US9242195B2 - Water filter with features for reduced spilling - Google Patents
Water filter with features for reduced spilling Download PDFInfo
- Publication number
- US9242195B2 US9242195B2 US13/688,664 US201213688664A US9242195B2 US 9242195 B2 US9242195 B2 US 9242195B2 US 201213688664 A US201213688664 A US 201213688664A US 9242195 B2 US9242195 B2 US 9242195B2
- Authority
- US
- United States
- Prior art keywords
- casing
- water
- annular body
- chamber
- water filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 215
- 238000001914 filtration Methods 0.000 claims description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 239000013536 elastomeric material Substances 0.000 claims description 3
- 238000001223 reverse osmosis Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract description 6
- 241000272525 Anas platyrhynchos Species 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 organics Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- JLYXXMFPNIAWKQ-GNIYUCBRSA-N gamma-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-GNIYUCBRSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N gamma-hexachlorocyclohexane Natural products ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229960002809 lindane Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/14—Safety devices specially adapted for filtration; Devices for indicating clogging
- B01D35/157—Flow control valves: Damping or calibrated passages
- B01D35/1573—Flow control valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/30—Filter housing constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/30—Filter housing constructions
- B01D2201/301—Details of removable closures, lids, caps, filter heads
- B01D2201/302—Details of removable closures, lids, caps, filter heads having inlet or outlet ports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/14—Safety devices specially adapted for filtration; Devices for indicating clogging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/14—Safety devices specially adapted for filtration; Devices for indicating clogging
- B01D35/157—Flow control valves: Damping or calibrated passages
Definitions
- the present subject matter relates generally to water filters.
- Water filters are generally divided into two classes: point of entry water filters and point of use water filters.
- Point of use water filters can be installed at a kitchen sink or within a refrigerator appliance in order to filter water entering such devices.
- water filters are generally provided with a filtering media such as a block of activated carbon.
- the water filter's filtering media can adsorb or remove contaminants such as chlorine and lead from water prior to delivering such water to a user.
- the water filter can filter water prior to such water entering the refrigerator's ice maker or water dispenser.
- the block of activated carbon has pores that permit a flow of water through the block.
- contaminants such as sand, rust, and cysts within the flow of water can be mechanically filtered out of the water.
- volatile organic compounds such as chloroform, lindane, and atrazine can be adsorbed into pore surfaces as water moves through the carbon block.
- the filtering capacity of the filtering media can decrease over time due to pores becoming clogged or pore surfaces become saturated with contaminates.
- conditions within the filtering media can provide for large scale bacteria growth, particularly over time. For example, bacteria can start to grow within the carbon block given the right water conditions and sufficient time.
- the water filter is preferably replaced or serviced about every six months regardless of its current performance.
- changing the water filter can be a messy and time consuming task. For example, when the water filter is removed it is filled with water, and such water can spill if the water filter is tipped or tilted during removal.
- tipping or tilting certain water filters can be required in order to remove certain water filters due to their location. Such spills can be time consuming and inconvenient to clean.
- certain consumers only replace the water filter after it has become blocked, e.g., by sediment accumulation around and within the carbon block.
- the present subject matter provides a water filter.
- the water filter includes a check valve positioned at an opening of a casing.
- the check valve regulates a flow of liquid through the opening of the casing. By regulating the flow of liquid, the check valve can hinder spilling of liquid contained within the water filter during removal or replacement of the water filter. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
- a water filter in a first exemplary embodiment, includes a casing that defines a chamber for receipt of water to be filtered and an opening that provides access to the chamber of the casing.
- a filtering media is disposed within the chamber of the casing for filtering a flow of water through the chamber of the casing.
- a check valve is mounted to the casing at the opening of the casing. The check valve is configured for regulating the flow of liquid through the chamber of the casing.
- a refrigerator appliance in a second exemplary embodiment, includes a cabinet that defines a chilled compartment for receipt of food items for storage.
- a water filter is mounted to the cabinet.
- the water filter includes a casing that defines a chamber for receipt of water to be filtered and an opening that provides access to the chamber of the casing.
- a filtering media is disposed within the chamber of the casing for filtering a flow of water through the chamber of the casing.
- a check valve is mounted to the casing at the opening of the casing. The check valve is configured for regulating the flow of liquid through the chamber of the casing.
- FIG. 1 provides a front view of a refrigerator appliance according to an exemplary embodiment of the present subject matter.
- FIG. 2 provides a front view of the refrigerator appliance of FIG. 1 with refrigerator doors of the refrigerator appliance shown in an open configuration to reveal a fresh food chamber of the refrigerator appliance.
- FIG. 3 provides a perspective view of a water filtering assembly according to an exemplary embodiment of the present subject matter.
- the water filtering assembly includes a water filter and a manifold.
- FIG. 4 provides a section view of the water filtering assembly of FIG. 3 .
- FIG. 5 is a partial, section view of the water filter of FIG. 3 .
- the water filter includes a check valve according to an exemplary embodiment of the present subject matter.
- FIG. 6 is a partial, section view of the check valve removed from the water filter of FIG. 5 .
- FIG. 7 is a partial, section view of the water filter of FIG. 3 .
- the water filter includes a check valve according to an additional exemplary embodiment of the present subject matter.
- FIG. 8 is a top, plan view of the check valve removed from the water filter of FIG. 5 .
- FIG. 1 is a front view of an exemplary embodiment of a refrigerator appliance 100 .
- Refrigerator appliance 100 includes a cabinet or housing 120 defining an upper fresh food chamber 122 and a lower freezer chamber 124 arranged below the fresh food chamber 122 .
- refrigerator appliance 100 is generally referred to as a bottom mount refrigerator.
- housing 120 also defines a mechanical compartment (not shown) for receipt of a sealed cooling system.
- Refrigerator doors 126 , 128 are rotatably hinged to an edge of housing 120 for accessing fresh food compartment 122 .
- a freezer door 130 is arranged below refrigerator doors 126 , 128 for accessing freezer chamber 124 .
- freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within freezer chamber 124 .
- Refrigerator appliance 100 includes a dispensing assembly 110 for dispensing water and/or ice.
- Dispensing assembly 110 includes a dispenser 114 positioned on an exterior portion of refrigerator appliance 100 .
- Dispenser 114 includes a discharging outlet 134 for accessing ice and water.
- An activation member 132 is mounted below discharging outlet 134 for operating dispenser 114 .
- activation member 132 is shown as a paddle.
- activation member 132 may be any other suitable mechanism for signaling or initiating a flow of ice and/or water into a container within dispenser 114 , e.g., a switch or button.
- a user interface panel 136 is provided for controlling the mode of operation.
- user interface panel 136 includes a water dispensing button (not labeled) and an ice-dispensing button (not labeled) for selecting a desired mode of operation such as crushed or non-crushed ice.
- Discharging outlet 134 and activation member 132 are an external part of dispenser 114 , and are mounted in a recessed portion 138 defined in an outside surface of refrigerator door 126 .
- Recessed portion 138 is positioned at a predetermined elevation convenient for a user to access ice or water and enabling the user to access ice without the need to bend-over and without the need to access freezer chamber 124 .
- recessed portion 138 is positioned at a level that approximates the chest level of a user.
- FIG. 2 is a perspective view of refrigerator appliance 100 having refrigerator doors 126 , 128 in an open position to reveal the interior of fresh food chamber 122 .
- Dispensing assembly 110 includes an insulated housing 142 mounted within refrigerator chamber 122 . Due to insulation surrounding insulated housing 142 , the temperature within insulated housing 142 can be maintained at levels different from the ambient temperature in the surrounding fresh food chamber 122 .
- insulated housing 142 is constructed and arranged to operate at a temperature that facilitates producing and storing ice. More particularly, insulated housing 142 contains an ice maker for creating ice and feeding the same to a receptacle 160 that is mounted on refrigerator door 126 . As illustrated in FIG. 2 , receptacle 160 is placed at a vertical position on refrigerator door 126 that will allow for the receipt of ice from a discharge opening 162 located along a bottom edge 164 of insulated housing 142 when refrigerator door 126 is in a closed position (shown in FIG. 1 ). As door 126 is closed or opened, receptacle 160 is moved in and out of position under insulated housing 142 .
- insulated housing 142 and its ice maker can be positioned directly on door 126 .
- the ice maker could be located on the door for the freezer compartment and directly over receptacle 160 , e.g., in a configuration where the fresh food compartment and the freezer compartment are located side by side (as opposed to over and under as shown in FIGS. 1 and 2 ). As such, the use of an insulated housing would be unnecessary.
- Other configurations for the location of receptacle 160 , an ice maker, and/or insulated housing 142 may be used as well.
- Operation of the refrigerator appliance 100 is regulated by a controller (not shown) that is operatively coupled to user interface panel 136 and/or activation member 132 (shown in FIG. 1 ).
- Panel 136 provides selections for user manipulation of the operation of refrigerator appliance 100 such as e.g., selections between whole or crushed ice, chilled water, and/or other options as well.
- the controller operates various components of the refrigerator appliance 100 .
- the controller may include a memory and one or more microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 100 .
- the memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH.
- the processor executes programming instructions stored in memory.
- the memory may be a separate component from the processor or may be included onboard within the processor.
- the controller may be positioned in a variety of locations throughout refrigerator appliance 100 .
- the controller may be located within beneath the user interface panel 136 on door 126 .
- input/output (“I/O”) signals may be routed between the controller and various operational components of refrigerator appliance 100 .
- the user interface panel 136 may represent a general purpose I/O (“GPIO”) device or functional block.
- the user interface 136 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads.
- the user interface 136 may be in communication with the controller via one or more signal lines or shared communication busses.
- Refrigerator appliance 100 also includes a water filtering assembly 170 for filtering water coming into refrigerator appliance 100 from a water supply (not shown) such as a municipal water source or a well.
- Water filtering assembly 170 can remove contaminants such as chlorine, chloroform, lead, arsenic, pharmaceuticals, microbes, and/or other undesirable substances from water supplied to refrigerator appliance 100 .
- water filtering assembly 170 can supply filtered water to the ice maker within insulated housing 142 and/or discharging outlet 134 .
- water includes purified water and solutions or mixtures containing water and, e.g., elements (such as calcium, chlorine, and fluorine), salts, bacteria, nitrates, organics, and other chemical compounds or substances.
- elements such as calcium, chlorine, and fluorine
- salts such as calcium, chlorine, and fluorine
- FIG. 3 provides a perspective view of a water filtering assembly 200 according to an exemplary embodiment of the present subject matter.
- Water filtering assembly 200 may be used in the refrigerator appliance 100 , e.g., as water filtering assembly 170 ( FIG. 2 ).
- water filtering assembly 200 may be used in any other suitable appliance such as an ice maker, as a point of use water filtration system, e.g., installed beneath a sink, or as a point of entry water filtration system for an entire household.
- Water filtering assembly 200 defines an axial direction A, a radial direction R, and a circumferential direction C.
- Water filtering assembly 200 also includes a manifold 210 and a water filter 220 removably mounted to manifold 210 .
- Manifold 210 includes a mounting bracket 216 that defines holes 218 . Fasteners (not shown) such as nails, pegs, tabs, screws, or bolts may be inserted through holes 218 to mount water filtering system 200 , e.g., to housing 120 of refrigerator appliance 100 ( FIG. 2 ), to a kitchen cabinet beneath a kitchen sink, or to a wall within a house.
- Manifold 210 also defines an entrance 212 and an exit 214 .
- Entrance 212 may be in fluid communication with a water supply and receive unfiltered water from the water supply. From entrance 212 , such unfiltered water is directed into water filter 220 . Such unfiltered water passes through water filter 220 and exits manifold 210 at exit 214 as filtered water. Such filtered water may, e.g., be directed to the ice maker within insulated housing 142 ( FIG. 2 ), discharging outlet 134 ( FIG. 2 ), a kitchen sink faucet, and/or any other suitable use.
- FIG. 4 provides a section view of water filtering assembly 200 .
- Water filter 220 of water filtering assembly 200 includes a casing 230 that defines a chamber 231 .
- Casing 230 also extends between a top portion 291 and a bottom portion 292 , e.g., along the axial direction A.
- Casing 230 also defines an opening 233 at top portion 291 of casing 230 . Opening 233 permits access to chamber 231 of casing 230 .
- a cap 240 is mounted to casing 230 at opening 233 of casing 230 .
- Cap 240 defines an inlet 241 and an outlet 242 .
- Inlet 241 is in fluid communication with entrance 212 of manifold 210 and with chamber 231 of casing 230 .
- Outlet 242 of cap 240 is in fluid communication with exit 214 of manifold 210 and chamber 231 of casing 230 .
- filtered water can exit chamber 231 of casing 230 through outlet 242 of cap 240 .
- a filtering media 232 is disposed within chamber 231 .
- Filtering media 232 is spaced apart from an inner surface 290 of casing 230 , e.g., along the radial direction R.
- a brace 286 positioned within chamber 231 adjacent cap 240 supports filtering media 232 at top portion 291 of casing 240 in order to define a gap 262 between inner surface 290 of casing 230 and an outer surface 293 of filtering media 232 .
- brace 286 may be glued or in some other manner fixed to filtering media 232 in order to define gap 262 , position filtering media 232 vertically, and block potential bypass flow between filtering media 232 and outlet 242 of cap 240 .
- Filtering media 232 also divides chamber 231 into an unfiltered volume 272 and a filtered volume 274 .
- Filtering media 232 can remove impurities and contaminants from water passing through filtering media 232 from unfiltered volume 272 to filtered volume 274 .
- Filtering media 232 may include any suitable mechanism for filtering water such as, e.g., ceramic filters, activated carbon filters, polymer filters, or reverse osmosis filters.
- unfiltered describes a volume within chamber 231 that is not filtered relative to filtering media 232 .
- water filtering assembly 200 may include additional filters that filter water entering chamber 231 .
- unfiltered volume may be filtered relative to other filters but not filtering media 232 .
- water passing though water filtering assembly 200 can follow a path through water filtering assembly 200 .
- unfiltered water can enter water filtering assembly 200 through entrance 212 of manifold 210 .
- Such unfiltered water can then flow though inlet 241 of cap 240 into unfiltered volume 272 of chamber 231 .
- Such unfiltered water can pass though filtering media 232 to remove impurities and can exit filtering media 232 into filtered volume 274 of chamber 231 as filtered water.
- Such filtered water can then pass through outlet 242 of cap 240 and exit water filtering assembly 200 through exit 214 of manifold 210 .
- unfiltered water can follow the path through water filtering assembly 200 .
- unfiltered water can pass though filtering media 232 , and filtered water can exit water filtering assembly 200 .
- Such filtering can improve taste and/or safety of water.
- effectiveness of filtering media 232 can decrease over time.
- bacteria can accumulate or grow within filtering media 232 over time.
- filtering media 232 and/or water filter 220 may require changing after a certain time interval in order to maintain proper operation of water filtering assembly 200 .
- filtering media 232 and/or water filter 220 may require changing about every six months.
- Water filtering assembly 200 includes features for assisting replacement of water filter 220 .
- water filter 220 includes features for hindering spilling of water contained within water filter 220 during removal or replacement of water filter 220 from water filtering assembly 200 .
- FIG. 5 is a partial, section view of water filter 220 .
- Water filter 220 includes a check valve assembly 250 .
- Check valve assembly 250 is mounted at opening 233 ( FIG. 4 ) of casing 230 in order to regulate a flow of water through opening 233 of casing 230 , e.g., into and out of chamber 231 of casing 230 .
- check valve assembly 250 is mounted at inlet 241 of cap 240 in order to regulate a flow of water through inlet 241 of cap 240 , e.g., into and out of unfiltered volume 272 of chamber 231 .
- check valve assembly 250 or an additional check valve may be mounted at outlet 242 of cap 240 in order to regulate a flow of water through outlet 242 of cap 240 , e.g., into and out of filtered volume 274 of chamber 231 .
- Check valve assembly 250 includes features for hindering spilling of water contained within water filter 220 during removal or replacement of water filter 220 from water filtering assembly 200 .
- check valve assembly 250 is configured for permitting water to flow into chamber 231 through check valve assembly 250 and hindering water from flowing out of chamber 231 through check valve assembly 250 .
- check valve assembly 250 can act as a one-way valve. By hindering water from flowing out of chamber 231 through check valve assembly 250 , check valve assembly 250 can limit or hinder water from spilling during removal of water filter 220 from water filtering assembly 200 .
- Check valve assembly 250 is discussed in greater detail below.
- FIG. 6 is a partial, section view of check valve assembly 250 removed from water filter 220 .
- Check valve assembly 250 includes an annular body 251 .
- Annular body 251 may be constructed of any suitable material, e.g., a plastic such as polyvinyl chloride.
- Annular body 251 has a top surface 252 and a bottom surface 254 .
- Top surface 252 is positioned opposite bottom surface 254 such that top and bottom surfaces 252 and 254 are spaced apart, e.g., along a vertical direction V or axial direction A.
- Annular body 251 also defines passages 255 . Passages 255 extend through annular body 251 from top surface 252 to bottom surface 254 . Passages 255 permit a flow of water through annular body 251 .
- annular body 251 defines two passages.
- annular body 251 may define any suitable number of passages, e.g., one, three, four, five, six, or more passages.
- Passages 255 of annular body 251 extend along the circumferential direction C.
- passages 255 are substantially arcuate, e.g., in a plane that is perpendicular to the axial direction A or vertical direction V.
- passages 255 extend about the circumferential direction C, e.g., in the plane that is perpendicular to the axial direction A or vertical direction V, in an amount that can be described by a central angle ⁇ as shown in FIG. 8 , where angle ⁇ is about ninety degrees.
- central angle ⁇ may be any suitable angle.
- angle ⁇ may be between about twenty degrees and about one hundred and sixty degrees, between about twenty degrees and about one hundred and twenty degrees, or between about twenty degrees and about eighty degrees.
- Flaps 256 are mounted to annular body 251 .
- flaps 256 are received within passages 255 in order to mount flaps 256 to annular body 251 .
- Flaps 256 are constructed of an elastomeric material such as a rubber. Thus, flaps 256 are flexible.
- flaps 256 include a proximal portion 257 that is secured to annular body 251 on bottom surface 254 of annular body 251 at passages 255 . Thus, proximal portion 257 is static relative to annular body 251 .
- Flaps 256 also include a distal portion 258 that is spaced apart from proximal portion 257 , e.g., along the radial direction R. Distal portion 258 is moveable or flexible relative to annular body 251 such that distal portion 258 can move, e.g., along the axial direction A, relative to annular body 251 .
- flaps 256 function as a check valve such that flaps 256 hinder or obstruct a flow of water through passages 255 when distal portion 258 of flaps 256 is positioned on bottom surface 254 of annular body 251 .
- flaps 256 assist with defining spaces 259 when distal portion 258 of flaps 256 is spaced apart from bottom surface 254 of annular body 251 , e.g., along the axial direction A. Water can flow through spaces 259 when distal portion 258 of flaps 256 is spaced apart from bottom surface 254 of annular body 251 .
- flaps 256 are configured for regulating a flow of water through passages 255 and into chamber 231 .
- water can enter passages 255 at top surface 252 of annular body 251 .
- Such water can flow through passages 255 to bottom surface 254 of annular body 251 and exit passages 255 at spaces 259 because the flow of water through passages 255 urges distal portion 258 of flaps 256 away from bottom surface 254 .
- water Conversely, if water is urged into passages 255 at bottom surface 254 , such water will impact flaps 256 and urge distal portion 258 of flaps 256 against bottom surface 254 of annular body 251 .
- With distal portion 258 of flaps 256 positioned on bottom surface 254 water is hindered from flowing through passages 255 by flaps 256 .
- flaps 256 can assist with hindering water from flowing out of cavity 231 , e.g., during removal of water filter 220 from water filtering assembly 200 such as during a replacement of water filter 220 .
- FIG. 7 is a partial, section view of water filter 220 .
- check valve assembly 250 includes duck bill valves 260 positioned at passages 262 rather than flaps 256 ( FIG. 6 ).
- duck bill valves 260 function as a check valve rather than flaps 256 ( FIG. 6 ) to regulate the flow of water through water filter 220 .
- passages 262 are substantially circular rather than annular as with passages 255 ( FIG. 6 ).
- flaps 256 duck bill valves 260 regulate a flow of water through water filter 220 .
- duck bill valves 260 permit water to flow through passages 262 from top surface 252 to bottom surface 254 .
- duck bill valves 260 hinder water from flowing through passages 262 from bottom surface 254 to top surface 252 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/688,664 US9242195B2 (en) | 2012-11-29 | 2012-11-29 | Water filter with features for reduced spilling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/688,664 US9242195B2 (en) | 2012-11-29 | 2012-11-29 | Water filter with features for reduced spilling |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140144172A1 US20140144172A1 (en) | 2014-05-29 |
US9242195B2 true US9242195B2 (en) | 2016-01-26 |
Family
ID=50772075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/688,664 Expired - Fee Related US9242195B2 (en) | 2012-11-29 | 2012-11-29 | Water filter with features for reduced spilling |
Country Status (1)
Country | Link |
---|---|
US (1) | US9242195B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024102918A1 (en) | 2022-11-09 | 2024-05-16 | Electrolux Home Products, Inc. | Cartridge and method for cleaning water lines of an appliance |
WO2024102914A1 (en) | 2022-11-09 | 2024-05-16 | Electrolux Home Products, Inc. | Reusable water filter cartridge |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2022015796A (en) * | 2020-06-12 | 2023-03-23 | Pepsico Inc | Water filter and filter cartridge. |
USD958933S1 (en) * | 2020-09-18 | 2022-07-26 | Tianjin Bright Sight Commerce Co., Ltd | Filter |
USD982132S1 (en) | 2021-10-20 | 2023-03-28 | Yaroslav Shchohla | Water filter cartridge cap |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030042192A1 (en) * | 2001-09-04 | 2003-03-06 | Nam Young Sik | Manifold adapted for replaceable fluid filter cartridge |
US20030042191A1 (en) * | 2001-08-29 | 2003-03-06 | Nam Young Sik | Manifold adapted for replaceable fluid filter cartridge |
US6632355B2 (en) | 2001-07-30 | 2003-10-14 | Pentapure Incorporated | Low spillage replaceable water filter assembly |
US6966986B1 (en) * | 2004-07-12 | 2005-11-22 | Rwl Corporation | Under the counter filter installation |
US20060124532A1 (en) * | 1996-08-08 | 2006-06-15 | Magnusson Jan H | Dripless purification manifold and cartridge |
US7506666B2 (en) * | 2005-04-29 | 2009-03-24 | 3M Innovative Properties Company | Anti-drip ring and drip seal |
-
2012
- 2012-11-29 US US13/688,664 patent/US9242195B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124532A1 (en) * | 1996-08-08 | 2006-06-15 | Magnusson Jan H | Dripless purification manifold and cartridge |
US6632355B2 (en) | 2001-07-30 | 2003-10-14 | Pentapure Incorporated | Low spillage replaceable water filter assembly |
US20030042191A1 (en) * | 2001-08-29 | 2003-03-06 | Nam Young Sik | Manifold adapted for replaceable fluid filter cartridge |
US20030042192A1 (en) * | 2001-09-04 | 2003-03-06 | Nam Young Sik | Manifold adapted for replaceable fluid filter cartridge |
US6966986B1 (en) * | 2004-07-12 | 2005-11-22 | Rwl Corporation | Under the counter filter installation |
US7506666B2 (en) * | 2005-04-29 | 2009-03-24 | 3M Innovative Properties Company | Anti-drip ring and drip seal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024102918A1 (en) | 2022-11-09 | 2024-05-16 | Electrolux Home Products, Inc. | Cartridge and method for cleaning water lines of an appliance |
WO2024102914A1 (en) | 2022-11-09 | 2024-05-16 | Electrolux Home Products, Inc. | Reusable water filter cartridge |
Also Published As
Publication number | Publication date |
---|---|
US20140144172A1 (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9027361B2 (en) | Water filter | |
US10099162B2 (en) | Filter cartridge | |
US10913020B2 (en) | Magnetic interface for a water filter assembly | |
US10603612B2 (en) | Electromagnet interface for a water filter assembly | |
US9242195B2 (en) | Water filter with features for reduced spilling | |
US10126043B2 (en) | Filter assembly and a refrigerator appliance | |
US20150157967A1 (en) | Water Filter Cartridge and Assembly | |
US9366388B2 (en) | Refrigerator appliance and a method for monitoring a water filter assembly within the same | |
US9688546B2 (en) | Electrical connection for an appliance water filter | |
US10173156B2 (en) | Filter cartridge | |
US9139452B2 (en) | Water filter assembly | |
US10018407B2 (en) | Filter cartridge | |
US10773191B2 (en) | Filter assembly | |
KR102656807B1 (en) | Water purifier | |
US10905989B2 (en) | Electromagnet interface for a water filter assembly | |
US10150067B2 (en) | Filter cartridge | |
US20180056215A1 (en) | Filter cartridge | |
US10272370B2 (en) | Anti-drip filter assembly | |
US9687764B2 (en) | Filter with audible notification features | |
US20130306530A1 (en) | Drinking water server | |
KR101369874B1 (en) | Water purifier using ultrasonic wave oscillator | |
KR102401191B1 (en) | Water discharging apparatus | |
JP3169406U (en) | Simple water purifier | |
US10631525B1 (en) | Multi-path aquarium filtration apparatus | |
US8256625B2 (en) | Water filtration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHAFFER, TIMOTHY SCOTT;REEL/FRAME:029373/0892 Effective date: 20120921 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: HAIER US APPLIANCE SOLUTIONS, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038969/0001 Effective date: 20160606 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240126 |