US8517039B2 - Fluid pressure control assembly - Google Patents
Fluid pressure control assembly Download PDFInfo
- Publication number
- US8517039B2 US8517039B2 US12/931,835 US93183511A US8517039B2 US 8517039 B2 US8517039 B2 US 8517039B2 US 93183511 A US93183511 A US 93183511A US 8517039 B2 US8517039 B2 US 8517039B2
- Authority
- US
- United States
- Prior art keywords
- fluid
- solenoid valves
- individual
- pressure control
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 89
- 230000005540 biological transmission Effects 0.000 claims abstract description 65
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 abstract description 5
- 230000009471 action Effects 0.000 description 6
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/72—Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
- F16H61/0206—Layout of electro-hydraulic control circuits, e.g. arrangement of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/0003—Arrangement or mounting of elements of the control apparatus, e.g. valve assemblies or snapfittings of valves; Arrangements of the control unit on or in the transmission gearbox
- F16H61/0006—Electronic control units for transmission control, e.g. connectors, casings or circuit boards
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8158—With indicator, register, recorder, alarm or inspection means
- Y10T137/8175—Plural
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/86493—Multi-way valve unit
- Y10T137/86574—Supply and exhaust
- Y10T137/86622—Motor-operated
Definitions
- the present invention relates to an assembly or module having fluid pressure control solenoid valves and a temperature sensor associated with each solenoid valve in a manner to improve fluid pressure control characteristics of the solenoid valves.
- Precision VBS variable bleed solenoid devices are commonly used to provide accurate hydraulic control of certain automatic transmission functions. For example, one industry standard function has involved regulating the main transmission supply pressure.
- Fluid pressure to control respective clutches of an automatic transmission can be controlled using VBS devices.
- VBS devices For example, several VBS devices have been mounted/packaged on a common control module assembly to provide advanced transmission clutch control logic as described, for example, in U.S. Pat. No. 6,695,748. This technology has required additional precision and repeatability of the VBS pressure control characteristics.
- the VBS pressure control algorithm uses transmission oil temperature as a primary input to the control strategy (either a series of lookup tables or as a system model) to derive the output pressure control.
- a single common transmission oil temperature sensor e.g. thermistor
- the drawbacks to this approach are that the single thermistor is usually packaged away from at least some of the VBS devices of the transmission pressure control and that there is generally a significant temperature difference in the actual VBS internal temperature and the thermistor temperature. As a result, the system model accuracy is compromised.
- the condition is amplified if there are multiple VBS solenoids and if the arrangement of solenoids is exposed to varying transmission sump oil levels.
- the present invention provides an assembly or module having multiple individual fluid pressure control solenoid valves and having an individual fluid temperature sensor so disposed relative to a respective one of the individual solenoid valves as to permit fluid temperature measurement at an individual solenoid valve to provide more accurate fluid pressure control.
- the invention compensates for local fluid temperature variations among the solenoid valves.
- the present invention provides an assembly that includes a lead-frame support (e.g. a printed circuit board) having multiple individual fluid pressure control solenoid valves and an individual transmission oil temperature sensor, such as preferably a thermistor, packaged on the lead-frame support proximate the output fluid flow port of a respective one of the individual solenoid valves to provide transmission oil temperature information at that solenoid valve to a transmission electronic control unit, which can be mounted directly on the lead-frame support or separately therefrom on the transmission housing for example.
- a lead-frame support e.g. a printed circuit board
- an individual transmission oil temperature sensor such as preferably a thermistor
- the temperature sensor preferably is disposed in an oil passage communicated to an output fluid flow port such as an exhaust port or control port, so that transmission oil flows over the sensor to directly measure its temperature, although the sensor can be disposed external of an oil passage, such as on an oil tube or conduit, to indirectly measure oil temperature.
- the transmission electronic control unit can provide a command signal to the individual solenoid valves in response to the individual oil temperature input information associated with that individual solenoid valve to achieve more accurate pressure control by that solenoid valve.
- FIG. 1 is a schematic view of one side of a lead-frame support of a transmission solenoid module assembly disposed in a transmission oil sump wherein the assembly includes a multiple (five shown) individual fluid pressure control solenoid valves and an individual transmission oil temperature sensor packaged on the lead-frame support and wherein each sensor is shown disposed in an oil passage adjacent and communicated to an exhaust output fluid flow port the adjacent of a respective one of the individual solenoid valves to provide oil temperature input information to a transmission electronic control unit.
- FIG. 2 is a schematic diagram of the solenoid module assembly having multiple (six shown) individual fluid pressure control solenoid valves and showing the fluid pressure control circuit and the solenoid valve electronic control circuit that uses transmission oil temperature information input to a look-up table of the transmission electronic control unit.
- the present invention will be described herebelow with respect to an illustrative embodiment for use with an electronic transmission control unit ETCU that controls multiple clutches of a vehicle automatic transmission, although the invention is not limited to this particular illustrative vehicle automatic transmission application and can be used to improve accuracy of fluid pressure control by multiple fluid pressure control valves in a manner that accommodates any local temperature variations among the solenoid valves.
- FIG. 1 provides a schematic view of a first side S 1 of a lead-frame support PCB of a solenoid module assembly 10 having multiple (five shown) individual fluid pressure control solenoid valves PCS disposed on the opposite second side of the lead-frame support and having an individual transmission oil temperature sensor T disposed on the first side of the lead-frame support in an oil passage OF adjacent downstream and communicated to a exhaust output fluid flow port EP of a respective one of the individual solenoid valves PCS to provide oil temperature input to a transmission electronic control unit ETCU.
- the ETCU is disposed directly on the first side S 1 or on the opposite second side of the lead-frame support, or can be separately mounted therefrom (e.g. mounted on the transmission housing).
- the oil passage OF is formed in the lead-frame support PCB adjacent the exhaust port of a respective solenoid valve PCS such that the oil passage OF communicates to the transmission oil sump.
- each solenoid valve PCS includes a supply port SP connected to a conventional transmission oil pump OP and exhaust output fluid flow port EP and a control output fluid flow port CP that is connected to an individual clutch CL of the automatic transmission in conventional manner to control operation (e.g. shift point) of the particular clutch.
- the oil pump OP can be disposed on the transmission housing or elsewhere to provide oil pressure via supply line SL to the solenoid module assembly 10 .
- Each solenoid valve PCS also includes an electrical connection CC that is connected to conventional electronic transmission control unit ETCU, such as a microprocessor control unit, that controls the solenoid electrical current via duty cycle, or other operating parameter, of each individual solenoid valve to control the flow/pressure output at the respective control port CP of that solenoid valve in a manner to control clutch action (e.g. to selectively engage or disengage clutches) of the automatic transmission.
- ETCU electronic transmission control unit
- U.S. Pat. No. 6,695,748 describes a transmission control module for controlling a transmission in such manner and is incorporated herein by reference to illustrate a transmission control module and transmission components with it interfaces.
- the ETCU comprises a microprocessor that includes a pressure control algorithm in software stored in memory and that provides command signals to the individual solenoid valves PCS to control clutch action of the automatic transmission in conventional manner. For example, when a particular clutch action of one of the clutches is desired, the ETCU sends a fluid pressure command to a particular one of the individual solenoid valves PCS to control clutch action. In FIG. 2 , the ETCU sends the fluid pressure command signal via connection CC to one of the six (6) solenoid valves PCS to actuate clutch action at one of the six (6) clutches CL, which provide for six (6) shifts points of the automatic transmission.
- the ETCU includes a pressure control algorithm that uses transmission oil temperature as a primary input to control clutch action strategy across all modeled operating temperatures, either a series of look-up tables or as a system model, to derive the output pressure of the solenoid valves PCS needed to achieve control of the clutch shift points.
- the lead-frame support PCB typically comprises a conventional printed circuit board or ceramic hybrid Mylar type flex circuit board that is configured to provide electrical connections, such as connection CC, between the ETCU and the solenoid valves PCS.
- the lead-frame support can comprise any support member on which the solenoid valves PCS and temperature sensors T are disposed and electrically connected to the ETCU.
- the solenoid valves PCS are mounted on the lead-frame support PCB by modular or permanent terminations such as including, but not limited to, mechanical connectors, rivets, solder, welds, and the like, directly to the lead-frame support.
- the solenoid valves are connected hydraulically to the oil pump OP by a conventional hydraulic manifold (not shown) employing worm trail and/or conduits and to the respective clutch CL by conventional transmission valve bodies or transfer plates (not shown) of the type illustrated in U.S. Pat. No. 6,695,748.
- Each temperature sensor T is attached to the lead-frame support PCB so that the sensor resides in the oil passage OF that is adjacent downstream of and communicated to a respective exhaust output fluid flow port EP of a respective solenoid valve PCS, FIG. 1 , to receive exhausted transmission oil therefrom.
- sensor T can comprise a thermistor t disposed on a copper sensor wire w.
- the transmission oil discharged from each exhaust port EP flows over the thermistor t such that the temperature of the exhausted transmission oil can be directly measured by the thermistor, preferably at a location as close as possible to the output flow port of each solenoid valve.
- the invention envisions disposing the temperature sensor in the output flow port itself.
- the oil passage OF can have the polygonal shape shown or any other shape such as a circular or oval shape.
- the thermistors can comprise model RTH42 thermistors commercially available from Omega USA. Each thermistor can be attached to the lead-frame support PCB by mechanical crimping or forming, soldering, adhesive, or any other attachment method.
- the temperature sensors T alternately can comprise thermocouples or other conventional thermal sensors.
- the temperature sensor T can be disposed inside the oil passage OF as shown, or external of the respective oil passage OF, such as on an oil tube or conduit, in thermal conduction manner that permits the sensor to indirectly determine temperature of the transmission oil of a respective one of the solenoid valves PCS. Moreover, the temperature sensor can be disposed on the lead-frame support PCB to reside in an oil passage OC that is adjacent and communicated to a respective control output fluid flow port CP of a respective solenoid valve PCS to receive control fluid therefrom.
- Each temperature sensor T includes an electrical connection TC that is connected to ETCU to provide respective fluid temperature input information thereto associated with a respective one of the solenoid valves PCS.
- the fluid pressure control solenoid valves PCS can comprise variable bleed solenoid (VBS) valves having an exhaust port communicated to sump of the type described in U.S. Pat. No. 5,845,667, which is incorporated herein by reference or as described in copending patent application Ser. No. 11/314,977 of common assignee herewith.
- VBS variable bleed solenoid
- the invention is not limited to practice using VBS valves and can be practiced using other type of fluid pressure control valves.
- the bulkhead connector shown in FIG. 1 is provided for the purpose of providing electrical connections to the vehicle including, but not limited to, system power (e.g. 12V), chassis ground, and communications (e.g. C.A.N. network).
- system power e.g. 12V
- chassis ground e.g. 12V
- communications e.g. C.A.N. network
- the ETCU reads a solenoid-specific transmission oil temperature input (based on the solenoid-specific thermistor), which is sent to a temperature lookup table (temp_lookup table) of the ETCU to calculate a highly accurate electrical current command that is sent to that particular solenoid valve, FIG. 2 .
- the temp_lookup table has solenoid-specific transmission oil temperature (based on the solenoid-specific thermistor) as the input and has a solenoid-specific electrical current command as its output.
- the command signal from the ETCU to an individual solenoid valve PCS is derived in response to the transmission oil temperature input signal from a particular individual sensor T associated with a particular individual solenoid valve PCS to achieve more accurate pressure control by that solenoid valve PCS.
- the module assembly 10 is illustrated disposed in a conventional transmission oil sump in a manner that the sump oil level L varies relative to the lead-frame support PCB and the solenoid valves PCS disposed at different locations or heights in the sump.
- the module assembly can be disposed in a module housing (not shown) in conventional manner.
- the oil level L can vary in response to transmission oil temperature where a greater oil temperature raises the oil level L relative to the lead-frame and lower oil temperature lowers the oil level L relative to the lead-frame.
- Practice of the invention thus desensitizes pressure control from time-varying oil levels and thermal changes by accurately modeling fluid temperature inputs from each fluid control solenoid valve, whereby the individual temperature sensors compensate for varying fluid temperature differences among the solenoid valves.
- Practice of the invention provides better predictability of solenoid fluid temperatures and thus achievement of more accurate pressure control by the fluid solenoids.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/931,835 US8517039B2 (en) | 2006-06-09 | 2011-02-11 | Fluid pressure control assembly |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81268306P | 2006-06-09 | 2006-06-09 | |
US11/811,282 US7909721B2 (en) | 2006-06-09 | 2007-06-08 | Fluid pressure control assembly |
US12/931,835 US8517039B2 (en) | 2006-06-09 | 2011-02-11 | Fluid pressure control assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/811,282 Division US7909721B2 (en) | 2006-06-09 | 2007-06-08 | Fluid pressure control assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110133107A1 US20110133107A1 (en) | 2011-06-09 |
US8517039B2 true US8517039B2 (en) | 2013-08-27 |
Family
ID=39476485
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/811,282 Active 2029-03-01 US7909721B2 (en) | 2006-06-09 | 2007-06-08 | Fluid pressure control assembly |
US12/931,835 Active 2027-07-07 US8517039B2 (en) | 2006-06-09 | 2011-02-11 | Fluid pressure control assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/811,282 Active 2029-03-01 US7909721B2 (en) | 2006-06-09 | 2007-06-08 | Fluid pressure control assembly |
Country Status (1)
Country | Link |
---|---|
US (2) | US7909721B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10443703B2 (en) * | 2014-08-22 | 2019-10-15 | Toyota Jidosha Kabushiki Kaisha | Lubrication control device for transmission |
US20220290406A1 (en) * | 2020-03-27 | 2022-09-15 | Hitachi Construction Machinery Co., Ltd. | Work Machine |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060050A (en) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | Control device for vehicular automatic transmission |
GB2471653A (en) * | 2009-06-30 | 2011-01-12 | Meritor Technology Inc | A method of controlling a fluid level around a transmission gear |
JP5365552B2 (en) * | 2010-03-09 | 2013-12-11 | マツダ株式会社 | Control device for automatic transmission |
US9020713B1 (en) * | 2013-11-22 | 2015-04-28 | GM Global Technology Operations LLC | Temperature determination for transmission fluid in a vehicle |
US9921116B2 (en) | 2015-04-03 | 2018-03-20 | GM Global Technology Operations LLC | System and method for estimating temperatures of a hydraulic fluid circulated by a hydraulic pump of a transmission |
JP6737068B2 (en) * | 2016-08-23 | 2020-08-05 | 日本電産トーソク株式会社 | Sensor mounting structure |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262335A (en) * | 1978-08-18 | 1981-04-14 | S.R.M. Hydromekanik | Vehicle transmission control system |
US4282880A (en) | 1980-03-12 | 1981-08-11 | Technicare Corporation | Water circulation and maintenance system for an ultrasound mammary scanning apparatus |
US5050717A (en) * | 1989-03-31 | 1991-09-24 | Nissan Motor Co., Ltd. | Temperature responsive lock-up control for motor vehicle with automatic transmission |
US5588327A (en) * | 1995-09-25 | 1996-12-31 | Saturn Corporation | Multiplexed hydraulic clutch control |
US5666807A (en) * | 1995-12-13 | 1997-09-16 | Caterpillar Inc. | Oil processor circuit |
US5707315A (en) * | 1995-03-02 | 1998-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Control system for hydraulically operated vehicle transmission |
US5845667A (en) | 1996-12-19 | 1998-12-08 | Saturn Electronics & Engineering, Inc. | Single stage variable force solenoid pressure regulating valve |
US5961419A (en) * | 1996-11-07 | 1999-10-05 | Aisin Aw Co., Ltd. | Lubricant control apparatus for automatic transmission |
US6024671A (en) * | 1998-03-30 | 2000-02-15 | Mazda Motor Corporation | Apparatus for controlling automatic transmission |
US6059067A (en) | 1996-05-22 | 2000-05-09 | Honda Giken Kogyo Kabushiki Kaisha | Yaw moment control process and apparatus for a vehicle |
US6199587B1 (en) | 1998-07-21 | 2001-03-13 | Franco Shlomi | Solenoid valve with permanent magnet |
US6277049B1 (en) * | 1998-03-23 | 2001-08-21 | Nissan Motor Co., Ltd. | Shift control system responsive to low oil temperature |
US6544138B2 (en) | 2001-05-08 | 2003-04-08 | Borg-Warner Automotive, Inc. | Electro-hydraulic module for automatic transmission control |
US6637565B2 (en) * | 2000-12-28 | 2003-10-28 | Hyundai Motor Company | Method for controlling a damper clutch of an automatic transmission |
US6695748B2 (en) | 2000-09-08 | 2004-02-24 | Borgwarner Inc. | Transmission control apparatus |
US20040035469A1 (en) * | 2002-08-26 | 2004-02-26 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic valve control device and method |
US6740000B2 (en) * | 2001-03-09 | 2004-05-25 | Jatco Ltd | Cooling system for working fluid used in automatic transmission of automotive vehicle |
US6807460B2 (en) | 2001-12-28 | 2004-10-19 | Pepsico, Inc. | Beverage quality and communications control for a beverage forming and dispensing system |
US6835152B2 (en) | 2001-07-25 | 2004-12-28 | Aisin Aw Co., Ltd. | Automatic transmission with a hydraulic control apparatus |
US6866612B2 (en) | 2001-12-21 | 2005-03-15 | Toyota Jidosha Kabushiki Kaisha | Control device for automatic transmission |
US20060068971A1 (en) * | 2004-09-30 | 2006-03-30 | Jatco Ltd | System and method of compensating heating performance of continuously-variable-transmission-equipped vehicle |
US7086308B2 (en) | 2002-06-25 | 2006-08-08 | Yazaki Corporation | Automatic transmission for vehicle |
US7255214B2 (en) | 2005-04-20 | 2007-08-14 | General Motors Corporation | Damper lock-out clutch and motor/generator cooling multiplexed control system and method for an electrically variable hybrid transmissions |
US7384358B2 (en) | 2005-04-07 | 2008-06-10 | Denso Corporation | Automatic transmission control apparatus |
-
2007
- 2007-06-08 US US11/811,282 patent/US7909721B2/en active Active
-
2011
- 2011-02-11 US US12/931,835 patent/US8517039B2/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262335A (en) * | 1978-08-18 | 1981-04-14 | S.R.M. Hydromekanik | Vehicle transmission control system |
US4282880A (en) | 1980-03-12 | 1981-08-11 | Technicare Corporation | Water circulation and maintenance system for an ultrasound mammary scanning apparatus |
US5050717A (en) * | 1989-03-31 | 1991-09-24 | Nissan Motor Co., Ltd. | Temperature responsive lock-up control for motor vehicle with automatic transmission |
US5707315A (en) * | 1995-03-02 | 1998-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Control system for hydraulically operated vehicle transmission |
US5588327A (en) * | 1995-09-25 | 1996-12-31 | Saturn Corporation | Multiplexed hydraulic clutch control |
US5666807A (en) * | 1995-12-13 | 1997-09-16 | Caterpillar Inc. | Oil processor circuit |
US6059067A (en) | 1996-05-22 | 2000-05-09 | Honda Giken Kogyo Kabushiki Kaisha | Yaw moment control process and apparatus for a vehicle |
US5961419A (en) * | 1996-11-07 | 1999-10-05 | Aisin Aw Co., Ltd. | Lubricant control apparatus for automatic transmission |
US5845667A (en) | 1996-12-19 | 1998-12-08 | Saturn Electronics & Engineering, Inc. | Single stage variable force solenoid pressure regulating valve |
US6277049B1 (en) * | 1998-03-23 | 2001-08-21 | Nissan Motor Co., Ltd. | Shift control system responsive to low oil temperature |
US6024671A (en) * | 1998-03-30 | 2000-02-15 | Mazda Motor Corporation | Apparatus for controlling automatic transmission |
US6199587B1 (en) | 1998-07-21 | 2001-03-13 | Franco Shlomi | Solenoid valve with permanent magnet |
US6695748B2 (en) | 2000-09-08 | 2004-02-24 | Borgwarner Inc. | Transmission control apparatus |
US6637565B2 (en) * | 2000-12-28 | 2003-10-28 | Hyundai Motor Company | Method for controlling a damper clutch of an automatic transmission |
US6830527B2 (en) | 2001-03-09 | 2004-12-14 | Jatco Ltd | Cooling system for working fluid used in automatic transmission of automotive vehicle |
US6740000B2 (en) * | 2001-03-09 | 2004-05-25 | Jatco Ltd | Cooling system for working fluid used in automatic transmission of automotive vehicle |
US6544138B2 (en) | 2001-05-08 | 2003-04-08 | Borg-Warner Automotive, Inc. | Electro-hydraulic module for automatic transmission control |
US6835152B2 (en) | 2001-07-25 | 2004-12-28 | Aisin Aw Co., Ltd. | Automatic transmission with a hydraulic control apparatus |
US6866612B2 (en) | 2001-12-21 | 2005-03-15 | Toyota Jidosha Kabushiki Kaisha | Control device for automatic transmission |
US6807460B2 (en) | 2001-12-28 | 2004-10-19 | Pepsico, Inc. | Beverage quality and communications control for a beverage forming and dispensing system |
US7086308B2 (en) | 2002-06-25 | 2006-08-08 | Yazaki Corporation | Automatic transmission for vehicle |
US20040035469A1 (en) * | 2002-08-26 | 2004-02-26 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic valve control device and method |
US20060068971A1 (en) * | 2004-09-30 | 2006-03-30 | Jatco Ltd | System and method of compensating heating performance of continuously-variable-transmission-equipped vehicle |
US7384358B2 (en) | 2005-04-07 | 2008-06-10 | Denso Corporation | Automatic transmission control apparatus |
US7255214B2 (en) | 2005-04-20 | 2007-08-14 | General Motors Corporation | Damper lock-out clutch and motor/generator cooling multiplexed control system and method for an electrically variable hybrid transmissions |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10443703B2 (en) * | 2014-08-22 | 2019-10-15 | Toyota Jidosha Kabushiki Kaisha | Lubrication control device for transmission |
US20220290406A1 (en) * | 2020-03-27 | 2022-09-15 | Hitachi Construction Machinery Co., Ltd. | Work Machine |
US12000416B2 (en) * | 2020-03-27 | 2024-06-04 | Hitachi Construction Machinery Co., Ltd. | Work machine |
Also Published As
Publication number | Publication date |
---|---|
US20080132381A1 (en) | 2008-06-05 |
US7909721B2 (en) | 2011-03-22 |
US20110133107A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8517039B2 (en) | Fluid pressure control assembly | |
US8989971B2 (en) | Method and apparatus for detecting and compensating for pressure transducer errors | |
US8471564B2 (en) | System and method for recording the characteristic curves of light-emitting diodes (LEDs) | |
US6510740B1 (en) | Thermal management in a pressure transmitter | |
JP2004303244A (en) | Assembly of electrohydraulic manifold, and method for forming the assembly | |
JP2008083052A (en) | Method of testing fluid manifold | |
JP5007876B2 (en) | Control unit for a transmission with a package of pressure transducers | |
JP2008528897A (en) | Electromagnetic pressure control valve device with built-in pressure sensor | |
JP2005069481A (en) | Electric fluid-pressure servo valve and its manufacturing method | |
US20040118466A1 (en) | Electro-hydraulic manifold assembly and pressure sensor therefor | |
US8050828B2 (en) | Transmission oil measurement system and method | |
US7908734B2 (en) | Manifold assembly having a centralized pressure sensing package | |
US6544138B2 (en) | Electro-hydraulic module for automatic transmission control | |
US7011113B2 (en) | Hydraulic cartridge valve solenoid coil for direct mount to a printed circuit board | |
US7878708B2 (en) | Temperature sensor arrangement in an automatic gearbox | |
EP1767916A2 (en) | Pressure transducer package for a manifold | |
EP0964166B1 (en) | Hydraulic control systems | |
JP3716813B2 (en) | Fluid pressure control device | |
US20050224020A1 (en) | Internal combustion engine with a coolant loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SATURN ELECTRONICS & ENGINEERING, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEID, DAVID L.;MANTHEI, KEVIN;NAJMOLHODA, HAMID;REEL/FRAME:029549/0467 Effective date: 20101102 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: FLEXTRONICS AUTOMOTIVE USA, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SATURN ELECTRONICS & ENGINEERING, INC.;REEL/FRAME:031400/0733 Effective date: 20130321 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |