+

US8759451B2 - Method of making a graft copolymer - Google Patents

Method of making a graft copolymer Download PDF

Info

Publication number
US8759451B2
US8759451B2 US13/333,083 US201113333083A US8759451B2 US 8759451 B2 US8759451 B2 US 8759451B2 US 201113333083 A US201113333083 A US 201113333083A US 8759451 B2 US8759451 B2 US 8759451B2
Authority
US
United States
Prior art keywords
methacrylate
acrylate
polymer
isomers
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/333,083
Other versions
US20130165589A1 (en
Inventor
Ralf Mruk
Frank Schmitz
Robert Fokko Roskamp
Alexandra Hermann
Rudolf Wilhelm Zentel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodyear Tire and Rubber Co
Original Assignee
Goodyear Tire and Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Tire and Rubber Co filed Critical Goodyear Tire and Rubber Co
Priority to US13/333,083 priority Critical patent/US8759451B2/en
Priority to EP12197577.5A priority patent/EP2607101A1/en
Priority to JP2012277193A priority patent/JP6161895B2/en
Priority to CN201210560578.3A priority patent/CN103172809B/en
Publication of US20130165589A1 publication Critical patent/US20130165589A1/en
Assigned to GOODYEAR TIRE & RUBBER COMPANY, THE reassignment GOODYEAR TIRE & RUBBER COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERMANN, ALEXANDRA, ZENTEL, RUDOLF WILHELM
Assigned to GOODYEAR TIRE & RUBBER COMPANY, THE reassignment GOODYEAR TIRE & RUBBER COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MRUK, RALF, ROSKAMP, ROBERT FOKKO, SCHMITZ, FRANK
Application granted granted Critical
Publication of US8759451B2 publication Critical patent/US8759451B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • C08G81/022Block or graft polymers containing only sequences of polymers of C08C or C08F containing sequences of polymers of conjugated dienes and of polymers of alkenyl aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • tread compounds In the ongoing effort to improve tire design, there is a recognized tension among tire performance, rolling resistance (or fuel economy), and treadwear. Typically, for use in a consumer tire, a tread compound is designed to optimized between these three considerations. However, efforts to improve for example fuel economy often lead to compromises in performance and/or treadwear. For higher performance tires desired by driving enthusiasts, the achievement better performance often comes with a compromise in treadwear or fuel economy. There is a desire therefore to develop tread compounds that can achieve improvement in any of performance, fuel economy, and treadwear with little or no compromise in the other two. One approach is in the elastomeric polymers used in the tread compound.
  • the reversible addition-fragmentation chain transfer (RAFT) polymerization is a versatile controlled radical polymerization method which can be used for the polymerization of a variety of monomers. Due to the controlled characteristics of the RAFT-polymerization, the polydispersities of the resulting polymers are relatively low and their molecular weights can be modified within a wide range by changing the initiator and CTA concentration.
  • the RAFT-polymerization is initiated by a radical starter (for example AIBN) and a chain transfer agent (CTA).
  • Suitable CTAs contain thiocarbonylthio-moieties such as dithioesters, trithiocarbonates, dithiocarbamates and xanthates. After the RAFT-polymerization, the respective thiocarbonylthio-moieties remain attached to the polymer chains as functional endgroups.
  • the present invention is directed to a method of making a graft copolymer, comprising the steps of:
  • first polymer comprising at least one carbon-carbon double bond
  • first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer
  • the second polymer reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
  • FIG. 1 shows UV-VIS spectra of a trithiocarbonate RAFT chain transfer agent, PNIPAM with a trithiocarbonate-end group and PNIPAM with a thiol group.
  • FIG. 2 shows the 1 H-NMR spectrum of a styrene-butadiene elastomer and of a styrene-butadiene elastomer functionalized with PNIPAM.
  • FIG. 3 shows GPC curves for a styrene-butadiene elastomer and for three PNIPAM-functionalized styrene-butadiene elastomers.
  • the present invention is directed to use of endfunctionalized polymers produced by RAFT-polymerization in rubber compounds.
  • Thiocarbonylthio-moieties representing the endgroups of the RAFT-polymers can be considered as protected mercapto-groups.
  • the endgroups can be cleaved by nucleophiles present in the compounds.
  • nucleophiles that could induce the cleavage are accelerators (such as diphenyl guanidine or cyclohexylamine derived from CBS) or antioxidants such as 6-PPD.
  • cleavage of thiocarbonylthio moieties is the cleavage of thioesters in rubber compounds which can be transformed to the respective thiol by reaction with diphenylguanidine.
  • the thiol-endfunctionalized RAFT-polymers obtained by the cleavage of the respective thiocarbonylthio-moieties can couple with rubber elastomers during the vulcanization reaction.
  • thermoplastic side chains for example styrene derivatives, N-monosubstituted or N,N-disubstituted polyacrylamides; polyacrylates or polymethacrylates might also be considered but interference with the cleavage reaction would have to be checked
  • the side chains could act as thermoplastic phase in the final compound leading to additional reinforcement.
  • statistic copolymers or block-copolymers obtained by RAFT-polymerization could also be used in compounds.
  • the covalent coupling of the thiol endfunctionalized RAFT-polymers to the elastomers will prevent macro-phase separation which would prevent the improvement of compound properties.
  • RAFT-polymers with a relatively low molecular weight (for example in the range of several 1,000 g/mol or even lower molecular weight species) are preferable.
  • first polymer comprising at least one carbon-carbon double bond
  • first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer
  • the second polymer reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
  • a rubber composition comprising the graft copolymer, and a pneumatic tire with a tread comprising the rubber composition.
  • One step of the method to produce the graft copolymer is to obtain, a first polymer comprising at least one carbon-carbon double bond.
  • the first polymer comprising at least one carbon-carbon double bond is a diene based elastomer.
  • the phrases “rubber or elastomer containing olefinic unsaturation” or “diene based elastomer” as used herein are equivalent and are intended to include both natural rubber and its various raw and reclaim forms as well as various synthetic rubbers. In the description of this invention, the terms “rubber” and “elastomer” may be used interchangeably, unless otherwise prescribed.
  • rubber composition “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials and such terms are well known to those having skill in the rubber mixing or rubber compounding art.
  • Representative synthetic rubbers are the homopolymerization products of butadiene and its homologues and derivatives, for example, methylbutadiene (i.e., isoprene), dimethylbutadiene and pentadiene as well as copolymers such as those formed from butadiene or its homologues or derivatives with other unsaturated monomers.
  • acetylenes for example, vinyl acetylene
  • olefins for example, isobutylene, which copolymerizes with isoprene to form butyl rubber
  • vinyl compounds for example, acrylic acid, acrylonitrile (which polymerize with butadiene to form NBR), methacrylic acid and styrene, the latter compound polymerizing with butadiene to form SBR, as well as vinyl esters and various unsaturated aldehydes, ketones and ethers, e.g., acrolein, methyl isopropenyl ketone and vinylethyl ether.
  • synthetic rubbers include neoprene (polychloroprene), polybutadiene (including cis-1,4-polybutadiene), polyisoprene (including cis-1,4-polyisoprene), butyl rubber, halobutyl rubber such as chlorobutyl rubber or bromobutyl rubber, styrene/isoprene/butadiene rubber, copolymers of 1,3-butadiene or isoprene with monomers such as styrene, acrylonitrile and methyl methacrylate, as well as ethylene/propylene terpolymers, also known as ethylene/propylene/diene monomer (EPDM), and in particular, ethylene/propylene/dicyclopentadiene terpolymers.
  • neoprene polychloroprene
  • polybutadiene including cis-1,4-polybutadiene
  • rubbers which may be used include alkoxy-silyl end functionalized solution polymerized polymers (SBR, PBR, IBR and SIBR), silicon-coupled and tin-coupled star-branched polymers.
  • SBR alkoxy-silyl end functionalized solution polymerized polymers
  • PBR polybutadiene
  • SIBR silicon-coupled and tin-coupled star-branched polymers.
  • the preferred rubber or elastomers are polyisoprene (natural or synthetic), polybutadiene and SBR.
  • an emulsion polymerization derived styrene/butadiene might be used having a relatively conventional styrene content of about 20 to about 28 percent bound styrene or, for some applications, an E-SBR having a medium to relatively high bound styrene content, namely, a bound styrene content of about 30 to about 45 percent.
  • E-SBR emulsion polymerization prepared E-SBR
  • styrene and 1,3-butadiene are copolymerized as an aqueous emulsion.
  • the bound styrene content can vary, for example, from about 5 to about 50 percent.
  • the E-SBR may also contain acrylonitrile to form a terpolymer rubber, as E-SBAR, in amounts, for example, of about 2 to about 30 weight percent bound acrylonitrile in the terpolymer.
  • Emulsion polymerization prepared styrene/butadiene/acrylonitrile copolymer rubbers containing about 2 to about 40 weight percent bound acrylonitrile in the copolymer are also contemplated as diene based rubbers for use in this invention.
  • S-SBR solution polymerization prepared SBR
  • S-SBR typically has a bound styrene content in a range of about 5 to about 50, preferably about 9 to about 36, percent.
  • S-SBR can be conveniently prepared, for example, by organo lithium catalyzation in the presence of an organic hydrocarbon solvent.
  • cis 1,4-polybutadiene rubber may be used.
  • BR cis 1,4-polybutadiene rubber
  • Such BR can be prepared, for example, by organic solution polymerization of 1,3-butadiene.
  • the BR may be conveniently characterized, for example, by having at least a 90 percent cis 1,4-content.
  • the second polymer is obtained by polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group; and cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group.
  • the terminal functional group of the second polymer is incorporated in the second polymer during polymerization through the mechanism of reversible addition-fragmentation chain transfer (RAFT). More details of the RAFT polymerization mechanism may be found by reference to Moad et al., Aust. J. Chem. 2005, 58, 379-410. As is known in the art, RAFT polymerization of free-radical polymerizable monomers is accomplished in the presence of a thiocarbonylthio RAFT chain transfer agent of general formula (I)
  • Suitable thiocarbonylthio RAFT chain transfer agents include dithioesters, trithiocarbonates, dithiocarbamates, and xanthates.
  • Suitable RAFT chain transfer agents are known in the art, for example as disclosed in Moad et al., Aust. J. Chem. 2005, 58, 379-410; U.S. Pat. Nos. 7,399,801; 7,666,962; U.S. Publications 2007/0225447; 2007/0232783.
  • Multifunctional RAFT agents are known, as disclosed for example in Bivigou-Koumba et al., Macromolecular Chemistry and Physics 2009, 210, 565-578.
  • the thiocarbonylthio chain transfer agent is a trithiocarbonate. In one embodiment, the thiocarbonylthio chain transfer agent is selected from the group consisting of S-1-dodecyl-S-( ⁇ ′-dimethyl- ⁇ ′′-acetic acid) trithiocarbonate and 4-cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid.
  • the chain-terminated polymer has the general formula (II)
  • P n represents the polymer formed by RAFT polymerization.
  • Second monomers suitable for use in the RAFT polymerizatoni include styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, 1,3-butadiene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, oxidants, lactones, lactams, cyclic anhydrides, cyclic siloxanes and combinations thereof.
  • Specific monomers or comonomers that may be used include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, .alpha.-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, 2-ethy
  • the second monomer to be used in the RAFT polymerization includes acrylamides and substituted acrylamides, methacrylamides and substituted methacrylamides, acrylic acids and substituted acrylic acids, methacrylic acids and substituted methacrylic acids, vinyl alkyl ethers and substituted vinyl alkyl ethers, vinyl caprolactams and substituted vinyl caprolactams, oligo(ethylene glycol) methacrylate and 2-(2-methoxyethoxy) ethyl methacrylate, and the like.
  • the second monomer is of formula III
  • R 2 and R 3 are independently selected from the group consisting of hydrogen, C2 to C6 linear alkyl, C2 to C6 branched alkyl, and C3 to C6 cycloalkyl, with the proviso that at least one of R 2 and R 3 is not hydrogen.
  • the chain terminated polymer of formula II is then reacted with a suitable nucleophile to cleave the C—S linkage to obtain a second polymer of formula (IV) having a terminal thiol group H—S—P n (IV)
  • the chain terminated polymer of formula II is treated by aminolysis to obtain the thiol-terminated polymer of formula IV.
  • the second polymer may be combined in a rubber composition with the diene based first polymer during rubber mixing as for example in a Banbury mixer, rubber mill or the like. No solvent is required and is generally excluded.
  • the compound of formula IV reacts with the diene based elastomer through reaction of a terminal thiol groups of the compound of formula IV with the unsaturated carbon-carbon bond of the diene based elastomer.
  • the thiol-terminated compound IV is reacted with the diene based elastomer in the presence of a free-radical initiator via a thiol-ene reaction as is known in the art, see for example Macromolecules 2008, 41, 9946-9947.
  • the free-radical initiator is selected from the group consisitng of 2,4,6-Trimethylbenzoyldiphenylphosphine oxide and azobisisobutyonitrile (AIBN).
  • the reaction between the first and second polymers may occur by adding the chain terminated polymer of formula II to the rubber composition in its uncleaved form.
  • suitable nucleophile such as diphenylguanidine or a phenylene diamine compound
  • the polymer of formula II may be cleaved in situ during the rubber mixing and curing process, thereby exposing the thiol radical to react with the diene based elastomer to form the graft copolymer.
  • suitable nucleophiles might include amines generated by curatives, for example cyclohexylamine generated by decomposition of CBS or ammonia derived from hexamethylene tetramine used as secondary accelerator.
  • the thiol might react with sulfur and a mercaptobenzothiazole type accelerator to a polysulfide-containing compound which might be integrated into the elastomer network via a standard cure reaction.
  • a radical starter would not be required.
  • the molecular weight of the chain terminated polymer of formula II should be low enough to facilitate mixing of the rubber composition such that the thiocarbonylthio groups obtain good contact with the nucleophile and consequently cleave to the thiol form.
  • the molecular weight of the second polymer may be in a range of from 500 to 1000.
  • the number n of [S—P n ]groups bonded to the first polymer ranges from about 2 to about 30 in a given copolymer molecule.
  • the graft copolymer may be included in a rubber composition.
  • the rubber composition may include, in addition to the graft copolymer, one or more diene based elastomers.
  • the phrases “rubber or elastomer containing olefinic unsaturation” or “diene based elastomer” are equivalent and are intended to include both natural rubber and its various raw and reclaim forms as well as various synthetic rubbers.
  • the terms “rubber” and “elastomer” may be used interchangeably, unless otherwise prescribed.
  • the terms “rubber composition,” “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials and such terms are well known to those having skill in the rubber mixing or rubber compounding art.
  • Representative synthetic polymers are the homopolymerization products of butadiene and its homologues and derivatives, for example, methylbutadiene, dimethylbutadiene and pentadiene as well as copolymers such as those formed from butadiene or its homologues or derivatives with other unsaturated monomers.
  • acetylenes for example, vinyl acetylene
  • olefins for example, isobutylene, which copolymerizes with isoprene to form butyl rubber
  • vinyl compounds for example, acrylic acid, acrylonitrile (which polymerize with butadiene to form NBR), methacrylic acid and styrene, the latter compound polymerizing with butadiene to form SBR, as well as vinyl esters and various unsaturated aldehydes, ketones and ethers, e.g., acrolein, methyl isopropenyl ketone and vinylethyl ether.
  • synthetic rubbers include neoprene (polychloroprene), polybutadiene (including cis-1,4-polybutadiene), polyisoprene (including cis-1,4-polyisoprene), butyl rubber, halobutyl rubber such as chlorobutyl rubber or bromobutyl rubber, styrene/isoprene/butadiene rubber, copolymers of 1,3-butadiene or isoprene with monomers such as styrene, acrylonitrile and methyl methacrylate, as well as ethylene/propylene terpolymers, also known as ethylene/propylene/diene monomer (EPDM), and in particular, ethylene/propylene/dicyclopentadiene terpolymers.
  • neoprene polychloroprene
  • polybutadiene including cis-1,4-polybutadiene
  • rubbers which may be used include alkoxy-silyl end functionalized solution polymerized polymers (SBR, PBR, IBR and SIBR), silicon-coupled and tin-coupled star-branched polymers.
  • SBR alkoxy-silyl end functionalized solution polymerized polymers
  • PBR polybutadiene
  • SIBR silicon-coupled and tin-coupled star-branched polymers.
  • the preferred rubber or elastomers are polyisoprene (natural or synthetic), polybutadiene and SBR.
  • the at least one additional rubber is preferably of at least two of diene based rubbers.
  • a combination of two or more rubbers is preferred such as cis 1,4-polyisoprene rubber (natural or synthetic, although natural is preferred), 3,4-polyisoprene rubber, styrene/isoprene/butadiene rubber, emulsion and solution polymerization derived styrene/butadiene rubbers, cis 1,4-polybutadiene rubbers and emulsion polymerization prepared butadiene/acrylonitrile copolymers.
  • an emulsion polymerization derived styrene/butadiene might be used having a relatively conventional styrene content of about 20 to about 28 percent bound styrene or, for some applications, an E-SBR having a medium to relatively high bound styrene content, namely, a bound styrene content of about 30 to about 45 percent.
  • E-SBR emulsion polymerization prepared E-SBR
  • styrene and 1,3-butadiene are copolymerized as an aqueous emulsion.
  • the bound styrene content can vary, for example, from about 5 to about 50 percent.
  • the E-SBR may also contain acrylonitrile to form a terpolymer rubber, as E-SBAR, in amounts, for example, of about 2 to about 30 weight percent bound acrylonitrile in the terpolymer.
  • Emulsion polymerization prepared styrene/butadiene/acrylonitrile copolymer rubbers containing about 2 to about 40 weight percent bound acrylonitrile in the copolymer are also contemplated as diene based rubbers for use in this invention.
  • S-SBR solution polymerization prepared SBR
  • S-SBR typically has a bound styrene content in a range of about 5 to about 50, preferably about 9 to about 36, percent.
  • S-SBR can be conveniently prepared, for example, by organo lithium catalyzation in the presence of an organic hydrocarbon solvent.
  • cis 1,4-polybutadiene rubber may be used.
  • BR cis 1,4-polybutadiene rubber
  • Such BR can be prepared, for example, by organic solution polymerization of 1,3-butadiene.
  • the BR may be conveniently characterized, for example, by having at least a 90 percent cis 1,4-content.
  • cis 1,4-polyisoprene and cis 1,4-polyisoprene natural rubber are well known to those having skill in the rubber art.
  • the rubber composition may also include up to 70 phr of processing oil.
  • Processing oil may be included in the rubber composition as extending oil typically used to extend elastomers. Processing oil may also be included in the rubber composition by addition of the oil directly during rubber compounding.
  • the processing oil used may include both extending oil present in the elastomers, and process oil added during compounding.
  • Suitable process oils include various oils as are known in the art, including aromatic, paraffinic, naphthenic, vegetable oils, and low PCA oils, such as MES, TDAE, SRAE and heavy naphthenic oils.
  • Suitable low PCA oils include those having a polycyclic aromatic content of less than 3 percent by weight as determined by the IP346 method. Procedures for the IP346 method may be found in Standard Methods for Analysis & Testing of Petroleum and Related Products and British Standard 2000 Parts, 2003, 62nd edition, published by the Institute of Petroleum, United Kingdom.
  • the rubber composition may include from about 10 to about 150 phr of silica. In another embodiment, from 20 to 80 phr of silica may be used.
  • the commonly employed siliceous pigments which may be used in the rubber compound include conventional pyrogenic and precipitated siliceous pigments (silica).
  • precipitated silica is used.
  • the conventional siliceous pigments employed in this invention are precipitated silicas such as, for example, those obtained by the acidification of a soluble silicate, e.g., sodium silicate.
  • Such conventional silicas might be characterized, for example, by having a BET surface area, as measured using nitrogen gas.
  • the BET surface area may be in the range of about 40 to about 600 square meters per gram. In another embodiment, the BET surface area may be in a range of about 80 to about 300 square meters per gram. The BET method of measuring surface area is described in the Journal of the American Chemical Society , Volume 60, Page 304 (1930).
  • the conventional silica may also be characterized by having a dibutylphthalate (DBP) absorption value in a range of about 100 to about 400, alternatively about 150 to about 300.
  • DBP dibutylphthalate
  • the conventional silica might be expected to have an average ultimate particle size, for example, in the range of 0.01 to 0.05 micron as determined by the electron microscope, although the silica particles may be even smaller, or possibly larger, in size.
  • silicas such as, only for example herein, and without limitation, silicas commercially available from PPG Industries under the Hi-Sil trademark with designations 210, 243, etc; silicas available from Rhodia, with, for example, designations of Z1165MP and Z165GR and silicas available from Degussa AG with, for example, designations VN2 and VN3, etc.
  • Commonly employed carbon blacks can be used as a conventional filler in an amount ranging from 10 to 150 phr. In another embodiment, from 20 to 80 phr of carbon black may be used.
  • Representative examples of such carbon blacks include N110, N121, N134, N220, N231, N234, N242, N293, N299, N315, N326, N330, N332, N339, N343, N347, N351, N358, N375, N539, N550, N582, N630, N642, N650, N683, N754, N762, N765, N774, N787, N907, N908, N990 and N991.
  • These carbon blacks have iodine absorptions ranging from 9 to 145 g/kg and DBP number ranging from 34 to 150 cm 3 /100 g.
  • fillers may be used in the rubber composition including, but not limited to, particulate fillers including ultra high molecular weight polyethylene (UHMWPE), crosslinked particulate polymer gels including but not limited to those disclosed in U.S. Pat. Nos. 6,242,534; 6,207,757; 6,133,364; 6,372,857; 5,395,891; or 6,127,488, and plasticized starch composite filler including but not limited to that disclosed in U.S. Pat. No. 5,672,639.
  • Such other fillers may be used in an amount ranging from 1 to 30 phr.
  • the rubber composition may contain a conventional sulfur containing organosilicon compound.
  • suitable sulfur containing organosilicon compounds are of the formula: Z-Alk-S n -Alk-Z V in which Z is selected from the group consisting of
  • R 4 is an alkyl group of 1 to 4 carbon atoms, cyclohexyl or phenyl;
  • R 5 is alkoxy of 1 to 8 carbon atoms, or cycloalkoxy of 5 to 8 carbon atoms;
  • Alk is a divalent hydrocarbon of 1 to 18 carbon atoms and n is an integer of 2 to 8.
  • the sulfur containing organosilicon compounds are the 3,3′-bis(trimethoxy or triethoxy silylpropyl) polysulfides. In one embodiment, the sulfur containing organosilicon compounds are 3,3′-bis(triethoxysilylpropyl) disulfide and/or 3,3′-bis(triethoxysilylpropyl) tetrasulfide. Therefore, as to formula V, Z may be
  • R 5 is an alkoxy of 2 to 4 carbon atoms, alternatively 2 carbon atoms; alk is a divalent hydrocarbon of 2 to 4 carbon atoms, alternatively with 3 carbon atoms; and n is an integer of from 2 to 5, alternatively 2 or 4.
  • suitable sulfur containing organosilicon compounds include compounds disclosed in U.S. Pat. No. 6,608,125.
  • the sulfur containing organosilicon compounds includes 3-(octanoylthio)-1-propyltriethoxysilane, CH 3 (CH 2 ) 6 C( ⁇ O)—S—CH 2 CH 2 CH 2 Si(OCH 2 CH 3 ) 3 , which is available commercially as NXTTM from Momentive Performance Materials.
  • suitable sulfur containing organosilicon compounds include those disclosed in U.S. Patent Publication No. 2003/0130535.
  • the sulfur containing organosilicon compound is Si-363 from Degussa.
  • the amount of the sulfur containing organosilicon compound in a rubber composition will vary depending on the level of other additives that are used. Generally speaking, the amount of the compound will range from 0.5 to 20 phr. In one embodiment, the amount will range from 1 to 10 phr.
  • the rubber composition would be compounded by methods generally known in the rubber compounding art, such as mixing the various sulfur-vulcanizable constituent rubbers with various commonly used additive materials such as, for example, sulfur donors, curing aids, such as activators and retarders and processing additives, such as oils, resins including tackifying resins and plasticizers, fillers, pigments, fatty acid, zinc oxide, waxes, antioxidants and antiozonants and peptizing agents.
  • additives mentioned above are selected and commonly used in conventional amounts.
  • sulfur donors include elemental sulfur (free sulfur), an amine disulfide, polymeric polysulfide and sulfur olefin adducts.
  • the sulfur-vulcanizing agent is elemental sulfur.
  • the sulfur-vulcanizing agent may be used in an amount ranging from 0.5 to 8 phr, alternatively with a range of from 1.5 to 6 phr.
  • Typical amounts of tackifier resins, if used, comprise about 0.5 to about 10 phr, usually about 1 to about 5 phr.
  • processing aids comprise about 1 to about 50 phr.
  • Typical amounts of antioxidants comprise about 1 to about 5 phr.
  • antioxidants may be, for example, diphenyl-p-phenylenediamine and others, such as, for example, those disclosed in The Vanderbilt Rubber Handbook (1978), Pages 344 through 346.
  • Typical amounts of antiozonants comprise about 1 to 5 phr.
  • Typical amounts of fatty acids, if used, which can include stearic acid comprise about 0.5 to about 3 phr.
  • Typical amounts of zinc oxide comprise about 2 to about 5 phr.
  • Typical amounts of waxes comprise about 1 to about 5 phr. Often microcrystalline waxes are used.
  • peptizers comprise about 0.1 to about 1 phr.
  • Typical peptizers may be, for example, pentachlorothiophenol and dibenzamidodiphenyl disulfide.
  • Accelerators are used to control the time and/or temperature required for vulcanization and to improve the properties of the vulcanizate.
  • a single accelerator system may be used, i.e., primary accelerator.
  • the primary accelerator(s) may be used in total amounts ranging from about 0.5 to about 4, alternatively about 0.8 to about 1.5, phr.
  • combinations of a primary and a secondary accelerator might be used with the secondary accelerator being used in smaller amounts, such as from about 0.05 to about 3 phr, in order to activate and to improve the properties of the vulcanizate. Combinations of these accelerators might be expected to produce a synergistic effect on the final properties and are somewhat better than those produced by use of either accelerator alone.
  • delayed action accelerators may be used which are not affected by normal processing temperatures but produce a satisfactory cure at ordinary vulcanization temperatures.
  • Vulcanization retarders might also be used.
  • Suitable types of accelerators that may be used in the present invention are amines, disulfides, guanidines, thioureas, thiazoles, thiurams, sulfenamides, dithiocarbamates and xanthates.
  • the primary accelerator is a sulfenamide. If a second accelerator is used, the secondary accelerator may be a guanidine, dithiocarbamate or thiuram compound.
  • the mixing of the rubber composition can be accomplished by methods known to those having skill in the rubber mixing art.
  • the ingredients are typically mixed in at least two stages, namely, at least one non-productive stage followed by a productive mix stage.
  • the final curatives including sulfur-vulcanizing agents are typically mixed in the final stage which is conventionally called the “productive” mix stage in which the mixing typically occurs at a temperature, or ultimate temperature, lower than the mix temperature(s) than the preceding non-productive mix stage(s).
  • the terms “non-productive” and “productive” mix stages are well known to those having skill in the rubber mixing art.
  • the rubber composition may be subjected to a thermomechanical mixing step.
  • the thermomechanical mixing step generally comprises a mechanical working in a mixer or extruder for a period of time suitable in order to produce a rubber temperature between 140° C. and 190° C.
  • the appropriate duration of the thermomechanical working varies as a function of the operating conditions, and the volume and nature of the components.
  • the thermomechanical working may be from 1 to 20 minutes.
  • the rubber composition may be incorporated in a variety of rubber components of the tire.
  • the rubber component may be a tread (including tread cap and tread base), sidewall, apex, chafer, sidewall insert, wirecoat or innerliner.
  • the component is a tread.
  • the pneumatic tire of the present invention may be a race tire, passenger tire, aircraft tire, agricultural, earthmover, off-the-road, truck tire, and the like.
  • the tire is a passenger or truck tire.
  • the tire may also be a radial or bias.
  • Vulcanization of the pneumatic tire of the present invention is generally carried out at conventional temperatures ranging from about 100° C. to 200° C. In one embodiment, the vulcanization is conducted at temperatures ranging from about 110° C. to 180° C. Any of the usual vulcanization processes may be used such as heating in a press or mold, heating with superheated steam or hot air. Such tires can be built, shaped, molded and cured by various methods which are known and will be readily apparent to those having skill in such art.
  • RAFT-polymerization was used for the preparation of PNIPAM.
  • two alternative chain transfer agents CTA were prepared: S-1-Dodecyl-S-( ⁇ ′-dimethyl- ⁇ ′′-aceticacid)trithiocarbonate (DMP) and 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid (CDSMB).
  • DMP S-1-Dodecyl-S-( ⁇ ′-dimethyl- ⁇ ′′-aceticacid)trithiocarbonate
  • CDSMB 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid
  • the RAFT reaction scheme is as follows:
  • CDSMB 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid
  • Step 1 Bis-(dodecylsulfanylthiocarbonyl)disulfide
  • Step 2 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid
  • NIPAM-polymers were prepared in a Schlenk tube containing N-isopropyacrylamide, CTA, AIBN and dry dioxane as a solvent. The exact amount of all components can be obtained from Table 1. After three freeze-pump thaw cycles the mixture was placed in a preheated oil bath at 80° C. for 20 hours. The mixture was precipitated in hexane (poor solvent)/THF (good solvent) three times and dried under vacuum. Table 1 further shows the amount of used NIPAM (N-isopropylacrylamide) monomer, CTA (DMP or CDSMB), AIBN and dioxane. The yield refers to the amount of monomer used. Molecular weights were measured by GPC in DMF using PMMA as calibration.
  • the CDSMB proved more effective as shown in Table 2.
  • Three polymers were synthesized to have the same calculated molecular weight, one with DMP and two with 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid.
  • the discrepancy from the calculated molecular weight of the polymer and the weight measured by GPC in DMF is smaller for the CDSMB.
  • the reproducibility was very good for the reaction with 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid.
  • the cleavage of the trithiocarbonate end group was done by aminolysis.
  • the aminolysis was performed by stirring a mixture of PNIPAM-CTA and amine in THF for several hours at room temperature.
  • the transformation to the thiol-group was tested with two amines: ethanolamine and hexylamine.
  • FIG. 1 compares the spectra of the pure CTA (1), and PNIPAM with trithiocarbonate-end group (2) and SH-end group (3), at which the decrease and loss the absorption band of the trithiocarbonate group is shown.
  • Functionalized elastomer was produced using the following general procedure: A solution of SBR, AIBN and the thiol in dry THF was degassed under argon atmosphere at room temperature for 2 hours. The exact amount of educts for each reaction is shown in Table 3. The reaction mixture was then placed in a preheated oil bath at 70° C. for at least 20 hours. To make sure that no free thiol was in the reaction product, the product was dialyzed against THF for three days. After the dialysis the solvent was evaporated and the product was dried under vacuum. The results of the elemental analysis of three functionalized elastomers are shown in Table 4, with the calculated weight percent of PNIPAM in the resulting fucntionalized SBR.
  • FIG. 2 The 1 H-NMR spectrum of the SBR (1) and of the functionalized rubber (2) are shown in FIG. 2 .
  • the typical elastomer signals are observable, but also the peak of the CH-group of the isopropyl-group of PNIPAM at 3.97 ppm. Again a decrease of the vinyl signals can be observed, indicating a successful functionalization.
  • GPC measurements indicated little cross linking if any of all samples as seen in FIG. 3 .
  • FIG. 3 shows exemplary GPC curves for the SBR (1) and for three functionalized elastomers SBR2 (2), SBR5 (3) and SBR6 (4). As indicated by the presence of the shoulder at about 16-17 ml elution volume in FIG. 3 , SBR6 showed no cross linking during the reaction, SBR2 showed very little cross linking and SBR 5 shows some cross linking. All three samples were soluble, indicating they were not greatly cross linked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

The present invention is directed to a method of making a graft copolymer, comprising the steps of:
    • obtaining a first polymer comprising at least one carbon-carbon double bond, the first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer;
    • polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group;
    • cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group;
    • reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.

Description

BACKGROUND OF THE INVENTION
In the ongoing effort to improve tire design, there is a recognized tension among tire performance, rolling resistance (or fuel economy), and treadwear. Typically, for use in a consumer tire, a tread compound is designed to optimized between these three considerations. However, efforts to improve for example fuel economy often lead to compromises in performance and/or treadwear. For higher performance tires desired by driving enthusiasts, the achievement better performance often comes with a compromise in treadwear or fuel economy. There is a desire therefore to develop tread compounds that can achieve improvement in any of performance, fuel economy, and treadwear with little or no compromise in the other two. One approach is in the elastomeric polymers used in the tread compound.
The reversible addition-fragmentation chain transfer (RAFT) polymerization is a versatile controlled radical polymerization method which can be used for the polymerization of a variety of monomers. Due to the controlled characteristics of the RAFT-polymerization, the polydispersities of the resulting polymers are relatively low and their molecular weights can be modified within a wide range by changing the initiator and CTA concentration. The RAFT-polymerization is initiated by a radical starter (for example AIBN) and a chain transfer agent (CTA). Suitable CTAs contain thiocarbonylthio-moieties such as dithioesters, trithiocarbonates, dithiocarbamates and xanthates. After the RAFT-polymerization, the respective thiocarbonylthio-moieties remain attached to the polymer chains as functional endgroups.
SUMMARY OF THE INVENTION
The present invention is directed to a method of making a graft copolymer, comprising the steps of:
obtaining a first polymer comprising at least one carbon-carbon double bond, the first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer;
polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group;
cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group;
reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows UV-VIS spectra of a trithiocarbonate RAFT chain transfer agent, PNIPAM with a trithiocarbonate-end group and PNIPAM with a thiol group.
FIG. 2 shows the 1H-NMR spectrum of a styrene-butadiene elastomer and of a styrene-butadiene elastomer functionalized with PNIPAM.
FIG. 3 shows GPC curves for a styrene-butadiene elastomer and for three PNIPAM-functionalized styrene-butadiene elastomers.
DETAILED DESCRIPTION
The present invention is directed to use of endfunctionalized polymers produced by RAFT-polymerization in rubber compounds. Thiocarbonylthio-moieties representing the endgroups of the RAFT-polymers can be considered as protected mercapto-groups. During mixing or vulcanization the endgroups can be cleaved by nucleophiles present in the compounds. Non-limiting examples for nucleophiles that could induce the cleavage are accelerators (such as diphenyl guanidine or cyclohexylamine derived from CBS) or antioxidants such as 6-PPD. An example of the cleavage of thiocarbonylthio moieties is the cleavage of thioesters in rubber compounds which can be transformed to the respective thiol by reaction with diphenylguanidine. The thiol-endfunctionalized RAFT-polymers obtained by the cleavage of the respective thiocarbonylthio-moieties can couple with rubber elastomers during the vulcanization reaction.
The functionalization of rubber elastomers with side chains derived from RAFT-polymers can lead to compounds with unique properties. In case of side chains exhibiting a lower critical solution temperature (LCST), a thermo-responsive compound behavior in contact with water (for example a wet road surface) could be induced. In general, hydrophilic side chains could lead to an improvement of polymer-filler interactions which could lead to an improvement of triangle properties. In the case of thermoplastic side chains (for example styrene derivatives, N-monosubstituted or N,N-disubstituted polyacrylamides; polyacrylates or polymethacrylates might also be considered but interference with the cleavage reaction would have to be checked), the side chains could act as thermoplastic phase in the final compound leading to additional reinforcement. In addition to homopolymers, statistic copolymers or block-copolymers obtained by RAFT-polymerization could also be used in compounds. In contrast to a simple addition of non-functionalized polymers to the compound formulation, the covalent coupling of the thiol endfunctionalized RAFT-polymers to the elastomers will prevent macro-phase separation which would prevent the improvement of compound properties. In order to ensure a reasonable diffusion rate of the RAFT-polymers within the compound prior to coupling and a sufficient concentration of thiol-endgroups with respect to the overall RAFT-polymer molecular weight, it is likely that RAFT-polymers with a relatively low molecular weight (for example in the range of several 1,000 g/mol or even lower molecular weight species) are preferable.
There is now disclosed a method of making a graft copolymer, comprising the steps of:
obtaining a first polymer comprising at least one carbon-carbon double bond, the first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer;
polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group;
cleaving the terminal thiocarbonylthio group to a thiol group to form a second polymer comprising a terminal thiol group;
reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
There is further disclosed a rubber composition comprising the graft copolymer, and a pneumatic tire with a tread comprising the rubber composition.
One step of the method to produce the graft copolymer is to obtain, a first polymer comprising at least one carbon-carbon double bond. In one embodiment, the first polymer comprising at least one carbon-carbon double bond is a diene based elastomer. The phrases “rubber or elastomer containing olefinic unsaturation” or “diene based elastomer” as used herein are equivalent and are intended to include both natural rubber and its various raw and reclaim forms as well as various synthetic rubbers. In the description of this invention, the terms “rubber” and “elastomer” may be used interchangeably, unless otherwise prescribed. The terms “rubber composition,” “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials and such terms are well known to those having skill in the rubber mixing or rubber compounding art. Representative synthetic rubbers are the homopolymerization products of butadiene and its homologues and derivatives, for example, methylbutadiene (i.e., isoprene), dimethylbutadiene and pentadiene as well as copolymers such as those formed from butadiene or its homologues or derivatives with other unsaturated monomers. Among the latter are acetylenes, for example, vinyl acetylene; olefins, for example, isobutylene, which copolymerizes with isoprene to form butyl rubber; vinyl compounds, for example, acrylic acid, acrylonitrile (which polymerize with butadiene to form NBR), methacrylic acid and styrene, the latter compound polymerizing with butadiene to form SBR, as well as vinyl esters and various unsaturated aldehydes, ketones and ethers, e.g., acrolein, methyl isopropenyl ketone and vinylethyl ether. Specific examples of synthetic rubbers include neoprene (polychloroprene), polybutadiene (including cis-1,4-polybutadiene), polyisoprene (including cis-1,4-polyisoprene), butyl rubber, halobutyl rubber such as chlorobutyl rubber or bromobutyl rubber, styrene/isoprene/butadiene rubber, copolymers of 1,3-butadiene or isoprene with monomers such as styrene, acrylonitrile and methyl methacrylate, as well as ethylene/propylene terpolymers, also known as ethylene/propylene/diene monomer (EPDM), and in particular, ethylene/propylene/dicyclopentadiene terpolymers. Additional examples of rubbers which may be used include alkoxy-silyl end functionalized solution polymerized polymers (SBR, PBR, IBR and SIBR), silicon-coupled and tin-coupled star-branched polymers. The preferred rubber or elastomers are polyisoprene (natural or synthetic), polybutadiene and SBR.
In one aspect of this invention, an emulsion polymerization derived styrene/butadiene (E-SBR) might be used having a relatively conventional styrene content of about 20 to about 28 percent bound styrene or, for some applications, an E-SBR having a medium to relatively high bound styrene content, namely, a bound styrene content of about 30 to about 45 percent.
By emulsion polymerization prepared E-SBR, it is meant that styrene and 1,3-butadiene are copolymerized as an aqueous emulsion. Such are well known to those skilled in such art. The bound styrene content can vary, for example, from about 5 to about 50 percent. In one aspect, the E-SBR may also contain acrylonitrile to form a terpolymer rubber, as E-SBAR, in amounts, for example, of about 2 to about 30 weight percent bound acrylonitrile in the terpolymer.
Emulsion polymerization prepared styrene/butadiene/acrylonitrile copolymer rubbers containing about 2 to about 40 weight percent bound acrylonitrile in the copolymer are also contemplated as diene based rubbers for use in this invention.
The solution polymerization prepared SBR (S-SBR) typically has a bound styrene content in a range of about 5 to about 50, preferably about 9 to about 36, percent. The S-SBR can be conveniently prepared, for example, by organo lithium catalyzation in the presence of an organic hydrocarbon solvent.
In one embodiment, cis 1,4-polybutadiene rubber (BR) may be used. Such BR can be prepared, for example, by organic solution polymerization of 1,3-butadiene. The BR may be conveniently characterized, for example, by having at least a 90 percent cis 1,4-content.
The term “phr” as used herein, and according to conventional practice, refers to “parts by weight of a respective material per 100 parts by weight of rubber, or elastomer.”
The second polymer is obtained by polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group; and cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group.
The terminal functional group of the second polymer is incorporated in the second polymer during polymerization through the mechanism of reversible addition-fragmentation chain transfer (RAFT). More details of the RAFT polymerization mechanism may be found by reference to Moad et al., Aust. J. Chem. 2005, 58, 379-410. As is known in the art, RAFT polymerization of free-radical polymerizable monomers is accomplished in the presence of a thiocarbonylthio RAFT chain transfer agent of general formula (I)
Figure US08759451-20140624-C00001

where R1 is a free radical leaving group able to reinitiate polymerization, and Z is a functional group that influences the rate of radical addition and fragmentation. Suitable thiocarbonylthio RAFT chain transfer agents include dithioesters, trithiocarbonates, dithiocarbamates, and xanthates. Suitable RAFT chain transfer agents are known in the art, for example as disclosed in Moad et al., Aust. J. Chem. 2005, 58, 379-410; U.S. Pat. Nos. 7,399,801; 7,666,962; U.S. Publications 2007/0225447; 2007/0232783. Multifunctional RAFT agents are known, as disclosed for example in Bivigou-Koumba et al., Macromolecular Chemistry and Physics 2009, 210, 565-578.
In one embodiment, the thiocarbonylthio chain transfer agent is a trithiocarbonate. In one embodiment, the thiocarbonylthio chain transfer agent is selected from the group consisting of S-1-dodecyl-S-(αα′-dimethyl-α″-acetic acid) trithiocarbonate and 4-cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid.
Upon RAFT polymerization in the presence of a suitable thiocarbonylthio chain transfer agent, the chain-terminated polymer has the general formula (II)
Figure US08759451-20140624-C00002

where Pn represents the polymer formed by RAFT polymerization.
Second monomers suitable for use in the RAFT polymerizatoni include styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, 1,3-butadiene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, oxidants, lactones, lactams, cyclic anhydrides, cyclic siloxanes and combinations thereof. Functionalized versions of these monomers may also be used. Specific monomers or comonomers that may be used include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, .alpha.-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), α-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, tributoxysilylpropyl methacrylate, dimethoxymethylsilylpropyl methacrylate, diethoxymethylsilylpropyl methacrylate, dibutoxymethylsilylpropyl methacrylate, diisopropoxymethylsilylpropyl methacrylate, dimethoxysilylpropyl methacrylate, diethoxysilylpropyl methacrylate, dibutoxysilylpropyl methacrylate, diisopropoxysilylpropyl methacrylate, trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, tributoxysilylpropyl acrylate, dimethoxymethylsilylpropyl acrylate, diethoxymethylsilylpropyl acrylate, dibutoxymethylsilylpropyl acrylate, diisopropoxymethylsilylpropyl acrylate, dimethoxysilylpropyl acrylate, diethoxysilylpropyl acrylate, dibutoxysilylpropyl acrylate, diisopropoxysilylpropyl acrylate, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, chloroprene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, 2-(2-oxo-1-imidazolidinyl)ethyl 2-methyl-2-propenoate, 1-[2-[2-hydroxy-3-(2-propyl)propyl]amino]ethyl]-2-imidazolidinone, N-vinyl pyrrolidone, N-vinyl imidazole, crotonic acid, vinyl sulfonic acid, and combinations thereof.
In one embodiment, the second monomer to be used in the RAFT polymerization includes acrylamides and substituted acrylamides, methacrylamides and substituted methacrylamides, acrylic acids and substituted acrylic acids, methacrylic acids and substituted methacrylic acids, vinyl alkyl ethers and substituted vinyl alkyl ethers, vinyl caprolactams and substituted vinyl caprolactams, oligo(ethylene glycol) methacrylate and 2-(2-methoxyethoxy) ethyl methacrylate, and the like.
In one embodiment, the second monomer is of formula III
Figure US08759451-20140624-C00003

where R2 and R3 are independently selected from the group consisting of hydrogen, C2 to C6 linear alkyl, C2 to C6 branched alkyl, and C3 to C6 cycloalkyl, with the proviso that at least one of R2 and R3 is not hydrogen.
The chain terminated polymer of formula II is then reacted with a suitable nucleophile to cleave the C—S linkage to obtain a second polymer of formula (IV) having a terminal thiol group
H—S—Pn   (IV)
In one embodiment, the chain terminated polymer of formula II is treated by aminolysis to obtain the thiol-terminated polymer of formula IV.
In its thiol form shown in formula IV, the second polymer may be combined in a rubber composition with the diene based first polymer during rubber mixing as for example in a Banbury mixer, rubber mill or the like. No solvent is required and is generally excluded. During reacting of the thiol terminated second polymer of compound IV with the diene based elastomer, the compound of formula IV reacts with the diene based elastomer through reaction of a terminal thiol groups of the compound of formula IV with the unsaturated carbon-carbon bond of the diene based elastomer.
In one embodiment, the thiol-terminated compound IV is reacted with the diene based elastomer in the presence of a free-radical initiator via a thiol-ene reaction as is known in the art, see for example Macromolecules 2008, 41, 9946-9947. In one embodiment, the free-radical initiator is selected from the group consisitng of 2,4,6-Trimethylbenzoyldiphenylphosphine oxide and azobisisobutyonitrile (AIBN).
Alternatively, the reaction between the first and second polymers may occur by adding the chain terminated polymer of formula II to the rubber composition in its uncleaved form. In the presence of suitable nucleophile such as diphenylguanidine or a phenylene diamine compound, the polymer of formula II may be cleaved in situ during the rubber mixing and curing process, thereby exposing the thiol radical to react with the diene based elastomer to form the graft copolymer. Other potentially suitable nucleophiles might include amines generated by curatives, for example cyclohexylamine generated by decomposition of CBS or ammonia derived from hexamethylene tetramine used as secondary accelerator.
Alternatively to the described direct thiol-ene reaction between thiol and elastomer, other reaction mechanisms involving other components of the cure system are possible. For example and without wishing to be bound by any theory, the thiol might react with sulfur and a mercaptobenzothiazole type accelerator to a polysulfide-containing compound which might be integrated into the elastomer network via a standard cure reaction. In this case, the presence of a radical starter would not be required.
In order to efficiently obtain cleavage of the thiocarbonylthio functional group to the thiol during rubber mixing, the molecular weight of the chain terminated polymer of formula II should be low enough to facilitate mixing of the rubber composition such that the thiocarbonylthio groups obtain good contact with the nucleophile and consequently cleave to the thiol form. In one embodiment, the molecular weight of the second polymer may be in a range of from 500 to 1000.
Whether the thiocarbonylthio group is cleaved prior to or after the chain terminated polymer is added to the first polymer, the number n of [S—Pn ]groups bonded to the first polymer ranges from about 2 to about 30 in a given copolymer molecule.
The graft copolymer may be included in a rubber composition.
The rubber composition may include, in addition to the graft copolymer, one or more diene based elastomers. The phrases “rubber or elastomer containing olefinic unsaturation” or “diene based elastomer” are equivalent and are intended to include both natural rubber and its various raw and reclaim forms as well as various synthetic rubbers. In the description of this invention, the terms “rubber” and “elastomer” may be used interchangeably, unless otherwise prescribed. The terms “rubber composition,” “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials and such terms are well known to those having skill in the rubber mixing or rubber compounding art. Representative synthetic polymers are the homopolymerization products of butadiene and its homologues and derivatives, for example, methylbutadiene, dimethylbutadiene and pentadiene as well as copolymers such as those formed from butadiene or its homologues or derivatives with other unsaturated monomers. Among the latter are acetylenes, for example, vinyl acetylene; olefins, for example, isobutylene, which copolymerizes with isoprene to form butyl rubber; vinyl compounds, for example, acrylic acid, acrylonitrile (which polymerize with butadiene to form NBR), methacrylic acid and styrene, the latter compound polymerizing with butadiene to form SBR, as well as vinyl esters and various unsaturated aldehydes, ketones and ethers, e.g., acrolein, methyl isopropenyl ketone and vinylethyl ether. Specific examples of synthetic rubbers include neoprene (polychloroprene), polybutadiene (including cis-1,4-polybutadiene), polyisoprene (including cis-1,4-polyisoprene), butyl rubber, halobutyl rubber such as chlorobutyl rubber or bromobutyl rubber, styrene/isoprene/butadiene rubber, copolymers of 1,3-butadiene or isoprene with monomers such as styrene, acrylonitrile and methyl methacrylate, as well as ethylene/propylene terpolymers, also known as ethylene/propylene/diene monomer (EPDM), and in particular, ethylene/propylene/dicyclopentadiene terpolymers. Additional examples of rubbers which may be used include alkoxy-silyl end functionalized solution polymerized polymers (SBR, PBR, IBR and SIBR), silicon-coupled and tin-coupled star-branched polymers. The preferred rubber or elastomers are polyisoprene (natural or synthetic), polybutadiene and SBR.
In one aspect the at least one additional rubber is preferably of at least two of diene based rubbers. For example, a combination of two or more rubbers is preferred such as cis 1,4-polyisoprene rubber (natural or synthetic, although natural is preferred), 3,4-polyisoprene rubber, styrene/isoprene/butadiene rubber, emulsion and solution polymerization derived styrene/butadiene rubbers, cis 1,4-polybutadiene rubbers and emulsion polymerization prepared butadiene/acrylonitrile copolymers.
In one aspect of this invention, an emulsion polymerization derived styrene/butadiene (E-SBR) might be used having a relatively conventional styrene content of about 20 to about 28 percent bound styrene or, for some applications, an E-SBR having a medium to relatively high bound styrene content, namely, a bound styrene content of about 30 to about 45 percent.
By emulsion polymerization prepared E-SBR, it is meant that styrene and 1,3-butadiene are copolymerized as an aqueous emulsion. Such are well known to those skilled in such art. The bound styrene content can vary, for example, from about 5 to about 50 percent. In one aspect, the E-SBR may also contain acrylonitrile to form a terpolymer rubber, as E-SBAR, in amounts, for example, of about 2 to about 30 weight percent bound acrylonitrile in the terpolymer.
Emulsion polymerization prepared styrene/butadiene/acrylonitrile copolymer rubbers containing about 2 to about 40 weight percent bound acrylonitrile in the copolymer are also contemplated as diene based rubbers for use in this invention.
The solution polymerization prepared SBR (S-SBR) typically has a bound styrene content in a range of about 5 to about 50, preferably about 9 to about 36, percent. The S-SBR can be conveniently prepared, for example, by organo lithium catalyzation in the presence of an organic hydrocarbon solvent.
In one embodiment, cis 1,4-polybutadiene rubber (BR) may be used. Such BR can be prepared, for example, by organic solution polymerization of 1,3-butadiene. The BR may be conveniently characterized, for example, by having at least a 90 percent cis 1,4-content.
The cis 1,4-polyisoprene and cis 1,4-polyisoprene natural rubber are well known to those having skill in the rubber art.
The term “phr” as used herein, and according to conventional practice, refers to “parts by weight of a respective material per 100 parts by weight of rubber, or elastomer.”
The rubber composition may also include up to 70 phr of processing oil. Processing oil may be included in the rubber composition as extending oil typically used to extend elastomers. Processing oil may also be included in the rubber composition by addition of the oil directly during rubber compounding. The processing oil used may include both extending oil present in the elastomers, and process oil added during compounding. Suitable process oils include various oils as are known in the art, including aromatic, paraffinic, naphthenic, vegetable oils, and low PCA oils, such as MES, TDAE, SRAE and heavy naphthenic oils. Suitable low PCA oils include those having a polycyclic aromatic content of less than 3 percent by weight as determined by the IP346 method. Procedures for the IP346 method may be found in Standard Methods for Analysis & Testing of Petroleum and Related Products and British Standard 2000 Parts, 2003, 62nd edition, published by the Institute of Petroleum, United Kingdom.
The rubber composition may include from about 10 to about 150 phr of silica. In another embodiment, from 20 to 80 phr of silica may be used.
The commonly employed siliceous pigments which may be used in the rubber compound include conventional pyrogenic and precipitated siliceous pigments (silica). In one embodiment, precipitated silica is used. The conventional siliceous pigments employed in this invention are precipitated silicas such as, for example, those obtained by the acidification of a soluble silicate, e.g., sodium silicate.
Such conventional silicas might be characterized, for example, by having a BET surface area, as measured using nitrogen gas. In one embodiment, the BET surface area may be in the range of about 40 to about 600 square meters per gram. In another embodiment, the BET surface area may be in a range of about 80 to about 300 square meters per gram. The BET method of measuring surface area is described in the Journal of the American Chemical Society, Volume 60, Page 304 (1930).
The conventional silica may also be characterized by having a dibutylphthalate (DBP) absorption value in a range of about 100 to about 400, alternatively about 150 to about 300.
The conventional silica might be expected to have an average ultimate particle size, for example, in the range of 0.01 to 0.05 micron as determined by the electron microscope, although the silica particles may be even smaller, or possibly larger, in size.
Various commercially available silicas may be used, such as, only for example herein, and without limitation, silicas commercially available from PPG Industries under the Hi-Sil trademark with designations 210, 243, etc; silicas available from Rhodia, with, for example, designations of Z1165MP and Z165GR and silicas available from Degussa AG with, for example, designations VN2 and VN3, etc.
Commonly employed carbon blacks can be used as a conventional filler in an amount ranging from 10 to 150 phr. In another embodiment, from 20 to 80 phr of carbon black may be used. Representative examples of such carbon blacks include N110, N121, N134, N220, N231, N234, N242, N293, N299, N315, N326, N330, N332, N339, N343, N347, N351, N358, N375, N539, N550, N582, N630, N642, N650, N683, N754, N762, N765, N774, N787, N907, N908, N990 and N991. These carbon blacks have iodine absorptions ranging from 9 to 145 g/kg and DBP number ranging from 34 to 150 cm3/100 g.
Other fillers may be used in the rubber composition including, but not limited to, particulate fillers including ultra high molecular weight polyethylene (UHMWPE), crosslinked particulate polymer gels including but not limited to those disclosed in U.S. Pat. Nos. 6,242,534; 6,207,757; 6,133,364; 6,372,857; 5,395,891; or 6,127,488, and plasticized starch composite filler including but not limited to that disclosed in U.S. Pat. No. 5,672,639. Such other fillers may be used in an amount ranging from 1 to 30 phr.
In one embodiment the rubber composition may contain a conventional sulfur containing organosilicon compound. Examples of suitable sulfur containing organosilicon compounds are of the formula:
Z-Alk-Sn-Alk-Z   V
in which Z is selected from the group consisting of
Figure US08759451-20140624-C00004

where R4 is an alkyl group of 1 to 4 carbon atoms, cyclohexyl or phenyl; R5 is alkoxy of 1 to 8 carbon atoms, or cycloalkoxy of 5 to 8 carbon atoms; Alk is a divalent hydrocarbon of 1 to 18 carbon atoms and n is an integer of 2 to 8.
In one embodiment, the sulfur containing organosilicon compounds are the 3,3′-bis(trimethoxy or triethoxy silylpropyl) polysulfides. In one embodiment, the sulfur containing organosilicon compounds are 3,3′-bis(triethoxysilylpropyl) disulfide and/or 3,3′-bis(triethoxysilylpropyl) tetrasulfide. Therefore, as to formula V, Z may be
Figure US08759451-20140624-C00005

where R5 is an alkoxy of 2 to 4 carbon atoms, alternatively 2 carbon atoms; alk is a divalent hydrocarbon of 2 to 4 carbon atoms, alternatively with 3 carbon atoms; and n is an integer of from 2 to 5, alternatively 2 or 4.
In another embodiment, suitable sulfur containing organosilicon compounds include compounds disclosed in U.S. Pat. No. 6,608,125. In one embodiment, the sulfur containing organosilicon compounds includes 3-(octanoylthio)-1-propyltriethoxysilane, CH3(CH2)6C(═O)—S—CH2CH2CH2Si(OCH2CH3)3, which is available commercially as NXT™ from Momentive Performance Materials.
In another embodiment, suitable sulfur containing organosilicon compounds include those disclosed in U.S. Patent Publication No. 2003/0130535. In one embodiment, the sulfur containing organosilicon compound is Si-363 from Degussa.
The amount of the sulfur containing organosilicon compound in a rubber composition will vary depending on the level of other additives that are used. Generally speaking, the amount of the compound will range from 0.5 to 20 phr. In one embodiment, the amount will range from 1 to 10 phr.
It is readily understood by those having skill in the art that the rubber composition would be compounded by methods generally known in the rubber compounding art, such as mixing the various sulfur-vulcanizable constituent rubbers with various commonly used additive materials such as, for example, sulfur donors, curing aids, such as activators and retarders and processing additives, such as oils, resins including tackifying resins and plasticizers, fillers, pigments, fatty acid, zinc oxide, waxes, antioxidants and antiozonants and peptizing agents. As known to those skilled in the art, depending on the intended use of the sulfur vulcanizable and sulfur-vulcanized material (rubbers), the additives mentioned above are selected and commonly used in conventional amounts. Representative examples of sulfur donors include elemental sulfur (free sulfur), an amine disulfide, polymeric polysulfide and sulfur olefin adducts. In one embodiment, the sulfur-vulcanizing agent is elemental sulfur. The sulfur-vulcanizing agent may be used in an amount ranging from 0.5 to 8 phr, alternatively with a range of from 1.5 to 6 phr. Typical amounts of tackifier resins, if used, comprise about 0.5 to about 10 phr, usually about 1 to about 5 phr. Typical amounts of processing aids comprise about 1 to about 50 phr. Typical amounts of antioxidants comprise about 1 to about 5 phr. Representative antioxidants may be, for example, diphenyl-p-phenylenediamine and others, such as, for example, those disclosed in The Vanderbilt Rubber Handbook (1978), Pages 344 through 346. Typical amounts of antiozonants comprise about 1 to 5 phr. Typical amounts of fatty acids, if used, which can include stearic acid comprise about 0.5 to about 3 phr. Typical amounts of zinc oxide comprise about 2 to about 5 phr. Typical amounts of waxes comprise about 1 to about 5 phr. Often microcrystalline waxes are used. Typical amounts of peptizers comprise about 0.1 to about 1 phr. Typical peptizers may be, for example, pentachlorothiophenol and dibenzamidodiphenyl disulfide.
Accelerators are used to control the time and/or temperature required for vulcanization and to improve the properties of the vulcanizate. In one embodiment, a single accelerator system may be used, i.e., primary accelerator. The primary accelerator(s) may be used in total amounts ranging from about 0.5 to about 4, alternatively about 0.8 to about 1.5, phr. In another embodiment, combinations of a primary and a secondary accelerator might be used with the secondary accelerator being used in smaller amounts, such as from about 0.05 to about 3 phr, in order to activate and to improve the properties of the vulcanizate. Combinations of these accelerators might be expected to produce a synergistic effect on the final properties and are somewhat better than those produced by use of either accelerator alone. In addition, delayed action accelerators may be used which are not affected by normal processing temperatures but produce a satisfactory cure at ordinary vulcanization temperatures. Vulcanization retarders might also be used. Suitable types of accelerators that may be used in the present invention are amines, disulfides, guanidines, thioureas, thiazoles, thiurams, sulfenamides, dithiocarbamates and xanthates. In one embodiment, the primary accelerator is a sulfenamide. If a second accelerator is used, the secondary accelerator may be a guanidine, dithiocarbamate or thiuram compound.
The mixing of the rubber composition can be accomplished by methods known to those having skill in the rubber mixing art. For example, the ingredients are typically mixed in at least two stages, namely, at least one non-productive stage followed by a productive mix stage. The final curatives including sulfur-vulcanizing agents are typically mixed in the final stage which is conventionally called the “productive” mix stage in which the mixing typically occurs at a temperature, or ultimate temperature, lower than the mix temperature(s) than the preceding non-productive mix stage(s). The terms “non-productive” and “productive” mix stages are well known to those having skill in the rubber mixing art. The rubber composition may be subjected to a thermomechanical mixing step. The thermomechanical mixing step generally comprises a mechanical working in a mixer or extruder for a period of time suitable in order to produce a rubber temperature between 140° C. and 190° C. The appropriate duration of the thermomechanical working varies as a function of the operating conditions, and the volume and nature of the components. For example, the thermomechanical working may be from 1 to 20 minutes.
The rubber composition may be incorporated in a variety of rubber components of the tire. For example, the rubber component may be a tread (including tread cap and tread base), sidewall, apex, chafer, sidewall insert, wirecoat or innerliner. In one embodiment, the component is a tread.
The pneumatic tire of the present invention may be a race tire, passenger tire, aircraft tire, agricultural, earthmover, off-the-road, truck tire, and the like. In one embodiment, the tire is a passenger or truck tire. The tire may also be a radial or bias.
Vulcanization of the pneumatic tire of the present invention is generally carried out at conventional temperatures ranging from about 100° C. to 200° C. In one embodiment, the vulcanization is conducted at temperatures ranging from about 110° C. to 180° C. Any of the usual vulcanization processes may be used such as heating in a press or mold, heating with superheated steam or hot air. Such tires can be built, shaped, molded and cured by various methods which are known and will be readily apparent to those having skill in such art.
The invention is further illustrated by the following nonlimiting examples.
Example 1
In this example, preparation of poly-(N-isopropylacrylamide), or PNIPAM, is illustrated.
RAFT-polymerization was used for the preparation of PNIPAM. For this purpose two alternative chain transfer agents (CTA) were prepared: S-1-Dodecyl-S-(αα′-dimethyl-α″-aceticacid)trithiocarbonate (DMP) and 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid (CDSMB).
Figure US08759451-20140624-C00006

The RAFT reaction scheme is as follows:
Figure US08759451-20140624-C00007

Synthesis of Chain Transfer Agents
S-1-Dodecyl-S-(αα′-dimethyl-α″-acetic acid)trithiocarbonate (DMP)
S-1-Dodecyl-S-(αα′-dimethyl-α″-acetic acid)trithiocarbonate was synthesized using literature procedure. [J. T. Lai, D. Filla, R. Shea, Macromolecules 2002, 35, 6754.]
Yield: 41%
1H-NMR (CDCl3/300 MHz): δ[ppm]: 0.85; (t, 3H), 1.16-1.47; (m, 20H), 1.71; (s, 6H), 3.26; (t, 2H), 13.05; (s, 1H)
4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid (CDSMB)
4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid was synthesized in two steps. The first step was prepared using literature procedure [W. G. Weber, J. B. McLeary, R. D. Sanderson, Tetrahedron Lett. 2006, 47, 4771.].
Step 1: Bis-(dodecylsulfanylthiocarbonyl)disulfide
Yield: 72%
1H-NMR (CDCl3/300 MHz): δ[ppm]: 0.86; (t, 6H); 1.11-1.43; (m, 36H); 1.65; (q, 4H); 2.66; (t, 4H)
Step 2: 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid
10 g of Bis-(dodecylsulfanylthiocarbonyl)disulfide and 7.7 g of 4.4′-azobis(4-cyano)pentaneacid were dissolved in 60 ml of freshly distilled dioxane. The mixture was degassed under a stream of argon for one hour and heated at 80° C. under argon atmosphere for 21 hours. The solvent was evaporated and the resulting dark orange oil was recrystallized from hexanes twice.
Yield: 52%
1H-NMR (CDCl3/300 MHz): δ[ppm]: 0.87; (t, 3H); 1.12-1.45; (m, 18H); 1.68; (q, 2H); 1.87; (s, 3H); 2.30-2.63; (m, 2H), 2.68; (t, 2H); 3.32; (t, 2H)
Synthesis of PNIPAM-CTA
All NIPAM-polymers were prepared in a Schlenk tube containing N-isopropyacrylamide, CTA, AIBN and dry dioxane as a solvent. The exact amount of all components can be obtained from Table 1. After three freeze-pump thaw cycles the mixture was placed in a preheated oil bath at 80° C. for 20 hours. The mixture was precipitated in hexane (poor solvent)/THF (good solvent) three times and dried under vacuum. Table 1 further shows the amount of used NIPAM (N-isopropylacrylamide) monomer, CTA (DMP or CDSMB), AIBN and dioxane. The yield refers to the amount of monomer used. Molecular weights were measured by GPC in DMF using PMMA as calibration.
TABLE 1
NIPAM/ DMP/ CDSMB/ AIBN/ Dioxane/ Yield/ M(calc.)/ M(GPC)/
Sample mmol mmol mmol mmol ml % (g/mol) (g/mol) PDI
PNI 1 8.8 0.44 0 0.04 6 94 2263 1461 1.13
PNI 2 8.8 0.29 0 0.03 6 98 3395 3008 1.16
PNI 3 8.8 0.18 0 0.02 6 94 5658 3251 1.14
PNI 4 8.8 0 0.18 0.02 6 96 5658 4727 1.17
PNI 5 8.8 0 0.10 0.01 6 89 10184 6096 1.18
PNI 6 8.8 0 0.18 0.02 6 98 5658 4723 1.16
PNI 7 8.8 0 0.09 0.01 6 96 11316 5905 1.13
PNI 8 17.7 0 0.29 0.03 8 96 6790 5749 1.19
PNI 9 17.7 0 0.25 0.03 8 92 7921 5202 1.17
PNI 10 17.7 0 0.20 0.02 8 93 10184 6785 1.37
PNI 11 17.7 0 0.59 0.06 8 99 3395 3055 1.14
The CDSMB proved more effective as shown in Table 2. Three polymers were synthesized to have the same calculated molecular weight, one with DMP and two with 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid. The discrepancy from the calculated molecular weight of the polymer and the weight measured by GPC in DMF is smaller for the CDSMB. Also the reproducibility was very good for the reaction with 4-Cyano-4-dodecylsulfanylthiocarbonylsulfanyl-4-methyl butyric acid.
TABLE 2
M (calc) −
M (calc.)/ M (GPC)/ M (GPC)/
Sample (g/mol) (g/mol) PDI (g/mol) CTA
PNI
3 5658 3251 1.13 2407 DMP
PNI
4 5658 4727 1.17 931 CDSMB
PNI 6 5658 4723 1.16 935 CDSMB
The cleavage of the trithiocarbonate end group was done by aminolysis. The aminolysis was performed by stirring a mixture of PNIPAM-CTA and amine in THF for several hours at room temperature. The transformation to the thiol-group was tested with two amines: ethanolamine and hexylamine.
Kinetic measurements by UV-vis spectroscopy confirmed the completeness of the reaction after one hour. The spectrum was measured every 15 minutes after adding the amine to the solution of the polymer.
The cleavage of the trithiocarbonate-group was confirmed by UV-vis spectroscopy for both amines by absence of the absorption band at 310 nm (C═S). For further studies hexylamine was chosen for the cleavage because of its good solubility in hexane, which was used to precipitate the polymer after the reaction. FIG. 1 compares the spectra of the pure CTA (1), and PNIPAM with trithiocarbonate-end group (2) and SH-end group (3), at which the decrease and loss the absorption band of the trithiocarbonate group is shown.
Example 2
In this example, functionalization of a styrene-butadiene rubber with RAFT-polymerized PNIPAM is illustrated.
Synthesis of Functionalized Rubber Elastomers
Functionalized elastomer was produced using the following general procedure: A solution of SBR, AIBN and the thiol in dry THF was degassed under argon atmosphere at room temperature for 2 hours. The exact amount of educts for each reaction is shown in Table 3. The reaction mixture was then placed in a preheated oil bath at 70° C. for at least 20 hours. To make sure that no free thiol was in the reaction product, the product was dialyzed against THF for three days. After the dialysis the solvent was evaporated and the product was dried under vacuum. The results of the elemental analysis of three functionalized elastomers are shown in Table 4, with the calculated weight percent of PNIPAM in the resulting fucntionalized SBR.
The 1H-NMR spectrum of the SBR (1) and of the functionalized rubber (2) are shown in FIG. 2. As seen in FIG. 2, the typical elastomer signals are observable, but also the peak of the CH-group of the isopropyl-group of PNIPAM at 3.97 ppm. Again a decrease of the vinyl signals can be observed, indicating a successful functionalization. GPC measurements indicated little cross linking if any of all samples as seen in FIG. 3. FIG. 3 shows exemplary GPC curves for the SBR (1) and for three functionalized elastomers SBR2 (2), SBR5 (3) and SBR6 (4). As indicated by the presence of the shoulder at about 16-17 ml elution volume in FIG. 3, SBR6 showed no cross linking during the reaction, SBR2 showed very little cross linking and SBR 5 shows some cross linking. All three samples were soluble, indicating they were not greatly cross linked.
TABLE 3
weight mass mass mass M (PNIPAM-
PNIPAM/ PNIPAM SBR/ AIBN/ thiol/ SH)/
Sample (SBR) used 1 g g g (g/mol)
SBR 1 20 PNI6 1.0 0.027 0.20 4723
SBR 2 20 PNI7 1.0 0.027 0.20 5950
SBR 3 10 PNI8 1.0 0.022 0.10 5749
SBR 4 15 PNI8 1.0 0.023 0.15 5749
SBR 5 5 PNI8 1.0 0.020 0.05 5749
SBR 6 25 PNI3 1.0 0.003 0.25 3395
SBR 7 200 PNI2 0.5 0.001 1.17 3008
1 from Example 1
TABLE 4
Sample SBR SBR 3 SBR 4 SBR 5
Measurement 1 3.753 mg 6.968 mg 3.472 mg 1.344 mg
C/% 89.72 86.95 85.05 88.21
H/% 10.50 10.20 10.14 8.87
N/% 0 1.03 1.29 0.42
S/% 0 0.08 0.29 0.32
PNIPAM in SBR/ 8.32 10.42 3.39
wt %
Measurement
2 4.882 mg 2.812 mg 5.129 mg 1.164 mg
C/% 89.75 86.81 85.03 87.92
H/% 10.48 10.50 10.17 9.07
N/% 0 1.01 1.30 0.35
S/% 0 0.12 0.12 0.30
PNIPAM in SBR/ 8.16 10.50 2.83
wt %

Claims (8)

What is claimed is:
1. A method of making a graft copolymer, comprising the steps of:
obtaining a first polymer comprising at least one carbon-carbon double bond, the first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer selected from the group consisting of butadiene, isoprene, dimethylbutadiene, pentadiene, and chloroprene;
polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group;
cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group;
reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
2. The method of claim 1, wherein the step of cleaving the terminal thiocarbonylthio group to a thiol group is done by aminolysis.
3. The method of claim 1, wherein the step of cleaving the terminal thiocarbonylthio group to a thiol group is done during rubber mixing in the presence of a nucleophile.
4. The method of claim 3, wherein the nucleophile is selected from the group consisting of diphenylguanidine, p-phenylenediamines, ammonia, and cyclohexylamine.
5. The method of claim 1, wherein the first polymer is selected from the group consisting of styrene-butadiene rubber, polybutadiene, and polyisoprene.
6. The method of claim 1, wherein the second monomer is selected from the group consisting of styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, 1,3-butadiene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, lactones, lactams, cyclic anhydrides, cyclic siloxanes, methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, .alpha.-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, tributoxysilylpropyl methacrylate, dimethoxymethylsilylpropyl methacrylate, diethoxymethylsilylpropyl methacrylate, dibutoxymethylsilylpropyl methacrylate, diisopropoxymethylsilylpropyl methacrylate, dimethoxysilylpropyl methacrylate, diethoxysilylpropyl methacrylate, dibutoxysilylpropyl methacrylate, diisopropoxysilylpropyl methacrylate, trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, tributoxysilylpropyl acrylate, dimethoxymethylsilylpropyl acrylate, diethoxymethylsilylpropyl acrylate, dibutoxymethylsilylpropyl acrylate, diisopropoxymethylsilylpropyl acrylate, dimethoxysilylpropyl acrylate, diethoxysilylpropyl acrylate, dibutoxysilylpropyl acrylate, diisopropoxysilylpropyl acrylate, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, chloroprene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, 2-(2-oxo-l-imidazolidinyl)ethyl 2-methyl-2-propenoate, 1-[2-[2-hydroxy-3-(2-propyl)propyl]amino]ethyl]-2-imidazolidinone, N-vinyl pyrrolidone, N-vinyl imidazole, crotonic acid, vinyl sulfonic acid, and combinations thereof.
7. The method of claim 1, wherein the thiocarbonylthio RAFT chain transfer agent is selected from the group consisting of dithioesters, trithiocarbonates, dithiocarbamates, and xanthates.
8. The method of claim 1, wherein the first and second polymers are reacted during rubber mixing.
US13/333,083 2011-12-21 2011-12-21 Method of making a graft copolymer Expired - Fee Related US8759451B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/333,083 US8759451B2 (en) 2011-12-21 2011-12-21 Method of making a graft copolymer
EP12197577.5A EP2607101A1 (en) 2011-12-21 2012-12-17 Method of making a graft copolymer and rubber composition comprising such a graft copolymer
JP2012277193A JP6161895B2 (en) 2011-12-21 2012-12-19 Method for producing graft copolymer
CN201210560578.3A CN103172809B (en) 2011-12-21 2012-12-21 The method manufacturing graft copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/333,083 US8759451B2 (en) 2011-12-21 2011-12-21 Method of making a graft copolymer

Publications (2)

Publication Number Publication Date
US20130165589A1 US20130165589A1 (en) 2013-06-27
US8759451B2 true US8759451B2 (en) 2014-06-24

Family

ID=47559140

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/333,083 Expired - Fee Related US8759451B2 (en) 2011-12-21 2011-12-21 Method of making a graft copolymer

Country Status (4)

Country Link
US (1) US8759451B2 (en)
EP (1) EP2607101A1 (en)
JP (1) JP6161895B2 (en)
CN (1) CN103172809B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130165588A1 (en) * 2011-12-21 2013-06-27 Ralf Mruk Method of making a graft copolymer
US9834623B1 (en) 2016-11-15 2017-12-05 Industrial Technology Research Institute Crosslinked copolymer and ionic exchange film
US11905414B2 (en) 2019-12-03 2024-02-20 The Goodyear Tire & Rubber Company Rubber composition and an article of manufacture comprising a rubber composition
US12037437B2 (en) 2021-05-28 2024-07-16 The Goodyear Tire & Rubber Company Rubber composition comprising a block-copolymer

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415432B1 (en) * 2011-12-21 2013-04-09 The Goodyear Tire & Rubber Company Rubber composition and pneumatic tire
JP5682594B2 (en) * 2012-05-24 2015-03-11 横浜ゴム株式会社 Modified diene polymer
US9133333B2 (en) * 2012-11-27 2015-09-15 The Goodyear Tire & Rubber Company Blend of a graft copolymer and a second polymer miscible with sidechains of the graft copolymer
CN103058902B (en) * 2012-12-21 2014-08-13 江西科技师范大学 Photoactive reversible addition-breakage chain transfer reagent and preparation and application thereof
CN103044594B (en) * 2012-12-21 2015-05-13 厦门大学 Method for preparing solation-gelation hybridized nano self-assembly aggregation
US9035005B2 (en) 2013-05-15 2015-05-19 The Goodyear Tire & Rubber Company Functionalized elastomer
US8816009B1 (en) 2013-05-15 2014-08-26 The Goodyear Tire & Rubber Company Method of making functionalized elastomer
US9212239B2 (en) 2013-05-30 2015-12-15 The Goodyear Tire & Rubber Company Method of making functionalized elastomer
US8962759B2 (en) 2013-05-30 2015-02-24 The Goodyear Tire & Rubber Company Functionalized elastomer
US9957645B2 (en) * 2013-12-23 2018-05-01 Cytec Industries Inc. Method for producing carbon fibers from polyacrylonitrile (PAN) polymers with low polydispersity index (PDI)
JP6394075B2 (en) * 2014-06-03 2018-09-26 Jsr株式会社 Method for producing graft copolymer
JP6329063B2 (en) * 2014-06-23 2018-05-23 住友ゴム工業株式会社 Rubber composition and pneumatic tire having a tread produced using the rubber composition
FR3034768B1 (en) * 2015-04-07 2017-05-05 Rhodia Operations POLYMER SEQUENCES FOR FILTRAT CONTROL
CN105462528B (en) * 2016-01-15 2017-05-03 如皋市嘉好热熔胶有限公司 Glass sheet paper tag glue and preparation method thereof
CN106046384A (en) * 2016-06-08 2016-10-26 北京市理化分析测试中心 Protein grafted copolymer and preparation method thereof
CN106366263B (en) * 2016-08-31 2018-11-13 中山安康德美生物科技有限公司 Linear block copolymers, dendritic nano-silver composite material and preparation method
US20200088681A1 (en) * 2017-04-24 2020-03-19 University Of Notre Dame Du Lac Tunable electroosmotic flow polymer coated capillary
IT201700115947A1 (en) * 2017-10-13 2019-04-13 Pirelli Tire for vehicle wheels
TW201942147A (en) * 2018-03-28 2019-11-01 日商Jsr股份有限公司 Method for manufacturing polymer, polymer and polymer composition
CN108976426B (en) * 2018-06-26 2020-09-25 南通纺织丝绸产业技术研究院 High-grafting-density ring comb polymer and preparation method thereof
LU100868B1 (en) * 2018-06-29 2019-12-30 Apollo Tyres Global R & D Bv Method for producing a grafted rubber and tire comprising the grafted rubber
CN109160974B (en) * 2018-07-27 2020-12-15 天津安浩生物科技有限公司 Aqueous phase preparation method of maleic anhydride-conjugated diene copolymer
JP7578105B2 (en) * 2019-06-25 2024-11-06 東亞合成株式会社 Block copolymer, resin composition, and method for producing block copolymer
MX2022000632A (en) * 2019-07-16 2022-03-11 Arlanxeo Deutschland Gmbh DIENE RUBBER FINISHED IN CARBOXY.
CN110498890A (en) * 2019-08-26 2019-11-26 江苏宝源高新电工有限公司 One kind having Weatherproof ageing-resistant nitrile rubber graft polymers and preparation method thereof
WO2021054428A1 (en) * 2019-09-20 2021-03-25 株式会社クラレ Conjugated diene-based graft polymer, and method for producing same
KR102731570B1 (en) * 2020-10-28 2024-11-21 주식회사 엘지화학 Modified conjugated diene-based polymer and preparing method thereof
EP3992219B1 (en) 2020-10-28 2025-04-16 Continental Reifen Deutschland GmbH Sulfur-crosslinkable rubber composition comprising a graft copolymer
JP7255581B2 (en) * 2020-11-11 2023-04-11 住友ゴム工業株式会社 Elastomer composition and tire
JP7615626B2 (en) * 2020-11-11 2025-01-17 住友ゴム工業株式会社 Plasticizer, composition and tire
CN114591506B (en) * 2020-12-07 2023-07-21 中国石油化工股份有限公司 Modified diene rubber and preparation method thereof
CN115304698A (en) * 2022-07-20 2022-11-08 中国科学院大连化学物理研究所 Functionalized conjugated diene rubber, composite material and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785631A (en) 1954-10-14 1957-10-30 Bayer Ag A process for the production of shaped articles from elastomeric polymers containing reactive groups
JPS60188411A (en) 1984-03-09 1985-09-25 Agency Of Ind Science & Technol Temperature-sensitive film material and its production
US4755564A (en) 1984-11-28 1988-07-05 Bayer Aktiengesellschaft Graft polymers
US4937290A (en) 1988-09-26 1990-06-26 The Goodyear Tire & Rubber Company Nylon modified rubber composition wherein either nylon or rubber or both are reacted with a thio acid
EP0583814A1 (en) 1992-08-20 1994-02-23 Sofitech N.V. Thermoviscosifying polymers, their synthesis and their uses in particular in the oil industry
EP0629649A1 (en) 1993-06-16 1994-12-21 Sofitech N.V. Rheofluidifying polymers, their synthesis and their applications particularly in the oil industry
JP2001123018A (en) 1999-10-29 2001-05-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
US6486213B1 (en) 1994-03-04 2002-11-26 University Of Washington Block and graft copolymers and methods relating thereto
US7166665B2 (en) 1999-12-30 2007-01-23 Pirelli Pneumatici S.P.A. Elastomeric composition and tire comprising the composition
US7671152B2 (en) 2005-12-22 2010-03-02 The Goodyear Tire & Rubber Company Surfactantless synthesis of amphiphilic cationic block copolymers
US7847019B2 (en) 2007-10-15 2010-12-07 California Institute Of Technology Functionalized polymers using protected thiols
US7883692B2 (en) 2000-07-21 2011-02-08 L'oreal Polymer comprising water soluble units and LCST units, and aqueous composition comprising same
US7943680B2 (en) 2005-02-10 2011-05-17 The Regents Of The University Of Colorado Stress relaxation in crosslinked polymers
JP2011184511A (en) 2010-03-05 2011-09-22 Ube Industries Ltd Modified conjugated diene polymer and process for production thereof, rubber reinforcing agent-compounded rubber composition containing the modified conjugated diene polymer and process for production thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247040A (en) * 1991-06-27 1993-09-21 Rohm And Haas Company Graft copolymers prepared by two staged aqueous emulsion polymerization
DE4220563A1 (en) 1992-06-24 1994-01-13 Bayer Ag Rubber mixtures containing polybutadiene gel
US5672639A (en) 1996-03-12 1997-09-30 The Goodyear Tire & Rubber Company Starch composite reinforced rubber composition and tire with at least one component thereof
CN100473646C (en) 1996-07-10 2009-04-01 联邦科学及工业研究组织 Polymerization with living characteristics
DE19701488A1 (en) 1997-01-17 1998-07-23 Bayer Ag Rubber mixtures containing SBR rubber gels
JP3971481B2 (en) * 1997-03-07 2007-09-05 新日本石油株式会社 Mercaptopolybutenyl derivative for rubber vulcanization, composition for rubber vulcanization and vulcanized rubber composition containing the same
EP1679315A1 (en) 1997-08-21 2006-07-12 General Electric Company Blocked mercaptosilane coupling agents for filled rubbers
DE19834804A1 (en) 1998-08-01 2000-02-03 Continental Ag Rubber compound
DE19834803A1 (en) 1998-08-01 2000-02-03 Continental Ag Rubber compound
DE19834802A1 (en) 1998-08-01 2000-02-03 Continental Ag Rubber compound
DE19942620A1 (en) 1999-09-07 2001-03-08 Bayer Ag Rubber mixtures containing microgels with capped bifunctional mercaptans and vulcanizates made from them
WO2002081561A1 (en) * 2001-04-04 2002-10-17 Kaneka Corporation Thermoplastic resin composition and elastomer composition
DE50205120D1 (en) 2001-08-06 2006-01-05 Degussa organosilicon
JP3971593B2 (en) 2001-10-10 2007-09-05 株式会社カネカ Curable composition
JP2005307097A (en) * 2004-04-26 2005-11-04 Kaneka Corp Macromonomer
DE602005003352T2 (en) 2004-05-12 2008-09-04 Commonwealth Scientific And Industrial Research Organisation PROCESS FOR REMOVING SULFURIC END GROUPS
EP1989237A1 (en) 2006-02-23 2008-11-12 Commonwealth Scientific and Industrial Research Organisation Process for synthesizing thiol terminated polymers
EP2132235A1 (en) * 2007-02-23 2009-12-16 Commonwealth Scientific and Industrial Research Organisation Process for transforming the end groups of polymers
KR101613752B1 (en) * 2008-10-02 2016-04-19 가부시키가이샤 브리지스톤 Method for producing graft copolymer, graft copolymer obtained by the method, rubber composition containing the graft copolymer, and tire
WO2011093401A1 (en) * 2010-01-27 2011-08-04 三菱レイヨン株式会社 Novel chain transfer agent and emulsion polymerization using same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785631A (en) 1954-10-14 1957-10-30 Bayer Ag A process for the production of shaped articles from elastomeric polymers containing reactive groups
JPS60188411A (en) 1984-03-09 1985-09-25 Agency Of Ind Science & Technol Temperature-sensitive film material and its production
US4755564A (en) 1984-11-28 1988-07-05 Bayer Aktiengesellschaft Graft polymers
US4937290A (en) 1988-09-26 1990-06-26 The Goodyear Tire & Rubber Company Nylon modified rubber composition wherein either nylon or rubber or both are reacted with a thio acid
EP0583814A1 (en) 1992-08-20 1994-02-23 Sofitech N.V. Thermoviscosifying polymers, their synthesis and their uses in particular in the oil industry
EP0629649A1 (en) 1993-06-16 1994-12-21 Sofitech N.V. Rheofluidifying polymers, their synthesis and their applications particularly in the oil industry
US6486213B1 (en) 1994-03-04 2002-11-26 University Of Washington Block and graft copolymers and methods relating thereto
JP2001123018A (en) 1999-10-29 2001-05-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
US7166665B2 (en) 1999-12-30 2007-01-23 Pirelli Pneumatici S.P.A. Elastomeric composition and tire comprising the composition
US7883692B2 (en) 2000-07-21 2011-02-08 L'oreal Polymer comprising water soluble units and LCST units, and aqueous composition comprising same
US7943680B2 (en) 2005-02-10 2011-05-17 The Regents Of The University Of Colorado Stress relaxation in crosslinked polymers
US7671152B2 (en) 2005-12-22 2010-03-02 The Goodyear Tire & Rubber Company Surfactantless synthesis of amphiphilic cationic block copolymers
US7847019B2 (en) 2007-10-15 2010-12-07 California Institute Of Technology Functionalized polymers using protected thiols
JP2011184511A (en) 2010-03-05 2011-09-22 Ube Industries Ltd Modified conjugated diene polymer and process for production thereof, rubber reinforcing agent-compounded rubber composition containing the modified conjugated diene polymer and process for production thereof

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Brummelhuis, Niels ten et al., "Supporting Information to Thiol#Ene Modification of 1,2-Polybutadiene Using UV Light or Sunlight", Macromolecules vol. 41, p. S1-S85 (2008).
Brummelhuis, Niels ten et al., "Thiol#Ene Modification of 1,2-Polybutadiene Using UV Light or Sunlight", Macromolecules, 2008, 41, pp. 9946-9947, Retrieved from the Internet: URL: http://www.pubs.acs.org.
English Translation of JP2001123018 (2001).
English Translation of JP2011184511 (2011).
Gerber, R. Eric et al., -Mercaptopropionitrile (2-Cyanoethanethiol), Organic Synthesis, Coll. vol. 10, p. 234 (2004); vol. 77, p. 186 (2000).
Goldmann, Anja S., et al. "Surface Modification of Poly(divinyldenzene) Microspheres via Thiol(TM)Ene Chemistry and Alkyne(TM)Azide Click Reactions", Macromolecules, Apr. 27, 2009, Retrieved from the Internet: URL:http://pubs.acs.org.
Goldmann, Anja S., et al. "Surface Modification of Poly(divinyldenzene) Microspheres via Thiol™Ene Chemistry and Alkyne™Azide Click Reactions", Macromolecules, Apr. 27, 2009, Retrieved from the Internet: URL:http://pubs.acs.org.
Harrisson, Simon, "Radical-Catalyzed Oxidation of Thiols by Trithiocarbonate and Dithioester Raft Agents: Implications for the Preparation of Polymers with Terminal Thiol Functionality", Macromolecules, vol. 42, p. 897-898 (2009).
Kryger, Matt, "Applications of Thiol-ENE Coupling", Abstract, Dec. 11, 2008, pp. 1-8, Retrieved from the Internet, http://www.chemistry.illinois.edu/research/organic/seminar-extracts/2008-2009/Matt-Kryger-Chem535-FA08-Abstract.pdf.
Lutz, Jean-Francois, "Modular Chemical Tools for Advanced Maromolecular Engineering", Polymer, vol. 49, Issue 4, Feb. 18, 2008, pp. 817-824.
Moad, Graeme et al., "Living Radical Polymerization by the RAFT Process", Australian J. Chemistry 2005, vol. 58, pp. 379-410, Retrieved from the Internet: URL: http://ww.publish.csiro.au/journals/ajc.
Mori, Noriko, et al., "Temperature-Induced Changes in the Surface Wettability of SBR + PNIPA Films", Macromolecular Materials and Engineering, 2007, vol. 292, pp. 917-922, Retrieved from the Internet: URL: http://www.mme-journal.de.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130165588A1 (en) * 2011-12-21 2013-06-27 Ralf Mruk Method of making a graft copolymer
US9156932B2 (en) * 2011-12-21 2015-10-13 The Goodyear Tire & Rubber Company Method of making a graft copolymer
US9834623B1 (en) 2016-11-15 2017-12-05 Industrial Technology Research Institute Crosslinked copolymer and ionic exchange film
US11905414B2 (en) 2019-12-03 2024-02-20 The Goodyear Tire & Rubber Company Rubber composition and an article of manufacture comprising a rubber composition
US12037437B2 (en) 2021-05-28 2024-07-16 The Goodyear Tire & Rubber Company Rubber composition comprising a block-copolymer

Also Published As

Publication number Publication date
CN103172809A (en) 2013-06-26
US20130165589A1 (en) 2013-06-27
JP6161895B2 (en) 2017-07-12
JP2013136748A (en) 2013-07-11
EP2607101A1 (en) 2013-06-26
CN103172809B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US8759451B2 (en) Method of making a graft copolymer
US8415432B1 (en) Rubber composition and pneumatic tire
EP2607102B1 (en) Method of making a graft polymer, copolymer and tire
US8536266B2 (en) Pneumatic tire
US8883884B2 (en) Pneumatic tire
US8865829B2 (en) Functionalized polymer, rubber composition and pneumatic tire
US8993669B2 (en) Functionalized polymer, rubber composition and pneumatic tire
US10087275B2 (en) Functionalized elastomer containing a nitrogen group
EP2639245A1 (en) Rubber composition and pneumatic tire
EP2735451B1 (en) Polymer blend and article of manufacture such as a tire comprising such a blend
US9580532B1 (en) Functionalized elastomer via allylboration
US9416211B2 (en) Rubber composition and pneumatic tire
US11117997B2 (en) Functionalized polymer, rubber composition and pneumatic tire
US10711084B1 (en) In-chain functionalized elastomer, rubber composition and pneumatic tire
US11180636B2 (en) Functionalized initiator, method of making initiator and functionalized elastomer
EP3670542B1 (en) Functionalized polymer, rubber composition and pneumatic tire
US10947380B2 (en) Functionalized polymer, rubber composition and pneumatic tire
US20210355144A1 (en) Functionalized initiator, method of making initiator and functionalized elastomer

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOODYEAR TIRE & RUBBER COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERMANN, ALEXANDRA;ZENTEL, RUDOLF WILHELM;REEL/FRAME:032884/0164

Effective date: 20111212

Owner name: GOODYEAR TIRE & RUBBER COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MRUK, RALF;SCHMITZ, FRANK;ROSKAMP, ROBERT FOKKO;REEL/FRAME:032892/0367

Effective date: 20111205

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220624

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载