US8524439B2 - Silsesquioxane resin systems with base additives bearing electron-attracting functionalities - Google Patents
Silsesquioxane resin systems with base additives bearing electron-attracting functionalities Download PDFInfo
- Publication number
- US8524439B2 US8524439B2 US12/304,263 US30426307A US8524439B2 US 8524439 B2 US8524439 B2 US 8524439B2 US 30426307 A US30426307 A US 30426307A US 8524439 B2 US8524439 B2 US 8524439B2
- Authority
- US
- United States
- Prior art keywords
- value
- bicyclo
- composition
- heptane
- carboxylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011347 resin Substances 0.000 title claims abstract description 104
- 229920005989 resin Polymers 0.000 title claims abstract description 104
- 239000000654 additive Substances 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000002253 acid Substances 0.000 claims abstract description 45
- 229910004726 HSiO3/2 Inorganic materials 0.000 claims abstract description 35
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910020487 SiO3/2 Inorganic materials 0.000 claims description 17
- 125000000524 functional group Chemical group 0.000 claims description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 8
- PDRJTQBVOXDUDH-UHFFFAOYSA-N tert-butyl bicyclo[2.2.1]heptane-3-carboxylate Chemical group C1CC2C(C(=O)OC(C)(C)C)CC1C2 PDRJTQBVOXDUDH-UHFFFAOYSA-N 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 5
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 4
- 125000005647 linker group Chemical group 0.000 claims description 4
- GILIYJDBJZWGBG-UHFFFAOYSA-N 1,1,1-trifluoropropan-2-ol Chemical compound CC(O)C(F)(F)F GILIYJDBJZWGBG-UHFFFAOYSA-N 0.000 claims description 3
- JLBMCECANBMNQK-UHFFFAOYSA-N 3,3-difluoro-2-(trifluoromethyl)bicyclo[2.2.1]hept-5-en-2-ol Chemical compound C1C2C=CC1C(C(F)(F)F)(O)C2(F)F JLBMCECANBMNQK-UHFFFAOYSA-N 0.000 claims description 3
- GQJOYSGQPRLCMY-UHFFFAOYSA-N 5-(trifluoromethyl)bicyclo[2.2.1]hept-2-en-5-ol Chemical compound C1C2C(O)(C(F)(F)F)CC1C=C2 GQJOYSGQPRLCMY-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910020485 SiO4/2 Inorganic materials 0.000 claims description 2
- 125000000732 arylene group Chemical group 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims description 2
- SKFFXXBPEYMYOY-UHFFFAOYSA-N (2-methyl-1-adamantyl) bicyclo[2.2.1]heptane-3-carboxylate Chemical group C1C(C2)CC(C3)CC1C(C)C32OC(=O)C1C(C2)CCC2C1 SKFFXXBPEYMYOY-UHFFFAOYSA-N 0.000 claims 4
- WGHRAEYOGGISAR-UHFFFAOYSA-N (4-hydroxy-4,6,6-trimethyl-3-bicyclo[3.1.1]heptanyl) bicyclo[2.2.1]heptane-3-carboxylate Chemical group C1C(C2(O)C)C(C)(C)C1CC2OC(=O)C1C(C2)CCC2C1 WGHRAEYOGGISAR-UHFFFAOYSA-N 0.000 claims 4
- MRGRACHANXEFQU-UHFFFAOYSA-N cyclohexyl bicyclo[2.2.1]heptane-3-carboxylate Chemical group C1C(C2)CCC2C1C(=O)OC1CCCCC1 MRGRACHANXEFQU-UHFFFAOYSA-N 0.000 claims 4
- WLYSYRLTVVAFAT-UHFFFAOYSA-N propan-2-yl bicyclo[2.2.1]heptane-3-carboxylate Chemical group C1CC2C(C(=O)OC(C)C)CC1C2 WLYSYRLTVVAFAT-UHFFFAOYSA-N 0.000 claims 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 3
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 41
- -1 methylene, ethylene, norbornene Chemical class 0.000 description 29
- 238000000034 method Methods 0.000 description 25
- 239000002243 precursor Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 18
- 229920002120 photoresistant polymer Polymers 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 150000001336 alkenes Chemical class 0.000 description 12
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 12
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 12
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 10
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 229940116333 ethyl lactate Drugs 0.000 description 9
- 238000006459 hydrosilylation reaction Methods 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000003756 stirring Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Substances [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 6
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000010943 off-gassing Methods 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- 229940093475 2-ethoxyethanol Drugs 0.000 description 2
- VNJOEUSYAMPBAK-UHFFFAOYSA-N 2-methylbenzenesulfonic acid;hydrate Chemical compound O.CC1=CC=CC=C1S(O)(=O)=O VNJOEUSYAMPBAK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 0 [5*][C@]([6*])(C)C*C Chemical compound [5*][C@]([6*])(C)C*C 0.000 description 2
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- XXTZHYXQVWRADW-UHFFFAOYSA-N diazomethanone Chemical class [N]N=C=O XXTZHYXQVWRADW-UHFFFAOYSA-N 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- YVFYAKCYGJVIQV-UHFFFAOYSA-N ethenyl-[ethenyl-bis(5-methyl-2-propan-2-ylcyclohexyl)silyl]oxy-bis(5-methyl-2-propan-2-ylcyclohexyl)silane Chemical compound CC(C)C1CCC(C)CC1[Si](C1C(CCC(C)C1)C(C)C)(C=C)O[Si](C=C)(C1C(CCC(C)C1)C(C)C)C1C(C(C)C)CCC(C)C1 YVFYAKCYGJVIQV-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 2
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- 239000005052 trichlorosilane Substances 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical compound O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- UWQPDVZUOZVCBH-UHFFFAOYSA-N 2-diazonio-4-oxo-3h-naphthalen-1-olate Chemical class C1=CC=C2C(=O)C(=[N+]=[N-])CC(=O)C2=C1 UWQPDVZUOZVCBH-UHFFFAOYSA-N 0.000 description 1
- NDFPMZSLDATQFF-UHFFFAOYSA-N 2-diazonio-4-oxocyclohexa-1,5-dien-1-olate Chemical class [N-]=[N+]=C1CC(=O)C=CC1=O NDFPMZSLDATQFF-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- WXFUPOPZMNJHSC-UHFFFAOYSA-N C[IH2](C1=CC1)N Chemical compound C[IH2](C1=CC1)N WXFUPOPZMNJHSC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 229920004938 FOx® Polymers 0.000 description 1
- 229910002621 H2PtCl6 Inorganic materials 0.000 description 1
- 101000908391 Homo sapiens Dipeptidyl peptidase 4 Proteins 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- DSVRVHYFPPQFTI-UHFFFAOYSA-N bis(ethenyl)-methyl-trimethylsilyloxysilane;platinum Chemical compound [Pt].C[Si](C)(C)O[Si](C)(C=C)C=C DSVRVHYFPPQFTI-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002895 organic esters Chemical group 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1545—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
Definitions
- a good chemically amplified photoresist must meet all of the stringent requirements for microlithography at a given wavelength, such as transparent, chemically amplifiable, soluble in industry standard developer (e.g. tetramethyl ammonium hydroxide—TMAH), resistance to plasma etching, good adhesion to substrates, and exceptional thermal and mechanical properties for processing.
- TMAH tetramethyl ammonium hydroxide
- multi-layer processes such as tri-layer processes
- SL thin single-layer
- SL thin single-layer
- the major challenge for the tri-layer process is to develop a hardmask layer which has not only high etch resistance, but also other matched optical properties both for the top-layer and the under-layer.
- BL bi-layer
- a thin top image layer usually a silicon-containing resist
- ARC anti-reflective coating
- the silicon-containing BL resist provides good etch selectivity for anisotropic etch processes, such as reactive ion etching (RIE) using an oxygen containing plasma.
- RIE reactive ion etching
- HSQ hydrogen silsesquioxane Due to its unique structure and high content of Si—H bonds, hydrogen silsesquioxane (HSQ) is remarkably transparent at 193 nm and 157 nm.
- HSQ commercialized by Dow Corning under the trade name FOx®
- FOx® spin-on low-k dielectric material
- FOx® spin-on low-k dielectric material
- TMAH tetra-methyl ammonium hydroxide
- WO 2005/007747 which is hereby incorporated by reference, describes HSQ-based resins of the general formula (HSiO 3/2 ) a (RSiO 3/2 ) b wherein R is an acid dissociable group, a has a value of 0.2 to 0.9, b has a value of 0.1 to 0.8 and 0.9 ⁇ a+b ⁇ 1.0.
- R is an acid dissociable group
- a has a value of 0.2 to 0.9
- b has a value of 0.1 to 0.8 and 0.9 ⁇ a+b ⁇ 1.0.
- These HSQ-based resins are suitable as photoresists.
- these resins have shown instability over time; therefore limiting their application.
- This invention pertains to silsesquioxane-based compositions that contain
- the 7-diethylamino-4-methylcoumarin stabilizes the silsesquioxane resin resulting in extended shelf life.
- the compositions may be used in photoresist formulations.
- the silsesquioxane resins can be, for example, those described in WO 2005/007747.
- the silsesquioxane resins of this invention contain units of HSiO 3/2 and RSiO 3/2 wherein R is an acid dissociable group.
- One such resin may have the formula (HSiO 3/2 ) a (RSiO 3/2 ) b where a has a value of 0.2 to 0.9, b has a value of 0.1 to 0.8 and 0.9 ⁇ a+b ⁇ 1.0.
- a has a value of 0.4 to 0.8 and b has a value of 0.2 to 0.6.
- the resists comprising the silsesquioxane resins of this invention have superior etch resistance, and low (or no) outgassing.
- the silsesquioxane resin having the general formula (HSiO 3/2 ) a (RSiO 3/2 ) b (HSi(OR 1 )O 2/2 ) c wherein R, a and b are as described above and R 1 is selected from H or a linear or branched C 1 to C 6 alkyl group and c has a value of 0.01 to 0.4, alternatively 0.05 to 0.15, and 0.9 ⁇ a+b+c ⁇ 1.0. It is believed that the presence of HSi(OR 1 )O 2/2 units improves the adhesion of the resin to the substrate when the resin is used as a resist.
- This invention also pertains to silsesquioxane resins having the general formula (HSiO 3/2 ) a (RSiO 3/2 ) b (Si(OR 1 ) x O (4-x)/2 ) d where R, R 1 , a and b are described above, d has a value of 0.05 to 0.45, alternatively 0.1 to 0.25, 0.9 ⁇ a+b+d ⁇ 1.0, and x has a value of 0 to 3. It is believed that the presence of Si(OR 1 ) x O (4-x)/2 units enhances the thermo-stability of the resin and affords higher Tg, and therefore improves the resist's resolution, contrast, line-edge roughness (LER), etc.
- LER line-edge roughness
- This invention also pertains to silsesquioxane resins having the general structure (HSiO 3/2 ) a (RSiO 3/2 ) b (R 2 SiO 3/2 ) e where R, a, and b are as described previously, R 2 is a property modifying functional group, e has a value of 0.01 to 0.25, alternatively 0.05 to 0.15 and, 0.9 ⁇ a+b+e ⁇ 1.0.
- the R 2 group is used to modify properties such as the adhesion or Tg.
- This invention also pertains to silsesquioxane resins having the general structure (HSiO 3/2 ) a (RSiO 3/2 ) b (HSi(OR 1 )O 2/2 ) c (R 2 SiO 3/2 ) e wherein R, R 1 , R 2 a, b, c and e are as described above and 0.9 ⁇ a+b+c+e ⁇ 1.0.
- This invention also pertains to silsesquioxane resins having the general structure (HSiO 3/2 ) a (RSiO 3/2 ) b (Si(OR 1 ) x O (4-x)/2 ) d (R 2 SiO 3/2 ) e wherein R, R 1 , R 2 a, b, d, e and x are as described above and 0.9 ⁇ a+b+d+e ⁇ 1.0.
- This invention also pertains to silsesquioxane resins having the general structure (HSiO 3/2 ) a (RSiO 3/2 ) b (HSi(OR 1 )O 2/2 ) c (Si(OR 1 ) x O (4-x)/2 ) d where R, R 1 , a, b, c, d, and x are described above and 0.9 ⁇ a+b+c+d ⁇ 1.0
- This invention also pertains to silsesquioxane resins having the general structure (HSiO 3/2 ) a (RSiO 3/2 ) b (HSi(OR 1 )O 2/2 ) c (Si(OR 1 ) x O (4-x)/2 ) d (R 2 SiO 3/2 ) e where R, R 1 , R 2 a, b, c, d, e and x are described above and 0.9 ⁇ a+b+c+d+e ⁇ 1.0
- silsesquioxane resins of this invention are not only highly transparent at low wavelength, but also satisfy numerous other requirements for a positive resist, such as adhesion, thermo-stability, chemically-amplifiable, aqueous-base solubility upon photo de-protection, and so on.
- the silsesquioxane resins of this invention contain HSiO 3/2 units and RSiO 3/2 units where R is an acid dissociable group.
- An “acid dissociable group” means a molecular moiety that is cleavable with acid, particularly photogenerated acid (PGA).
- Acid dissociable groups are known in the art and are described, for example, in European Patent Application No. 1142928 and U.S. Patent Application Publication No. 2002/0090572, which are herein incorporated by reference for their teachings of acid dissociable groups. In particular, the acid dissociable groups can be described by the formula
- each R 3 is independently a linking group
- Each R 3 may be exemplified by, but not limited to, an alkylene group such as methylene and ethylene.
- R 4 may be exemplified by, but not limited to, linear or branched alkylene groups, cycloalkylene groups such as norbornyl or cyclohexylene, fluoroalkylene groups, and aryl groups.
- L may be exemplified by, but not limited to, substituted (e.g. fluorinated) and unsubstituted methylene, ethylene, norbornene, cycloalkylene and alkarylene moieties.
- R 5 may be exemplified by, but not limited to, hydrogen, C 1 to C 6 alkyl groups such as methyl and ethyl and C 1 to C 6 fluoroalkyl groups such as trifluoromethyl, 2,2,2-trifluoroethyl and 3,3,3-trifluoromethyl.
- R 6 may be exemplified by, but not limited to, C 1 to C 6 alkyl groups such as methyl and ethyl and C 1 to C 6 fluoroalkyl groups such as trifluoromethyl, 2,2,2-trifluoroethyl and 3,3,3-trifluoropropyl.
- Z may be exemplified by, but not limited to, —OH, —COOH, esters of the formula —COOR 7 , carbonates of the formula —OCOOR 8 , ethers of the formula —OR 9 , wherein R 7 , R 8 and R 9 are selected to render the functionality acid-cleavable.
- R 7 may be a tertiary alkyl, e.g., t-butyl, a cyclic or alicyclic substituent (generally C 7 -C 12 ) with a tertiary attachment point such as adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cycl-ohexyl, 1-methylcyclopentyl or 1-methylcyclohexyl, or a 2-trialkylsilylethyl group, such as 2-trimethylsilyethyl, or 2-triethylsilylethyl.
- a tertiary alkyl e.g., t-butyl,
- Carbonate acid dissociable groups having the formula —OCOOR 8 may be exemplified by —O-t-butoxycarbonyl (i.e. R 8 is t-butyl).
- Ether acid dissociable groups having the formula —OR 9 may be exemplified by tetrahydropyranyl ether (i.e. R 9 is tetrahydropyranyl) and trialkylsilyl ethers (i.e. R 9 is a trialkylsilyl such as trimethylsilyl).
- Typical Z groups are organic ester groups that undergo a cleavage reaction in the presence of a photogenerated acid to generate a carboxylic acid group.
- Acid dissociable groups, R may be exemplified by, but not limited to, 1,1-dimethylethyl, isopropyl, 2-methylkadamantyl, cyclohexyl, and 2-hydroxy-3-pinanyl or t-butyl ester of norbornane, and others.
- the silsesquioxane resins may additionally contain HSi(OR 1 )O 2/2 units, or Si(OR 1 ) x O (4-x)/2 units, or (R 2 SiO 3/2 ) units or any combination of theses units to enhance the performance of the silsesquioxane resin.
- each R 1 is independently selected from H or a C 1 to C 6 alkyl group.
- R 1 may be exemplified by, but not limited to, methyl, ethyl, propyl, butyl, t-butyl and others. Typically R 1 is H or methyl.
- R 2 is selected from the group consisting of moieties having the following structure —R 21 R 22 where R 22 is typically —OH or —COOH, or a base-soluble moiety, and R 21 is a substituted and/or unsubstituted C 1 to C 12 (linear, branched or cyclic) alkyl moieties.
- R 2 may be exemplified by, but not limited to, bicyclo[2,2,1]hept-5-en-2-1,1,1-trifluoro-2-trifluoromethylpropan-2-ol; 2-trifluoromethyl bicyclo[2,2,1]hept-5-en-2-ol, 3,3,3-trifluoropropan-2-ol; and 2-trifluoromethyl-3,3-difluoro-bicyclo[2,2,1]hept-5-en-2-ol.
- the silsesquioxane resin will contain 5 to 60 mole % of the HSi(OR 1 )O 2/2 units and more typically 5 to 45 mol % based on all units in the silsesquioxane resin. Additionally, the silsesquioxane resin may contain 5 to 45 mol % of Si(OR 1 ) x O (4-x)/2 units and more typically 10 to 25 mol % based on all units in the silsesquioxane resin. Further, the silsesquioxane resin may contain 0 to 25 mol % of (R 2 SiO 3/2 ) units, alternatively 10 to 15 mol % based on all units in the silsesquioxane resin.
- silsesquioxane resins may be exemplified by but not limited to:
- R is isopropyl, 2-methylkadamantyl, cyclohexyl, 2-hydroxy-3-pinanyl or t-butyl bicyclo[2,2,1]heptane-2-carboxylate;
- R 1 is H;
- a has a value of 0.5 to 0.7;
- b has a value of 0.2 to 0.45;
- c has a value of 0.05 to 0.2; and
- d has a value of 0.01 to 0.1
- R is isopropyl, 2-methylkadamantyl, cyclohexyl, 2-hydroxy-3-pinanyl or t-butyl bicyclo[2,2,1]heptane-2-carboxylate;
- R 1 is H;
- R 2 is bicyclo[2,2,1]hept-5-en-2-1,1,1-trifluoro-2-trifluoromethylpropan-2-ol, 2-trifluoromethyl bicyclo[2,2,1]hept-5-en-2-ol, 3,3,3-trifluoropropan-2-ol, 2-trifluoromethyl-3,3-difluoro-bicyclo[2,2,1]hept-5-en-2-ol;
- a has a value of 0.4 to 0.6;
- silsesquioxane resins of this invention may be prepared by reacting
- Methods for preparing hydrogen silsesquioxane resins are known in the art.
- One method involves the hydrolysis of trihalosilanes, such as trichlorosilane, or trialkoxysilanes, such as triethoxysilane.
- Methods for preparing hydrogen silsesquioxane resins may be found in, but are not limited to, U.S. Pat. No. 3,615,272 to Collins et al., U.S. Pat. No. 5,010,159 to Bank et al., U.S. Pat. No. 4,999,397 to Frye et al., U.S. Pat. No. 6,353,074 to Carpenter et al., U.S. patent application Ser. No. 10/060,558 filed Jan. 30, 2002 and Japanese Patent Kokai Nos. 59-178749, 60-86017 and 63-107122.
- the hydrogen silsesquioxane resin is reacted with (B) an acid dissociable group precursor.
- One method for reacting the hydrogen silsesquioxane resin and acid dissociable group precursor comprises the catalytic hydrosilylation of the acid dissociable group precursor and hydrogen silsesquioxane resin.
- Acid dissociable group precursors may be exemplified by, but not limited to, t-butyl ester of norbornene, t-butyl 2-trifluoromethyl acrylate, bicyclo[2,2,1]hept-5-en-2-t-butylcarboxylate, cis-5-norbornene-2,3-dicarboxylic anhydride, and others.
- the amount of acid dissociable group precursor is added in an amount to provide 5 to 60 mole % of RSiO 3/2 units in the silsesquioxane resin based on all units in the silsesquioxane resin, alternatively 15 to 35 mol %.
- Hydrosilylation catalysts are well known in the art and may be exemplified by, but not limited to, platinum-, nickel- or rhodium-containing compounds.
- platinum-containing compounds include H 2 PtCl 6 , di- ⁇ -carbonyldi- ⁇ -cyclopentadienyldinickel, a platinum-carbonyl complex, a platinum-divinyltetramethyldisiloxane complex, a platinum cyclovinylmethylsiloxane complex and platinum acetylacetonate (acac).
- An example of a rhodium-containing compound is Rh(acac) 2 (CO) 2
- an example of a nickel-containing compound is Ni(acac) 2 .
- the amount of hydrosilylation catalyst used is in the amount of 10 to 10,000 ppm, alternatively 100 to 1,000 ppm, based on the amount of reactants (i.e., hydrogen silsesquioxane resin and acid dissociable group precursor).
- the reaction between the hydrogen silsesquioxane resin and acid dissociable group precursor is typically carried out at room temperature and ambient pressure, although heat or pressure may be used to facilitate the reaction.
- the reaction between the hydrogen silsesquioxane and the acid dissociable group precursor is typically carried out in the presence of a solvent.
- the solvent may be exemplified by, but not limited to, alcohols, such as ethyl alcohol or isopropyl alcohol; aromatic hydrocarbons, such as benzene or toluene; alkanes, such as n-heptane, dodecane or nonane; ketones, such as methyl iso-butyl ketone; esters; glycol ethers; siloxanes, such as cyclic dimethylpolysiloxanes and linear dimethylpolysiloxanes (e.g., hexamethyldisiloxane, octamethyltrisiloxane and mixtures thereof), 2-ethoxyethanol, propylene glycol methyl ether acetate (PGMEA), cyclohexanone, and 1,2-diethoxyethane, and others.
- the reaction between the hydrogen silsesquioxane resin and acid dissociable group precursor is typically carried out for a time sufficient to react essentially all of the acid dissociable group precursor with the hydrogen silsesquioxane resin.
- the reaction may be carried out for an extended period of time with heating from 40° C. up to the reflux temperature of the solvent (“bodying step”).
- bodying step may be carried out subsequent to the reaction step or as part of the reaction step.
- the bodying step is carried out for a period of time in the range of 30 minutes to 6 hours, more preferably 1 to 3 hours.
- Silsesquioxane resins containing R 2 SiO 3/2 units are prepared by reacting the hydrogen silsesquioxane resin (A) or silsesquioxane resin (C) with a functional group precursor.
- the hydrogen silsesquioxane resin or silsesquioxane resin is reacted with the functional group precursor by catalytic hydrosilylation of the functional group precursor and hydrogen silsesquioxane resin or silsesquioxane resin.
- the catalytic hydrosilylation reaction is carried out using the same or similar process conditions as those described above for the catalytic hydrosilylation reaction between the hydrogen silsesquioxane resin and acid dissociable group precursor.
- the hydrogen silsesquioxane resin (A) may reacted with the functional group precursor to produce a resin having the formula (HSiO 3/2 ) m1 (R 2 SiO 3/2 ) m3 (HSi(OR 1 )O 2/2 ) n (Si(OR 1 ) x O (4-x)/2 ) p where R 1 , n, p and x are as described previously; R 2 is a property modifying functional group; m3 has a value of 0.01 to 0.25, typically 0.05 to 0.15; and m1+m3 ⁇ m.
- This resin is then reacted with the acid dissociable group precursor to produce a resin having the formula (HSiO 3/2 ) m1 (RSiO 3/2 ) m2 (R 2 SiO 3/2 ) m3 (HSi(OR 1 )O 2/2 ) n (Si(OR 1 ) x O (4-x)/2 ) p where R, R 1 , R 2 , n, p, m1, m2, m3 and x are as described previously and m1+m2+m3 ⁇ m.
- the silsesquioxane resin (C) may be reacted with the functional group precursor to produce a resin have the formula (HSiO 3/2 ) m1 (RSiO 3/2 ) m2 (R 2 SiO 3/2 ) m3 (HSi(OR 1 )O 2/2 ) n (Si(OR 1 ) x O (4-x)/2 ) p where R, R 1 , R 2 , n, p, m1, m2, m3 and x are as described previously and m1+m2+m3 ⁇ m.
- the hydrogen silsesquioxane resin (A) may be reacted with a mixture comprising both the functional group precursor and acid dissociable group precursor to produce a resin having the formula (HSiO 3/2 ) m1 (RSiO 3/2 ) m2 (R 2 SiO 3/2 ) m3 (HSi(OR 1 )O 2/2 ) n (Si(OR 1 ) x O (4-x)/2 ) p where R, R 1 , R 2 , n, p, m1, m2, m3 and x are as described previously and m1+m2+m3 ⁇ m.
- the hydrogen silsesquioxane resin is reacted with the acid dissociable group precursor and the silsesquioxane resin is reacted with the functional group precursor.
- novel functionalized hydrogen silsesquioxane-based resins of the present invention have a weight average molecular weight of about 500 to 100,000, preferably about 1,500 to 50,000, and more preferably about 2,000 to 30,000.
- the novel functionalized hydrogen silsesquioxane resins of the present invention have adequate thermal stability, or more specifically a proper glass transition temperature (Tg) that is adequate for photoresist processing, such as post apply baking (PAB) and post-exposure baking (PEB).
- Tg glass transition temperature
- PAB post apply baking
- PEB post-exposure baking
- the Tg for the functionalized hydrogen silsesquioxane resins of the present invention is preferably 50 to 250° C., more preferably 70 to 180° C., and most preferably 80 to 150° C.
- Another embodiment of this invention is a photoresist composition
- a photoresist composition comprising (A) the silsesquioxane resins and 7-diethylamino-4-methylcoumarin described herein and (B) one or more acid generators.
- the photoresist may take the form of a negative or a positive photoresist and other components and additives may be present.
- the silsesquioxane resin is present in the photoresist composition in an amount up to 99.5 wt. % and the acid generator in an amount of 0.5-10 wt. %, based on the solids contained in the composition.
- the acid generator is a compound that generates acid upon exposure to radiation. This acid then causes the acid dissociable group in the silsesquioxane resin to dissociate. Acid generators are well known in the art and are described in, for example, EP 1 142 928 A1. Acid generators may be exemplified by, but not limited to, onium salts, halogen-containing compounds, diazoketone compounds, sulfone compounds, sulfonate compounds and others.
- onium salts include, but are not limited to, iodonium salts, sulfonium salts (including tetrahydrothiophenium salts), phosphonium salts, diazonium salts, and pyridinium salts.
- halogen-containing compounds include, but are not limited to, mahaloalkyl group-containing hydrocarbon compounds, haloalkyl group-containing heterocyclic compounds, and others.
- diazoketone compounds include, but are not limited to, 1,3-diketo-2-diazo compounds, diazobenzoquinone compounds, diazonaphthoquinone compounds, and others.
- sulfone compounds include, but are not limited to, ⁇ -ketosulfone, ⁇ -sulfonylsulfone, ⁇ -diazo compounds of these compounds, and others.
- sulfonate compounds include, but are not limited to, alkyl sulfonate, alkylimide sulfonate, haloalkyl sulfonate, aryl sulfonate, imino sulfonate, and others.
- the preferred acid generators are sulfonated salts, in particular sulfonated salts with perfluorinated methide anions.
- the photoresist composition may include organic base additives (or quenchers as acid-diffusion controllers), surfactants, dissolution inhibitors, cross-linking agents, sensitizers, halation inhibitors, adhesion promoters, storage stabilizers, anti-foaming agents, coating aids, plasticizers and others.
- organic base additives or quenchers as acid-diffusion controllers
- surfactants or quenchers as acid-diffusion controllers
- dissolution inhibitors such as acid-diffusion controllers
- cross-linking agents such as sensitizers, halation inhibitors, adhesion promoters, storage stabilizers, anti-foaming agents, coating aids, plasticizers and others.
- the sum of all additives (not including the acid generator) will comprise less than 20 percent of the solids included in the photoresist composition, alternatively less than 5 percent.
- the silsesquioxane-based compositions are delivered in a solvent.
- solvent is governed by many factors, such as the solubility and miscibility of the silsesquioxane resin and 7-diethylamino-4-methylcoumarin, and safety and environmental regulations.
- Typical solvents include ether-, ester-, hydroxyl- and ketone-containing compounds.
- solvents include, but are not limited to, cyclopentanone, cyclohexanone, lactate esters such as ethyl lactate, alkylene glycol alkyl ether esters such as propylene glycol methyl ether acetate, alkylene glycol monoalkyl esters such as methyl cellusolve, butyl acetate, 2-ethoxyethanol, and ethyl 3-ethoxypropionate.
- solvents for silsesquioxane resins include, but are not limited to, cyclopentanone (CP), propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), ethyl 3-tethoxypropionate, methyl n-amyl ketone (MAK) and any their mixtures.
- CP cyclopentanone
- PMEA propylene glycol methyl ether acetate
- EL ethyl lactate
- MIBK methyl isobutyl ketone
- MEK methyl ethyl ketone
- MAK ethyl 3-tethoxypropionate
- the amount of solvent is typically present in an amount of 50 to 99.5 wt % based on the total weight of the silsesquioxane based composition, alternatively 80 to 95 wt %.
- TSAM toluenesulfonic acid monohydrate
- olefin solution was separately prepared by mixing ⁇ 0.1 mole of t-butyl 2-trifluoromethyl acrylate (TBTFMA) with anhydrate toluene (50:50). To this mixture ⁇ 200 ppm 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complex (platinum, concentrated) was added.
- TBTFMA t-butyl 2-trifluoromethyl acrylate
- the olefin solution was charged into a flask equipped with a water condenser, thermometer, magnetic stir bar, and nitrogen bubbler. After purging with nitrogen, the HSQ solution prepared in Example 1 (containing ⁇ 0.33 mole of HSQ solid) was slowly added into the olefin solution. After the addition, the system was refluxed for approximately 4 hours while stirring moderately. The hydrosilylation reaction was monitored using 1H NMR until the olefin peaks disappeared completely.
- Final resin solutions with a solid content ranging from 4 to 45 wt % were prepared by solvent exchange to a desired solvent, such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- a desired solvent such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- PMEA propylene glycol methyl ether acetate
- EL ethyl lactate
- MIBK methyl isobutyl ketone
- An olefin solution was separately prepared by mixing approximately 0.1 moles of bicyclo[2,2,1]hept-5-ene-2-t-butylcarboxylate with anhydrate toluene (50:50). To this mixture 200 ppm 1,3-diethenyl-1,1,3,3-tetramenthyldisiloxane complex (platinum, concentrated) was added.
- the olefin solution was charged into a flask equipped with a water condenser, thermometer, magnetic stir bar, and nitrogen bubbler. After purging with nitrogen, the HSQ solution prepared in Example 1 (containing ⁇ 0.33 mole of HSQ) was slowly added into the olefin solution. After the addition, the system was refluxed for 8 hours while stirring moderately. The hydrosilylation reaction was monitored using 1H NMR until the olefin peaks disappeared completely.
- the final resin solution with a solid content ranging from 4 to 45 wt % was prepared by either solvent exchange to a desired solvent, such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- a desired solvent such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- An olefin solution was separately prepared by mixing ⁇ 0.10 mole of cis-5-Norbornene-2,3-dicarboxylic anhydride with anhydrate toluene (50:50). To this mixture ⁇ 200 ppm 1,3-diethenyl-1,1,3,3-tetramenthyldisiloxane complex (platinum-concentrated) was added.
- the olefin solution was charged into a flask equipped with a water condenser, thermometer, magnetic stir bar, and nitrogen bubbler. After purging with nitrogen, the HSQ solution prepared in Example 1 (containing ⁇ 0.33 mole of HSQ,) was slowly added into the olefin solution. After the addition, the system was refluxed for 3 hours while stirring moderately. The hydrosilylation reaction was monitored using 1H NMR until the olefin peaks disappeared completely.
- the final resin solution with a solid content ranging from 4 to 45 wt % was prepared by either solvent exchange to a desired solvent, such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- a desired solvent such as propylene glycol methyl ether acetate (PGMEA), ethyl lactate (EL), methyl isobutyl ketone (MIBK).
- a photoresist composition was prepared by mixing until homogeneous: 15 parts silsesquioxane resin prepared in Example 3, 0.3 parts photoacid generator, either (C 6 H 5 ) 3 S + SbF 6 ⁇ or (p-(CH 3 ) 3 CC 6 H 4 ) 3 C ⁇ (SO 2 CF 3 ) 3 obtained from 3M), 84.7 parts PGMEA (electronic grade from General Chemical). Additionally about 0.01 parts of the organic base: 7-diethylamino-4-methylcoumarin, was added to the solution above.
- the formulated photoresist solution was filtered through a 0.2 micron syringe filter, and then spin-coated onto a 6′′ silicon wafer.
- the coated wafer was baked at 130° C. for 60 seconds before exposure at 248 nm or 193 nm with dose ranged from 8 to 100 mJ/cm 2 .
- the film was then baked at 130° C. for 90 seconds, and developed with 0.263 N tetra-methyl ammonium hydroxide (MF CD26 from Shipley). High-resolution positive images with high contrast and low line-edge roughness (LER) were obtained. Additionally, the chemical stability (i.e., the resist shelf-life) and the CD stability of the formulated photoresist demonstrated significant improvement.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Silicon Polymers (AREA)
- Materials For Photolithography (AREA)
- Drying Of Semiconductors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/304,263 US8524439B2 (en) | 2006-06-28 | 2007-06-27 | Silsesquioxane resin systems with base additives bearing electron-attracting functionalities |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80609106P | 2006-06-28 | 2006-06-28 | |
PCT/US2007/072222 WO2008002970A2 (fr) | 2006-06-28 | 2007-06-27 | systèmes en résine de SILSESQUIOXANE avec additifs de base portant des fonctionnalités attirant les électrons |
US12/304,263 US8524439B2 (en) | 2006-06-28 | 2007-06-27 | Silsesquioxane resin systems with base additives bearing electron-attracting functionalities |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090312467A1 US20090312467A1 (en) | 2009-12-17 |
US8524439B2 true US8524439B2 (en) | 2013-09-03 |
Family
ID=38846501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/304,263 Active US8524439B2 (en) | 2006-06-28 | 2007-06-27 | Silsesquioxane resin systems with base additives bearing electron-attracting functionalities |
Country Status (5)
Country | Link |
---|---|
US (1) | US8524439B2 (fr) |
JP (1) | JP5085649B2 (fr) |
KR (1) | KR101216060B1 (fr) |
TW (1) | TWI435894B (fr) |
WO (1) | WO2008002970A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192349A1 (fr) | 2016-05-03 | 2017-11-09 | Dow Corning Corporation | Résine de silsesquioxane et composition d'anhydride de silyle |
US10990012B2 (en) | 2016-05-03 | 2021-04-27 | Dow Silicones Corporation | Silsesquioxane resin and oxaamine composition |
US11370888B2 (en) | 2016-06-16 | 2022-06-28 | Dow Silicones Corporation | Silicon-rich silsesquioxane resins |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008002975A2 (fr) * | 2006-06-28 | 2008-01-03 | Dow Corning Corporation | systèmes en résine de SILSESQUIOXANE avec additifs de base portant des fonctionnalités attirant les électrons |
JP4890153B2 (ja) * | 2006-08-11 | 2012-03-07 | 東京応化工業株式会社 | レジスト組成物およびレジストパターン形成方法 |
JPWO2009096420A1 (ja) * | 2008-01-31 | 2011-05-26 | 昭和電工株式会社 | 凹凸パターン形成方法、およびそれを利用した磁気記録媒体の製造方法 |
US8241707B2 (en) * | 2008-03-05 | 2012-08-14 | Dow Corning Corporation | Silsesquioxane resins |
KR101295858B1 (ko) * | 2009-07-23 | 2013-08-12 | 다우 코닝 코포레이션 | 더블 패터닝 방법 및 물질 |
CN102439069B (zh) * | 2009-07-23 | 2014-11-05 | 道康宁公司 | 用于反向图案化的方法和材料 |
JP5610567B2 (ja) * | 2010-02-23 | 2014-10-22 | 昭和電工株式会社 | レジスト感度向上方法 |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615272A (en) | 1968-11-04 | 1971-10-26 | Dow Corning | Condensed soluble hydrogensilsesquioxane resin |
JPS59178749A (ja) | 1983-03-30 | 1984-10-11 | Fujitsu Ltd | 配線構造体 |
JPS6086017A (ja) | 1983-10-17 | 1985-05-15 | Fujitsu Ltd | ポリハイドロジエンシルセスキオキサンの製法 |
JPS63107122A (ja) | 1986-10-24 | 1988-05-12 | Fujitsu Ltd | 凹凸基板の平坦化方法 |
US4999397A (en) | 1989-07-28 | 1991-03-12 | Dow Corning Corporation | Metastable silane hydrolyzates and process for their preparation |
US5010159A (en) | 1989-09-01 | 1991-04-23 | Dow Corning Corporation | Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol |
US5045592A (en) | 1989-07-28 | 1991-09-03 | Dow Corning Corporation | Metastable silane hydrolyzates |
US5063267A (en) | 1990-11-28 | 1991-11-05 | Dow Corning Corporation | Hydrogen silsesquioxane resin fractions and their use as coating materials |
US5085893A (en) | 1989-07-28 | 1992-02-04 | Dow Corning Corporation | Process for forming a coating on a substrate using a silsesquioxane resin |
US5290899A (en) | 1988-09-22 | 1994-03-01 | Tosoh Corporation | Photosensitive material having a silicon-containing polymer |
US5385804A (en) | 1992-08-20 | 1995-01-31 | International Business Machines Corporation | Silicon containing negative resist for DUV, I-line or E-beam lithography comprising an aromatic azide side group in the polysilsesquioxane polymer |
US5399462A (en) | 1992-09-30 | 1995-03-21 | International Business Machines Corporation | Method of forming sub-half micron patterns with optical lithography using bilayer resist compositions comprising a photosensitive polysilsesquioxane |
US5416190A (en) | 1992-11-24 | 1995-05-16 | Dow Corning Toray Silicone Co., Ltd. | Method for the molecular weight fractionation of polyhydrogen silsesquioxane |
US5612170A (en) | 1994-12-09 | 1997-03-18 | Shin-Etsu Chemical Co., Ltd. | Positive resist composition |
JPH10251519A (ja) | 1997-03-17 | 1998-09-22 | Toshiba Corp | 珪素組成物、これを用いたパターン形成方法、および電子部品の製造方法 |
US6087064A (en) | 1998-09-03 | 2000-07-11 | International Business Machines Corporation | Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method |
US6210856B1 (en) | 1999-01-27 | 2001-04-03 | International Business Machines Corporation | Resist composition and process of forming a patterned resist layer on a substrate |
US6296985B1 (en) | 1999-02-01 | 2001-10-02 | Fuji Photo Film Co., Ltd. | Positive photoresist composition comprising a polysiloxane |
EP1142928A1 (fr) | 2000-04-07 | 2001-10-10 | JSR Corporation | Polysiloxane, méthode de la production, composé alicyclique comprenant du silicium, et composés de résines photoréserves |
US6303268B1 (en) | 1997-08-14 | 2001-10-16 | Showa Denko K.K. | Resist resin, resist resin composition and method of forming pattern using resist resin and resist resin composition |
US6319650B1 (en) | 2000-02-25 | 2001-11-20 | International Business Machines Corporation | High resolution crosslinkable photoresist composition, compatable with high base concentration aqueous developers method and for use thereof |
US6353074B1 (en) | 1998-11-18 | 2002-03-05 | Dow Corning Corporation | Method for manufacturing hydrogen-silsesquioxane resin |
US6372406B1 (en) | 1998-09-03 | 2002-04-16 | International Business Machines Corporation | Deactivated aromatic amines as additives in acid-catalyzed resists |
US6399210B1 (en) | 2000-11-27 | 2002-06-04 | Dow Corning Corporation | Alkoxyhydridosiloxane resins |
US20020081520A1 (en) | 2000-12-21 | 2002-06-27 | Ratnam Sooriyakumaran | Substantially transparent aqueous base soluble polymer system for use in 157 nm resist applications |
US20020090572A1 (en) | 2000-12-21 | 2002-07-11 | Ratnam Sooriyakumaran | Substantially transparent aqueous base soluble polymer system for use in 157 nm resist applications |
US20020143132A1 (en) | 2001-03-27 | 2002-10-03 | National Institute Of Advanced Industrial Science And Technology | Silsesquioxane polymer molding and method of preparing same |
JP2002311591A (ja) | 2001-04-18 | 2002-10-23 | Clariant (Japan) Kk | 層間絶縁膜の形成に用いられる感光性組成物 |
WO2002091083A1 (fr) | 2001-05-08 | 2002-11-14 | Shipley Company, L.L.C. | Composition photo-imageable |
US20030054292A1 (en) | 1999-04-21 | 2003-03-20 | Choi Sang-Jun | Methods for forming line patterns in semiconductor substrates |
US20030108812A1 (en) | 2001-07-30 | 2003-06-12 | Jorg Rottstegge | Silicon-containing resist for photolithography |
WO2003063225A2 (fr) | 2001-01-11 | 2003-07-31 | Honeywell International Inc. | Films dielectriques destines a des applications de remplissage d'espace etroit |
US20030152784A1 (en) | 2002-01-30 | 2003-08-14 | Deis Thomas A. | Process for forming hydrogen silsesquioxane resins |
US20030191267A1 (en) | 2002-04-05 | 2003-10-09 | Boisvert Ronald P. | Hydrosilsesquioxane resin compositions having improved thin film properties |
US20030219682A1 (en) | 2002-05-24 | 2003-11-27 | Kazumasa Wakiya | Liquid coating composition for forming a top antireflective film and photoresist laminate using the same, as well as method for forming photoresist pattern |
US20040033440A1 (en) | 2002-08-09 | 2004-02-19 | Kazunori Maeda | Photoacid generators, chemically amplified positive resist compositions, and patterning process |
US20040137241A1 (en) | 2003-01-08 | 2004-07-15 | International Business Machines Corporation | Patternable low dielectric constsnt materials and their use in ULSI interconnection |
US20040143082A1 (en) | 2001-05-01 | 2004-07-22 | Haruo Iwasawa | Polysiloxane, process for production thereof and radiation-sensitive resin composition |
JP2004300230A (ja) | 2003-03-31 | 2004-10-28 | Jsr Corp | ケイ素含有化合物、ポリシロキサンおよび感放射線性樹脂組成物 |
US20040229159A1 (en) | 2003-02-23 | 2004-11-18 | Subbareddy Kanagasabapathy | Fluorinated Si-polymers and photoresists comprising same |
US20040241579A1 (en) | 2003-05-27 | 2004-12-02 | Shin-Etsu Chemical Co., Ltd. | Positive resist material and pattern formation method using the same |
US20040242821A1 (en) | 2003-05-27 | 2004-12-02 | Jun Hatakeyama | Silicon-containing polymer, resist composition and patterning process |
US20040253535A1 (en) | 2002-11-20 | 2004-12-16 | Shipley Company, L.L.C. | Multilayer photoresist systems |
WO2005007747A2 (fr) | 2003-07-03 | 2005-01-27 | Dow Corning Corporation | Resine silsesquioxane photosensible |
WO2005040918A2 (fr) | 2003-10-24 | 2005-05-06 | International Business Machines Corporation | Systeme de reserve contenant du silicium a faible energie d'activation |
US20050106494A1 (en) | 2003-11-19 | 2005-05-19 | International Business Machines Corporation | Silicon-containing resist systems with cyclic ketal protecting groups |
US20050170276A1 (en) | 2002-10-31 | 2005-08-04 | Tokyo Ohka Kogyo Co., Ltd. | Chemical-amplification positive-working photoresist composition |
US20050215713A1 (en) | 2004-03-26 | 2005-09-29 | Hessell Edward T | Method of producing a crosslinked coating in the manufacture of integrated circuits |
US20060003252A1 (en) | 2002-12-02 | 2006-01-05 | Taku Hirayama | Chemical amplification type silicone based positive photoresist composition |
US7326519B2 (en) * | 2005-02-18 | 2008-02-05 | Samsung Electronics Co., Ltd. | Photosensitive resin, photoresist composition having the photosensitive resin and method of forming a photoresist pattern using the photoresist composition |
US20100060558A1 (en) | 2008-09-05 | 2010-03-11 | Samsung Electronics Co., Ltd. | Liquid crystal display |
-
2007
- 2007-06-27 US US12/304,263 patent/US8524439B2/en active Active
- 2007-06-27 KR KR1020097000432A patent/KR101216060B1/ko not_active Expired - Fee Related
- 2007-06-27 JP JP2009518532A patent/JP5085649B2/ja active Active
- 2007-06-27 WO PCT/US2007/072222 patent/WO2008002970A2/fr active Application Filing
- 2007-06-28 TW TW096123481A patent/TWI435894B/zh active
Patent Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615272A (en) | 1968-11-04 | 1971-10-26 | Dow Corning | Condensed soluble hydrogensilsesquioxane resin |
JPS59178749A (ja) | 1983-03-30 | 1984-10-11 | Fujitsu Ltd | 配線構造体 |
JPS6086017A (ja) | 1983-10-17 | 1985-05-15 | Fujitsu Ltd | ポリハイドロジエンシルセスキオキサンの製法 |
JPS63107122A (ja) | 1986-10-24 | 1988-05-12 | Fujitsu Ltd | 凹凸基板の平坦化方法 |
US5290899A (en) | 1988-09-22 | 1994-03-01 | Tosoh Corporation | Photosensitive material having a silicon-containing polymer |
US4999397A (en) | 1989-07-28 | 1991-03-12 | Dow Corning Corporation | Metastable silane hydrolyzates and process for their preparation |
US5045592A (en) | 1989-07-28 | 1991-09-03 | Dow Corning Corporation | Metastable silane hydrolyzates |
US5085893A (en) | 1989-07-28 | 1992-02-04 | Dow Corning Corporation | Process for forming a coating on a substrate using a silsesquioxane resin |
US5010159A (en) | 1989-09-01 | 1991-04-23 | Dow Corning Corporation | Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol |
US5063267A (en) | 1990-11-28 | 1991-11-05 | Dow Corning Corporation | Hydrogen silsesquioxane resin fractions and their use as coating materials |
US5385804A (en) | 1992-08-20 | 1995-01-31 | International Business Machines Corporation | Silicon containing negative resist for DUV, I-line or E-beam lithography comprising an aromatic azide side group in the polysilsesquioxane polymer |
US5399462A (en) | 1992-09-30 | 1995-03-21 | International Business Machines Corporation | Method of forming sub-half micron patterns with optical lithography using bilayer resist compositions comprising a photosensitive polysilsesquioxane |
US5416190A (en) | 1992-11-24 | 1995-05-16 | Dow Corning Toray Silicone Co., Ltd. | Method for the molecular weight fractionation of polyhydrogen silsesquioxane |
US5612170A (en) | 1994-12-09 | 1997-03-18 | Shin-Etsu Chemical Co., Ltd. | Positive resist composition |
JPH10251519A (ja) | 1997-03-17 | 1998-09-22 | Toshiba Corp | 珪素組成物、これを用いたパターン形成方法、および電子部品の製造方法 |
US6303268B1 (en) | 1997-08-14 | 2001-10-16 | Showa Denko K.K. | Resist resin, resist resin composition and method of forming pattern using resist resin and resist resin composition |
US6087064A (en) | 1998-09-03 | 2000-07-11 | International Business Machines Corporation | Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method |
US6372406B1 (en) | 1998-09-03 | 2002-04-16 | International Business Machines Corporation | Deactivated aromatic amines as additives in acid-catalyzed resists |
US6340734B1 (en) | 1998-09-03 | 2002-01-22 | International Business Machines Corporation | Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method |
US6353074B1 (en) | 1998-11-18 | 2002-03-05 | Dow Corning Corporation | Method for manufacturing hydrogen-silsesquioxane resin |
US6210856B1 (en) | 1999-01-27 | 2001-04-03 | International Business Machines Corporation | Resist composition and process of forming a patterned resist layer on a substrate |
US6296985B1 (en) | 1999-02-01 | 2001-10-02 | Fuji Photo Film Co., Ltd. | Positive photoresist composition comprising a polysiloxane |
US20030054292A1 (en) | 1999-04-21 | 2003-03-20 | Choi Sang-Jun | Methods for forming line patterns in semiconductor substrates |
US6319650B1 (en) | 2000-02-25 | 2001-11-20 | International Business Machines Corporation | High resolution crosslinkable photoresist composition, compatable with high base concentration aqueous developers method and for use thereof |
EP1142928A1 (fr) | 2000-04-07 | 2001-10-10 | JSR Corporation | Polysiloxane, méthode de la production, composé alicyclique comprenant du silicium, et composés de résines photoréserves |
US6399210B1 (en) | 2000-11-27 | 2002-06-04 | Dow Corning Corporation | Alkoxyhydridosiloxane resins |
US20020090572A1 (en) | 2000-12-21 | 2002-07-11 | Ratnam Sooriyakumaran | Substantially transparent aqueous base soluble polymer system for use in 157 nm resist applications |
US20020081520A1 (en) | 2000-12-21 | 2002-06-27 | Ratnam Sooriyakumaran | Substantially transparent aqueous base soluble polymer system for use in 157 nm resist applications |
WO2003063225A2 (fr) | 2001-01-11 | 2003-07-31 | Honeywell International Inc. | Films dielectriques destines a des applications de remplissage d'espace etroit |
US20020143132A1 (en) | 2001-03-27 | 2002-10-03 | National Institute Of Advanced Industrial Science And Technology | Silsesquioxane polymer molding and method of preparing same |
JP2002311591A (ja) | 2001-04-18 | 2002-10-23 | Clariant (Japan) Kk | 層間絶縁膜の形成に用いられる感光性組成物 |
US20040143082A1 (en) | 2001-05-01 | 2004-07-22 | Haruo Iwasawa | Polysiloxane, process for production thereof and radiation-sensitive resin composition |
WO2002091083A1 (fr) | 2001-05-08 | 2002-11-14 | Shipley Company, L.L.C. | Composition photo-imageable |
US20030108812A1 (en) | 2001-07-30 | 2003-06-12 | Jorg Rottstegge | Silicon-containing resist for photolithography |
US20030152784A1 (en) | 2002-01-30 | 2003-08-14 | Deis Thomas A. | Process for forming hydrogen silsesquioxane resins |
US20030191267A1 (en) | 2002-04-05 | 2003-10-09 | Boisvert Ronald P. | Hydrosilsesquioxane resin compositions having improved thin film properties |
US20030219682A1 (en) | 2002-05-24 | 2003-11-27 | Kazumasa Wakiya | Liquid coating composition for forming a top antireflective film and photoresist laminate using the same, as well as method for forming photoresist pattern |
US20040033440A1 (en) | 2002-08-09 | 2004-02-19 | Kazunori Maeda | Photoacid generators, chemically amplified positive resist compositions, and patterning process |
US20050170276A1 (en) | 2002-10-31 | 2005-08-04 | Tokyo Ohka Kogyo Co., Ltd. | Chemical-amplification positive-working photoresist composition |
US20040253535A1 (en) | 2002-11-20 | 2004-12-16 | Shipley Company, L.L.C. | Multilayer photoresist systems |
US20060003252A1 (en) | 2002-12-02 | 2006-01-05 | Taku Hirayama | Chemical amplification type silicone based positive photoresist composition |
US20040137241A1 (en) | 2003-01-08 | 2004-07-15 | International Business Machines Corporation | Patternable low dielectric constsnt materials and their use in ULSI interconnection |
US20040229159A1 (en) | 2003-02-23 | 2004-11-18 | Subbareddy Kanagasabapathy | Fluorinated Si-polymers and photoresists comprising same |
JP2004300230A (ja) | 2003-03-31 | 2004-10-28 | Jsr Corp | ケイ素含有化合物、ポリシロキサンおよび感放射線性樹脂組成物 |
US20040242821A1 (en) | 2003-05-27 | 2004-12-02 | Jun Hatakeyama | Silicon-containing polymer, resist composition and patterning process |
US20040241579A1 (en) | 2003-05-27 | 2004-12-02 | Shin-Etsu Chemical Co., Ltd. | Positive resist material and pattern formation method using the same |
WO2005007747A2 (fr) | 2003-07-03 | 2005-01-27 | Dow Corning Corporation | Resine silsesquioxane photosensible |
US7625687B2 (en) * | 2003-07-03 | 2009-12-01 | Dow Corning Corporation | Silsesquioxane resin |
WO2005040918A2 (fr) | 2003-10-24 | 2005-05-06 | International Business Machines Corporation | Systeme de reserve contenant du silicium a faible energie d'activation |
US6939664B2 (en) * | 2003-10-24 | 2005-09-06 | International Business Machines Corporation | Low-activation energy silicon-containing resist system |
US20050106494A1 (en) | 2003-11-19 | 2005-05-19 | International Business Machines Corporation | Silicon-containing resist systems with cyclic ketal protecting groups |
US20050215713A1 (en) | 2004-03-26 | 2005-09-29 | Hessell Edward T | Method of producing a crosslinked coating in the manufacture of integrated circuits |
US7326519B2 (en) * | 2005-02-18 | 2008-02-05 | Samsung Electronics Co., Ltd. | Photosensitive resin, photoresist composition having the photosensitive resin and method of forming a photoresist pattern using the photoresist composition |
US20100060558A1 (en) | 2008-09-05 | 2010-03-11 | Samsung Electronics Co., Ltd. | Liquid crystal display |
Non-Patent Citations (10)
Title |
---|
Bowden et al., Role of Bilayer Resist in 157 nm Lithograpy, Journal of Photopolymer Science and Technology, vol. 16, No. 4, 2003, 629-636. |
Crawford et al., New Materials for 157 nm Photoresist: Characterization and Properties, Advances in Resist Technology and Processing XVII, Francis M. Houlihan, Editor, Proceedings of SPIE vol. 3999, 2000, 357-364. |
Fedynyshyn et al., High Resolution Fluorocarbon Based Resist for 157-nm Lithography, Advances in Resist Technology and Processing XIX, Theodore H. Fedynyshyn, Editor, Proceedings of SPIE vol. 4690, 2002, 29-40. |
Fujigaya et al., A New Photoresist Material for 157 nm Lithography-2, Journal of Photopolymer Science and Technology, vol. 15, No. 4, 2002, 643-654. |
Hung et al., Development of SSQ Based 157 nm Photoresist, Journal of Photopolymer Science and Technology, vol. 16, No. 4, 2003, 591-594. |
Hung et al., Development of SSQ Based 157 nm Photoresist[1], Journal of Photopolymer Science and Technology, vol. 15, No. 4, 2002, 693-698. |
Ito et al., Anphatic platforms for the design of 157 nm chemically amplified resists, Advances in Resist Technology and Processing XIX, Theodore H. Fedynyshyn, Editor, Proceedings of SPIE vol. 4690, 2002, 18-28. |
Kunz et al., Outlook for 157-nm resist design, SPIE Conference on Advances in Resist Technology and Processin XVI, SPIE vol. 3678, Mar. 1999, 13-23. |
Sooriyakumaran et al., Silicon-containing Resists for 157 nm Applications, Advances in Resist Technology and Processing XVIII, Francis M. Houlihan, Editor, Proceedings of SPIE vol. 4345, 2001, 319-326. |
Trinque et al., Advances in Resists for 157 nm Microlithography, Advances in Resist Technology and Processing XIX, Theoddore H. Fedynyshyn, Editor, Proceedings of SPIE vol. 4690, 2002, 58-67. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192349A1 (fr) | 2016-05-03 | 2017-11-09 | Dow Corning Corporation | Résine de silsesquioxane et composition d'anhydride de silyle |
US10990012B2 (en) | 2016-05-03 | 2021-04-27 | Dow Silicones Corporation | Silsesquioxane resin and oxaamine composition |
US11370888B2 (en) | 2016-06-16 | 2022-06-28 | Dow Silicones Corporation | Silicon-rich silsesquioxane resins |
Also Published As
Publication number | Publication date |
---|---|
TWI435894B (zh) | 2014-05-01 |
KR20090038424A (ko) | 2009-04-20 |
TW200811224A (en) | 2008-03-01 |
WO2008002970A3 (fr) | 2008-04-10 |
JP5085649B2 (ja) | 2012-11-28 |
KR101216060B1 (ko) | 2012-12-28 |
US20090312467A1 (en) | 2009-12-17 |
JP2009542859A (ja) | 2009-12-03 |
WO2008002970A2 (fr) | 2008-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8524439B2 (en) | Silsesquioxane resin systems with base additives bearing electron-attracting functionalities | |
US7625687B2 (en) | Silsesquioxane resin | |
US8148043B2 (en) | Silsesquioxane resin systems with base additives bearing electron-attracting functionalities | |
US5691396A (en) | Polysiloxane compounds and positive resist compositions | |
US8088547B2 (en) | Resist composition | |
US20040152860A1 (en) | Positive resist composition and base material carrying layer of the positive resist composition | |
US20100261097A1 (en) | Photo-imageable Hardmask with Positive Tone for Microphotolithography | |
EP2651865B1 (fr) | Matériaux moléculaires de résine photosensible contenant un alcool fluoré et leurs procédés d'utilisation | |
WO2008001782A1 (fr) | Composition de résine photosensible et procédé de formation d'un motif | |
US6749986B2 (en) | Polymers and photoresist compositions for short wavelength imaging | |
KR101113149B1 (ko) | 실록산 단량체 및 이를 포함하는 포토레지스트용 중합체 | |
KR20050064462A (ko) | KrF, ArF 포토레지스트용 유기 반사 방지막으로사용할 수 있는 고분자 수지 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKYO OHKA KOGYO CO., LTD., JAPAN Free format text: ASSIGNMENT OF 50% RIGHT;ASSIGNOR:DOW CORNING CORPORATION;REEL/FRAME:022241/0714 Effective date: 20070328 Owner name: DOW CORNING CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HU, SANLIN;MOYER, ERIC SCOTT;SIGNING DATES FROM 20060518 TO 20060520;REEL/FRAME:022241/0228 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DOW SILICONES CORPORATION, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:DOW CORNING CORPORATION;REEL/FRAME:045381/0992 Effective date: 20180201 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |