+

US9271108B2 - Secure tap to transfer objects - Google Patents

Secure tap to transfer objects Download PDF

Info

Publication number
US9271108B2
US9271108B2 US14/066,995 US201314066995A US9271108B2 US 9271108 B2 US9271108 B2 US 9271108B2 US 201314066995 A US201314066995 A US 201314066995A US 9271108 B2 US9271108 B2 US 9271108B2
Authority
US
United States
Prior art keywords
information
devices
motion
transferring
permission level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/066,995
Other versions
US20150118966A1 (en
Inventor
Howard Locker
Daryl Cromer
Richard Wayne Cheston
Randall Scott Springfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Switzerland International GmbH
Original Assignee
Lenovo Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo Singapore Pte Ltd filed Critical Lenovo Singapore Pte Ltd
Priority to US14/066,995 priority Critical patent/US9271108B2/en
Assigned to LENOVO (SINGAPORE) PTE. LTD. reassignment LENOVO (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHESTON, RICHARD WAYNE, CROMER, DARYL, LOCKER, HOWARD, SPRINGFIELD, RANDALL SCOTT
Publication of US20150118966A1 publication Critical patent/US20150118966A1/en
Application granted granted Critical
Publication of US9271108B2 publication Critical patent/US9271108B2/en
Assigned to LENOVO PC INTERNATIONAL LIMITED reassignment LENOVO PC INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO (SINGAPORE) PTE. LTD.
Assigned to LENOVO SWITZERLAND INTERNATIONAL GMBH reassignment LENOVO SWITZERLAND INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO PC INTERNATIONAL LIMITED
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H04W4/008
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0492Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload by using a location-limited connection, e.g. near-field communication or limited proximity of entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0869Network architectures or network communication protocols for network security for authentication of entities for achieving mutual authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/068Authentication using credential vaults, e.g. password manager applications or one time password [OTP] applications

Definitions

  • Information handling devices for example laptop computers, tablets, smart phones, e-readers, etc., may be used to interact with other devices.
  • Mobile devices commonly share information over some type of network connection.
  • Wireless mesh networks may be used in this regard.
  • Wireless mesh networks provide a distributed connection area or mesh using a plurality of mesh nodes or devices.
  • a wireless mesh network provides connectivity by distributing connectivity, including broader network access, among many wireless mesh nodes in communication with one another.
  • the mesh network may be used to share objects, e.g., data, files, etc., among devices connected via the mesh network.
  • devices may be physically tapped or bumped together to pair devices using near field communication for a transfer of an object between devices.
  • the object is thus transferred, e.g., using a network communication, commonly WiFi and/or BLUETOOTH communication or even near field communication (NFC).
  • a network communication commonly WiFi and/or BLUETOOTH communication or even near field communication (NFC).
  • one aspect provides a method, comprising: detecting two devices are proximate to one another utilizing a device component; comparing received device motion information to a predetermined motion; and after matching the received device motion information to a predetermined motion, transferring an object between the two devices.
  • Another aspect provides an information handling device, comprising: a processor; and a memory device storing instructions executable by the processor to: detect two devices are proximate to one another utilizing a device component; compare received device motion information to a predetermined motion; and after matching the received device motion information to a predetermined motion, transfer an object between the two devices.
  • a further aspect provides a program product, comprising: a storage medium comprising computer readable program code, the computer readable program code comprising: computer readable program code configured to detect two devices are proximate to one another utilizing a device component; computer readable program code configured to compare received device motion information to a predetermined motion; and computer readable program code configured to, after matching the received device motion information to a predetermined motion, transfer an object between the two devices.
  • FIG. 1 illustrates an example of information handling device circuitry.
  • FIG. 2 illustrates another example of an information handling device.
  • FIG. 3 illustrates an example method for secure object transfer between devices.
  • One of the benefits of a mesh network or device to device communication is access to the objects (e.g., data, files (e.g., video, music), etc.) across devices, e.g., actively part of the mesh network at a given moment in time.
  • An existing method for highly mobile devices to share information is to bump or tap into each other. There are various methods to bump two highly mobile devices together and after the successful bump pass information and/or data from one device to the other. The bump gets both devices close enough to pass information, e.g., via near field communication technology. The bump or tap brings the devices proximate to one another for pairing the two devices, e.g., NFC.
  • the devices pass information, e.g., share object(s) usually via a personal area network (PAN) such as BLUETOOTH and/or WiFi Direct (MIRACAST) technologies, although the transfer may be accomplished with NFC, e.g., depending on the amount of data to be transferred.
  • PAN personal area network
  • MIRACAST WiFi Direct
  • this method of object transfer is not very secure. For example, a user may leave his or her device, e.g., at a desk, and an unauthorized user could take the device and bump their device against it, thereby transferring information between devices.
  • Another problem with using a simple tap or bump as a trigger for object transfer is that there is no way to send different levels of permission during the bump or tap operation. Accordingly, what is needed is a more secure tap transfer method, with the possibility of having different levels of permission or granularity connected with the transfer.
  • An embodiment requires the user to move the device (e.g., smart phone, tablet, etc.) in three dimensional (3D) space in a specified motion, which may include a unique motion pattern or orientation, e.g., prior to the pairing of the devices (e.g., via bump or tap).
  • the object e.g., data, file, etc.
  • the object will only be sent to the second device if the user initiated motion is a match with the specified motion, e.g., stored as motion pattern or orientation information.
  • FIG. 1 includes a system on a chip design found for example in tablet or other mobile computing platforms.
  • Software and processor(s) are combined in a single chip 110 .
  • Internal busses and the like depend on different vendors, but essentially all the peripheral devices ( 120 ) may attach to a single chip 110 .
  • the circuitry 100 combines the processor, memory control, and I/O controller hub all into a single chip 110 .
  • systems 100 of this type do not typically use SATA or PCI or LPC. Common interfaces for example include SDIO and I2C.
  • power management chip(s) 130 e.g., a battery management unit, BMU, which manage power as supplied for example via a rechargeable battery 140 , which may be recharged by a connection to a power source (not shown).
  • BMU battery management unit
  • a single chip, such as 110 is used to supply BIOS like functionality and DRAM memory.
  • System 100 typically includes one or more of a WWAN transceiver 150 and a WLAN transceiver 160 for connecting to various networks, such as telecommunications networks and wireless Internet devices, e.g., access points.
  • one of the additional devices 120 is commonly a short range wireless communication device, such as a BLUETOOTH radio that may be used for near field communications, e.g., among devices communicating via a mesh network or device to device communication arrangement.
  • system 100 will include a touch screen 170 for data input and display.
  • System 100 also typically includes various memory devices, for example flash memory 180 and SDRAM 190 .
  • FIG. 2 depicts a block diagram of another example of information handling device circuits, circuitry or components.
  • the example depicted in FIG. 2 may correspond to computing systems such as the THINKPAD series of personal computers sold by Lenovo (US) Inc. of Morrisville, N.C., or other devices.
  • embodiments may include other features or only some of the features of the example illustrated in FIG. 2 .
  • the example of FIG. 2 includes a so-called chipset 210 (a group of integrated circuits, or chips, that work together, chipsets) with an architecture that may vary depending on manufacturer (for example, INTEL, AMD, ARM, etc.).
  • the architecture of the chipset 210 includes a core and memory control group 220 and an I/O controller hub 250 that exchanges information (for example, data, signals, commands, et cetera) via a direct management interface (DMI) 242 or a link controller 244 .
  • DMI 242 is a chip-to-chip interface (sometimes referred to as being a link between a “northbridge” and a “southbridge”).
  • the core and memory control group 220 include one or more processors 222 (for example, single or multi-core) and a memory controller hub 226 that exchange information via a front side bus (FSB) 224 ; noting that components of the group 220 may be integrated in a chip that supplants the conventional “northbridge” style architecture.
  • processors 222 for example, single or multi-core
  • memory controller hub 226 that exchange information via a front side bus (FSB) 224 ; noting that components of the group 220 may be integrated in a chip that supplants the conventional “northbridge” style architecture.
  • FFB front side bus
  • the memory controller hub 226 interfaces with memory 240 (for example, to provide support for a type of RAM that may be referred to as “system memory” or “memory”).
  • the memory controller hub 226 further includes a LVDS interface 232 for a display device 292 (for example, a CRT, a flat panel, touch screen, et cetera).
  • a block 238 includes some technologies that may be supported via the LVDS interface 232 (for example, serial digital video, HDMI/DVI, display port).
  • the memory controller hub 226 also includes a PCI-express interface (PCI-E) 234 that may support discrete graphics 236 .
  • PCI-E PCI-express interface
  • the I/O hub controller 250 includes a SATA interface 251 (for example, for HDDs, SDDs, 280 et cetera), a PCI-E interface 252 (for example, for wireless connections 282 ), a USB interface 253 (for example, for devices 284 such as a digitizer, keyboard, mice, cameras, phones, microphones, storage, other connected devices, et cetera), a network interface 254 (for example, LAN), a GPIO interface 255 , a LPC interface 270 (for ASICs 271 , a TPM 272 , a super I/O 273 , a firmware hub 274 , BIOS support 275 as well as various types of memory 276 such as ROM 277 , Flash 278 , and NVRAM 279 ), a power management interface 261 , a clock generator interface 262 , an audio interface 263 (for example, for speakers 294 ), a TCO interface 264 , a system management bus
  • the system upon power on, may be configured to execute boot code 290 for the BIOS 268 , as stored within the SPI Flash 266 , and thereafter processes data under the control of one or more operating systems and application software (for example, stored in system memory 240 ).
  • An operating system may be stored in any of a variety of locations and accessed, for example, according to instructions of the BIOS 268 .
  • a device may include fewer or more features than shown in the system of FIG. 2 .
  • Information handling device circuitry may be used in devices that are tapped or bumped to transfer information, e.g., using near field communication. Accordingly, using such a device, a user may bump another device to transfer the object of interest (e.g., data, audio file, video file, etc.). In an embodiment, a security step is added requiring additional information prior to transferring the object in question between the devices.
  • object of interest e.g., data, audio file, video file, etc.
  • the devices may be brought proximate to one another or bumped/tapped at 301 .
  • This permits the devices to be paired with one another in order to transfer object(s).
  • this is all that is required in order to transfer information/object(s) of interest between the two devices according to various tap or bump transfer applications.
  • device 1 and device 2 may exchange information following the tap, e.g., via near field communication, after the object(s) to be transferred are identified 302 .
  • the transfer of the object(s) between devices may take at various times after the devices are paired, e.g., immediately or later, such as in response to a trigger.
  • an additional requirement is imposed prior to committing the object transfer in view of making the transfer mechanism more secure.
  • a movement pattern matches an expected movement pattern at 303 . For example, at 303 it is determined if the user of device 1 has moved device 1 (e.g., smart phone, tablet, etc.) in three dimensional (3D) space in a unique pattern. This movement may occur at a predetermined time, e.g., prior to the bump or tap, thereafter, or both.
  • device 1 e.g., smart phone, tablet, etc.
  • 3D three dimensional
  • the object(s) (e.g., data, file, etc.) will only be sent to the other device, e.g., device 2 , if the user initiated motion is a match with the unique pattern at 303 .
  • the expected unique pattern may be predetermined and defined by the user, e.g., by performing the movement and storing it as a lock pattern, etc.
  • An embodiment therefore functions akin to a dial lock where a user must turn a dial in a predetermined patter, e.g., left a certain amount, then right a certain amount, then left a certain amount, etc., to form a combination.
  • a similar movement pattern may be utilized, e.g., as ascertained via an accelerometer or like device component(s) available on mobile devices.
  • the pattern can be as simple as just a left rotation X degrees, right rotation Y degrees, then left rotation X degrees, or may be more complex.
  • the device may use its components (e.g., compass, gyroscope, accelerometer, or some suitable combination of components) to determine if the user initiated motion pattern matches the stored pattern.
  • a unique orientation may be required, e.g., as sensed through a device component.
  • a device may be required to be positioned in a certain orientation in three dimensional space (e.g., utilizing information derived from a gyroscope) or facing a certain direction, e.g., north, as sensed via a compass of the device, prior to permitting the object(s) to be transferred.
  • the pattern may be more complex, e.g., involving movement before and after the bump or tap, or even including movement of both devices.
  • the pattern required prior to transfer at 303 may be extended to require the receiving device (e.g., device 2 ) to also have a unique matching movement pattern, as ascertained e.g., at 303 .
  • both devices and therefore users handling the devices
  • This provides that no user may insert or transfer an object into another user's device without the other user's approval, e.g., as ascertained via detecting an appropriate pattern of movement in 3D space.
  • the pattern matched at 303 may be multi-factor or associated with different transfer permissions, e.g., for different objects or information.
  • an embodiment may require different motion patterns at 303 for the transferring different objects or objects of different quality (e.g., time limited, non-transferable to third party devices, of a particular format, e.g., read only, etc.).
  • the various patterns associated with varying levels of transfer permissions may be simple or complex, e.g., involving one or more device movements or movements of one or more device, and/or with different timing (e.g., before a tap or bump, after a tap or bump, or suitable combinations thereof).
  • a non-limiting example includes requiring one pattern at 303 where the receiving device gets relevant information but does not get the required information to allow it to send an object to other devices. Another pattern required at 303 may give the receiving device the ability to allow it to send the object to other devices. Thus, there may be a multitude of patterns required at 303 , each having different effects on the object transfer and follow along capabilities (e.g., giving the receiving device different permissions with respect to information received, transmitted, or later transmitted to other devices).
  • the objects may not be transferred at 304 . Otherwise, if the received pattern or patterns are a match, the object(s) may be transferred between devices. As will be apparent from the description here, the requirement of various pattern(s) may be used to add security to the tap or bump transfer applications such that users retain greater control over objects and information that is retrieved from or transmitted to their devices.
  • aspects may be embodied as a system, method or device program product. Accordingly, aspects may take the form of an entirely hardware embodiment or an embodiment including software that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects may take the form of a device program product embodied in one or more device readable medium(s) having device readable program code embodied therewith.
  • the non-signal medium may be a storage medium.
  • a storage medium may be, for example, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of a storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a storage medium is not a signal and “non-transitory” includes all media except signal media.
  • Program code embodied on a storage medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, et cetera, or any suitable combination of the foregoing.
  • Program code for carrying out operations may be written in any combination of one or more programming languages.
  • the program code may execute entirely on a single device, partly on a single device, as a stand-alone software package, partly on single device and partly on another device, or entirely on the other device.
  • the devices may be connected through any type of connection or network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made through other devices (for example, through the Internet using an Internet Service Provider), through wireless connections, e.g., near-field communication, or through a hard wire connection, such as over a USB connection.
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment provides a method, including: detecting two devices are proximate to one another utilizing a device component; comparing received device motion information to a predetermined motion; and after matching the received device motion information to a predetermined motion, transferring an object between the two devices. Other aspects are described and claimed.

Description

BACKGROUND
Information handling devices (“devices”), for example laptop computers, tablets, smart phones, e-readers, etc., may be used to interact with other devices. Mobile devices commonly share information over some type of network connection. Wireless mesh networks may be used in this regard.
Wireless mesh networks provide a distributed connection area or mesh using a plurality of mesh nodes or devices. In contrast to more traditional networks that utilize a relatively small number of hotspots/access points to connect devices to a network, a wireless mesh network provides connectivity by distributing connectivity, including broader network access, among many wireless mesh nodes in communication with one another. Thus, the mesh network may be used to share objects, e.g., data, files, etc., among devices connected via the mesh network.
In terms of sharing objects, devices may be physically tapped or bumped together to pair devices using near field communication for a transfer of an object between devices. The object is thus transferred, e.g., using a network communication, commonly WiFi and/or BLUETOOTH communication or even near field communication (NFC).
BRIEF SUMMARY
In summary, one aspect provides a method, comprising: detecting two devices are proximate to one another utilizing a device component; comparing received device motion information to a predetermined motion; and after matching the received device motion information to a predetermined motion, transferring an object between the two devices.
Another aspect provides an information handling device, comprising: a processor; and a memory device storing instructions executable by the processor to: detect two devices are proximate to one another utilizing a device component; compare received device motion information to a predetermined motion; and after matching the received device motion information to a predetermined motion, transfer an object between the two devices.
A further aspect provides a program product, comprising: a storage medium comprising computer readable program code, the computer readable program code comprising: computer readable program code configured to detect two devices are proximate to one another utilizing a device component; computer readable program code configured to compare received device motion information to a predetermined motion; and computer readable program code configured to, after matching the received device motion information to a predetermined motion, transfer an object between the two devices.
The foregoing is a summary and thus may contain simplifications, generalizations, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting.
For a better understanding of the embodiments, together with other and further features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings. The scope of the invention will be pointed out in the appended claims.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 illustrates an example of information handling device circuitry.
FIG. 2 illustrates another example of an information handling device.
FIG. 3 illustrates an example method for secure object transfer between devices.
DETAILED DESCRIPTION
It will be readily understood that the components of the embodiments, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations in addition to the described example embodiments. Thus, the following more detailed description of the example embodiments, as represented in the figures, is not intended to limit the scope of the embodiments, as claimed, but is merely representative of example embodiments.
Reference throughout this specification to “one embodiment” or “an embodiment” (or the like) means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” or the like in various places throughout this specification are not necessarily all referring to the same embodiment.
Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to give a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that the various embodiments can be practiced without one or more of the specific details, or with other methods, components, materials, et cetera. In other instances, well known structures, materials, or operations are not shown or described in detail to avoid obfuscation.
One of the benefits of a mesh network or device to device communication is access to the objects (e.g., data, files (e.g., video, music), etc.) across devices, e.g., actively part of the mesh network at a given moment in time. An existing method for highly mobile devices to share information is to bump or tap into each other. There are various methods to bump two highly mobile devices together and after the successful bump pass information and/or data from one device to the other. The bump gets both devices close enough to pass information, e.g., via near field communication technology. The bump or tap brings the devices proximate to one another for pairing the two devices, e.g., NFC. Once paired, the devices pass information, e.g., share object(s) usually via a personal area network (PAN) such as BLUETOOTH and/or WiFi Direct (MIRACAST) technologies, although the transfer may be accomplished with NFC, e.g., depending on the amount of data to be transferred.
However, this method of object transfer is not very secure. For example, a user may leave his or her device, e.g., at a desk, and an unauthorized user could take the device and bump their device against it, thereby transferring information between devices. Another problem with using a simple tap or bump as a trigger for object transfer is that there is no way to send different levels of permission during the bump or tap operation. Accordingly, what is needed is a more secure tap transfer method, with the possibility of having different levels of permission or granularity connected with the transfer.
An embodiment requires the user to move the device (e.g., smart phone, tablet, etc.) in three dimensional (3D) space in a specified motion, which may include a unique motion pattern or orientation, e.g., prior to the pairing of the devices (e.g., via bump or tap). The object (e.g., data, file, etc.) will only be sent to the second device if the user initiated motion is a match with the specified motion, e.g., stored as motion pattern or orientation information.
The illustrated example embodiments will be best understood by reference to the figures. The following description is intended only by way of example, and simply illustrates certain example embodiments.
While various other circuits, circuitry or components may be utilized in information handling devices, with regard to smart phone and/or tablet circuitry 100, an example illustrated in FIG. 1 includes a system on a chip design found for example in tablet or other mobile computing platforms. Software and processor(s) are combined in a single chip 110. Internal busses and the like depend on different vendors, but essentially all the peripheral devices (120) may attach to a single chip 110. The circuitry 100 combines the processor, memory control, and I/O controller hub all into a single chip 110. Also, systems 100 of this type do not typically use SATA or PCI or LPC. Common interfaces for example include SDIO and I2C.
There are power management chip(s) 130, e.g., a battery management unit, BMU, which manage power as supplied for example via a rechargeable battery 140, which may be recharged by a connection to a power source (not shown). In at least one design, a single chip, such as 110, is used to supply BIOS like functionality and DRAM memory.
System 100 typically includes one or more of a WWAN transceiver 150 and a WLAN transceiver 160 for connecting to various networks, such as telecommunications networks and wireless Internet devices, e.g., access points. Additionally, one of the additional devices 120 is commonly a short range wireless communication device, such as a BLUETOOTH radio that may be used for near field communications, e.g., among devices communicating via a mesh network or device to device communication arrangement. Commonly, system 100 will include a touch screen 170 for data input and display. System 100 also typically includes various memory devices, for example flash memory 180 and SDRAM 190.
FIG. 2, for its part, depicts a block diagram of another example of information handling device circuits, circuitry or components. The example depicted in FIG. 2 may correspond to computing systems such as the THINKPAD series of personal computers sold by Lenovo (US) Inc. of Morrisville, N.C., or other devices. As is apparent from the description herein, embodiments may include other features or only some of the features of the example illustrated in FIG. 2.
The example of FIG. 2 includes a so-called chipset 210 (a group of integrated circuits, or chips, that work together, chipsets) with an architecture that may vary depending on manufacturer (for example, INTEL, AMD, ARM, etc.). The architecture of the chipset 210 includes a core and memory control group 220 and an I/O controller hub 250 that exchanges information (for example, data, signals, commands, et cetera) via a direct management interface (DMI) 242 or a link controller 244. In FIG. 2, the DMI 242 is a chip-to-chip interface (sometimes referred to as being a link between a “northbridge” and a “southbridge”). The core and memory control group 220 include one or more processors 222 (for example, single or multi-core) and a memory controller hub 226 that exchange information via a front side bus (FSB) 224; noting that components of the group 220 may be integrated in a chip that supplants the conventional “northbridge” style architecture.
In FIG. 2, the memory controller hub 226 interfaces with memory 240 (for example, to provide support for a type of RAM that may be referred to as “system memory” or “memory”). The memory controller hub 226 further includes a LVDS interface 232 for a display device 292 (for example, a CRT, a flat panel, touch screen, et cetera). A block 238 includes some technologies that may be supported via the LVDS interface 232 (for example, serial digital video, HDMI/DVI, display port). The memory controller hub 226 also includes a PCI-express interface (PCI-E) 234 that may support discrete graphics 236.
In FIG. 2, the I/O hub controller 250 includes a SATA interface 251 (for example, for HDDs, SDDs, 280 et cetera), a PCI-E interface 252 (for example, for wireless connections 282), a USB interface 253 (for example, for devices 284 such as a digitizer, keyboard, mice, cameras, phones, microphones, storage, other connected devices, et cetera), a network interface 254 (for example, LAN), a GPIO interface 255, a LPC interface 270 (for ASICs 271, a TPM 272, a super I/O 273, a firmware hub 274, BIOS support 275 as well as various types of memory 276 such as ROM 277, Flash 278, and NVRAM 279), a power management interface 261, a clock generator interface 262, an audio interface 263 (for example, for speakers 294), a TCO interface 264, a system management bus interface 265, and SPI Flash 266, which can include BIOS 268 and boot code 290. The I/O hub controller 250 may include gigabit Ethernet support.
The system, upon power on, may be configured to execute boot code 290 for the BIOS 268, as stored within the SPI Flash 266, and thereafter processes data under the control of one or more operating systems and application software (for example, stored in system memory 240). An operating system may be stored in any of a variety of locations and accessed, for example, according to instructions of the BIOS 268. As described herein, a device may include fewer or more features than shown in the system of FIG. 2.
Information handling device circuitry, as for example outlined in FIG. 1 or FIG. 2, may used in devices that are tapped or bumped to transfer information, e.g., using near field communication. Accordingly, using such a device, a user may bump another device to transfer the object of interest (e.g., data, audio file, video file, etc.). In an embodiment, a security step is added requiring additional information prior to transferring the object in question between the devices.
As an example, referring to FIG. 3, considering two mobile devices (e.g., device 1 and device 2), these devices may be brought proximate to one another or bumped/tapped at 301. This permits the devices to be paired with one another in order to transfer object(s). Conventionally, this is all that is required in order to transfer information/object(s) of interest between the two devices according to various tap or bump transfer applications. Thus, conventionally device 1 and device 2 may exchange information following the tap, e.g., via near field communication, after the object(s) to be transferred are identified 302. The transfer of the object(s) between devices may take at various times after the devices are paired, e.g., immediately or later, such as in response to a trigger.
However, in an embodiment, an additional requirement is imposed prior to committing the object transfer in view of making the transfer mechanism more secure. Thus, at 303 an embodiment, prior to transferring the object(s) between devices, determines if a movement pattern matches an expected movement pattern at 303. For example, at 303 it is determined if the user of device 1 has moved device 1 (e.g., smart phone, tablet, etc.) in three dimensional (3D) space in a unique pattern. This movement may occur at a predetermined time, e.g., prior to the bump or tap, thereafter, or both. The object(s) (e.g., data, file, etc.) will only be sent to the other device, e.g., device 2, if the user initiated motion is a match with the unique pattern at 303. The expected unique pattern may be predetermined and defined by the user, e.g., by performing the movement and storing it as a lock pattern, etc.
An embodiment therefore functions akin to a dial lock where a user must turn a dial in a predetermined patter, e.g., left a certain amount, then right a certain amount, then left a certain amount, etc., to form a combination. In an embodiment, a similar movement pattern may be utilized, e.g., as ascertained via an accelerometer or like device component(s) available on mobile devices. The pattern can be as simple as just a left rotation X degrees, right rotation Y degrees, then left rotation X degrees, or may be more complex. The device may use its components (e.g., compass, gyroscope, accelerometer, or some suitable combination of components) to determine if the user initiated motion pattern matches the stored pattern.
Additionally or in the alternative, a unique orientation may be required, e.g., as sensed through a device component. For example, a device may be required to be positioned in a certain orientation in three dimensional space (e.g., utilizing information derived from a gyroscope) or facing a certain direction, e.g., north, as sensed via a compass of the device, prior to permitting the object(s) to be transferred.
In other examples, the pattern may be more complex, e.g., involving movement before and after the bump or tap, or even including movement of both devices. For example, the pattern required prior to transfer at 303 may be extended to require the receiving device (e.g., device 2) to also have a unique matching movement pattern, as ascertained e.g., at 303. Thus, both devices (and therefore users handling the devices) need to approve the object(s) transfer at 303. This, for example, provides that no user may insert or transfer an object into another user's device without the other user's approval, e.g., as ascertained via detecting an appropriate pattern of movement in 3D space.
Moreover, the pattern matched at 303 may be multi-factor or associated with different transfer permissions, e.g., for different objects or information. For example, an embodiment may require different motion patterns at 303 for the transferring different objects or objects of different quality (e.g., time limited, non-transferable to third party devices, of a particular format, e.g., read only, etc.). In a similar way as a single pattern, the various patterns associated with varying levels of transfer permissions may be simple or complex, e.g., involving one or more device movements or movements of one or more device, and/or with different timing (e.g., before a tap or bump, after a tap or bump, or suitable combinations thereof).
A non-limiting example includes requiring one pattern at 303 where the receiving device gets relevant information but does not get the required information to allow it to send an object to other devices. Another pattern required at 303 may give the receiving device the ability to allow it to send the object to other devices. Thus, there may be a multitude of patterns required at 303, each having different effects on the object transfer and follow along capabilities (e.g., giving the receiving device different permissions with respect to information received, transmitted, or later transmitted to other devices).
Following a failed match, the objects may not be transferred at 304. Otherwise, if the received pattern or patterns are a match, the object(s) may be transferred between devices. As will be apparent from the description here, the requirement of various pattern(s) may be used to add security to the tap or bump transfer applications such that users retain greater control over objects and information that is retrieved from or transmitted to their devices.
As will be appreciated by one skilled in the art, various aspects may be embodied as a system, method or device program product. Accordingly, aspects may take the form of an entirely hardware embodiment or an embodiment including software that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects may take the form of a device program product embodied in one or more device readable medium(s) having device readable program code embodied therewith.
Any combination of one or more non-signal device readable medium(s) may be utilized. The non-signal medium may be a storage medium. A storage medium may be, for example, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of a storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a storage medium is not a signal and “non-transitory” includes all media except signal media.
Program code embodied on a storage medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, et cetera, or any suitable combination of the foregoing.
Program code for carrying out operations may be written in any combination of one or more programming languages. The program code may execute entirely on a single device, partly on a single device, as a stand-alone software package, partly on single device and partly on another device, or entirely on the other device. In some cases, the devices may be connected through any type of connection or network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made through other devices (for example, through the Internet using an Internet Service Provider), through wireless connections, e.g., near-field communication, or through a hard wire connection, such as over a USB connection.
Aspects are described herein with reference to the figures, which illustrate example methods, devices and program products according to various example embodiments. It will be understood that the actions and functionality may be implemented at least in part by program instructions. These program instructions may be provided to a processor of a general purpose information handling device, a special purpose information handling device, or other programmable data processing device or information handling device to produce a machine, such that the instructions, which execute via a processor of the device implement the functions/acts specified.
As used herein, the singular “a” and “an” may be construed as including the plural “one or more” unless clearly indicated otherwise.
This disclosure has been presented for purposes of illustration and description but is not intended to be exhaustive or limiting. Many modifications and variations will be apparent to those of ordinary skill in the art. The example embodiments were chosen and described in order to explain principles and practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
Thus, although illustrative example embodiments have been described herein with reference to the accompanying figures, it is to be understood that this description is not limiting and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the disclosure.

Claims (18)

What is claimed is:
1. A method, comprising: detecting two devices are proximate to one another utilizing a device component;
comparing received device motion information from at least one device to a predetermined motion; and
after matching the received device motion information to a predetermined motion, transferring an object between the two devices;
determining a permission level associated with the predetermined motion; and
determining if the permission level matches the object to be transferred;
wherein the transferring is not performed if the permission level does not match the object.
2. The method of claim 1, wherein the predetermined motion is obtained by accessing a store of device motion information.
3. The method of claim 1, wherein the comparing consists of an orientation comparison.
4. The method of claim 3, wherein the two devices are paired responsive to matching the received device orientation information to a predetermined orientation.
5. The method of claim 1, further comprising:
determining timing information of received device movement information; and
comparing the timing information of the device movement information to expected timing information;
wherein the transferring is not performed if the timing information does not match the expected timing information.
6. The method of claim 1, wherein the device motion information comprises device motion information of a device selected from an object transferring device and an object receiving device.
7. The method of claim 1, wherein the device motion information comprises device motion information of both the object transferring device and the object receiving device.
8. The method of claim 1, wherein the permission level determines a quality of the object to be transferred.
9. The method of claim 1, wherein the transferring an object between the two devices comprises transferring the objects wirelessly using short range device to device communication.
10. An information handling device, comprising:
a processor; and
a memory device storing instructions executable by the processor to:
detect two devices are proximate to one another utilizing a device component;
compare received device motion information from at least one device to a predetermined motion; and
after matching the received device motion information to a predetermined motion, transfer an object between the two devices;
wherein the instructions are further executable by the processor to:
determine a permission level associated with the predetermined motion; and
determine if the permission level matches the object to be transferred;
wherein transferring is not performed if the permission level does not match the object.
11. The information handling device of claim 10, wherein the predetermined motion is obtained by accessing a store of device motion information.
12. The information handling device of claim 10, wherein to compare consists of an orientation comparison.
13. The information handling device of claim 12, wherein the two devices are paired responsive to matching the received device orientation information to a predetermined orientation.
14. The information handling device of claim 10, wherein the instructions are further executable by the processor to:
determine timing information of received device movement information; and
compare the timing information of the device movement information to expected timing information;
wherein transferring is not performed if the timing information does not match the expected timing information.
15. The information handling device of claim 10, wherein the device motion information comprises device motion information of a device selected from an object transferring device and an object receiving device.
16. The information handling device of claim 10, wherein the device motion information comprises device motion information of both the object transferring device and the object receiving device.
17. The information handling device of claim 10, wherein the permission level determines a quality of the object to be transferred.
18. A program product, comprising:
a storage medium comprising computer readable program code, the computer readable program code comprising:
computer readable program code that detects two devices are proximate to one another utilizing a device component;
computer readable program code that compares received device motion information from at least one device to a predetermined motion;
computer readable program code that, after matching the received device motion information to a predetermined motion, transfers an object between the two devices;
computer readable program code that determines a permission level associated with the predetermined motion; and
computer readable program code that determines if the permission level matches the object to be transferred;
wherein transferring is not performed if the permission level does not match the object.
US14/066,995 2013-10-30 2013-10-30 Secure tap to transfer objects Active 2034-02-13 US9271108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/066,995 US9271108B2 (en) 2013-10-30 2013-10-30 Secure tap to transfer objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/066,995 US9271108B2 (en) 2013-10-30 2013-10-30 Secure tap to transfer objects

Publications (2)

Publication Number Publication Date
US20150118966A1 US20150118966A1 (en) 2015-04-30
US9271108B2 true US9271108B2 (en) 2016-02-23

Family

ID=52995955

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/066,995 Active 2034-02-13 US9271108B2 (en) 2013-10-30 2013-10-30 Secure tap to transfer objects

Country Status (1)

Country Link
US (1) US9271108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524123B2 (en) 2016-03-30 2019-12-31 Zoll Medical Corporation Establishing secure communication at an emergency care scene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100167646A1 (en) * 2008-12-30 2010-07-01 Motorola, Inc. Method and apparatus for device pairing
US20130165045A1 (en) * 2011-12-26 2013-06-27 Hon Hai Precision Industry Co., Ltd. Electronic device and method for sharing resources via bluetooth network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100167646A1 (en) * 2008-12-30 2010-07-01 Motorola, Inc. Method and apparatus for device pairing
US20130165045A1 (en) * 2011-12-26 2013-06-27 Hon Hai Precision Industry Co., Ltd. Electronic device and method for sharing resources via bluetooth network

Also Published As

Publication number Publication date
US20150118966A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
KR102511514B1 (en) Device and method for fast charging using various charge method
KR102391100B1 (en) Method and apparatus for providing interface
US9813662B2 (en) Transfer to target disambiguation
US9351098B2 (en) Providing access to and enabling functionality of first device based on communication with second device
US9495562B2 (en) Removable storage device data protection
US10782799B2 (en) Smart pen pairing and connection
US9881151B2 (en) Providing selective system privileges on an information handling device
US9939874B2 (en) Selectively disabling sensors and associated functions
US10416856B2 (en) Handedness for hand-held devices
US10257363B2 (en) Coordinating input on multiple local devices
US20180181289A1 (en) Sizing applications based on display parameters
US20150363008A1 (en) Displaying a user input modality
US10945087B2 (en) Audio device arrays in convertible electronic devices
US9271108B2 (en) Secure tap to transfer objects
US9420630B2 (en) Intelligent mesh object list buildup
US11614504B2 (en) Command provision via magnetic field variation
US11245957B2 (en) User profile sharing
US9659480B2 (en) Reminders based on virtual locations
US11093593B2 (en) User authentication for protected actions
US9628948B2 (en) Determining the necessity of device tracking
US20140156781A1 (en) Appending playback from multiple source devices to the same media stream
US20140245169A1 (en) User preference and capability profile
US11314287B2 (en) Display stabilization in foldable device
US20230199383A1 (en) Microphone setting adjustment based on user location
US20240129742A1 (en) Method For Unlocking Terminal Device by Wearable Device and Communication System

Legal Events

Date Code Title Description
AS Assignment

Owner name: LENOVO (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOCKER, HOWARD;CROMER, DARYL;CHESTON, RICHARD WAYNE;AND OTHERS;REEL/FRAME:031509/0402

Effective date: 20131028

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: LENOVO PC INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO (SINGAPORE) PTE. LTD.;REEL/FRAME:049688/0082

Effective date: 20160401

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: LENOVO SWITZERLAND INTERNATIONAL GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO PC INTERNATIONAL LIMITED;REEL/FRAME:069870/0670

Effective date: 20241231

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载