fluid; R(Z), pipette resistance at depth Z in the brain, in microns (with the z-axis pointing downward, e.g. larger values of Z indicate deeper targets); Zu, upper depth limit of the region targeted by the regional pipette localization stage; Zl, lower depth limit of the region targeted by the regional pipette localization stage; R(ZNeuron), pipette resistance at the depth at which the neuron is being recorded (which will vary over time, as the later stages of the process, gigasealing and breaking-in, occur); and Rt, pipette resistance threshold for neuron detection.
- ACSF artificial cerebrospinal fluid
- R(Z) pipette resistance at depth Z in the brain, in microns (with the z-axis pointing downward, e.g. larger values of Z indicate deeper targets)
- Zu upper depth limit of
- a key aspect of the autopatcher automated methodology is that the robot analyzes the temporal series of the measured pipette resistances in order to determine whether a cell has been located or not.
- the robot computes the difference between successive pipette resistances and compares it to a constant threshold. This can be expressed as:
- a neuron that is suitable for patching has been encountered if: r ( n ) ⁇ r 1>threshold, where n> 1 r ( n )> r ( n ⁇ 1)
- a neuron suitable for patching has been encountered at position 3 , if r 3 ⁇ r 1 >threshold and r 3 >r 2 >r 1 .
- the autopatcher algorithm was initially derived by analyzing and optimizing successively each of the four stages of robot operation depicted in FIG. 4 .
- the derivation of the algorithm of FIGS. 5A-B was performed completely through experiments in the cortex, but the testing of the algorithm was performed on both cortical neurons as well as hippocampal neurons.
- This generalization of the algorithm from cortex to hippocampus implies that the algorithm possesses a certain degree of generalization power, i.e., the algorithm was not unconsciously optimized just for one brain region. Nevertheless, it is likely that very specialized neurons in novel brain regions may require tuning of select algorithm parameters, and the ability to perform this optimization using the robot would accelerate this process of customization, allowing for rapid iteration beginning from the parameters derived here.
- the autopatcher was also tested on brain slices, where it was capable of obtaining good recordings.
- FIGS. 6A-B the algorithm of FIGS. 5A-B was modified to use only suction pulses instead of suction plus “zap” pulses for the break-in stage in order to achieve a whole-cell patch clamp.
- a pipette is placed 604 in the holder, excess artificial cerebrospinal fluid (ACSF) may be removed 606 from the brain surface, and strong positive pressure is provided 608 while the pipette is positioned.
- ACSF cerebrospinal fluid
- the robot lowers 628 the pipette at a speed of 200 ⁇ m/s to the appropriate depth for neuron hunting and then reduces 630 the internal valve pressure to low positive pressure (see FIG. 2 ).
- the robot iteratively moves 644 , 646 , 648 the pipette and measures 650 , 652 , 654 the resistance in order to determine whether or not a neuron has been encountered.
- break-in is initiated by application 690 of a suction pulse, leading hopefully to a successful whole cell patch clamp 696 .
- a gigaseal-cell attached patch may be achieved 698 .
- a pipette is placed in the holder and provided strong positive pressure, and the robot then (stage 1, “regional pipette localization”) lowers the pipette at a speed of 200 ⁇ m/s to the appropriate depth for neuron hunting.
- stage 1 “regional pipette localization”
- the robot then (stage 1, “regional pipette localization”) lowers the pipette at a speed of 200 ⁇ m/s to the appropriate depth for neuron hunting.
- the variability of pipette resistance measures in successive stages of robot operation can be reduced, improving the accuracy of the subsequent stages.
- a visually identified increase of 20-50% in pipette resistance was considered to be indicative of the presence of a viable neuron, appropriate for attempting gigaseal and break-in stages.
- One advantage of a robotic system is that it can analyze sequences of pipette resistance values acquired over a series of successive motor steps, thus enabling precise signatures of neuron presence that algorithmically replicate the intuitive comparisons being performed by trained human investigators.
- heartbeat modulation For comparison purposes, the value of observing heartbeat modulation as an indication of neuronal detection was evaluated.
- heartbeat modulation could be added as a confirmatory check in the algorithm, although it was not found to be necessary; it appears that the algorithms' search for a monotonically increasing pipette resistance recapitulates the same essential process that takes place in the heartbeat detection procedure.
- Heartbeat modulation was seen sometimes, but not always, when the patch pipette was 10 ⁇ m away from the neuron (e.g., five 2 ⁇ m steps before the pipette halted and the “neuron hunting” stage ended; FIG. 18C ); this occurred 6 out of the 17 times, and may indicate that heartbeat modulation may occur even before the pipette resistance increases, and thus when a neuron has not been quite detected. This neuron-selectivity may explain why ⁇ 90% of the structures patched were neuronal, with only ⁇ 10% glial.
- the gigaseal formation stage (stage 3) was adapted from the best practices of prior protocols, aiming for a stereotyped sequence of steps amenable to automation.
- the motor was switched off after neuron hunting completion, and a 10 second wait period was imposed to see if the pipette resistance decayed back to baseline (this happened 1 time out of the 114 successful hunts; the motor simply reactivated and the neuron-hunting stage resumed). Then the positive pressure was released, suction pressure was applied if the gigaseal was not spontaneous, and the holding potential was reduced slowly to ⁇ 65 mV.
- the final stage is break-in (stage 4).
- the robot applied suction for periods of 1 second, and then precisely activated the “zap” function of the patch amplifiers (a 200 ⁇ s voltage pulse to 1 V), repeatedly every 5 seconds until the whole-cell configuration was obtained.
- the judgment of the whole cell state is reserved for a human observer, who can then halt the program.
- the stereotyped changes in the recording due to the cell capacitance and resistance being appended to the pipette are also quantifiable to the extent of yielding automation of program cessation, if desired.
- fully manually patched recording quality data FIG. 16 ) has also been presented.
- Table 1 lists yields, and durations, of each of the four stages, when executed by the robot of FIG. 1 , running the autopatching algorithm shown in FIG. 5 , in the living mouse brain, aiming for targets in cortex and hippocampus.
- the quality of the neural recordings was high, with pipette access resistances and cell leaks comparable to those of past work performed by skilled humans.
- the autopatcher was capable of high yields, comparable to those achieved by trained human in vivo patch clamp electrophysiologists, with speeds that can support experimental yields of many dozens of cells per day, in an automated, scalable, and parallelizable fashion.
- Example traces from neurons autopatched in the cortex and hippocampus are shown in FIGS. 7A-B and 8 A-B, respectively. Shown in FIGS. 7A-B are current clamp traces during current injection 710 (2 s-long pulses of ⁇ 60, 0, and +80 pA current injection), and at rest 720 (note compressed timescale relative to the top trace), for an autopatched cortical neuron. Access resistance is 44 M ⁇ ; input resistance is 41 M ⁇ ; and depth of cell is 832 ⁇ m below brain surface. Shown in FIGS. 8A-B are current clamp traces during current injection 810 (2 s-long pulses of ⁇ 60, 0, and +40 pA current injection), and at rest 820 , for an autopatched hippocampal neuron. Access resistance is 55 M ⁇ ; input resistance is 51 M ⁇ ; and depth of cell is 1,320 ⁇ m.
- FIG. 9A A plot of pipette resistance versus time for a representative autopatcher run is shown in FIG. 9A .
- the quality of cells recorded by the autopatcher was comparable to those in published studies conducted by skilled human investigators [Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain.
- FIG. 9A Shown in FIG. 9A is a representative timecourse of pipette resistance (the key parameter analyzed to control robot operation throughout the algorithm of FIG. 5 ) throughout a successful whole-cell patch clamp experiment performed on the autopatcher, starting with the “neuron hunting” stage 915 , through gigaseal formation and break-in 920 , and ending with successful whole cell attainment 925 . Shown in FIG. 9A
- 9A are the point when the first 910 of three resistance measurements that indicate the threshold of detection of a neuron is detected, the point when the last 912 of three resistance measurements that indicate the threshold of detection of a neuron is detected, the point 930 at which positive pressure is released during gigaseal formation, the point 935 at which suction is applied during gigaseal formation, the point at which holding potential starts to ramp down 940 from ⁇ 30 mV to ⁇ 65 mV, the point 945 at which holding potential hits ⁇ 65 mV, and the point 950 at which break-in occurs.
- FIG. 9B depicts raw traces showing the currents observed going through the patch pipette, while a square voltage wave (10 Hz, 10 mV) is applied to the pipette, at the events flagged by the corresponding numerals in FIG. 9A .
- FIGS. 10-12 are histograms depicting the three stages 915 , 920 , 925 of the exemplary experiment of FIGS. 9A-B .
- FIG. 12 is a histogram of execution times for the total autopatcher algorithm starting from neuron-hunting and ending with patch attainment (i.e., the sum of the times plotted in FIGS. 10 and 11 ).
- the gigaseal formation took 2.6 ⁇ 1.0 minutes ( FIG. 11 ), including for the whole cell autopatched case the few seconds required for break-in; failed attempts to form gigaseals were truncated at the end of the ramp down procedure and thus took ⁇ 85 seconds. These durations are similar to those obtained by trained human investigators practicing published protocols.
- FIGS. 13A-D are plots depicting the quality of autopatched in vivo neural whole cell recordings, including plots of access resistances obtained versus pipette depth and bar graph summaries of access resistances (mean ⁇ s.d.), for the final autopatcher whole cell patch validation test set, the test set in which the autopatcher concludes in the gigaseal state (data acquired after manual break-in), and the test set acquired via manual whole cell patch clamp, for cortical and hippocampal neurons.
- FIG. 13A depicts a plot 1310 of the access resistances (resting potential) obtained versus pipette depth and a bar graph summary 1315 of access resistances (mean ⁇ std.
- FIG. 13A depicts a plot lot 1330 of the resting potentials obtained versus pipette depth and a bar graph summary 1335 of resting potentials for the neurons described for FIG. 13A .
- FIG. 13C depicts a plot 1350 of the holding currents obtained versus pipette depth and a bar graph summary 1355 of holding currents, for the neurons described for FIG. 13A .
- FIG. 13D is a logarithmic plot 1370 of the studies' holding times obtained versus pipette depth and a bar graph summary 1375 of holding times for the neurons described for FIG. 13A . Shown are both recording times that were terminated early and recording times terminated spontaneously by loss of the cell.
- FIGS. 17A-D depict raw current traces recorded during “neuron hunting” stage. Shown are patch pipette currents obtained when a square voltage wave (10 Hz, 10 mV during “neuron hunting” stage) is applied to the pipette in voltage clamp mode.
- the left traces 1710 , 1715 , 1720 , 1725 in FIGS. 17A-D are current traces measured 10 ⁇ m before the pipette was stopped at the end of “neuron hunting” to attempt “gigasealing”.
- the right traces 1740 , 1745 , 1750 , 1755 are current traces measured at the point the pipette was stopped at the end of neuron hunting.
- FIG. 6 depicted a variant of the algorithm that uses pulses of suction to break in to cells, rather than “zap”. The yields, cell qualities, and cell properties obtained by the suction-pulse variation of the autopatch algorithm of FIG. 6 were comparable to those obtained by the original algorithm ( FIG. 5 ).
- FIGS. 18A-H present results obtained using the autopatcher using the ‘suction pulses’ method of FIG. 6 for break-in and achieving the whole cell state.
- FIG. 18A is a plot of the access resistances obtained versus pipette depth for set of neurons for which whole cell state was established using the algorithm of FIG. 6 , in which the “zap” is replaced by suction pulses. As seen in FIG.
- FIG. 18A is a plot of the resting potentials obtained versus pipette depth, for the neurons described in FIG. 18A .
- FIG. 18C is a plot of the holding currents obtained versus pipette depth for the neurons described in FIG. 18A .
- FIGS. 18E-H are histograms summarizing the whole cell properties of the automatically whole-cell patched neurons broken in using suction pulses method, showing good quality recordings equivalent to those obtained by zap method of break-in, measured in voltage clamp at ⁇ 65 mV, including gigaseal resistance after gigaseal formation ( FIG. 18E ), access resistance after break-in ( ⁇ 5 minutes after break-in) ( FIG. 18F ), cell membrane capacitance ( FIG. 18G ), and cell input resistance ( FIG. 18H ).
- the gigaseal formation took 2.6 ⁇ 1.0 minutes, including for the whole cell autopatched case the few seconds required for break-in; failed attempts to form gigaseals were truncated at the end of the ramp down procedure and thus took ⁇ 85 seconds. These durations are similar to those obtained by trained human investigators practicing published protocols.
- the autopatcher is not currently a “high throughput” machine in terms of sheer speed per cell, but the autopatcher can sustain its work without getting tired or bored, as a human might.
- a series of experiments were run, automatically recording in each of 3 mice, 7-8 successfully whole cell patch clamped neurons (total for the 3 mice, 22 successes), out of 16-20 attempts (total for the 3 mice, 52 attempts; yield, 42%); surgeries would take 41+6 minutes beginning from anesthesia of the mouse and ending with the exposed brain ready for recording; then, for each cell, pipette filling and installation (removing any used pipette, of course) would take 2 ⁇ 0.4 minutes, followed by the autopatcher establishing whole cell patch clamp in 5 ⁇ 2 minutes.
- the recording time for each cell was limited to 15 minutes, arbitrarily, but shorter or longer times may be of course utilized, depending on the science at hand.
- the amount of time required to record n neurons successfully, for a desired recording time T would be approximately 40+ n/ 0.42*7+ n/ 0.42* T minutes.
- the surgeries, of course, could be done in advance to equip mice with headplates to minimize day-of-recording time expenditure.
- ⁇ 25 neurons might be successfully recordable in a single mouse, if the recording times were very short; this doesn't take into account the important consideration of cell displacement that could result from an electrophysiological experiment, thus reducing yield over time.
- FIG. 3 The prototype apparatus used to produce the reported experimental results is depicted in FIG. 3 . While specific parts, software, and implementation details for this prototype are described herein, it will be clear to one of skill in the art of the invention that many other comparable parts, software, and implementation methodologies exist and would be equally suitable for use in the present invention. Specific parts used for this prototype include:
- Patch clamp amplifier Multiclamp 700B (Molecular Devices)
- FIG. 19 The circuit diagram for actuation of the solenoid valves is shown in FIG. 19 .
- the pneumatic connections are shown in FIG. 2 .
- the steps used to make the connections, as shown in FIG. 19 are:
- Valve 1 1910 Connects the Common port (output) of Valve 1 1910 to pipette holder.
- Valve 2 1920 Connects the Common port (output) of Valve 2 1920 to normally open (N.O.) input port of Valve 1 1910 .
- Valve 3 1930 Connect the Common port (output) of Valve 3 1930 to normally closed (N.C.) input port of Valve 1 1910 .
- the signals for the Multiclamp 700B amplifier (Molecular Devices) are sent to and from two computer interface boards.
- the NIDAQ USB-6259-BNC (National instruments) board is used to send signals to the amplifier during Autopatcher operation, and the Digidata 1440A is used for recording with commercial software Pclamp (Molecular Devices) once whole cell is obtained.
- Pclamp Molecular Devices
- the Autopatcher program was developed in the Labview 8.6 (National Instruments) programming environment, running on a Windows XP or later operating system.
- the Autopatcher prototype implementation in its current form thus requires a version 8.6 or higher version of Labview to run.
- labview VISA For serial communication with the motor controller, labview VISA must be installed.
- the following instructions are an exemplary methodology to be followed for setting up the program for automated whole cell patch clamping in vivo and represent the method employed using the prototype of FIG. 3 to obtain the presented experimental results.
- FIG. 21 is a screenshot of the control panel tab of the Autopatcher program. This is a debug-oriented version of the Autopatcher software, allowing parameters to be changed; if parameters are not going to be changed, it will be clear to one of skill in the art that these parameters could be hardwired into the code.
- FIG. 22 is a screenshot of the Neuron Hunt tab in the Autopatcher program.
- FIG. 23 is a screenshot of the Seal formation tab in the Autopatcher program.
- FIG. 24 is a screenshot of the Break-in tab in the Autopatcher program.
- FIG. 25 is a screenshot of settings in the Multiclamp commander before Autopatcher program is executed. Open and run “Command_switch.vi”. Run this continuously during entire experiment. At any time, the command input going to the Multiclamp 700B can be switched between NIDAQ USB 6259 (for autopatching) and Digidata 1440B (for post patch recording) using software controls.
- Biocytin Filling Experiments. After a neuron has been recorded in whole cell mode for a sufficiently long period of time to fill it with biocytin ( ⁇ 10 minutes), the “Retract_pipette.vi” program can be run to attempt to form an outside out patch. The program has two user set distances.
- mice were removed from the stereotax and placed in a custom-built low profile holder.
- a dental drill was used to open up one or more craniotomies (1-2 mm diameter) by thinning the skull until ⁇ 100 ⁇ m thick, and then a small aperture was opened up with a 30 gauge needle tip.
- Cortical craniotomies occurred at stereotaxic coordinates: anteroposterior, 0 mm relative to bregma; mediolateral, 0-1 mm left or right of the midline; neuron hunting began at 400 ⁇ m depth.
- Hippocampal craniotomies occurred at stereotaxic coordinates: anteroposterior, ⁇ 2 mm relative to bregma; mediolateral, 0.75-1.25 mm left or right of the midline; neuron hunting began at 1100 ⁇ m depth. It is critical to ensure that bleeding is minimal and the craniotomy is clean, as this allows good visualization of the pipette, and minimizes the number of pipettes blocked after insertion into the brain.
- the dura was removed using a pair of fine forceps.
- the craniotomy was superfused with artificial cerebrospinal fluid (ACSF, consisting of 126 mM NaCl, 3 mM KCl, 1.25 mM NaH 2 PO 4 , 2 mM CaCl 2 , 2 mM MgSO 4 , 24 mM NaHCO 3 , and 10 mM glucose), to keep the brain moist until the moment of pipette insertion.
- ASF artificial cerebrospinal fluid
- mice Seventeen mice were used to derive the autopatching algorithm ( FIG. 5 ). Sixteen mice were used to validate the robot for the primary test-set. For the manual experiments, 4 mice were used. For the development of the suction-based autopatching variant ( FIG. 6 ), 5 mice were used. Out of the 5 mice used for suction-based autopatching, 3 mice were used for the throughput estimations. For biocytin filling experiments and validation of heartbeat modulation as a method for confirming neuronal detection, 6 additional mice were used.
- mice were euthanized, while still fully anesthetized, via cervical dislocation, unless biocytin filling was attempted.
- biocytin filling the mice were isoflurane anesthetized, then transcardially perfused in 4% ice-cold through the left cardiac ventricle with ⁇ 40 mL of ice-cold 4% paraformaldehyde in phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- Borosilicate glass pipettes (Warner) were pulled using a filament micropipette puller (Flaming-Brown P97 model, Sutter Instruments), within a few hours before beginning the experiment, and stored in a closed petri dish to reduce dust contamination. Glass pipettes with resistances between 3-9 M ⁇ were pulled.
- the intracellular pipette solution consisted of (in mM): 125 potassium gluconate (with more added empirically at the end, to bring osmolarity up to ⁇ 290 mOsm), 0.1 CaCl 2 , 0.6 MgCl 2 , 1 EGTA, 10 HEPES, 4 Mg ATP, 0.4 Na GTP, 8 NaCl (pH 7.23, osmolarity 289 mOsm), similar to what has been used in the past.
- biocytin 0.5% biocytin (weight/volume) was added to the solution before the final gluconate-based osmolarity adjustment, and osmolarity then adjusted (to 292 mOsm) with potassium gluconate.
- Manual patch clamping was performed using previously described protocols [DeWeese, M. R. Whole-cell recording in vivo. Curr Protoc Neurosci Chapter 6, Unit 6 22 (2007); Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444, 491-498 (2002)], with some modifications and iterations in order to prototype algorithm steps and to test them.
- the autopatcher was assembled through modification of a standard in vivo patch clamping system.
- the standard system comprised a 3-axis linear actuator (MC1000e, Siskiyou Inc) for holding the patch headstage, and a patch amplifier (Multiclamp 700B, Molecular Devices) that connects its patch headstage to a computer through a analog/digital interface board (Digidata 1440A, Molecular Devices).
- a programmable linear motor PZC12, Newport
- PZC12 programmable linear motor
- the programmable linear motor was mounted at a 45° angle to the vertical axis, to reduce the amount of background staining in the coronal plane that histological sectioning was done along.
- the headstage was in turn mounted on the programmable linear motor through a custom mounting plate.
- the programmable linear motor was controlled using a motor controller (PZC200, Newport Inc) that was connected to the computer through a serial COM port.
- An additional data acquisition (DAQ) board (USB 6259 BNC, National Instruments Inc) was connected to the computer via a USB port, and to the patch amplifier through BNC cables, for control of patch pipette voltage commands, and acquisition of pipette current data, during the execution of the autopatcher algorithm.
- the USB 6259 board sent commands to the patch amplifier; after acquisition of cell-attached or whole-cell-patched neurons, the patch amplifier would instead receive commands from the Digidata.
- a software-controlled TTL co-axial BNC relay (CX230, Tohtsu) was used for driving signal switching between the USB 6259 BNC and the Digidata, so that only one would be empowered to command the patch amplifier at any time.
- the patch amplifier streamed its data to the analog input ports of both the USB DAQ and the Digidata throughout and after autopatching.
- a set of three solenoid valves (2-input, 1-output, LHDA0533215H-A, Lee Company) was used. They were arranged, and operated, in the configuration shown in FIG. 2 .
- the autopatcher program was coded in, and run by, Labview 8.6 (National Instruments).
- the USB6259 DAQ sampled the patch amplifier at 30 KHz and with unity gain applied, and then filtered the signal using a moving average smoothening filter (half width, 6 samples, with triangular envelope), and the amplitude of the current pulses was measured using the peak-to-peak measurement function of Labview.
- the 3-axis linear actuator (Siskiyou) was used to manually position the pipette tip over the craniotomy using a control joystick with the aid of a stereomicroscope (Nikon).
- the pipette was lowered until it just touched the brain surface (indicated by dimpling of surface) and retracted back by 20-30 micrometers.
- the pipette voltage offset was automatically nullified by the “pipette offset” function in the Multiclamp Commander (Molecular Devices). It was ensured that electrode wire in the pipette was chlorided enough so as to minimize pipette current drift, which can affect the detection of the small resistance measurements that occur during autopatcher operation. The brain surface was then superfused with ACSF and the autopatcher program was started.
- the autopatcher evaluates the pipette electrical resistance is evaluated outside the brain (e.g., between 3-9 M ⁇ is typical) for 30-60 seconds to see if AgCl pellets or other particulates internally clog the pipette (indicated by increases in resistance). If the pipette resistance remains constant and is of acceptable resistance, the Autopatcher program is started. The program records the resistance of the pipette outside the brain and automatically lowers the pipette to a pre-specified target region within the brain (the “regional pipette localization” 410 stage in FIG. 4 ), followed by a second critical examination of the pipette resistance for quality control.
- This check is followed by an iterative process of lowering the pipette by small increments, while looking for a pipette resistance change indicative of proximity to a neuron suitable for recording (the “neuron hunting” stage).
- the robot looks for a specific sequence of resistance changes that indicates that a neuron is proximal, attempting to avoid false positives that would waste time and decrease cell yield.
- the robot halts movement, and begins to actuate suction and pipette voltage changes so as to form a high-quality seal connecting the pipette electrically to the outside of the cell membrane (the “gigaseal formation” stage 430 ), thus resulting in a gigaseal cell-attached recording.
- the robot can then be used to perform controlled application of suction as well as brief electrical pulses to break into the cell (the “break-in” stage).
- the robot applies a voltage square wave to the pipette (10 Hz, 10 mV alternating with 0 mV relative to pipette holding voltage), and the current is measured, in order to calculate the resistance of the pipette at a given depth or stage of the process.
- this pipette resistance is the chief indicator of pipette quality, cell presence, seal quality, and recording quality, and the algorithm attempts to make decisions—such as whether to advance to the next stage, or to restart a stage, or to halt the process—entirely on the temporal trajectory taken by the pipette resistance during the experiment.
- the performance of the robot is enabled by two critical abilities of the robot: its ability to monitor the pipette resistance quantitatively over time, and its ability to execute actions in a temporally precise fashion upon the measured pipette resistance reaching quantitative milestones.
- mice were perfused through the left cardiac ventricle with ⁇ 40 mL of ice-cold 4% paraformaldehyde in phosphate buffered saline (PBS) while anesthetized with isoflurane.
- Perfused brains were then removed from the skull then postfixed overnight in the same solution at 4° C.
- the fixed brains were incubated in 30% sucrose solution for 2 days until cryoprotected (i.e., the brains sank).
- the brains were flash frozen in isopentane cooled using dry ice at temperatures between ⁇ 30° C. to ⁇ 40° C.
- the flash frozen brains were mounted on mounting plates using OCT as base, and covered with tissue embedding matrix to preserve tissue integrity, and 40 ⁇ m thick slices were cut at ⁇ 20° C. using a cryostat (Leica).
- the brain slices were mounted on charged glass slides (e.g., SuperFrost) and incubated at room temperature for 4 hours in PBS containing 0.5% Triton-X (vol/vol) and 2% goat serum (vol/vol). This was followed by 12-14 hours of incubation at 4° C. in PBS containing 0.5% Triton-X (vol/vol), 2% goat serum (vol/vol) and Alexa 594 conjugated with streptavidin (Life Technologies, diluted 1:200).
- the present invention provides a methodology, and a robot suited for performing the methodology, for automatically patch clamping cells in the living brain.
- the invention produces yields, speeds, and quality levels comparable to or exceeding what trained human investigators can perform.
- the methodology involves precision measurements, including measurements of sequences of pipette electrophysiological events, as well as precision movements, such as being able to halt pipette movements immediately following detection of such events.
- the methodology also involves temporally precise control of pressure, essential for enabling pipettes to descend to depth and for high-fidelity cell-attached and whole-cell recordings to be obtained.
- the methodology takes advantage of the power of simple robotic design principles, for example the ability to analyze temporal trajectories of quantitative data (in a fashion that is difficult for humans), and performing fast actuation events triggered by these analyses.
- the finding of the methodology itself would have been difficult without a robotic platform for evaluating systematically the parameters governing the success of in vivo patch clamping.
- it is anticipated that other applications of robotics to the automation of complex neuroscience experiments will be possible and facilitated by the realization that a cycle of innovation in which the engineering and science iterate is useful in the discovering and creation of scientifically-impactful technologies.
- the robot may be able to track yields and adaptively modify parameters if the recordings are failing at too high a rate.
- the robot automates the process, reducing the cost of iteration, as well as the skill required to iterate, thus opening up the methodology itself to a broader population.
- the present invention may open up many new frontiers in biology, bioengineering, and medicine in which the assessment of the properties of single cells, embedded within intact tissue, is desired but has not been achievable in a systematic high-throughput fashion. For example, analyzing how different cells in a neural circuit respond to a drug in specific brain states, performing electrical characterizations of cells in tissues removed during surgery, determining how different individual cells within a tumor biopsy sample vary in gene expression, and assessing how tissue-engineered organs vary in cell to cell composition, may provide fundamental new capabilities in diagnostics, personalized medicine, and drug development.
- the ability to determine whether a recorded cell is of a given cell class, using optical activation of specific cells within that class as a way of indicating the identity of those cells, would be aided by the ability to rapidly patch cells, thus enabling optogenetic cell identification.
- the autopatcher robot's pipette can potentially be integrated with capillary systems for liquid chromatography and mass spectrometry for single cell proteomic analysis. Automation both speeds up processes and reduces the skill levels required, enabling for example a single robot operator to control many rigs; these effects will greatly broaden the number of fields for which single-cell analyses in intact tissue are applicable.
- the apparatus of the present invention is based on a relatively inexpensive modification to a conventional patch rig, and thus can easily be incorporated into existing labs' setups.
- a rig is capable of enabling the recording of many dozens of cells per experiment in an automated fashion, but higher throughput devices and devices with new features would expand the power of this robotic approach even further.
- a head borne version for freely moving animals e.g., building off the protocols described by Lee. A. K. et al., Whole-cell recordings in freely moving rats, Neuron 51, 399-407 (2006)]
- a head borne version for freely moving animals e.g., building off the protocols described by Lee. A. K. et al., Whole-cell recordings in freely moving rats, Neuron 51, 399-407 (2006)]
- Image-guided versions may be developable, which use microscopy to identify targets, but then use the autopatcher algorithm to detect the cell membrane, obtain the seals, and achieve whole-cell access.
- the ability to automatically make micropipettes in a high-throughput fashion, and to install them automatically, might eliminate some of the few remaining steps requiring human intervention.
- the ability to actuate many pipettes within a single brain, and to perform massively recordings of neurons or other cells within a single living network may open up the ability to analyze neural computations and other biological phenomena with great accuracy.
- the algorithmic nature of the procedure described here, and the simple robotics needed to implement it not only open up many kinds of scientific investigation, but also empower new kinds of neuroengineering to be contemplated and pursued.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Radiology & Medical Imaging (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Neurology (AREA)
Abstract
Description
r(n)−r1>threshold, where n>1
r(n)>r(n−1)
For example, a neuron suitable for patching has been encountered at
TABLE 1 | |||||
Regional | |||||
Pipette | Neuron | Gigaseal | Break- | ||
Localization | Hunting | Formation | In | ||
% age yield, | 81% | 93% | 51% | 82% |
whole cell | ||||
patch | ||||
% age yield, | 80% | 93% | 41% | N.A |
gigaseal cell- | ||||
attached | ||||
Duration of | 10 s | 2.2 ± 1.7 min | 2.6 ± 1.0 min | 1-10 s |
stage | ||||
(mean ± s.d.) | ||||
Fully automated successful attempts are defined as <500 pA of current when held at −65 mV, for at least 5 minutes; n=24 out of 73 attempts, successful gigaseal cell-attached patch clamp recording defined as a stable seal of >1 GΩ resistance; n=27 out of 75 attempts.
40+n/0.42*7+n/0.42*T
minutes. (The surgeries, of course, could be done in advance to equip mice with headplates to minimize day-of-recording time expenditure.) Thus, during an 8 hour day, ˜25 neurons might be successfully recordable in a single mouse, if the recording times were very short; this doesn't take into account the important consideration of cell displacement that could result from an electrophysiological experiment, thus reducing yield over time.
-
- 1) Connect Analog Out 0 (AO0) of the NIDAQ USB-6259 to the channel A of the BNC relay switch.
- 2) Connect the Analog out 0 (AO0) of the Digidata 1440B to channel B of the BNC relay switch.
- 3) Connect the output of the BNC relay switch to the command input of the
Multiclamp 700B amplifier. - 4) Connect Digital Out Ch0 of the NIDAQ board to the BNC relay input.
- 5) Connect the primary scaled output of
Multiclamp 700B to Analog IN 1 (AI 1) of the NIDAQ USB-6259 and analog input 0 (AI1) of the Digidata 1440B.
In the default configuration, the input command to the patch amplifier is sent from the NIDAQ board for automated patch clamping. Once a whole cell configuration is established, the toggle in “Command_switch.vi” program can be used to switch the inputs and data can be recorded in current clamp or voltage clamp using the clampex software.
-
- 1) Open Autopatcher_library.llb in labview library manager window. This contains all files that are called by the main program during autopatching. All files that need to be opened during the course of operation of the Autopatcher can be accessed using this project manager.
- 2) Open “VisaInit.vi”.
FIG. 20 is a screen shot of the “Visainit.vi” program that is used to initiate serial communication with motor controller. - 3) Specify the
COM port number 2020 in theVisa Session 2030 and correspondingserial port number 2040 to which the motor controller is connected to in the computer, and run the program.
-
- 1. Specify the
COM port 2120 that was initialized in the “VisaInit.vi” program in theVisa Handle 2130 scroll down menu option. - 2. Enter
Controller number 2140 as 1. - 3. Specify the upper depth 2150 (Zu in micrometers) of the region you want to record from.
- 4. Specify the lower depth 2160 (Zl in micrometers) of the region you want to record from. During operation, the Autopatcher will lower the pipette to Zu and start scanning for neurons. It will stop at Zl if no neuron is encountered in that range.
- 5. There are two file
path dialog boxes 2170, 2180 to specify the location in which the plot of Pipette resistance as a function of depth 2170 (during neuron hunting) and pipette resistance as a function of time 2180 (during attempted gigaseal formation) are stored. Specify thesefile paths 2170, 2180 as needed.Pipette Tip Status 2190 will be displayed during program operation.
- 1. Specify the
-
- 1. Specify the
membrane test parameters 2210 in a manner similar to the Membrane test done in Pclamp. (e.g.,Command frequency 2215=10 Hz, Holding 2220=0 mV,Pulse 2225=10 mV) - 2.
Set detection threshold 2240 between 0.2-0.3, as required. - 3. Set
pipette velocity 2250 at 2 micrometers/step.
This tab displays the last three pipette resistance readings: Rp (i) 2260, Rp (i−1) 2264, and Rp (i−2) 2268.Status bar 2270 indicates the current state of the program execution (i.e., ‘Hunting for neurons at desired depth’ or ‘Neuron found’). Twographical charts pipette resistance 2290 as a function of position in the brain.
- 1. Specify the
-
- 1. Specify the membrane test parameters in a manner similar to the Membrane test done in Pclamp (e.g.,
Command frequency 2302=10 Hz, Holding=0 mV,Pulse 2306=10 mV). - 2. Set the
time 2310 at which positive pressure is released. In all of the experiments reported herein, it was set at 10 seconds. Similarly, set thetime 2320 at which positive pressure needs to be reapplied if needed. In all experiments, it was set at an arbitrarily large value (˜1500 seconds). - 3. Set the times at which suction pressures need to be applied 2330 and removed 2340 (15 s and 25 s respectively in the example shown).
In this tab, there are threegraphical charts pipette resistance 2350, the current flowing though the pipette duringmembrane test 2360, and the holding potential 2370. Twonumerical indicators
- 1. Specify the membrane test parameters in a manner similar to the Membrane test done in Pclamp (e.g.,
-
- 1. Specify whether it is desired to
zap 2410 during break-in, or break-in using suction pulses only. - 2. If zap function 2410 is used, specify the pulse duration 2420 (e.g., 200 ms) and amplitude 2430 (e.g., 1000 mV).
A graphical chart that displays the membrane current 2440 is provided to determine whether break-in has occurred or not. Once these settings were input for the first trial, they remained the same for the rest of the trials.
- 1. Specify whether it is desired to
-
- 1. Fill patch pipette with internal saline solution and install in pipette holder.
- 2. Open and run “valve_reset.vi” to reset all valves to default configuration.
- 3. Application of pressures:
- i. Apply High positive pressure at N.O. port of
Valve 2. - ii. Apply Low positive pressure at N.C. port of
Valve 2. - iii. Apply suction pressure at N.C. port of
valve 3.
It should be ensured that the pipette does not have any debris (particularly AgCl flakes) inside the pipette. Internally clogged pipettes typically have varying resistance readings that may interfere with proper functioning of the Autopatcher. In the default configuration, the valve system outputs high positive to the pipette to ensure that the tip does not get blocked accidently.
- i. Apply High positive pressure at N.O. port of
- 4. Position pipette in the center of the craniotomy, 20-30 micrometers above the brain surface using a stereomicroscope for visualization. Ensure the pipette tip does not touch the brain surface as this will result in erroneous baseline resistance measurement.
- 5. Open the
Multiclamp 700B commander program (FIG. 24 ). - 6. Make sure the amplifier is in Voltage clamp mode by selecting VC mode button.
- 7. Ensure Holding current is set at 0 mV.
- 8. Reset the pipette offset by using the Auto pipette offset function.
- 9. Neutralize for pipette capacitance by Auto correcting for Cp Fast and Cp.
- 10. Run membrane test.vi in continuous run mode and monitor the resistance of the pipette for 30-60 second. The resistance value should be between 3-9 MΩ, and read a constant value throughout this period. If the pipette is internally clogged with AgCl flakes or other debris, the resistance value typically keeps increasing gradually, or might vary significantly (>500 KΩ) enough to interfere with proper functioning of the Autopatcher program. In that case, replace the pipette. Ensure pipettes are not getting internally clogged before repeated attempts at autopatching.
The Autopatcher program can now be run for Automated whole cell patch clamping in vivo.
-
- 1) The Autopatcher measures and displays the pipette resistance Racsf outside the brain.
- 2) The pipette is then lowered to the specified depth Zu under high positive pressure.
- 3) The pressure is lowered to low positive pressure and the pipette resistance Rzu is measured to check for blockage.
- 4) If the pipette is blocked, “Pipette blocked, install new pipette” message is displayed under
Pipette Tip Status 2190. It is then retracted back and the program stops. Install a new pipette, and performs the manual tasks described previously before restarting the Autopatcher. - 5) If the pipette is not blocked, “Pipette not blocked” message is displayed under
Pipette Tip Status 2190, and the Autopatcher initiates Neuron Hunt. Switch to the ‘Neuron Hunt’ tab (FIG. 22 ). - 6) The Autopatcher now moves the pipette in steps specified by the user (e.g., 2 micrometers) and measures the pipette resistance at each step. Autopatcher either stops pipette actuation when a neuron is encountered or when it has scanned through to depth Zl without encountering a neuron. In the latter case the program stops. If a neuron is encountered, the Autopatcher initiates Seal formation protocol. Switch to ‘Seal formation’ tab (
FIG. 23 ). - 7) The pipette resistance can be monitored over time in the
Rseal graph 2350 indicator. Release of positive pressure and application of suction, as well as ramp down of holding potential takes place. Typically in a successful attempt, a gigaseal is formed and holdingvoltage 2390 is ramped down to −65 mV in 80 seconds. At the end of 80 seconds, ifseal resistance 2380 is less than a gigaohm, stop program. Retract pipette using the manual xyz positioner. A new trial can be started by installing a new pipette. - 8) If a break-in occurs spontaneously, stop the program and go to Step 11.
- 9) If break-in does not occur spontaneously, switch to the Break-in tab (
FIG. 24 ). If attempting to break-in using suction pulses, restore the suction pressure in the suction port. Then press ‘Attempt break-in’ 2450. The Autopatcher will apply suction pressure for 100 ms. If successful, typical membrane current transients can be seen in thegraph indicator 2440. A similar procedure is followed for break-in using the zap function. If unsuccessful, press stop break-inattempt 2460 after 5 seconds, and retry 2450 until successful break-in occurs. Alternately, break-in can be achieved by using themanual override 2395 of suction pressure option in the Gigaseal formation tab (FIG. 23 ) and applying the requisite voltage zap using the ‘Zap’button 2520 in the Multiclamp commander (FIG. 25 ). If using this option, make sure themanual override 2395 is switched off after break-in, else the cell contents may be dialized into the pipette. - 10) Once a whole cell recording is established, stop program.
- 11) Set the amplifier to I=0 mode using the Multiclamp commander (
FIG. 25 ) software and select clampex in the front panel of the “Command_switch.vi” program that was initiated inStep 4. This will automatically enable the command input to the amplifier to be sent by the Digidata 1440B. Whole cell recordings in voltage clamp or current clamp can be carried out in using Pclamp software (Molecular Devices).
-
- 1) Specify the distance you want to retract the pipette at a slow speed (e.g., 3 μm/s).
- Typically, it was set at 100-150 μm to get an outside out patch.
- 2) Specify the distance the pipette is to be rapidly retracted, typically set to the depth of the recording, as noted while running the “Autopatcher_ver1.0.vi”.
- 3) Run the program. The program will first retract the pipette at steps of 3 μm every second for the distance specified by the user. Once that distance is reached, the program rapidly retracts the pipette by the distance specified in
Step 2.
- 1) Specify the distance you want to retract the pipette at a slow speed (e.g., 3 μm/s).
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/676,082 US9668804B2 (en) | 2011-11-11 | 2012-11-13 | Automated cell patch clamping method and apparatus |
US14/079,630 US9498293B2 (en) | 2011-11-11 | 2013-11-13 | Automated cell patch clamping method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161558841P | 2011-11-11 | 2011-11-11 | |
US13/676,082 US9668804B2 (en) | 2011-11-11 | 2012-11-13 | Automated cell patch clamping method and apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/079,630 Continuation-In-Part US9498293B2 (en) | 2011-11-11 | 2013-11-13 | Automated cell patch clamping method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130225963A1 US20130225963A1 (en) | 2013-08-29 |
US9668804B2 true US9668804B2 (en) | 2017-06-06 |
Family
ID=49003633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/676,082 Active 2034-06-01 US9668804B2 (en) | 2011-11-11 | 2012-11-13 | Automated cell patch clamping method and apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US9668804B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019051072A1 (en) | 2017-09-06 | 2019-03-14 | Regents Of The University Of Minnesota | Robotic platform for high throughput injections into intact tissue |
US10733419B2 (en) | 2017-08-29 | 2020-08-04 | Georgia Tech Research Corporation | Systems and methods for cell membrane identification and tracking, and technique automation using the same |
WO2020251749A3 (en) * | 2019-05-24 | 2021-04-08 | The Trustees Of Columbia University In The City Of New York | Integrated electrophysiology amplifying apparatus, computer-accessible medium, system and method for use thereof |
US10993634B2 (en) | 2016-07-06 | 2021-05-04 | Massachusetts Institute Of Technology | Image-guided closed-loop robotic system for automated whole-cell patch clamping electrophysiology of neurons in vivo |
US12094161B2 (en) | 2021-03-24 | 2024-09-17 | Regents Of The University Of Minnesota | Multi-perspective microscopic imaging guided microinjection of microscopic objects across large field of views |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9615763B2 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation |
US10736529B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable electrocardiography monitor |
WO2015048194A1 (en) | 2013-09-25 | 2015-04-02 | Bardy Diagnostics, Inc. | Self-contained personal air flow sensing monitor |
US9730593B2 (en) | 2013-09-25 | 2017-08-15 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US10806360B2 (en) | 2013-09-25 | 2020-10-20 | Bardy Diagnostics, Inc. | Extended wear ambulatory electrocardiography and physiological sensor monitor |
US11213237B2 (en) | 2013-09-25 | 2022-01-04 | Bardy Diagnostics, Inc. | System and method for secure cloud-based physiological data processing and delivery |
US10165946B2 (en) | 2013-09-25 | 2019-01-01 | Bardy Diagnostics, Inc. | Computer-implemented system and method for providing a personal mobile device-triggered medical intervention |
US9619660B1 (en) | 2013-09-25 | 2017-04-11 | Bardy Diagnostics, Inc. | Computer-implemented system for secure physiological data collection and processing |
US10667711B1 (en) | 2013-09-25 | 2020-06-02 | Bardy Diagnostics, Inc. | Contact-activated extended wear electrocardiography and physiological sensor monitor recorder |
US10433748B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | Extended wear electrocardiography and physiological sensor monitor |
US9717432B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch using interlaced wire electrodes |
US20190167139A1 (en) | 2017-12-05 | 2019-06-06 | Gust H. Bardy | Subcutaneous P-Wave Centric Insertable Cardiac Monitor For Long Term Electrocardiographic Monitoring |
US11723575B2 (en) | 2013-09-25 | 2023-08-15 | Bardy Diagnostics, Inc. | Electrocardiography patch |
US9364155B2 (en) | 2013-09-25 | 2016-06-14 | Bardy Diagnostics, Inc. | Self-contained personal air flow sensing monitor |
US9345414B1 (en) | 2013-09-25 | 2016-05-24 | Bardy Diagnostics, Inc. | Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer |
US9408545B2 (en) | 2013-09-25 | 2016-08-09 | Bardy Diagnostics, Inc. | Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor |
US10888239B2 (en) | 2013-09-25 | 2021-01-12 | Bardy Diagnostics, Inc. | Remote interfacing electrocardiography patch |
US10799137B2 (en) | 2013-09-25 | 2020-10-13 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer |
US10820801B2 (en) | 2013-09-25 | 2020-11-03 | Bardy Diagnostics, Inc. | Electrocardiography monitor configured for self-optimizing ECG data compression |
US9433380B1 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Extended wear electrocardiography patch |
US10624551B2 (en) | 2013-09-25 | 2020-04-21 | Bardy Diagnostics, Inc. | Insertable cardiac monitor for use in performing long term electrocardiographic monitoring |
US9700227B2 (en) | 2013-09-25 | 2017-07-11 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9717433B2 (en) | 2013-09-25 | 2017-08-01 | Bardy Diagnostics, Inc. | Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation |
US9433367B2 (en) | 2013-09-25 | 2016-09-06 | Bardy Diagnostics, Inc. | Remote interfacing of extended wear electrocardiography and physiological sensor monitor |
US10736531B2 (en) | 2013-09-25 | 2020-08-11 | Bardy Diagnostics, Inc. | Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection |
US9737224B2 (en) | 2013-09-25 | 2017-08-22 | Bardy Diagnostics, Inc. | Event alerting through actigraphy embedded within electrocardiographic data |
US10251576B2 (en) | 2013-09-25 | 2019-04-09 | Bardy Diagnostics, Inc. | System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US9655538B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Self-authenticating electrocardiography monitoring circuit |
US9775536B2 (en) | 2013-09-25 | 2017-10-03 | Bardy Diagnostics, Inc. | Method for constructing a stress-pliant physiological electrode assembly |
US9408551B2 (en) | 2013-11-14 | 2016-08-09 | Bardy Diagnostics, Inc. | System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer |
US9504423B1 (en) | 2015-10-05 | 2016-11-29 | Bardy Diagnostics, Inc. | Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer |
US10463269B2 (en) | 2013-09-25 | 2019-11-05 | Bardy Diagnostics, Inc. | System and method for machine-learning-based atrial fibrillation detection |
US10433751B2 (en) | 2013-09-25 | 2019-10-08 | Bardy Diagnostics, Inc. | System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data |
US9655537B2 (en) | 2013-09-25 | 2017-05-23 | Bardy Diagnostics, Inc. | Wearable electrocardiography and physiology monitoring ensemble |
US10324080B2 (en) * | 2015-11-17 | 2019-06-18 | Purdue Research Foundation | Systems and methods for automated image-guided patch-clamp electrophysiology in vitro |
EP3405134A4 (en) | 2016-01-20 | 2019-09-18 | Intuitive Surgical Operations Inc. | SYSTEM AND METHOD FOR QUICK STOP AND RECOVERY OF MOVING DEVIATIONS IN REPOSITIONABLE MEDICAL DEVICE ARMS |
CN111321052B (en) * | 2018-12-14 | 2023-09-26 | 中国科学院深圳先进技术研究院 | Cell recording tank device and cell recording method |
US11096579B2 (en) | 2019-07-03 | 2021-08-24 | Bardy Diagnostics, Inc. | System and method for remote ECG data streaming in real-time |
US11696681B2 (en) | 2019-07-03 | 2023-07-11 | Bardy Diagnostics Inc. | Configurable hardware platform for physiological monitoring of a living body |
US11116451B2 (en) | 2019-07-03 | 2021-09-14 | Bardy Diagnostics, Inc. | Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities |
EP3970651A1 (en) * | 2020-09-16 | 2022-03-23 | Covidien LP | Multi-function surgical instruments |
CN117539148B (en) * | 2023-11-10 | 2025-02-25 | 南开大学 | A dynamic modeling and control method for patch clamp high-resistance sealing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120027807A1 (en) * | 2008-10-09 | 2012-02-02 | The General Hospital Corporation | Tissue engineered myocardium and methods of production and uses thereof |
US20120083861A1 (en) * | 2010-10-04 | 2012-04-05 | The General Hospital Corporation | Selective activation of neurons by sinusoidal electric stimulation |
-
2012
- 2012-11-13 US US13/676,082 patent/US9668804B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120027807A1 (en) * | 2008-10-09 | 2012-02-02 | The General Hospital Corporation | Tissue engineered myocardium and methods of production and uses thereof |
US20120083861A1 (en) * | 2010-10-04 | 2012-04-05 | The General Hospital Corporation | Selective activation of neurons by sinusoidal electric stimulation |
Non-Patent Citations (1)
Title |
---|
Mahdi Azizian, Student Member, IEEE, Rajni Patel, Fellow, IEEE, Cezar Gavrilovici and Michael Poulter, Computer-Assisted Patch Clamping, 2010 IEEE International Conference on Robotics and Automation, Anchorage Convention District, May 3-8, 2010, Anchorage, Alaska, USA, pp. 4131-4136. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10993634B2 (en) | 2016-07-06 | 2021-05-04 | Massachusetts Institute Of Technology | Image-guided closed-loop robotic system for automated whole-cell patch clamping electrophysiology of neurons in vivo |
US10733419B2 (en) | 2017-08-29 | 2020-08-04 | Georgia Tech Research Corporation | Systems and methods for cell membrane identification and tracking, and technique automation using the same |
US11188737B2 (en) | 2017-08-29 | 2021-11-30 | Georgia Tech Research Corporaton | Systems and methods for cell membrane identification and tracking, and technique automation using the same |
WO2019051072A1 (en) | 2017-09-06 | 2019-03-14 | Regents Of The University Of Minnesota | Robotic platform for high throughput injections into intact tissue |
US11866687B2 (en) | 2017-09-06 | 2024-01-09 | Regents Of The University Of Minnesota | Robotic platform for high throughput injections into intact tissue |
WO2020251749A3 (en) * | 2019-05-24 | 2021-04-08 | The Trustees Of Columbia University In The City Of New York | Integrated electrophysiology amplifying apparatus, computer-accessible medium, system and method for use thereof |
US12094161B2 (en) | 2021-03-24 | 2024-09-17 | Regents Of The University Of Minnesota | Multi-perspective microscopic imaging guided microinjection of microscopic objects across large field of views |
Also Published As
Publication number | Publication date |
---|---|
US20130225963A1 (en) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9668804B2 (en) | Automated cell patch clamping method and apparatus | |
Kodandaramaiah et al. | Automated whole-cell patch-clamp electrophysiology of neurons in vivo | |
Suk et al. | Advances in the automation of whole-cell patch clamp technology | |
Peng et al. | High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp | |
Kodandaramaiah et al. | Assembly and operation of the autopatcher for automated intracellular neural recording in vivo | |
US10324080B2 (en) | Systems and methods for automated image-guided patch-clamp electrophysiology in vitro | |
Jayant et al. | Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo | |
US8227223B2 (en) | Method and apparatus for facilitating evaluating migration of cells in vitro | |
Zhao et al. | Electric field–directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin | |
US9498293B2 (en) | Automated cell patch clamping method and apparatus | |
Dow et al. | Novel methods for the guidance and monitoring of single cells and simple networks in culture | |
Bortolotto et al. | Synaptic plasticity in the hippocampal slice preparation | |
Holst et al. | Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex | |
US20200261025A1 (en) | System and method for making and implanting high-density electrode arrays | |
Maki et al. | One-channel cell-attached patch-clamp recording | |
JP4164233B2 (en) | Automatic micromembrane potential measuring device | |
Clennell et al. | Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors | |
Peng et al. | Current approaches to characterize micro-and macroscale circuit mechanisms of Parkinson’s disease in rodent models | |
Halverson et al. | Feedback inhibition underlies new computational functions of cerebellar interneurons | |
JP2012143196A (en) | Neural activity measurement system and method for the same | |
Yang et al. | Development of automated patch clamp system for electrophysiology | |
Landry et al. | Electrophysiological and morphological characterization of single neurons in intact human brain organoids | |
Zhang et al. | Development of mechanostimulated patch-clamp system for cellular physiological study | |
Gonzalez et al. | Two-photon targeted, quad whole-cell patch-clamping robot | |
US10488391B2 (en) | Neural circuit probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:035762/0919 Effective date: 20150518 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KODANDARAMAIAH, SUHASA BANGALORE;BOYDEN, EDWARD STUART;SIGNING DATES FROM 20170501 TO 20170503;REEL/FRAME:042311/0124 Owner name: GEORGIA TECH RESEARCH CORPORATION, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOREST, CRAIG RICHARD;REEL/FRAME:042311/0336 Effective date: 20170502 Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TALEI FRANZESI, GIOVANNI;REEL/FRAME:042434/0209 Effective date: 20170501 Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOW, BRIAN YICHIUN;REEL/FRAME:042434/0193 Effective date: 20170501 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |