US9251608B2 - Data visualization of a datacenter - Google Patents
Data visualization of a datacenter Download PDFInfo
- Publication number
- US9251608B2 US9251608B2 US11/742,019 US74201907A US9251608B2 US 9251608 B2 US9251608 B2 US 9251608B2 US 74201907 A US74201907 A US 74201907A US 9251608 B2 US9251608 B2 US 9251608B2
- Authority
- US
- United States
- Prior art keywords
- values
- real
- time
- color
- datacenter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000013079 data visualisation Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000003086 colorant Substances 0.000 claims abstract description 14
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 238000013507 mapping Methods 0.000 claims abstract 4
- 238000012545 processing Methods 0.000 claims description 32
- 230000007613 environmental effect Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 description 9
- 238000012800 visualization Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241001270131 Agaricus moelleri Species 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004387 environmental modeling Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/206—Drawing of charts or graphs
-
- G06F17/246—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/166—Editing, e.g. inserting or deleting
- G06F40/177—Editing, e.g. inserting or deleting of tables; using ruled lines
- G06F40/18—Editing, e.g. inserting or deleting of tables; using ruled lines of spreadsheets
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
Definitions
- monitoring sensors and appliances In order to more accurately track changes in the operating environment of datacenter equipment, datacenter operators have increasingly turned to the use of monitoring sensors and appliances. These devices are installed in the datacenter (within or external to the equipment racks) and provide measured values for a wide variety of physical and electrical environmental parameters within the datacenter.
- the data provided by such devices may be monitored and displayed either by existing network monitoring software (e.g., HP 0 PENVIEVV® by HEWLETT-PACKARD®) or by other dedicated and/or proprietary software designed to work with specific sensors and/or appliances.
- the data collected is used by the monitoring software to display instantaneous and/or 2-dimensional trend data, and is sometimes used to trigger alarm and/or event notifications if one or more threshold values are exceeded by a monitored parameter.
- the data presented to operators reflects individual measurements and trends, but may not be very useful to operators in identifying and/or predicting in real-time the types of large scale environmental trends or issues that operators are likely to encounter in today's larger and more complex datacenters. Further, the large number of measurements that need to be monitored in a large datacenter may rapidly subject operators to information overload, creating a substantial risk that an impending or actual failure will go unnoticed.
- Other software packages are capable of providing datacenter environmental modeling (e.g., RACKWISE TM by VISUAL NETWORK DESIGN), but such software packages are limited to providing generalized calculated environmental predictions (e.g., total power consumption and total required cooling) based on models of the equipment within the datacenter.
- Still other general purpose fluid/thermal modeling software packages provide 3-dimensional modeling and display of fluid/thermal flows (e.g., FLOW-3D® by FLOW SCIENCE), but these packages are limited to providing theoretical projections of general parameters such as, for example, air flow and temperature variations.
- FIG. 1 shows a color 3-dimensional representation of heat distribution within racks of a datacenter, in accordance with at least some illustrative embodiments
- FIG. 2 shows a system for collecting, processing and displaying environmental data using a color 3-dimensional visualization, in accordance with at least some illustrative embodiments
- FIG. 3A shows an example of a system configuration, suitable for use as either the processing system or the workstation of FIG. 2 , in accordance with at least some illustrative embodiments;
- FIG. 3B shows a block diagram of the system configuration of FIG. 3A , in accordance with at least some illustrative embodiments
- FIG. 4 shows the placement of environmental sensors within an equipment rack or enclosure, in accordance with at least some illustrative embodiments
- FIG. 5 shows a color 3-dimensional visualization of interpolated environmental data, in accordance with at least some illustrative embodiments
- FIG. 6 shows a 2-dimensional representation of a datacenter used as part of a configuration tool, in accordance with at least some illustrative embodiments.
- FIG. 7 shows a method for collecting, processing and displaying environmental data using a color 3-dimensional visualization, in accordance with at least some illustrative embodiments.
- system refers to a collection of two or more hardware and/or software components, and may be used to refer to an electronic device, such as a computer, a portion of a computer, a combination of computers, etc.
- software includes any executable code capable of running on a processor, regardless of the media used to store the software.
- code stored in non-volatile memory and sometimes referred to as “embedded firmware,” is included within the definition of software.
- FIG. 1 shows a 3-D color visualization of the heat distribution within the racks of a datacenter, in accordance with at least some illustrative embodiments. Different temperatures are assigned to different colors, allowing the operator to assess the overall heat distribution throughout the datacenter at a glance, and without having to read numerical or graphical readings for individual sensors.
- color scheme described is sometimes referred to as “false coloring,” due to the fact that the colors are selected to highlight differences between displayed regions or zones and do not necessarily reflect any real physical color of the equipment, process or phenomena being represented.
- areas that are shown as blue and green are cooler zones, whereas areas showing up as yellow, orange and red are warmer zones.
- the orange and red zones represent hot zones (at least relatively hot), possibly requiring the operator's attention.
- the use of red and orange colors helps to highlight the area and focus the operator's attention on a potential problem.
- 3-D images are displayed on a display device (e.g., a computer display such as a cathode ray tube or liquid crystal display).
- the 3-D images reflect real-time values that are continuously collected from sensors placed throughout the datacenter, processed by a computing system and used to update the 3-D image displayed.
- the term “3-D image,” as used throughout the present disclosure comprises what is sometimes referred to as “3-D scenes.” Such 3-D scenes enable the user to change the viewpoint or position from which a 3-D image is viewed, allowing the user to virtually traverse the environment represented by the 3-D image.
- a user could move down an isle between racks in a 3-D scene of a datacenter, taking note of the distribution of a particular parameter (e.g., the heat distribution of each rack), much as an actual technician would walk down a real isle to inspect the operating conditions of real racks within a real datacenter.
- a particular parameter e.g., the heat distribution of each rack
- FIG. 2 illustrates a system 100 for collecting, processing and displaying datacenter sensor data, in accordance with at least some illustrative embodiments.
- Data is collected from a variety of sensors 150 , which each couple to one of several network interface devices (Sensor Net I/F) 160 .
- the sensors comprise temperature, humidity, and air flow sensors.
- Other sensors capable of monitoring a wide variety of parameters associated with datacenter equipment and operations will become apparent to those skilled in the art, and all such sensors are within the scope of the present disclosure.
- processing system 110 serves as a centralized data collection node where the collected data is processed, stored and made available for presentation to a datacenter operator.
- Processing system 110 comprises processing logic (Proc Logic) 112 , which performs at least some of the processing of the sensor data.
- processing logic 112 comprises a central processing unit (CPU) that executes software. Processing logic 112 processes the data as it is collected and stored, and further retrieves the stored data for display to the operator as previously described.
- the collected and processed data may be stored either in volatile storage or non-volatile storage, or both.
- real-time data is stored in real-time database 116 maintained within volatile storage device 114 (e.g., random access memory or RAM).
- volatile storage device 114 e.g., random access memory or RAM.
- Volatile storage device 114 couples to processing logic 112 and provides quick retrieval and/or display of the collected data.
- Long-term historical data is stored within historical database 122 , which is maintained within non-volatile storage device 120 (e.g., a hard disk drive), also coupled to processing logic 112 .
- FIGS. 3A and 3B show an illustrative system configuration 200 suitable for implementing processing system 110 and workstation 130 of FIG. 2 .
- the illustrative system configuration 200 comprises a chassis 202 , a display 204 , and an input device 206 .
- the system configuration 200 comprises a processor 226 , volatile storage 230 , and non-volatile storage 232 .
- Volatile storage 230 comprises a computer-readable medium such as random access memory (RAM).
- Non-volatile storage 232 comprises a computer-readable medium such as flash RAM, read-only memory (ROM), a hard disk drive, a compact disk read-only memory (CD-ROM), and combinations thereof.
- the computer-readable media of both volatile storage 230 and non-volatile storage 232 comprise, for example, software that is executed by processor 226 and provides both processing system 110 and workstation 130 with some or all of the functionality described herein.
- the system configuration 200 also comprises a network interface (Network I/F) 228 that enables the system configuration 200 to receive information via a local area network and/or a wired or wireless wide area network, represented in the example of FIG. 3A by Ethernet jack 212 .
- a display interface 222 couples to the display 204 .
- An operator interacts with the station via the input device 206 and/or pointing device 236 (e.g., a mouse), which couples to a peripheral interface 224 .
- the display 204 together with the input device 236 and/or the pointing device, may operate together as a user interface.
- System 200 may be a bus-based computer, with the bus 234 interconnecting the various elements shown in FIG. 3B .
- the peripheral interface 224 accepts signals from the keyboard 206 and other input devices such as a pointing device 236 , and transforms the signals into a form suitable for communication on the bus 234 .
- the display interface 222 may comprise a video card or other suitable display interface that accepts information from the bus 234 and transforms it into a form suitable for the display 204 .
- the audio interface 240 may comprise a sound card or other suitable audio interface that accepts information from the bus 234 and transforms it into a form suitable for driving the speaker 242 .
- the processor 226 gathers information from other system elements, including input data from the peripheral interface 224 , and program instructions and other data from non-volatile storage 232 or volatile storage 230 , or from other systems (e.g., a server used to store and distribute copies of executable code) coupled to a local area network or a wide area network via the network interface 228 .
- the processor 226 executes the program instructions and processes the data accordingly.
- the program instructions may further configure the processor 226 to send data to other system elements, such as information presented to the user via the display interface 222 and the display 204 , and audio presented to the user via the audio interface 240 and the speaker 242 .
- the network interface 228 enables the processor 226 to communicate with other systems via a network (e.g., network 140 of FIG. 2 ).
- Volatile storage 230 may serve as a low-latency temporary store of information for the processor 226
- non-volatile storage 232 may serve as a long term (but higher latency) store of information.
- the processor 226 operates in accordance with one or more programs stored on non-volatile storage 232 or received via the network interface 228 .
- the processor 226 may copy portions of the programs into volatile storage 230 for faster access, and may switch between programs or carry out additional programs in response to user actuation of the input device.
- the additional programs may be retrieved from non-volatile storage 232 or may be retrieved or received from other locations via the network interface 228 .
- One or more of these programs executes on system configuration 200 causing the configuration to perform at least some of the data collection and data processing functions of processing system 110 , as well as the display functions of workstation 130 , as disclosed herein.
- FIGS. 3A and 3B Although a fully equipped computer system is shown in the illustrative embodiment of FIGS. 3A and 3B , other embodiments comprise fewer options and may be suitable as the workstation 130 . At least some embodiments of workstation 130 comprise only some of the hardware features shown in FIGS. 3A and 3B , and only execute the software necessary to provide a user interface for datacenter monitoring software. Such embodiments of workstation 130 are sometimes referred to as a “thin” client. Similarly, at least some embodiments of processing system 110 comprise only some of the hardware features shown in FIGS. 3A and 3B . For example, if processing system 110 is used exclusively as a data collection and database server, keyboard 206 , pointing device 236 , speaker 242 and display 204 may not be needed. Other embodiments of workstation 130 and processing system 110 , with various combinations of hardware features and installed software, will become apparent to those skilled in the art, and all such embodiments of workstation 130 and processing system 110 are within the scope of the present disclosure.
- FIG. 4 shows the placement of the sensors within an equipment rack 400 , in accordance with at least some illustrative embodiments.
- the rack shown has sensors positioned at five distinct elevations within the rack (L 0 through L 4 ), with four sensors positioned at each elevation. Each of the four sensors is placed at or near the center of one of the four faces of the rack for a given level.
- sensors S 0,0 , S 0,1 , S 0,2 and S 0,3 are distributed around the base of the rack near the center of each rack face at that level. Sensors are similarly placed at each of the remaining levels L 1 through L 4 .
- Data collected from each of the sensors provides a sample point.
- An interpolated range of values representing the data in the space between adjacent sensors may subsequently be calculated for each set of sampled values, providing the data necessary to display either distinct gradients or regions of colors between points, or a continuously varying gradation of color.
- the gradations may be displayed along each face of the rack, as shown in FIG. 1 , or as gradations in space between racks along a specific plane or elevation, as shown in FIG. 5 .
- Sensors may also be placed under a raised floor, within air handlers, above a raised ceiling, and suspended from the ceiling between racks. Many other sensor positions, gradations and interpolation techniques will become apparent to those skilled in the art, and all such sensor positions, gradations and interpolation techniques are within the scope of the present disclosure.
- measurements may also be combined to produce other informative 3-D displays.
- a safe operating range may be defined and only variations above or below the range are shown as color gradations. All values within the safe range are shown as black. In this manner, only those ranges of interest stand out within the 3-D image of the datacenter.
- Relative measurements either to a static fixed value, a reference measured value, or a calculated value (e.g., an average, product or ratio) may also be displayed in a similar manner. Many other measurements, calculations and combinations of measurements and calculations will become apparent to those skilled in the art, and all such measurements, calculations and combinations of measurements and calculations are within the scope of the present disclosure.
- the 3-D display of the value of interest provides an overall, real-time representation that can be viewed and intuitively interpreted by an operator of the system, allowing the operator to quickly perceive, assess and interpret at a glance what would otherwise be an overwhelming amount of discrete information.
- the 3-D representation not only represents the individual data points, it graphically represents the relationships between samples, providing a consolidated image of the state of the datacenter in real-time, as well as changes to the state of the datacenter as they occur.
- Historic data may also be represented by the 3-D image, either directly in the form of a playback, or in combination with the real-time data. For example, in at least some illustrative embodiments differences between current data and historical data for a similar time period (e.g., the same day of the previous year) or differences with a historical average are highlighted on the display. Snapshots of distinct historical snapshots may also be combined to produce a time-lapse sequence in order to identify anomalies and trends that could be leading up to a problem or equipment failure. In other illustrative embodiments cumulative differences between a real-time value and a series of snapshots are displayed and may be used as a predictor of anomalies or problems. Many other combinations of real-time and historical data will become apparent to those skilled in the art, and all such combinations are within the scope of the present disclosure.
- FIG. 6 shows an example of a 2-dimensional (2-D) representation of the datacenter used as part of a configuration tool operated by a user at workstation 130 .
- Each rack 602 is placed within the floor plan of the datacenter, and each sensor 604 associated with each rack 602 is placed within a square adjacent to the associated rack.
- An interactive configuration window (not shown) is used to provide the relevant information for each sensor selected, including the position and elevation within the rack. The position information is later combined with the actual sensor data to produce the 3-D images previously described.
- FIG. 7 shows a method 700 for collecting and displaying datacenter sensor data as a color 3-D image, in accordance with at least some illustrative embodiments.
- real-time data is collected from the network of sensors 150 and transmitted by sensor network interfaces 160 to processing system 110 (block 702 ).
- Each data sample is time-tagged and stored as the current value for the corresponding sensor in the real-time database 116 (block 704 ), and as a time-sequential data point within the historical database 122 (block 706 ).
- the real-time data is then combined with sensor location/position data (block 708 ) previously stored as configuration data.
- the combined sensor and position data is then processed by processing system 110 (block 710 ). Processing may be as simple as forwarding the data for display “as is,” or may involve any number of complex calculations, such as derivative, integration and statistical calculations, just to name a few examples. A large variety of calculations are possible, and all such calculations are within the scope of the present disclosure.
- each resulting processed data value is mapped to one of a range of colors (block 712 ). In at least some illustrative embodiments, the color map is also stored as configuration data.
- the display at workstation 130 is then updated to reflect the color values of the latest processed data values (block 714 ), completing the method 700 (block 716 ).
- combinations of data samples are not limited to data of the same type, but also may include combinations and calculations between different types of data (e.g., a ratio calculated using a measured temperature and the power consumption of the equipment at that location and elevation, used to identify abnormal heat increases).
- a ratio calculated using a measured temperature and the power consumption of the equipment at that location and elevation, used to identify abnormal heat increases e.g., a ratio calculated using a measured temperature and the power consumption of the equipment at that location and elevation, used to identify abnormal heat increases.
- the embodiments described utilize color to display and emphasize the data values represented, other illustrative embodiments utilize grayscales in lieu of colors to represent the variations in the data values represented.
- the term “colors” as used in the present disclosure includes monochrome grayscales and halftones. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- User Interface Of Digital Computer (AREA)
- Testing And Monitoring For Control Systems (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/742,019 US9251608B2 (en) | 2007-04-30 | 2007-04-30 | Data visualization of a datacenter |
EP08743290A EP2143065A4 (fr) | 2007-04-30 | 2008-04-24 | Visualisation de donnees d'un centre de traitement informatique |
PCT/US2008/005348 WO2008133987A1 (fr) | 2007-04-30 | 2008-04-24 | Visualisation de donnees d'un centre de traitement informatique |
US14/957,210 US20160093077A1 (en) | 2007-04-30 | 2015-12-02 | Data visualization of a datacenter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/742,019 US9251608B2 (en) | 2007-04-30 | 2007-04-30 | Data visualization of a datacenter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/957,210 Continuation US20160093077A1 (en) | 2007-04-30 | 2015-12-02 | Data visualization of a datacenter |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080269932A1 US20080269932A1 (en) | 2008-10-30 |
US9251608B2 true US9251608B2 (en) | 2016-02-02 |
Family
ID=39887958
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/742,019 Active 2033-05-28 US9251608B2 (en) | 2007-04-30 | 2007-04-30 | Data visualization of a datacenter |
US14/957,210 Abandoned US20160093077A1 (en) | 2007-04-30 | 2015-12-02 | Data visualization of a datacenter |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/957,210 Abandoned US20160093077A1 (en) | 2007-04-30 | 2015-12-02 | Data visualization of a datacenter |
Country Status (3)
Country | Link |
---|---|
US (2) | US9251608B2 (fr) |
EP (1) | EP2143065A4 (fr) |
WO (1) | WO2008133987A1 (fr) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8351369B2 (en) * | 2007-12-12 | 2013-01-08 | Synapsense Corporation | Apparatus and method for adaptive data packet scheduling in mesh networks |
US7995467B2 (en) * | 2007-12-12 | 2011-08-09 | Synapsense Corporation | Apparatus and method for adapting to failures in gateway devices in mesh networks |
US8331282B2 (en) * | 2007-12-28 | 2012-12-11 | Synapsense Corporation | Apparatus and method for adaptive channel hopping in mesh networks |
US8885548B2 (en) | 2007-12-28 | 2014-11-11 | Synapsense Corporation | Apparatus and method for admitting new devices in a self-healing, self-organizing mesh network |
CN102067129B (zh) * | 2008-06-19 | 2015-04-29 | 惠普开发有限公司 | 容量规划 |
US8473898B2 (en) | 2008-07-08 | 2013-06-25 | Synapsense Corporation | Apparatus and method for building integrated distributed applications for use with a mesh network |
US9250663B2 (en) * | 2008-09-29 | 2016-02-02 | International Business Machines Corporation | System and method for dynamically modeling data center partitions |
US8983675B2 (en) | 2008-09-29 | 2015-03-17 | International Business Machines Corporation | System and method to dynamically change data center partitions |
US8532003B2 (en) | 2008-10-03 | 2013-09-10 | Synapsense Corporation | Apparatus and method for managing packet routing through internally-powered network devices in wireless sensor networks |
US8600560B2 (en) | 2008-12-30 | 2013-12-03 | Synapsense Corporation | Apparatus and method for controlling computer room air conditioning units (CRACs) in data centers |
US8538584B2 (en) | 2008-12-30 | 2013-09-17 | Synapsense Corporation | Apparatus and method for controlling environmental conditions in a data center using wireless mesh networks |
US8160838B2 (en) * | 2009-04-30 | 2012-04-17 | Synapsense Corporation | Apparatus and method for visualizing environmental conditions in a data center using wireless sensor networks |
EP2389743A4 (fr) * | 2009-04-30 | 2014-05-21 | Synapsense Corp | Appareil et procédé servant à visualiser des conditions environnementales dans un centre de données en utilisant des réseaux de capteurs sans fil |
US8845403B2 (en) | 2010-05-18 | 2014-09-30 | International Business Machines Corporation | Individually cooling one or more computers in a rack of computers in a data center |
US8233274B2 (en) | 2010-07-21 | 2012-07-31 | International Business Machines Corporation | Computer chassis cooling sidecar |
US8270161B2 (en) | 2010-08-06 | 2012-09-18 | International Business Machines Corporation | Hot or cold aisle computer chassis |
US8626346B2 (en) | 2010-08-06 | 2014-01-07 | International Business Machines Corporation | Dynamically adjustable floor tile for a data center |
US8811377B1 (en) | 2010-08-30 | 2014-08-19 | Synapsense Corporation | Apparatus and method for instrumenting devices to measure power usage using a multi-tier wireless network |
US8812275B2 (en) * | 2010-09-18 | 2014-08-19 | International Business Machines Corporation | Modeling movement of air under a floor of a data center |
US8756441B1 (en) * | 2010-09-30 | 2014-06-17 | Emc Corporation | Data center energy manager for monitoring power usage in a data storage environment having a power monitor and a monitor module for correlating associative information associated with power consumption |
US9588864B2 (en) * | 2011-12-27 | 2017-03-07 | Infosys Ltd. | Methods for assessing data center efficiency and devices thereof |
US9310784B1 (en) * | 2012-12-20 | 2016-04-12 | Google Inc. | Sensor system for monitoring data center equipment |
US9541472B2 (en) | 2013-03-15 | 2017-01-10 | Fluke Corporation | Unified data collection and reporting interface for equipment |
US9355010B2 (en) | 2013-10-29 | 2016-05-31 | Seagate Technology Llc | Deriving an operational state of a data center using a predictive computer analysis model |
US9883009B2 (en) * | 2013-12-27 | 2018-01-30 | International Business Machines Corporation | Automatic computer room air conditioning control method |
US20160110085A1 (en) * | 2014-10-20 | 2016-04-21 | Leeo, Inc. | Presenting environmental conditions using visual perception information |
US9870679B2 (en) | 2015-10-07 | 2018-01-16 | Senso2Me Bvba | Monitoring system using color coding |
DE102015117949A1 (de) * | 2015-10-21 | 2017-04-27 | Sontheim Industrie Elektronik GmbH | Verfahren zur Verfolgung des Verlaufes in einem verteilten System |
US9946328B2 (en) * | 2015-10-29 | 2018-04-17 | International Business Machines Corporation | Automated system for cold storage system |
US10516981B1 (en) * | 2015-12-03 | 2019-12-24 | Eta Vision Inc. | Systems and methods for sensing, recording, analyzing and reporting environmental conditions in data centers and similar facilities |
SG11201900513TA (en) * | 2016-07-21 | 2019-02-27 | Jpmorgan Chase Bank Na | Method and system for implementing a data center operating system |
US11099108B2 (en) * | 2018-11-21 | 2021-08-24 | Qc Labs | Systems and method for providing a graphical user interface for automated determination of randomized representative sampling |
CN110162567B (zh) * | 2019-05-21 | 2020-07-31 | 山东大学 | 基于颜色表优化的二维标量场数据可视化方法及系统 |
US11178021B2 (en) * | 2019-07-23 | 2021-11-16 | Core Scientific, Inc. | System and method for visually managing computing devices in a data center |
CN114092597B (zh) * | 2021-10-28 | 2025-02-11 | 东软云科技有限公司 | 生成温度云图的方法、装置、存储介质及电子设备 |
US20240144558A1 (en) * | 2022-10-27 | 2024-05-02 | Capital One Services, Llc | Generating video streams to depict bot performance during an automation run |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010019328A1 (en) | 1997-02-07 | 2001-09-06 | California Institute Of Technology | Monitoring and analysis of data in cyberspace |
US20030158718A1 (en) * | 2002-02-19 | 2003-08-21 | Nakagawa Osamu Samuel | Designing layout for internet datacenter cooling |
JP2003247012A (ja) | 2002-02-22 | 2003-09-05 | Nippon Steel Corp | 高炉状態表示方法、高炉状態表示システム、情報処理装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体 |
US20040041846A1 (en) * | 2002-04-10 | 2004-03-04 | Peter Hurley | System and method for visualizing data |
US20050086612A1 (en) * | 2003-07-25 | 2005-04-21 | David Gettman | Graphical user interface for an information display system |
US20050091596A1 (en) * | 2003-10-23 | 2005-04-28 | Microsoft Corporation | Graphical user interface for 3-dimensional view of a data collection based on an attribute of the data |
US20070038414A1 (en) * | 2005-05-02 | 2007-02-15 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US20070195087A1 (en) * | 2000-10-30 | 2007-08-23 | Mark Acosta | System and method for analyzing and imaging three-dimensional volume data sets |
US20080104546A1 (en) * | 2004-02-12 | 2008-05-01 | Fuji Xerox Co., Ltd. | Systems and methods for creating an interactive 3d visualization of indexed media |
US20080281551A1 (en) * | 2005-08-02 | 2008-11-13 | International Business Machines Corp. | Method and apparatus for three-dimensional measurements |
US7549070B2 (en) * | 2006-06-30 | 2009-06-16 | Sun Microsystems, Inc. | Method and apparatus for generating a dynamic power-flux map for a set of computer systems |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6174283B1 (en) * | 1996-05-09 | 2001-01-16 | Albert Einstein Healthcare Network | Apparatus and method for monitoring a system and displaying the status of the system |
US6467953B1 (en) * | 1999-03-30 | 2002-10-22 | Medical Solutions, Inc. | Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items |
US6154752A (en) * | 1998-02-13 | 2000-11-28 | Lockheed Martin Corporation | Chronological identification of hyper text links during back tracking |
US20050075839A1 (en) * | 2003-09-24 | 2005-04-07 | Dave Rotheroe | Electrical equipment monitoring |
US7265754B2 (en) * | 2003-11-12 | 2007-09-04 | Proto Manufacturing Ltd. | Method for displaying material characteristic information |
US7247493B2 (en) * | 2004-05-18 | 2007-07-24 | Virbac Corporation | Reusable pH sensor device and related methods |
US20060126085A1 (en) * | 2004-12-10 | 2006-06-15 | Owen Robert A | Non-linear colorization for imaging systems |
US7383691B2 (en) * | 2005-01-26 | 2008-06-10 | Hewlett-Packard Development Company, L.P. | Modular networked sensor assembly |
KR100734850B1 (ko) * | 2005-11-29 | 2007-07-03 | 한국전자통신연구원 | 센서 네트워크에 대한 시뮬레이션 장치 및 방법 |
US7620613B1 (en) * | 2006-07-28 | 2009-11-17 | Hewlett-Packard Development Company, L.P. | Thermal management of data centers |
US7490309B1 (en) * | 2006-08-31 | 2009-02-10 | Cadence Design Systems, Inc. | Method and system for automatically optimizing physical implementation of an electronic circuit responsive to simulation analysis |
US8732603B2 (en) * | 2006-12-11 | 2014-05-20 | Microsoft Corporation | Visual designer for non-linear domain logic |
JP5250871B2 (ja) * | 2008-12-24 | 2013-07-31 | インターナショナル・ビジネス・マシーンズ・コーポレーション | ムラ評価装置、ムラ評価方法、ディスプレイ検査装置、およびプログラム |
JP6803166B2 (ja) * | 2016-07-26 | 2020-12-23 | 富士通コンポーネント株式会社 | 情報処理装置 |
-
2007
- 2007-04-30 US US11/742,019 patent/US9251608B2/en active Active
-
2008
- 2008-04-24 EP EP08743290A patent/EP2143065A4/fr not_active Withdrawn
- 2008-04-24 WO PCT/US2008/005348 patent/WO2008133987A1/fr active Application Filing
-
2015
- 2015-12-02 US US14/957,210 patent/US20160093077A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010019328A1 (en) | 1997-02-07 | 2001-09-06 | California Institute Of Technology | Monitoring and analysis of data in cyberspace |
US20070195087A1 (en) * | 2000-10-30 | 2007-08-23 | Mark Acosta | System and method for analyzing and imaging three-dimensional volume data sets |
US20030158718A1 (en) * | 2002-02-19 | 2003-08-21 | Nakagawa Osamu Samuel | Designing layout for internet datacenter cooling |
JP2003247012A (ja) | 2002-02-22 | 2003-09-05 | Nippon Steel Corp | 高炉状態表示方法、高炉状態表示システム、情報処理装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体 |
US20040041846A1 (en) * | 2002-04-10 | 2004-03-04 | Peter Hurley | System and method for visualizing data |
US20050086612A1 (en) * | 2003-07-25 | 2005-04-21 | David Gettman | Graphical user interface for an information display system |
US20050091596A1 (en) * | 2003-10-23 | 2005-04-28 | Microsoft Corporation | Graphical user interface for 3-dimensional view of a data collection based on an attribute of the data |
US20080104546A1 (en) * | 2004-02-12 | 2008-05-01 | Fuji Xerox Co., Ltd. | Systems and methods for creating an interactive 3d visualization of indexed media |
US20070038414A1 (en) * | 2005-05-02 | 2007-02-15 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US20080281551A1 (en) * | 2005-08-02 | 2008-11-13 | International Business Machines Corp. | Method and apparatus for three-dimensional measurements |
US7549070B2 (en) * | 2006-06-30 | 2009-06-16 | Sun Microsystems, Inc. | Method and apparatus for generating a dynamic power-flux map for a set of computer systems |
Non-Patent Citations (2)
Title |
---|
Christian Cowan et al. "Monitoring Physical Threats in the Data Center" Jun. 1, 2006; URL=http:searchcio.techtarget.com/whitepaperPage/0,293857, sid 182-gcll1198408,00.html. |
Hewlett-Packard Development Company, L.P. et al., PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, mailed Aug. 14, 2008, International App. No. PCT/US2008/005348, International filing date: Apr. 24, 2008, 9 p. |
Also Published As
Publication number | Publication date |
---|---|
EP2143065A1 (fr) | 2010-01-13 |
WO2008133987A9 (fr) | 2009-05-28 |
US20160093077A1 (en) | 2016-03-31 |
US20080269932A1 (en) | 2008-10-30 |
EP2143065A4 (fr) | 2011-03-02 |
WO2008133987A1 (fr) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9251608B2 (en) | Data visualization of a datacenter | |
US8982130B2 (en) | Cluster mapping to highlight areas of electrical congestion | |
CN107729065B (zh) | 一种三维监控的方法以及系统 | |
US20200169700A1 (en) | Systems and methods for managing and displaying video sources | |
EP3358432B1 (fr) | Procédés et appareil pour gérer des ressources de commande de traitement | |
US20160380850A1 (en) | Method and control system providing one-click commissioning and push updates to distributed, large-scale information handling system (lihs) | |
JP2015537315A (ja) | ヒートマップを用いて情報技術の状況を表示 | |
US9274519B2 (en) | Methods and apparatus for monitoring operation of a system asset | |
US20050075839A1 (en) | Electrical equipment monitoring | |
CN102419578A (zh) | 显示过程控制信息的方法和装置 | |
CN114143220A (zh) | 实时数据可视化平台 | |
CN112016708A (zh) | 一种智能电缆的多维度数据展示方法及装置 | |
CN117541217A (zh) | 基于三维可视化电网设备管理业务的运维方法 | |
CN108496062B (zh) | 用于根据基于大数据标准偏差的度量来推断或提示hvac动作的系统和方法 | |
CN112052566A (zh) | 一种智能电缆模拟仿真方法及系统 | |
CN111580577A (zh) | 一种机房温度监控方法、装置、设备及介质 | |
WO2006133090A1 (fr) | Presentation de donnees d'etat de dispositifs de terrain dans des installations de commande de procedes | |
CN117349493B (zh) | 基于cim模型的电力系统数据可视化展示的方法及装置 | |
US20150248119A1 (en) | System and program for managing management target system | |
US9568502B2 (en) | Visual analytics of spatial time series data using a pixel calendar tree | |
CN116016876A (zh) | 基于三维地理信息与视频信息融合的方法、系统及终端 | |
WO2015054384A1 (fr) | Procédé et appareil de visualisation d'environnement dans une installation avec équipements électroniques | |
US10860162B2 (en) | Supervisory control system for controlling a technical system, a method and computer program products | |
WO2025008843A1 (fr) | Système et procédé de visualisation de données de couverture | |
CN112307534A (zh) | 一种基于电子地图的园区弱电方案在线设计方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHARDON, LUIS;FELIX, CARLOS J.;MEJIAS, JOSE;AND OTHERS;REEL/FRAME:021239/0168 Effective date: 20070619 |
|
AS | Assignment |
Owner name: HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.;REEL/FRAME:037079/0001 Effective date: 20151027 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |