US8752767B2 - Illumination system with prism for use in imaging scanner - Google Patents
Illumination system with prism for use in imaging scanner Download PDFInfo
- Publication number
- US8752767B2 US8752767B2 US13/526,913 US201213526913A US8752767B2 US 8752767 B2 US8752767 B2 US 8752767B2 US 201213526913 A US201213526913 A US 201213526913A US 8752767 B2 US8752767 B2 US 8752767B2
- Authority
- US
- United States
- Prior art keywords
- prism
- section
- illumination
- illumination light
- light received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 134
- 238000003384 imaging method Methods 0.000 title claims abstract description 80
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 239000012780 transparent material Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims 1
- 238000005070 sampling Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10831—Arrangement of optical elements, e.g. lenses, mirrors, prisms
Definitions
- the present disclosure relates generally to imaging-based barcode scanners.
- a barcode is a coded pattern of graphical indicia comprised of a series of bars and spaces of varying widths. In a barcode, the bars and spaces have differing light reflecting characteristics. Some of the barcodes have a one-dimensional structure in which bars and spaces are spaced apart in one direction to form a row of patterns. Examples of one-dimensional barcodes include Uniform Product Code (UPC), which is typically used in retail store sales. Some of the barcodes have a two-dimensional structure in which multiple rows of bar and space patterns are vertically stacked to form a single barcode. Examples of two-dimensional barcodes include Code 49 and PDF417.
- UPC Uniform Product Code
- Imaging-based barcode readers Systems that use one or more imaging sensors for reading and decoding barcodes are typically referred to as imaging-based barcode readers, imaging scanners, or imaging readers.
- An imaging sensor generally includes a plurality of photosensitive elements or pixels aligned in one or more arrays. Examples of imaging sensors include charged coupled devices (CCD) or complementary metal oxide semiconductor (CMOS) imaging chips.
- CCD charged coupled devices
- CMOS complementary metal oxide semiconductor
- the invention is directed to an apparatus.
- the apparatus includes an illumination lens, an illumination light source for generating illumination light, and a prism made of optical transparent material.
- the prism includes a first surface having a first section thereon facing the illumination light source to allow the illumination light received from the illumination light source to pass through, a second surface facing the illumination lens, and a third surface facing both the first surface and the second surface.
- the first section on the first surface has a length thereof at least four times as long as a width thereof, and the first surface includes a second section adjacent to the first section for defining the edge of an aperture.
- the third surface of the prism is configured to reflect the illumination light received from the first section onto the second surface to redirect at least a portion of the illumination light received from the first section to pass through both the second surface of the prism and the illumination lens for projecting the portion of the illumination light onto the target object within the imaging field of view.
- the third surface of the prism is also configured to substantially prevent the additional light received from the second section of the first surface from being projected onto the target object within the imaging field of view though the illumination lens.
- FIG. 1 shows an imaging scanner in accordance with some embodiments.
- FIG. 2 is a schematic of an imaging scanner in accordance with some embodiments.
- FIG. 3 shows an illumination system that generates an illumination light with a corresponding illumination FOV towards a barcode.
- FIG. 4 is a schematic of an illumination system that has a coupling optical prism positioned between the light source and the illumination lens in accordance with some embodiments.
- FIGS. 5A-5B depict the prism in some details in accordance with some embodiments.
- FIG. 6 depicts that the third surface of the prism is configured to reflect the illumination light received from the first section of the first surface onto the second surface in accordance some embodiments.
- FIGS. 7A-7B depict that the third surface of the prism is configured to substantially prevent the additional light received from the second section from being projected onto the target object within the imaging field of view though the illumination lens.
- FIG. 1 shows an imaging scanner 50 in accordance with some embodiments.
- the imaging scanner 50 has a window 56 and a housing 58 with a handle.
- the imaging scanner 50 also has a base 52 for supporting itself on a countertop.
- the imaging scanner 50 can be used in a hands-free mode as a stationary workstation when it is placed on the countertop.
- the imaging scanner 50 can also be used in a handheld mode when it is picked up off the countertop and held in an operator's hand.
- products can be slid, swiped past, or presented to the window 56 .
- the imaging scanner 50 In the handheld mode, the imaging scanner 50 can be moved towards a barcode on a product, and a trigger 54 can be manually depressed to initiate imaging of the barcode.
- the base 52 can be omitted, and the housing 58 can also be in other shapes.
- a cable is also connected to the base 52 .
- the imaging scanner 50 can be powered by an on-board battery and it can communicate with a remote host by a wireless link.
- FIG. 2 is a schematic of an imaging scanner 50 in accordance with some embodiments.
- the imaging scanner 50 in FIG. 2 includes the following components: (1) an imaging sensor 62 positioned behind an imaging lens arrangement 60 ; (2) an illuminating lens arrangement 70 positioned in front of an illumination light source 72 ; (3) an aiming pattern generator 80 positioned in front of an aiming light source 82 ; and (4) a controller 90 .
- the imaging lens arrangement 60 , the illuminating lens arrangement 70 , and the aiming pattern generator 80 are positioned behind the window 56 .
- the imaging sensor 62 is mounted on a printed circuit board 91 in the imaging scanner.
- the imaging sensor 62 can be a CCD or a CMOS imaging device.
- the imaging sensor 62 generally includes multiple pixel elements. These multiple pixel elements can be formed by a one-dimensional array of photosensitive elements arranged linearly in a single row. These multiple pixel elements can also be formed by a two-dimensional array of photosensitive elements arranged in mutually orthogonal rows and columns.
- the imaging sensor 62 is operative to detect light captured by an imaging lens arrangement 60 along an optical path or axis 61 through the window 56 .
- the imaging sensor 62 and the imaging lens arrangement 60 are designed to operate together for capturing light scattered or reflected from a barcode 40 as image data over a two-dimensional imaging field of view (FOV).
- FOV two-dimensional imaging field of view
- the barcode 40 generally can be located anywhere in a working range of distances between a close-in working distance (WD 1 ) and a far-out working distance (WD 2 ). In one specific implementation, WD 1 is in a close proximity to the window 56 , and WD 2 is about a couple of feet from the window 56 .
- Some of the imaging scanners can include a range finding system for measuring the distance between the barcode 40 and the imaging lens arrangement 60 .
- Some of the imaging scanners can include an auto-focus system to enable a barcode be more clearly imaged with the imaging sensor 62 based on the measured distance of this barcode. In some implementations of the auto-focus system, the focus length of the imaging lens arrangement 60 is adjusted based on the measured distance of the barcode. In some other implementations of the auto-focus system, the distance between the imaging lens arrangement 60 and the imaging sensor 62 is adjusted based on the measured distance of the barcode.
- the illuminating lens arrangement 70 and the illumination light source 72 are designed to operate together for generating an illuminating light towards the barcode 40 during an illumination time period.
- the illumination light source 72 can include one or more light emitting diodes (LED).
- the illumination light source 72 can also include a laser or other kind of light sources.
- the aiming pattern generator 80 and the aiming light source 82 are designed to operate together for generating a visible aiming light pattern towards the barcode 40 . Such aiming pattern can be used by the operator to accurately aim the imaging scanner at the barcode.
- the aiming light source 82 can include one or more light emitting diodes (LED).
- the aiming light source 82 can also include a laser, LED, or other kind of light sources.
- the controller 90 such as a microprocessor, is operatively connected to the imaging sensor 62 , the illumination light source 72 , and the aiming light source 82 for controlling the operation of these components.
- the controller 90 can also be used to control other devices in the imaging scanner.
- the imaging scanner 50 includes a memory 94 that can be accessible by the controller 90 for storing and retrieving data.
- the controller 90 also includes a decoder for decoding one or more barcodes that are within the imaging field of view (FOV) of the imaging scanner 50 .
- the barcode 40 can be decoded by digitally processing a captured image of the barcode with a microprocessor.
- the controller 90 sends a command signal to energize the illumination light source 72 for a predetermined illumination time period.
- the controller 90 then exposes the imaging sensor 62 to capture an image of the barcode 40 .
- the captured image of the barcode 40 is transferred to the controller 90 as image data.
- image data is digitally processed by the decoder in the controller 90 to decode the barcode.
- the information obtained from decoding the barcode 40 is then stored in the memory 94 or sent to other devices for further processing.
- Linear imager requires an illumination system for reading indicia under low ambient light conditions.
- the illumination system can generate an illumination light with a corresponding illumination FOV 78 towards a barcode 40 within imaging FOV.
- the second purpose of the illumination system is to guide the user to where the actual imaging FOV is located. It is highly desirable to have a high efficiency illumination system with high brightness to provide a good reader performance under a low ambient light condition and to generate a well visible sharp aiming line as the illumination FOV 78 .
- a fold mirror between the light source 72 and the illumination lens 70 can be used for folding the optical path of the illumination FOV 78 to accommodate a more compact design.
- the light coupling efficiency of this system is quite low since the cone angle of the emitted light of the light source 72 may not match well to the size of the illumination lens 70 .
- a fold mirror may have an additional optical power which may improve somewhat the coupling efficiency.
- this design does not allow implementing an optical aperture which provides good consistency of the illuminating line sharpness in mass production environment.
- As an additional drawback of the fold mirror design is that it requires a reflective coating on the mirror surface which adds additional cost to the product.
- An improved illumination system can include a coupling optical prism positioned between the light source and the illumination lens.
- the coupling prism can have an optical aperture which further improves the sharpness and consistency of the illuminating line.
- This coupling optical prism includes some modified surfaces to provide desired illumination beam shaping properties from the light source.
- a coupling efficiency between a light source such as LED and the illumination lens is quite low. In particular this is the case for small size linear imaging engines where the space is limited and optical means are necessary to fold the optical path into a provided volume.
- the cone of light from the light source does not intercept properly the illumination lens.
- the light cone of the light source can be optically modified to match efficiently with the illumination lens and by these means to improve light throughput through the system.
- This improved illumination system can have the coupling efficiency that is at least about two times better than some of the existing systems with a flat fold mirror.
- FIG. 4 is a schematic of an illumination system that has a coupling optical prism positioned between the light source and the illumination lens in accordance with some embodiments.
- the illumination system includes an illumination lens 70 , an illumination light source 72 , and a prism 100 .
- the prism 100 can be made out of optical transparent material such as polycarbonate, zeonex, and others.
- the prism can be molded out of plastic or manufactured by other means.
- FIGS. 5A-5B depict the prism 100 in some details in accordance with some embodiments.
- FIG. 5B is a bottom view of the prism 100 .
- the prism 100 includes a first surface having a first section 110 A and a second section 110 B, a second surface 120 facing the illumination lens 70 , and a third surface 130 facing both the first surface (i.e. the first section 110 A and the second section 110 B) and the second surface 120 .
- the third surface 130 is located between the first surface and the second surface when light travels the optical path from the first to the second surfaces.
- the first section 110 A on the first surface is generally facing the illumination light source 72 to allow the illumination light received from the illumination light source 72 to pass through.
- the second section 110 B on the first surface is adjacent to the first section 110 A for defining the edge 119 of an aperture.
- the edge 119 is a line.
- the first section 110 A is substantially elongated along one axis, and it generally has a length that is at least four times as long as its width.
- the aperture length (as defined generally by the length of the first section 110 A) can be selected as per design requirements to control the horizontal length of the illuminating line.
- the aperture (as defined by the first section 110 A and the second section 110 B) has a rectangular shape.
- the first section 110 A has a curvature.
- the first section 110 A is cylindrical along the aperture edge and has a positive cylindrical power.
- this surface can be toroidal or any other free form.
- the section 110 A can comprise the entire first surface with no section 110 B and no optical aperture 119 .
- FIG. 6 depicts that the third surface 130 of the prism 100 is configured to reflect the illumination light 111 A received from the first section 110 A onto the second surface 120 as light 112 A in accordance some embodiments.
- the third surface 130 of the prism 100 folds the light at approximately 90 degrees.
- the light of the main optical path 112 A impinges on this third surface 130 at approximately 45 degrees and due to TIR (total internal reflection) gets reflected by this surface along the main optical path towards the illumination lens 70 .
- this third surface 130 is uncoated.
- this third surface 130 can have a curvature to it.
- a coating maybe applied the surface 130 if the incident angle is smaller than angle required for TIR to occur.
- FIGS. 7A-7B depict that the third surface 130 of the prism 100 is also configured to substantially prevent the additional light 111 B received from the second section 110 B from being projected onto the target object within the imaging field of view though the illumination lens 70 .
- the light 112 B is substantially redirected from the main optical path 112 A and is not projected by the lens 70 onto the target.
- the third surface 130 of the prism 100 is configured to cause the light 111 B received from the second section 110 B of the first surface to transmit out of the prism through the third surface 130 as light 112 B.
- FIG. 7A depict that the third surface 130 of the prism 100 is also configured to substantially prevent the additional light 111 B received from the second section 110 B from being projected onto the target object within the imaging field of view though the illumination lens 70 .
- the light 112 B is substantially redirected from the main optical path 112 A and is not projected by the lens 70 onto the target.
- the third surface 130 of the prism 100 is configured to cause the light 111 B received from the second section 110 B of
- the third surface 130 of the prism 100 is configured to cause the light 111 B received from the second section 110 B of the first surface to be deflected outside the main optical pass 112 A as light 112 B and 115 B that does not reaches the illumination lens 70 .
- the deflected light 115 B can be blocked with an additional aperture stop to substantially prevent light 115 B from reaching the illumination lens 70 .
- an additional aperture stop can be used to substantially prevent light 115 B from projecting onto the target object within the imaging field of view though the illumination lens 70 .
- the illumination lens 70 projects the image of an aperture as formed by the first section 110 A outwards and forms preferably a sharp image 78 of the aperture (i.e., first section 110 A) at a certain distance on the target object of interest as shown in FIG. 3 , in which the sharp image 78 can be well defined by the sharp edges 79 .
- the second surface 120 of the prism 100 has an optical power that is differ from zero diopter at least in one direction.
- the second surface 120 can be toroidal where optical power is different in mutually perpendicular directions.
- the second surface 120 can have no optical power in one direction, as in the case of a cylindrical surface.
- an astigmatic and toroidal surface may have zero total power but very strong power in X and Y direction with opposite signs.
- the second surface 120 is cylindrical where the cylindrical axis is substantially aligned with the aperture longer direction 119 formed by the first section 110 A. This second surface 120 reduces effective size of the aperture formed by the first section 110 A when it is imaged by the illumination lens 70 ; therefore, the vertical size of this physical aperture (i.e., the width of the first section 110 A) has to be increased to maintain the same effective size and by these means increases the light throughput through its physical aperture 110 A and the overall system.
- FIG. 4 there is another opaque aperture 200 located between the light source 72 and the first section 110 A of the first surface on the prism.
- the opaque aperture 200 blocks the major part of the unused light which may come from the light source 72 and cause unwanted stray light and perceived quality of the illumination line 78 .
- Aperture 200 trims the majority of light from the light source 72 but does not interfere with the main optical path.
- the width of the aperture 200 is wider than the width of the first section 110 A. In such embodiment, It is the first section 110 A that is actually imaged outwards by the illumination lens 70 .
- Aperture 200 is used as a light baffle to reduce scattered light which may occur in the system.
- the length of the aperture 200 can be shorter than the length of the first section 110 A. In another embodiment, there may not be an aperture formed by the first section 110 A, and the illumination line is shaped by the aperture 200 only. Aperture 200 can made out of sheet metal by stamping or etching process or the aperture can be formed as part of the opaque chassis.
- the illumination lens 70 can be of any shape (free shape or symmetrical) and it depends on requirements of a particular design.
- the illumination system as shown in FIG. 4 can improve the coupling efficiency of the light source and the illumination lens and allows to maintain overall small physical volume of the illumination system.
- This illumination system be used in a small size linear imagers and imaging engines where high efficiency and high illumination line brightness is required.
- a includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element.
- the terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein.
- the terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%.
- the term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically.
- a device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
- processors such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein.
- processors or “processing devices” such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein.
- FPGAs field programmable gate arrays
- unique stored program instructions including both software and firmware
- an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein.
- Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
Claims (22)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/526,913 US8752767B2 (en) | 2012-06-19 | 2012-06-19 | Illumination system with prism for use in imaging scanner |
PCT/US2013/041325 WO2013191827A1 (en) | 2012-06-19 | 2013-05-16 | Illumination system with prism for use in imaging scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/526,913 US8752767B2 (en) | 2012-06-19 | 2012-06-19 | Illumination system with prism for use in imaging scanner |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130334315A1 US20130334315A1 (en) | 2013-12-19 |
US8752767B2 true US8752767B2 (en) | 2014-06-17 |
Family
ID=48576538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/526,913 Active 2032-12-04 US8752767B2 (en) | 2012-06-19 | 2012-06-19 | Illumination system with prism for use in imaging scanner |
Country Status (2)
Country | Link |
---|---|
US (1) | US8752767B2 (en) |
WO (1) | WO2013191827A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9316580B2 (en) | 2011-03-21 | 2016-04-19 | Coloright Ltd. | Systems for custom coloration |
JP6474615B2 (en) | 2011-03-21 | 2019-02-27 | コロライト エルティーディー.ColoRight Ltd. | System for custom coloring |
USD732736S1 (en) * | 2012-09-27 | 2015-06-23 | Coloright Ltd. | Hair reader |
US10521629B2 (en) * | 2018-04-13 | 2019-12-31 | Zebra Technologies Corporation | Handheld symbol reader with optical element to redirect central illumination axis |
CN113253265B (en) * | 2020-12-16 | 2024-03-29 | 航天科工微电子系统研究院有限公司 | Tomographic imaging method based on TIR prism steering common aperture emission |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5697699A (en) | 1993-09-09 | 1997-12-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Lighting apparatus |
US5818637A (en) * | 1996-02-26 | 1998-10-06 | Hoover; Rex A. | Computerized video microscopy system |
-
2012
- 2012-06-19 US US13/526,913 patent/US8752767B2/en active Active
-
2013
- 2013-05-16 WO PCT/US2013/041325 patent/WO2013191827A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5697699A (en) | 1993-09-09 | 1997-12-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Lighting apparatus |
US5818637A (en) * | 1996-02-26 | 1998-10-06 | Hoover; Rex A. | Computerized video microscopy system |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion in counterpart patent application PCT/US2013/041325 mailed Aug. 30, 2013. |
Also Published As
Publication number | Publication date |
---|---|
US20130334315A1 (en) | 2013-12-19 |
WO2013191827A1 (en) | 2013-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9202094B1 (en) | Aiming pattern shape as distance sensor for barcode scanner | |
US8978982B2 (en) | Aiming system for imaging scanner | |
US9033237B1 (en) | Decoding DPM indicia with polarized illumination | |
US8864036B2 (en) | Apparatus and method for finding target distance from barode imaging scanner | |
US9141833B2 (en) | Compact aiming light assembly and imaging module for, and method of, generating an aiming light spot with increased brightness and uniformity from a light-emitting diode over an extended working distance range in an imaging reader | |
US8757494B2 (en) | Illumination system in imaging scanner | |
US11062102B2 (en) | Decoding indicia with polarized imaging | |
US8752767B2 (en) | Illumination system with prism for use in imaging scanner | |
US9734375B2 (en) | Method of controlling exposure on barcode imaging scanner with rolling shutter sensor | |
US8348168B2 (en) | Focus adjustment with liquid crystal device in imaging scanner | |
US8534559B2 (en) | Imaging slot scanner with multiple field of view | |
US20150371070A1 (en) | Efficient optical illumination system and method for an imaging reader | |
US8590793B2 (en) | Imaging-based barcode readers having curved window | |
US8342410B2 (en) | Method and apparatus for increasing brightness of aiming pattern in imaging scanner | |
US8517272B1 (en) | Method to differentiate aiming from active decoding | |
US8657195B2 (en) | Document capture with imaging-based bar code readers | |
US8910873B2 (en) | Method and apparatus for defining illumination field of view of barcode reader | |
US9507985B2 (en) | Optical lens for using in illumination system of imaging scanner | |
US9740903B2 (en) | Module or arrangement for, and method of, uniformly and efficiently illuminating a target by generating an illumination pattern that is substantially congruent to and overlaps a field of view of an imaging reader | |
CN106462723B (en) | Decoding barcodes using intelligent linear selection lists | |
US9004363B2 (en) | Diffuser engine for barcode imaging scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SYMBOL TECHNOLOGIES, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINOGRADOV, IGOR;SHI, DAVID T.;REEL/FRAME:028401/0910 Effective date: 20120619 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC. AS THE COLLATERAL AGENT, MARYLAND Free format text: SECURITY AGREEMENT;ASSIGNORS:ZIH CORP.;LASER BAND, LLC;ZEBRA ENTERPRISE SOLUTIONS CORP.;AND OTHERS;REEL/FRAME:034114/0270 Effective date: 20141027 Owner name: MORGAN STANLEY SENIOR FUNDING, INC. AS THE COLLATE Free format text: SECURITY AGREEMENT;ASSIGNORS:ZIH CORP.;LASER BAND, LLC;ZEBRA ENTERPRISE SOLUTIONS CORP.;AND OTHERS;REEL/FRAME:034114/0270 Effective date: 20141027 |
|
AS | Assignment |
Owner name: SYMBOL TECHNOLOGIES, LLC, NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:SYMBOL TECHNOLOGIES, INC.;REEL/FRAME:036083/0640 Effective date: 20150410 |
|
AS | Assignment |
Owner name: SYMBOL TECHNOLOGIES, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:036371/0738 Effective date: 20150721 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |