US8206967B2 - Method for production of recombinant human thrombin - Google Patents
Method for production of recombinant human thrombin Download PDFInfo
- Publication number
- US8206967B2 US8206967B2 US12/167,614 US16761408A US8206967B2 US 8206967 B2 US8206967 B2 US 8206967B2 US 16761408 A US16761408 A US 16761408A US 8206967 B2 US8206967 B2 US 8206967B2
- Authority
- US
- United States
- Prior art keywords
- prothrombin
- ecarin
- recombinant
- cells
- thrombin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108010015680 recombinant human thrombin Proteins 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title description 15
- 108010085662 ecarin Proteins 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 108010094028 Prothrombin Proteins 0.000 claims description 80
- 102100027378 Prothrombin Human genes 0.000 claims description 80
- 229940039716 prothrombin Drugs 0.000 claims description 80
- 210000004027 cell Anatomy 0.000 claims description 64
- 229960004072 thrombin Drugs 0.000 claims description 60
- 108090000190 Thrombin Proteins 0.000 claims description 57
- 210000004962 mammalian cell Anatomy 0.000 claims description 20
- 101000651439 Homo sapiens Prothrombin Proteins 0.000 claims description 17
- 108010013113 glutamyl carboxylase Proteins 0.000 claims description 17
- 229940039715 human prothrombin Drugs 0.000 claims description 17
- 102100038182 Vitamin K-dependent gamma-carboxylase Human genes 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 14
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 12
- 239000012228 culture supernatant Substances 0.000 claims description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 150000007523 nucleic acids Chemical group 0.000 claims description 5
- 229930003448 Vitamin K Natural products 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 claims description 4
- 235000019168 vitamin K Nutrition 0.000 claims description 4
- 239000011712 vitamin K Substances 0.000 claims description 4
- 150000003721 vitamin K derivatives Chemical class 0.000 claims description 4
- 229940046010 vitamin k Drugs 0.000 claims description 4
- 108020004414 DNA Proteins 0.000 claims 12
- 108020004511 Recombinant DNA Proteins 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 19
- 238000001356 surgical procedure Methods 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 241000282414 Homo sapiens Species 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 241000283690 Bos taurus Species 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 5
- 241000186361 Actinobacteria <class> Species 0.000 description 4
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical group CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 241000237852 Mollusca Species 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005277 cation exchange chromatography Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000003998 snake venom Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241001135756 Alphaproteobacteria Species 0.000 description 3
- 241000283323 Delphinapterus leucas Species 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010049003 Fibrinogen Proteins 0.000 description 3
- 102000008946 Fibrinogen Human genes 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000012136 culture method Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000023597 hemostasis Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 108010011227 meizothrombin Proteins 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 241000256182 Anopheles gambiae Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 241000237974 Conus textile Species 0.000 description 2
- 241000255601 Drosophila melanogaster Species 0.000 description 2
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000192128 Gammaproteobacteria Species 0.000 description 2
- 101000742236 Homo sapiens Vitamin K-dependent gamma-carboxylase Proteins 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- 241000251752 Myxine glutinosa Species 0.000 description 2
- 241000276398 Opsanus tau Species 0.000 description 2
- 241000282515 Papio hamadryas Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 238000007675 cardiac surgery Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 208000002925 dental caries Diseases 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011902 gastrointestinal surgery Methods 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- 102000045338 human GGCX Human genes 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000771 oncological effect Effects 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 108010071286 prethrombins Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 238000007631 vascular surgery Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000029663 wound healing Effects 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000276401 Batrachoididae gen. sp. Species 0.000 description 1
- 241001135755 Betaproteobacteria Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 241001529572 Chaceon affinis Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 241000588879 Chromobacterium violaceum Species 0.000 description 1
- 241001638933 Cochlicella barbara Species 0.000 description 1
- 241000237970 Conus <genus> Species 0.000 description 1
- 241000018683 Conus episcopatus Species 0.000 description 1
- 241001495101 Conus imperialis Species 0.000 description 1
- 241000032205 Conus omaria Species 0.000 description 1
- 241000288030 Coturnix coturnix Species 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241000122860 Echis carinatus Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241000589902 Leptospira Species 0.000 description 1
- 241000589929 Leptospira interrogans Species 0.000 description 1
- 241000239220 Limulus polyphemus Species 0.000 description 1
- 241000589195 Mesorhizobium loti Species 0.000 description 1
- 241000191938 Micrococcus luteus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 244000082988 Secale cereale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 241000589196 Sinorhizobium meliloti Species 0.000 description 1
- 241000589970 Spirochaetales Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- -1 Tisseel Chemical class 0.000 description 1
- 241000209147 Triticum urartu Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000520892 Xanthomonas axonopodis Species 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 238000010523 cascade reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000006167 equilibration buffer Substances 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 108010073651 fibrinmonomer Proteins 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000031169 hemorrhagic disease Diseases 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003805 procoagulant Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960003766 thrombin (human) Drugs 0.000 description 1
- 229940077255 thrombin-jmi Drugs 0.000 description 1
- 229940033618 tisseel Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000014599 transmission of virus Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6402—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals
- C12N9/6418—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals from snakes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6429—Thrombin (3.4.21.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21005—Thrombin (3.4.21.5)
Definitions
- the present application relates to a method for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin.
- Thrombin is a key enzyme in the coagulation cascade.
- thrombin mediated proteolytic digestion of fibrinogen into fibrin monomer, a cascade reaction leading to clot formation is started.
- Clot formation is the first step in wound healing.
- thrombin is a chemo attractant to cells involved in wound healing, and, the fibrin network formed act as a scaffold for collagen-producing fibroblasts, increases phagocytosis, promotes angiogenesis and binds growth factors thus further supporting the healing process.
- the rate of clot formation is dependent on the concentration of thrombin and fibrinogen.
- thrombin has been utilised in a number of products intended for haemostasis and/or as tissue sealants or “glues”, both as stand-alone products (i.e. Thrombin-JMI) or in combination with fibrin or other compounds (i.e. Tisseel, Hemaseel, Crosseal).
- Thrombin-JMI tissue sealants or “glues”
- fibrin or other compounds i.e. Tisseel, Hemaseel, Crosseal.
- the potential fields of use are numerous; skin grafting, neuro surgery, cardiac surgery, toracic surgery, vascular surgery, oncologic surgery, plastic surgery, opthalmologic surgery, orthopedic surgery, trauma surgery, head and neck surgery, gynecologic and urologic surgery, gastrointestinal surgery, dental surgery, drug delivery, tissue engineering and dental cavity haemostasis.
- thrombin in approved thrombin-containing products on the market is derived either from human or bovine plasma.
- plasma derived protein confers several disadvantages as limited availability and safety concerns such as risk for transmission of viruses and prions and the risk of triggering autoantibody formation (bovine products). Cases where antibody formation due to bovine thrombin exposure has lead to significant bleeding disorders are known.
- In vivo thrombin is obtained from activation of prothrombin through the coagulation cascade. Activation through the coagulation cascade is dependent on the presence of a functional GLA-domain containing 8-10 glutamic residues converted to gamma-carboxyglutamate. In vitro, also incomplete gamma-carboxylated prothrombin can be converted to thrombin by the use of prothrombin activators such as ecarin.
- Ecarin a snake venom derived from the Kenyan viper Echis carinatus is a procoagulant, a protease which cleaves human prothrombin between residues Arg 320 -Ile 321 to generate meizothrombin. Further autocatalytic processing results in the formation of meizothrombin desF1 and then alpha-thrombin, which is the mature active form of thrombin.
- An ideal commercial thrombin manufacturing process would use a recombinant thrombin precursor and a recombinant protease produced at high productivity without addition of animal-derived components. Further requirements would be robust performance, convenience and low cost.
- rh-thrombin A big obstacle for efficient recombinant human thrombin (rh-thrombin) has been to obtain high yields of prothrombin. Although extensive efforts have been spent, obtaining high yields of prothrombin under conditions suitable for production of biologicals has long remained a challenge.
- Yonemura et al. J Biochem 135:577-582, 2004 have used recombinant GLA-domain-less prethrombin digested with recombinant ecarin to generate recombinant human thrombin.
- the productivity of prethrombin at process scale was 150-200 mg/L, which is a modest productivity for commercial scale production. Recombinant production of ecarin has also been described in WO 01/04146.
- rh-thrombin generation of rh-thrombin is exemplified by conversion of recombinant prothrombin produced in COS cells by a recombinant ecarin produced from CHO cells.
- the exemplified methods are not suitable for large-scale production and animal-derived components are used.
- Recombinant ecarin is produced as a prepro-protein that needs to be activated. Problems to efficiently activate the r-ecarin are described in both publications and the suggested activation procedures are far from optimal.
- the present invention describes a process to efficiently produce human thrombin from recombinant prothrombin obtained by the expression method as described in WO2005038019.
- Recombinant carboxylated or incompletely carboxylated prothrombin combined with recombinant ecarin has not previously been used for manufacturing of recombinant thrombin. Further, the procedure for activating recombinant ecarin is new. The methods described would be suitable for large scale rh-thrombin manufacturing without the addition of animal-derived components.
- a method for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin having the sequence SEQ ID NO 2 or a homologue thereof.
- a pharmaceutical composition comprising a recombinant thrombin according to said method, in combination with pharmaceutically acceptable carriers, vehicles and/or adjuvants.
- an isolated DNA sequence is provided coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
- a vector comprising an isolated DNA sequence coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
- a cell line comprising a vector comprising an isolated DNA sequence coding for recombinant ecarin according to SEQ ID NO 2 or a homologue thereof, having at least 80% identity to SEQ ID NO 2.
- FIG. 1 FII+GGCX construct (SEQ ID NO:1).
- FIG. 2 Ecarin construct (SEQ ID NO:3).
- FIG. 3 Example of a process outline for thrombin manufacturing.
- FIGS. 4A-4C Nucleotide sequence alignment of the nucleic acid sequence encoding recombinant ecarin (SEQ ID NO:2) used in the present invention and wild type ecarin nucleic acid sequence (SEQ ID NO:4).
- FIG. 5 Amino acid sequence alignment of recombinant ecarin (encoded by SEQ ID NO:2) used in the present invention and wild type ecarin (both having the amino acid sequence of SEQ ID NO:5).
- FIG. 6 Graph showing the activation of recombinant ecarin during cell death over time.
- FIG. 7 Activation of recombinant ecarin in cell cultures over time, assayed by SDS-PAGE.
- FIG. 8 Chromatogram from CIEX purification of rh-thrombin.
- FIG. 9 Non-reduced SDS-PAGE analyses of fractions obtained by CIEX purification.
- the invention consists in one part of a cell line derived by stable transfection with a vector ( FIG. 1 ) encoding human prothrombin (FII) associated by suitable control sequences and human gamma-glutamyl carboxylase (GGCX) associated by suitable control sequences. Control sequences should be chosen so that prothrombin expression is in excess of the GGCX expression by at least a factor of 10.
- the host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred.
- Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NS0, 293, Per C.6, BHK and COS cells, and derivatives thereof.
- the host cell is the mammalian cell line CHO-S.
- the obtained prothrombin producing cell line is grown under culture conditions optimised for high yield of prothrombin disregarding gamma-carboxylation. Vitamin K may or may not be added to the growth medium.
- the invention is not restricted to a particular prothrombin or gamma-glutamyl carboxylase or protein encoding sequence of one of these proteins to be co-expressed. Moreover, and in particular with respect to blood coagulation factors, numerous mutant forms of the proteins have been disclosed in the art. The present invention is equally applicable to prothrombin and gamma-glutamyl carboxylase mutant forms, including naturally occurring allelic variants, of the proteins as it is to wild-type sequence. In one embodiment the invention can be undertaking with any wild-type protein or one with at least 90%, preferably at least 95% sequence identity thereto. In another embodiment, sequences listed in Table 1 can be used.
- GGCX gamma-glutamyl carboxylase
- GGCX enzymes are widely distributed, and have been cloned from many different species such as the beluga whale Delphinaptrus leucas , the toadfish Opsanus tau , chicken ( Gallus gallus ), hagfish ( Myxine glutinosa ), horseshoe crab ( Limulus polyphemus ), and the cone snail Conus textile (Begley et al., 2000, ibid; Bandyopadhyay et al. 2002, ibid).
- the carboxylase from conus snail is similar to bovine carboxylase and has been expressed in COS cells (Czerwiec et al. 2002, ibid).
- GGCX GGCX-like proteins similar to GGCX can be found in insects and prokaryotes such as Anopheles gambiae, Drosophila melanogaster and Leptospira with NCBI accession numbers: gi 31217234, gi 21298685, gi 24216281, gi 24197548 and (Bandyopadhyay et al., 2002, ibid), respectively.
- the carboxylase enzyme displays remarkable evolutionary conservation.
- Several of the non-human enzymes have shown, or may be predicted to have, activity similar to that of the human GGCX we have used, and may therefore be used as an alternative to the human enzyme.
- Table 2 identifies representative sequences of predicted proteins homologous to human GGXC (sorted after species origin) that can be used in the present invention.
- GGCX proteins and GGCX proteins from other species can be used as the carboxylase enzyme in the present invention.
- a second part of the invention is a cell line stably transfected with a polynucleotide encoding ecarin and associated control elements ( FIG. 2 ).
- the ecarin encoding sequence may be optimised for expression in mammalian cells, but is not limited to such sequences.
- the sequence according to SEQ ID NO 2 or a homologue thereof is used to express ecarin.
- a homologue of SEQ ID NO 2 coding for ecarin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 2.
- the host cell is preferably a eukaryotic cell. Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells.
- Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NS0, 293, Per C.6, BHK and COS cells, and derivatives thereof. In one embodiment the host cell is the mammalian cell line CHO-S.
- prothrombin and ecarin are produced from cells originating from the same parent cell line.
- This cell line origin may be, but is not limited to, Chinese Hamster Ovary cells (CHO) including derivatives and NS0 (myeloma BALB/c mouse) including derivatives.
- CHO Chinese Hamster Ovary cells
- NS0 myeloma BALB/c mouse
- the purpose of using the same cell line background is to facilitate purification and evaluation of purity of the thrombin product.
- ecarin and prothrombin are produced from different host cell line; i.e. CHO and NS0, respectively.
- recombinant ecarin is preferred as this facilitates detection of non-thrombin product derived components during the thrombin generation process and in the final thrombin product.
- recombinant ecarin is preferred due to reduced risk for exposure to allergenic or toxic components that may be present in ecarin derived from snake venom.
- ecarin from snake venom is not preferred due to batch variation and limited batch size of ecarin preparations.
- the crude prothrombin and the crude ecarin are mixed and incubated under conditions that allow formation of thrombin, such as described in Example 3.
- Generated thrombin is then purified by methods described in Example 4 or by other methods known by persons skilled in the art.
- prothrombin and/or ecarin can first be purified by methods known in the art and then mixed to obtain thrombin. Thrombin is then purified from non-product components.
- FIG. 3 An example of a suitable thrombin manufacturing process is outlined in FIG. 3 .
- a method for producing recombinant human thrombin from recombinant prothrombin using recombinant ecarin having the sequence SEQ ID NO 2 or a homologue thereof is provided.
- the recombinant ecarin can be expressed and secreted by a cell containing the gene comprising the nucleotide sequence SEQ ID NO 2 or a homologue thereof in CHO-S cells, which ecarin has an amino acid sequence equal to that of wild type ecarin.
- the recombinant prothrombin is subjected to recombinant ecarin, which recombinant ecarin can be isolated in active form after extra-cellular expression by CHO-S cells, said cells being left to apoptosis/necrosis for a time sufficient to activate said ecarin, whereupon a human recombinant thrombin is isolated.
- the recombinant prothrombin can be produced by a cell-line comprising a prothrombin expressing gene having a nucleotide sequence comprising the sequence SEQ. ID. NO. 1 or an homologue thereof.
- a homologue of SEQ ID NO 1 coding for prothrombin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 1.
- the recombinant prothrombin can be a mixture of fully carboxylated prothrombin and incompletely carboxylated prothrombin.
- the recombinant prothrombin is a fully carboxylated prothrombin and in another embodiment, the recombinant prothrombin is an incompletely carboxylated prothrombin.
- a further aspect of the invention relates to the recombinant thrombin obtained by the method according to the invention.
- a pharmaceutical composition can be designed comprising the recombinant thrombin obtained be the method according to the invention, in combination with pharmaceutically acceptable carriers, vehicles and/or adjuvants.
- the pharmaceutical composition can be in an applicable form.
- thrombin produced by the described method can be used in the manufacturing of tissue sealants (“glues”) in combination with other proteins, i.e. fibrin originating from recombinant cells, transgenic animals or human plasma.
- tissue sealants i.e. fibrin originating from recombinant cells, transgenic animals or human plasma.
- thrombin produced by the described method can be used as a stand-alone product, freeze dried as single active component or in combination with a non-protein matrix, or, in solution as single active component or in combination with other active components.
- Suitable mix-in components would be, but is not limited to, collagen, chitin, degradable polymers, cellulose, recombinant coagulation factors and fibrinogen from transgenic or recombinant sources.
- tissue sealants (“glues”) are numerous; skin grafting, neuro surgery, cardiac surgery, toracic surgery, vascular surgery, oncologic surgery, plastic surgery, opthalmologic surgery, orthopedic surgery, trauma surgery, head and neck surgery, gynecologic and urologic surgery, gastrointestinal surgery, dental surgery, drug delivery, tissue engineering and dental cavity haemostasis.
- a further aspect of the invention relates to a method for obtaining coagulation by administering a therapeutically effective amount of a recombinant human thrombin obtained using the method according to the invention to a patient.
- Another aspect of the present invention is an isolated DNA sequence according SEQ ID NO 2 or homologues thereof coding for a recombinant ecarin.
- a homologue of SEQ ID NO 2 coding for ecarin may have at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to the sequence SEQ ID NO 2.
- SEQ ID NO 2 is a designed sequence that has been optimised for optimal expression. The sequence is particularly suited for expression in mammalian cell systems.
- a vector comprising SEQ ID NO 2 or a homologue thereof.
- Said vector can be designed to overexpress SEQ ID NO 2 or a homologue thereof and is operably linked to expression control sequences permitting expression of ecarin encoded by SEQ ID NO 2 or a homologue thereof.
- a host cell comprising said vector is provided that is capable of expressing ecarin encoded by SEQ ID NO 2 or a homologue thereof.
- This host cell is preferably a eukaryotic cell.
- Typical host cells include, but are not limited to insect cells, yeast cells, and mammalian cells. Mammalian cells are particularly preferred. Suitable mammalian cells lines include, but are not limited to, CHO, HEK, NSO, 293, Per C.6, BHK and COS cells, and derivatives thereof.
- the host cell is the mammalian cell line CHO-S.
- polypeptide comprising an amino acid sequence encoded by SEQ ID NO: 2 or a homologue thereof and obtained by the method described in Example 2.
- sequence identity between two sequences can be determined by pair-wise computer alignment analysis, using programs such as, BestFit, PILEUP, Gap or FrameAlign.
- the preferred alignment tool is BestFit.
- suitable algorithms such as Blast, Blast2, NCBI Blast2, WashU Blast2, FastA, or Fasta3, and a scoring matrix such as Blosum 62.
- Such algorithms endeavour to closely approximate the “gold-standard” alignment algorithm of Smith-Waterman.
- the preferred software/search engine program for use in assessing similarity i.e., how two primary polypeptide sequences line up is Smith-Waterman. Identity refers to direct matches, similarity allows for conservative substitutions.
- the cells were grown either by batch or perfusion culture methods (Table 1) and the amount of prothrombin produced was measured by an ecarin assay. This ecarin assay was performed essentially as the Chromogenix assay (Mölndal, Sweden) using purified plasma-derived human prothrombin (Haematologic Technologies Inc., Vermont, USA) as standard.
- An ecarin encoding sequence having the nucleotide sequence SEQ ID NO: 2 optimised for expression in mammalian cells was synthesized and cloned into the Invitrogen vector pCDNA 3.1+ ( FIG. 2 ).
- An alignment of the nucleotide sequence of the recombinant ecarin used in the present invention to the sequence of wild type ecarin (GI:717090) is seen in FIG. 4 .
- this recombinant ecarin is 100% homologous to the amino acid sequence for wild type ecarin.
- This construct, AZ ecarin (SEQ ID NO. 3), was used to stably transfect CHO-S cells (Invitrogen).
- Ecarin is secreted by the host cell to the extra-cellular space, and in order to screen for ecarin producing clones, culture supernatant samples were removed and mixed with recombinant human prothrombin (rhFII) to a final concentration of 1 mg rhFII/L in assay buffer (50 mM Tris-HCl, pH 7.4 containing 0.1% BSA). This mix was incubated 20-40 minutes at 37° C. The thrombin generated by the action of ecarin present in the sample was then detected by adding a 1-2 mM solution of the chromogenic thrombin substrate S-2238 (Chromogenix, Mölndal). Colour development was monitored and stopped when suitable using 20% acetic acid.
- assay buffer 50 mM Tris-HCl, pH 7.4 containing 0.1% BSA
- snake venom derived ecarin with a declared activity was purchased from Sigma and used as standard.
- the best producing cell line obtained produced up to 7000 U ecarin per liter culture in lab scale shaker cultures grown in animal component free medium.
- the above method produces the recombinant ecarin as a pro protein
- activation by removal of the pro-part is necessary for optimal activity.
- the culture medium used was CD-CHO supplemented with HT-supplement, non-essential amino acids and Glutamax I (as recommended by Invitrogen for CHO-S), and growth conditions were shaker bottles at 37° C. in an atmosphere containing 5% carbon dioxide. Culture samples were assayed for activity as described above. As can be seen from FIG. 6 , the activity of recombinant ecarin increased during the activation period.
- the ecarin protease converts prothrombin to meizothrombin, an intermediate form of thrombin that has thrombin catalytic activity. Further processing into thrombin is achieved by auto-catalyses.
- Thrombin obtained by the procedure described in example 3 was purified by cation-exchange chromatography (CIEX) using ⁇ KTA-FPLC (GE Healthcare) and an SP-Sepharose HP column (GE Healthcare) equilibrated with 25 mM sodium-phosphate buffer, pH 6.5.
- Ecarin-digested prothrombin prepared as in example 3 was adjusted to pH 6.2 and a conductivity of approximately 8 mS/cm.
- Thrombin was eluted with a 1M sodium chloride gradient in column equilibration buffer over 20 column volumes ( FIG. 8 ). Selected fractions were analysed by SDS-PAGE ( FIG. 9 ). Thrombin activity was confirmed by incubation with the chromogenic thrombin substrate S-2238 (Chromogenix, Mölndal).
- thrombin kinetic parameters were determined using the chromogenic thrombin substrate S-2366 (Chromogenix). Activity was estimated by titration with hirudin. The rh-thrombin was for all parameters; Activity, K kat and V max , similar to plasma-derived human ⁇ -thrombin from Haematologic Technologies Inc. (Vermont, USA).
- Purified thrombin was also subjected to N-terminal sequencing: Reduced thrombin heavy and light polypeptide chains were separated by SDS-PAGE and blotted to Immobilon P membrane (Millipor). The excised bands were sequenced by the Edman degradation method. Heavy chain N-terminal first five amino acids were confirmed to be IVEGS, and the light chain five N-terminal amino acids were TFGS as expected.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Diabetes (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
TABLE 1 | |||||
CDNA | GENE | ||||
EMBL | SPLICE VARIANTS | EMBL | |||
PROTEIN | ACC# | (PROTEIN) | MUTATIONS | ACC# | |
| BC013979 | 2; BC013979; | 1 SNP (EMBL# U65896); | U65896 | |
| AF253530 | 2 SNPs (OMIM# 137167) | |||
| V00595 | 1; V00595 | approx. 100 SNP's | AF478696 | |
(EMBL# AF478696) | |||||
TABLE 2 | |
Data base | |
Species | accession #/ID |
Homo sapiens (man) | NM_000821.2 |
HUMGLUCARB | |
HUMHGCA | |
BC004422 | |
HSU65896 | |
AF253530.1 | |
Papio hamadryas (red baboon) | AC116665.1 |
Delphinapterus leucas (white whale) | AF278713 |
Bos taurus (bovine) | NM_174066.2 |
BOVCARBOXG | |
BOVBGCA | |
Ovis aries (domestic sheep) | AF312035 |
Rattus norvegicus (brown rat) | NM_031756.1 |
AF065387 | |
Mus musculus (mouse) | NM_019802.1 |
AF087938 | |
Opsanus tau (bony fishes) | AF278714.1 |
Conus textile (molluscs) | AY0044904.1 |
AF382823.2 | |
Conus imperialis (molluscs) | AF448234.1 |
Conus episcopatus (molluscs) | AF448233.1 |
Conus omaria (molluscs) | AF448235.1 |
Drosophila melanogaster (fruit fly) | NM_079161.2 |
Anopheles gambiae (mosquito) | XM_316389.1 |
Secale cereale (monocots) | SCE314767 |
Triticum aestivum (common wheat) | AF280606.1 |
Triticum urartu (monocots) | AY245579.1 |
Hordeum vulgare (barley) | BLYHORDCA |
Leptospira interrogans (spirochetes) | AE011514.1 |
Streptomyces coelicolor (high GC Gram+ | SCO939109 |
bacteria) | SCO939124 |
AF425987.1 | |
Streptomyces lividans (high GC Gram+ bacteria) | SLU22894 |
Streptomyces viginiae (high GC Gram+ bacteria) | SVSNBDE |
Micrococcus luteus (high GC Gram+ bacteria) | MLSPCOPER |
Chlamydomonas reinhardtii (green algae) | AF479588.1 |
Dictyostelium discoideum (slime mold) | AC115612.2 |
Coturnix coturnix (birds) | AF364329.1 |
Bradyrhizobium japonicum (α-protoebacteria) | AP005937.1 |
Rhodobacter sphaeroides (α-proteobacteria) | RSY14197 |
Sinorhizobium meliloti (α-proteobacteria) | RME603647 |
AF119834 | |
Mesorhizobium loti (α-proteobacteria) | AP003014.2 |
Chromobacterium violaceum (β-proteobacteria) | AE016910.1 |
AE016918.1 | |
Pseudomonas aeruginosa (γ-proteobacteria) | AE004613.1 |
AF165882 | |
Xanthomonas axonopodis (γ-proteobacteria) | AE011706.1 |
Human herpesvirus 8 | KSU52064 |
KSU75698 | |
AF305694 | |
AF360120 | |
AF192756 | |
TABLE 1 |
Examples of yield of prothrombin in experimental fermentor runs |
Culture method & | Viable cells (million | Prothrombin | |
Experiment ID | time | cells/mL) | mg/L |
CC2LC (272-8) | Batch, 238 h | 5.9 | 281 |
CC2LD (272-8) | Batch, 238 h | 6.2 | 276 |
326-11B | Perfusion, 259 h | 18 | 722 |
Claims (36)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/167,614 US8206967B2 (en) | 2007-07-06 | 2008-07-03 | Method for production of recombinant human thrombin |
US13/524,689 US20120258090A1 (en) | 2007-07-06 | 2012-06-15 | Method for production of recombinant human thrombin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94820707P | 2007-07-06 | 2007-07-06 | |
US12/167,614 US8206967B2 (en) | 2007-07-06 | 2008-07-03 | Method for production of recombinant human thrombin |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/524,689 Division US20120258090A1 (en) | 2007-07-06 | 2012-06-15 | Method for production of recombinant human thrombin |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090047273A1 US20090047273A1 (en) | 2009-02-19 |
US8206967B2 true US8206967B2 (en) | 2012-06-26 |
Family
ID=40228838
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/167,614 Expired - Fee Related US8206967B2 (en) | 2007-07-06 | 2008-07-03 | Method for production of recombinant human thrombin |
US13/524,689 Abandoned US20120258090A1 (en) | 2007-07-06 | 2012-06-15 | Method for production of recombinant human thrombin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/524,689 Abandoned US20120258090A1 (en) | 2007-07-06 | 2012-06-15 | Method for production of recombinant human thrombin |
Country Status (8)
Country | Link |
---|---|
US (2) | US8206967B2 (en) |
EP (1) | EP2179038B1 (en) |
JP (1) | JP5661459B2 (en) |
CN (1) | CN101688195B (en) |
AU (1) | AU2008275828B2 (en) |
BR (1) | BRPI0813743A2 (en) |
CA (1) | CA2692656A1 (en) |
WO (1) | WO2009008821A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110092429A1 (en) * | 2003-10-14 | 2011-04-21 | Christel Fenge | Compositions and methods for producing gamma-carboxylated proteins |
US20120258090A1 (en) * | 2007-07-06 | 2012-10-11 | Medimmune Limited | Method for production of recombinant human thrombin |
USRE46830E1 (en) | 2004-10-19 | 2018-05-08 | Polypeptide Laboratories Holding (Ppl) Ab | Method for solid phase peptide synthesis |
WO2020229521A1 (en) | 2019-05-14 | 2020-11-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for inhibiting or reducing bacterial biofilms on a surface |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1874928A1 (en) * | 2005-04-13 | 2008-01-09 | AstraZeneca AB | A host cell comprising a vector for production of proteins requiring gamma-carboxylation |
CN102690803B (en) * | 2011-03-24 | 2015-04-29 | 苏州泽璟生物制药有限公司 | High expression and production method of recombinant human thrombin in animal cell |
EP2556842A1 (en) | 2011-08-11 | 2013-02-13 | Bioftalmik, S.L. | Composition in the form of film comprising fibrinogen and a fibrinogen activator and the applications thereof |
CN107267492A (en) * | 2017-07-10 | 2017-10-20 | 中山大学 | A kind of expression of Halase recombinant protein |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052827A2 (en) | 1980-11-21 | 1982-06-02 | BEHRINGWERKE Aktiengesellschaft | Process for the preparation of blood coagulation factors, and preparation containing factors II and VII |
US4599308A (en) | 1981-10-06 | 1986-07-08 | Hamer Dean H | Protein from SV40 recombinants |
WO1988003926A1 (en) | 1986-11-17 | 1988-06-02 | New England Medical Center | Enhancing gamma-carboxylation of recombinant vitamin k-dependent proteins |
US4784950A (en) | 1985-04-17 | 1988-11-15 | Zymogenetics, Inc. | Expression of factor VII activity in mammalian cells |
WO1989012685A1 (en) | 1987-05-18 | 1989-12-28 | Integrated Genetics, Inc. | Improved protein c molecules and method for making and activating same |
WO1992001795A1 (en) | 1990-07-23 | 1992-02-06 | Zymogenetics, Inc. | Gamma-carboxylase and methods of use |
US5118614A (en) | 1988-01-18 | 1992-06-02 | Tessek Sdruzeni Praha | Concentrates of coagulation factors ii, vii, ix and x, method of their preparation and use |
US5122458A (en) | 1984-08-24 | 1992-06-16 | The Upjohn Company | Use of a bgh gdna polyadenylation signal in expression of non-bgh polypeptides in higher eukaryotic cells |
WO1992019636A1 (en) | 1991-05-08 | 1992-11-12 | The University Of North Carolina At Chapel Hill | Vitamin k-dependent carboxylase |
EP0607392A1 (en) | 1992-07-14 | 1994-07-27 | Alpha Therapeutic Corporation | Plasma fraction purification |
EP0700682A2 (en) | 1994-08-26 | 1996-03-13 | BEHRINGWERKE Aktiengesellschaft | Medicament containing prothrombin for antagonizing blood-anticoagulents |
WO1996034966A2 (en) | 1995-05-04 | 1996-11-07 | American Red Cross | Engineering protein posttranslational modification in transgenic organisms |
US5648254A (en) | 1988-01-15 | 1997-07-15 | Zymogenetics, Inc. | Co-expression in eukaryotic cells |
US5866122A (en) | 1996-03-20 | 1999-02-02 | Immuno Aktiengesellschaft | Pharmaceutical preparation for treating blood coagulation disorders |
WO1999033983A1 (en) | 1997-12-24 | 1999-07-08 | Immunex Corporation | V201 dna and polypeptides |
US5958893A (en) | 1994-03-23 | 1999-09-28 | The University Of Iowa Research Foundation | Genes and proteins for treating cystic fibrosis |
WO2001004146A2 (en) | 1999-07-09 | 2001-01-18 | Cohesion Technologies, Inc. | Ecarin polypeptides, polynucleotides encoding ecarin, and methods for use thereof |
WO2001007068A1 (en) | 1999-07-23 | 2001-02-01 | Case Western Reserve University | Novel methods and reagents for the treatment of osteoarthritis |
US6224864B1 (en) | 1986-12-03 | 2001-05-01 | Pharmacia & Upjohn Company | Antibiotic 10381A, and process for the preparation of anitbiotics 10381B |
US6342372B1 (en) | 1993-09-15 | 2002-01-29 | Chiron Corporation | Eukaryotic layered vector initiation systems for production of recombinant proteins |
WO2002029045A2 (en) | 2000-10-02 | 2002-04-11 | Novo Nordisk A/S | Method for the production of vitamin k-dependent proteins |
US20020106381A1 (en) | 2000-06-13 | 2002-08-08 | High Katherine A. | Methods for administering recombinant adeno-associated virus virions to humans previously exposed to adeno-associated virus |
EP1405912A1 (en) | 2001-07-06 | 2004-04-07 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Genetically modified ecarin and process for producing the same |
EP1405910A1 (en) | 2001-07-06 | 2004-04-07 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Process for producing human thrombin by gene modification technique |
EP1407780A1 (en) | 2001-07-10 | 2004-04-14 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Pharmaceutically stable hemostatic compositions |
WO2005030039A2 (en) | 2003-09-23 | 2005-04-07 | University Of North Carolina At Chapel Hill | Methods and compositions for the correlation of single nucleotide polymorphisms in the vitamin k epoxide reductase gene and warfarin dosage |
WO2005038019A1 (en) | 2003-10-14 | 2005-04-28 | Astrazeneca Ab | Method for producing gamma-carboxylated proteins |
WO2005040367A1 (en) | 2003-10-14 | 2005-05-06 | Baxter International Inc. | Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives |
WO2006067116A1 (en) | 2004-12-21 | 2006-06-29 | Novo Nordisk Health Care Ag | Expression of gamma-carboxylated polypeptides in gamma-carboxylation deficient host systems |
EP1676911A1 (en) | 2003-10-24 | 2006-07-05 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Novel recombinant animal cells with high protein production, method of constructing the same and method of mass protein production using the same |
WO2006110083A1 (en) | 2005-04-13 | 2006-10-19 | Astrazeneca Ab | A host cell comprising a vector for production of proteins requiring gamma-carboxylation |
WO2007065173A2 (en) | 2005-12-02 | 2007-06-07 | Wake Forest University Health Sciences | Compositions and methods for increasing production of recombinant gamma-carboxylated proteins |
US20080045453A1 (en) | 2005-12-21 | 2008-02-21 | Drohan William N | Method of producing biologically active vitamin K dependent proteins by recombinant methods |
US20090047273A1 (en) | 2007-07-06 | 2009-02-19 | Anna Harrysson | Method For Production of Recombinant Human Thrombin ['644] |
-
2008
- 2008-07-03 US US12/167,614 patent/US8206967B2/en not_active Expired - Fee Related
- 2008-07-04 CN CN200880023664.2A patent/CN101688195B/en not_active Expired - Fee Related
- 2008-07-04 EP EP08779414.5A patent/EP2179038B1/en not_active Not-in-force
- 2008-07-04 JP JP2010514702A patent/JP5661459B2/en not_active Expired - Fee Related
- 2008-07-04 AU AU2008275828A patent/AU2008275828B2/en not_active Ceased
- 2008-07-04 CA CA 2692656 patent/CA2692656A1/en not_active Abandoned
- 2008-07-04 WO PCT/SE2008/050836 patent/WO2009008821A1/en active Application Filing
- 2008-07-04 BR BRPI0813743-9A2A patent/BRPI0813743A2/en not_active IP Right Cessation
-
2012
- 2012-06-15 US US13/524,689 patent/US20120258090A1/en not_active Abandoned
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052827A2 (en) | 1980-11-21 | 1982-06-02 | BEHRINGWERKE Aktiengesellschaft | Process for the preparation of blood coagulation factors, and preparation containing factors II and VII |
US4404187A (en) | 1980-11-21 | 1983-09-13 | Behringwerke Aktiengesellschaft | Method for rendering factors II and VII hepatitis-safe with a chelating agent |
US4599308A (en) | 1981-10-06 | 1986-07-08 | Hamer Dean H | Protein from SV40 recombinants |
US5122458A (en) | 1984-08-24 | 1992-06-16 | The Upjohn Company | Use of a bgh gdna polyadenylation signal in expression of non-bgh polypeptides in higher eukaryotic cells |
US4784950A (en) | 1985-04-17 | 1988-11-15 | Zymogenetics, Inc. | Expression of factor VII activity in mammalian cells |
WO1988003926A1 (en) | 1986-11-17 | 1988-06-02 | New England Medical Center | Enhancing gamma-carboxylation of recombinant vitamin k-dependent proteins |
US6224864B1 (en) | 1986-12-03 | 2001-05-01 | Pharmacia & Upjohn Company | Antibiotic 10381A, and process for the preparation of anitbiotics 10381B |
WO1989012685A1 (en) | 1987-05-18 | 1989-12-28 | Integrated Genetics, Inc. | Improved protein c molecules and method for making and activating same |
US5648254A (en) | 1988-01-15 | 1997-07-15 | Zymogenetics, Inc. | Co-expression in eukaryotic cells |
US5118614A (en) | 1988-01-18 | 1992-06-02 | Tessek Sdruzeni Praha | Concentrates of coagulation factors ii, vii, ix and x, method of their preparation and use |
WO1992001795A1 (en) | 1990-07-23 | 1992-02-06 | Zymogenetics, Inc. | Gamma-carboxylase and methods of use |
US5965789A (en) | 1991-01-11 | 1999-10-12 | American Red Cross | Engineering protein posttranslational modification by PACE/furin in transgenic non-human mammals |
WO1992019636A1 (en) | 1991-05-08 | 1992-11-12 | The University Of North Carolina At Chapel Hill | Vitamin k-dependent carboxylase |
EP0607392A1 (en) | 1992-07-14 | 1994-07-27 | Alpha Therapeutic Corporation | Plasma fraction purification |
US6342372B1 (en) | 1993-09-15 | 2002-01-29 | Chiron Corporation | Eukaryotic layered vector initiation systems for production of recombinant proteins |
US5958893A (en) | 1994-03-23 | 1999-09-28 | The University Of Iowa Research Foundation | Genes and proteins for treating cystic fibrosis |
EP0700682A2 (en) | 1994-08-26 | 1996-03-13 | BEHRINGWERKE Aktiengesellschaft | Medicament containing prothrombin for antagonizing blood-anticoagulents |
WO1996034966A2 (en) | 1995-05-04 | 1996-11-07 | American Red Cross | Engineering protein posttranslational modification in transgenic organisms |
US6039945A (en) | 1996-03-20 | 2000-03-21 | Baxter Aktiengesellschaft | Pharmaceutical preparation for treating blood coagulation disorders |
US6165974A (en) | 1996-03-20 | 2000-12-26 | Baxter Aktiengesellschaft | Pharmaceutical preparation for treating blood coagulation disorders |
US6224862B1 (en) | 1996-03-20 | 2001-05-01 | Baxter Aktiengesellschaft | Pharmaceutical preparation for treating blood coagulation disorders |
US5866122A (en) | 1996-03-20 | 1999-02-02 | Immuno Aktiengesellschaft | Pharmaceutical preparation for treating blood coagulation disorders |
WO1999033983A1 (en) | 1997-12-24 | 1999-07-08 | Immunex Corporation | V201 dna and polypeptides |
WO2001004146A2 (en) | 1999-07-09 | 2001-01-18 | Cohesion Technologies, Inc. | Ecarin polypeptides, polynucleotides encoding ecarin, and methods for use thereof |
US6413737B1 (en) * | 1999-07-09 | 2002-07-02 | Cohesion Technologies, Inc. | Ecarin prothrombin protease and methods |
WO2001007068A1 (en) | 1999-07-23 | 2001-02-01 | Case Western Reserve University | Novel methods and reagents for the treatment of osteoarthritis |
US20020106381A1 (en) | 2000-06-13 | 2002-08-08 | High Katherine A. | Methods for administering recombinant adeno-associated virus virions to humans previously exposed to adeno-associated virus |
WO2002029045A2 (en) | 2000-10-02 | 2002-04-11 | Novo Nordisk A/S | Method for the production of vitamin k-dependent proteins |
WO2002029083A2 (en) | 2000-10-02 | 2002-04-11 | Novo Nordisk A/S | Industrial-scale serum-free production of recombinant proteins in mammalian cells |
US20040197858A1 (en) * | 2001-07-06 | 2004-10-07 | Hiroshi Yonemura | Process for producing human thrombin by gene modification technique |
EP1405912A1 (en) | 2001-07-06 | 2004-04-07 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Genetically modified ecarin and process for producing the same |
EP1405910A1 (en) | 2001-07-06 | 2004-04-07 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Process for producing human thrombin by gene modification technique |
EP1407780A1 (en) | 2001-07-10 | 2004-04-14 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Pharmaceutically stable hemostatic compositions |
US7482141B2 (en) | 2003-09-23 | 2009-01-27 | University Of North Carolina At Chapel Hill | Methods and compositions for vitamin K epoxide reductase |
WO2005030039A2 (en) | 2003-09-23 | 2005-04-07 | University Of North Carolina At Chapel Hill | Methods and compositions for the correlation of single nucleotide polymorphisms in the vitamin k epoxide reductase gene and warfarin dosage |
WO2005038019A1 (en) | 2003-10-14 | 2005-04-28 | Astrazeneca Ab | Method for producing gamma-carboxylated proteins |
WO2005040367A1 (en) | 2003-10-14 | 2005-05-06 | Baxter International Inc. | Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives |
US20050164367A1 (en) * | 2003-10-14 | 2005-07-28 | Astrazeneca Ab | Protein |
US20110092429A1 (en) | 2003-10-14 | 2011-04-21 | Christel Fenge | Compositions and methods for producing gamma-carboxylated proteins |
US7842477B2 (en) | 2003-10-14 | 2010-11-30 | Astrazeneca Ab | Methods for producing gamma-carboxylated proteins |
EP1676911A1 (en) | 2003-10-24 | 2006-07-05 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Novel recombinant animal cells with high protein production, method of constructing the same and method of mass protein production using the same |
WO2006067116A1 (en) | 2004-12-21 | 2006-06-29 | Novo Nordisk Health Care Ag | Expression of gamma-carboxylated polypeptides in gamma-carboxylation deficient host systems |
US20080312127A1 (en) | 2005-04-13 | 2008-12-18 | Ann Lovgren | Host Cell Comprising a Vector for Production of Proteins Requiring Gamma-Carboxylation |
WO2006110083A1 (en) | 2005-04-13 | 2006-10-19 | Astrazeneca Ab | A host cell comprising a vector for production of proteins requiring gamma-carboxylation |
US7989193B2 (en) | 2005-04-13 | 2011-08-02 | Medimmune Limited | Compositions and methods for producing gamma-carboxylated proteins |
WO2007065173A2 (en) | 2005-12-02 | 2007-06-07 | Wake Forest University Health Sciences | Compositions and methods for increasing production of recombinant gamma-carboxylated proteins |
US20080045453A1 (en) | 2005-12-21 | 2008-02-21 | Drohan William N | Method of producing biologically active vitamin K dependent proteins by recombinant methods |
US20090047273A1 (en) | 2007-07-06 | 2009-02-19 | Anna Harrysson | Method For Production of Recombinant Human Thrombin ['644] |
Non-Patent Citations (118)
Title |
---|
Amino acid sequence for wild type ecarin (EBI accession No. Q90495), last modified Jan. 19, 2010, 5 pages. |
Bajaj et al. "A Simplified Procedure for Purification of Human Prothrombin, Factor IX and Factor X" Prep. Biochem. 1981 (11) 397-412. |
Bajaj et al. "Isolation and Characterization of Human Factor VII. Activation of Factor VII by Factor X" J. Biotechnol. 1981 (256) 253-259. |
Bandyopadhyay et al. "gamma-Glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, anthropods, and chordates" Proc. Natl. Acad. Sci. 2002 (99) 1264-1269. |
Bandyopadhyay et al. "γ-Glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, anthropods, and chordates" Proc. Natl. Acad. Sci. 2002 (99) 1264-1269. |
Begley et al. "A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla" J. Biol. Chem. 2000 (275) 36245-36249. |
Bentley et al. "Differential Efficiency of Expression of Humanized Antibodies in Transient Transfected Mammalian Cells" Hybridoma. 1998 (17) 559-567. |
Bishop et al. "Comparison of Recombinant Human Thrombin and Plasma-Derived Human alpha-Thrombin" Sem Throm Hem. 2006 (32) 86-97. |
Bishop et al. "Comparison of Recombinant Human Thrombin and Plasma-Derived Human α-Thrombin" Sem Throm Hem. 2006 (32) 86-97. |
Broun et al., Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science, 1998, vol. 282: 1315-1317. * |
Camire et al. "Enhanced gamma-Carboxylation of Recombinant Factor X Using a Chimeric Construct Containing the Prothrombin Propeptide" Biochemistry. 2000 (39) 14322-14329. |
Camire et al. "Enhanced γ-Carboxylation of Recombinant Factor X Using a Chimeric Construct Containing the Prothrombin Propeptide" Biochemistry. 2000 (39) 14322-14329. |
Clark et al. "The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment" Genome Res. 2003 (13) 2265-2270. |
Cote et al. "Characterization of a stable form of human meizothrombin derived from recombinant prothrombin (R155A, R271A, and R284A)," J. Biol. Chem. 1994 (269) 11374-11380. |
Czerwiec et al. "Expression and characterization of recombinant vitamin K-dependent gamma-glutamyl carboxylase from an invertebrate, Conus textile" Eur. J. Biochem. 2002 (269) 6162-6172. |
Czerwiec et al. "Expression and characterization of recombinant vitamin K-dependent γ-glutamyl carboxylase from an invertebrate, Conus textile" Eur. J. Biochem. 2002 (269) 6162-6172. |
Fair et al. "Biosynthesis and Secretion of Factor VII, Protein C, Protein S, and the Protein C Inhibitor From a Human Hepatoma Cell Line" Blood. 1986 (67) 64-70. |
Falkner et al. "High Level Expression of Active Human Prothrombin in a Vaccine Virus Expression System" Thrombosis and Haemostasis. 1992 (68) 119-124. |
Fischer et al. "Purification of recombinant human coagulation factors II and IX and protein S expressed in recombinant Vaccinia virus-infected Vero cells" Journal of Biotechnology. 1995 (38) 129-136. |
Fish & Richardson P.C., Amendment in Reply to Action dated Apr. 19, 2007 in U.S. Appl. No. 10/964,888, filed Oct. 18, 2007, 26 pages. |
Fish & Richardson P.C., Amendment in Reply to Action dated Apr. 3, 2009 in U.S. Appl. No. 10/964,888, filed Jun. 17, 2009, 15 pages. |
Fish & Richardson P.C., Amendment in Reply to Action dated Aug. 21, 2009 in U.S. Appl. No. 10/964,888, filed Nov. 10, 2009, 17 pages. |
Fish & Richardson P.C., Amendment in Reply to Action dated Jan. 28, 2008 in U.S. Appl. No. 10/964,888, filed Apr. 28, 2008, 22 pages. |
Fish & Richardson P.C., Amendment in Reply to Action of Jan. 26, 2010 in U.S. Appl. No. 11/572,870, filed May 26, 2010, 21 pages. |
Fish & Richardson P.C., Amendment in Reply to Non-Final Action of Jan. 27, 2010 in U.S. Appl. No. 10/964,888, filed Apr. 14, 2010, 15 pages. |
Fish & Richardson P.C., Amendment in Reply to Restriction Requirement dated Aug. 9, 2006 in U.S. Appl. No. 10/964,888, filed Feb. 6, 2007, 11 pages. |
Fish & Richardson P.C., RCE and Amendment in Reply to Action of Aug. 6, 2010 in U.S. Appl. No. 11/572,870, filed Feb. 7, 2011, 16 pages. |
Fish & Richardson P.C., Response to Notice of Allowance of Jul. 20, 2010 in U.S. Appl. No. 10/964,888, filed Oct. 20, 2010, 3 pages. |
Fish & Richardson P.C., Response to Restriction Requirement and Preliminary Amendment dated Apr. 2, 2009 in U.S. Appl. No. 11/572,870, filed Sep. 25, 2009, 16 pages. |
Gamma Glutamyl Carboxylase. UniPro Database. [online], [retrieved on Jan. 14, 2010] Retrieved from the UniPro Database using Internet . |
Gamma Glutamyl Carboxylase. UniPro Database. [online], [retrieved on Jan. 14, 2010] Retrieved from the UniPro Database using Internet <URL: http://www.uniprot.org/uniprot/?query=gamma+glutamyl+carboxylase&sort=score>. |
Gustafsson et al., Codon bias and heterologous protein expression. TRENDS in Biotechnol., 2004, vol. 22(7): 346-353. * |
Hallgren et al. "Carboxylase overexpression effects full carboxylation but poor release and secretion of a factor IX: implications for the release of vitamin K-dependent proteins" Biochemistry. 2002 (41) 15045-15055. |
Harvey et al. "Mutagenesis of the gamma-carboxyglutamic acid domain of human factor VII to generate maximum enhancement of the membrane contact site" J. Biol. Chem. 2003 (278) 8363-8369. |
Harvey et al. "Mutagenesis of the γ-carboxyglutamic acid domain of human factor VII to generate maximum enhancement of the membrane contact site" J. Biol. Chem. 2003 (278) 8363-8369. |
Hellstern "Production and Composition of Prothrombin Complex Concentrates: Correlation between Composition and Therapeutic Efficiency" Thrombosis Research. 1999 (95) S7-S12. |
Hellstern et al. "Prothrombin Complex Concentrates: Indications, Contraindications, and Risks: A Task Force Summary" Thrombosis Research. 1999 (95) S3-S6. |
Hellstern et al. Preface Thrombosis Research. 1999 (95) S1. |
Herlitschka et al. "Overexpression of human prothrombin in permanent cell lines using a dominant selection/amplification fusion marker" Protein Expression and Purification. 1996 (8) 358-364. |
Himmelspach et al. "A Fully Recombinant Partial Prothrombin Complex Effectively Bypasses fVII In Vitro and In Vivo" Thromb Haemost. 2002 (88) 1003-1011. |
Jorgensen et al. "Expression of completely gamma-carboxylated recombinant human prothrombin" J. Biol. Chem. 1987 (262):6729-6734. |
Jorgensen et al. "Expression of completely γ-carboxylated recombinant human prothrombin" J. Biol. Chem. 1987 (262):6729-6734. |
Kaufman et al. "Expression, Purification, and Characterization of Recombinant gamma-Carboxylated Factor IX Synthesized in Chinese Hamster Ovary Cells" J. Biol. Chem. 1986 (261) 9622-9628. |
Kaufman et al. "Expression, Purification, and Characterization of Recombinant γ-Carboxylated Factor IX Synthesized in Chinese Hamster Ovary Cells" J. Biol. Chem. 1986 (261) 9622-9628. |
Kini et al. "The intriguing world of prothrombin activators from snake venom" Toxicon. 2005 (45) 1133-1145. |
Köhler "Thrombogenicity of Prothrombin Complex Concentrates" Thrombosis Research. 1999 (95) S13-S17. |
Koresawa et al., Synthesis of a new cre recombinase gene based on optimal codon usage for mammalian systems. J. Biochem., 2000, vol. 127: 367-372. * |
Kozak "An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs" Nucleic Acids Research. 1987 (15) 8125-8148. |
Kozak "An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs" Nucleic Acids Research. 1987 (15) 8125-8148. |
Kozak "Downstream Secondary Structure Facilitates Recognition of Intiator Codons by Eukaryotic Ribosomes" Proceedings of the National Academy of Sciences of the United States of America. 1990 (87) 8301-8305. |
Kozak "Point Mutations Define a Sequence Flanking the AUG Initiator Codon That Modulates Translation by Eukaryotic Ribosomes" Cell. 1986 (44) 283-292. |
Li et al. "Identification of the gene for vitamin K epoxide reductase" Nature. 2004 (427) 541-544. |
Lingenfelter et al. "Isolation of the Human gamma-Carboxylase and a gamma-Carboxylase-Associated Protein from Factor IX-Expressing Mammalian Cells" Biochemistry. 1996 (35) 8234-8243. |
Lingenfelter et al. "Isolation of the Human γ-Carboxylase and a γ-Carboxylase-Associated Protein from Factor IX-Expressing Mammalian Cells" Biochemistry. 1996 (35) 8234-8243. |
Lucas et al. "High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector" Nucleic Acids Research. 1996 (24) 1774-1779. |
Malhotra et al. "The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins," J. Biol. Chem. 1985 (260) 279-287. |
Malhotra et al. "The kinetics of activation of normal and γ-carboxyglutamic acid-deficient prothrombins," J. Biol. Chem. 1985 (260) 279-287. |
McCawley et al., Matrix metalloproteinases: they're not just for matrix anymore!. Curr. Opinion Cell Biol., 2001, vol. 13: 534-540. * |
Melcher et al. "Plasmid vectors with a 5′-hybrid intron facilitate high-level glycoprotein expression in CHO-cells" Biochimica et Biophysica Acta. 2002 (1575) 49-53. |
Melcher et al. "Plasmid vectors with a 5'-hybrid intron facilitate high-level glycoprotein expression in CHO-cells" Biochimica et Biophysica Acta. 2002 (1575) 49-53. |
Munns et al. "Vitamin K-dependent synthesis and modification of precursor prothrombin in cultured H-35 hepatoma cells" Proc. Natl. Acad. Sci. 1976 (73) 2803-2807. |
Newby AC., Matrix matalloproteinases regulate migration, proliferation, and death . . . Cardiovascular Res., 2006, vol. 69: 614-624. * |
Nishida et al., "cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom," Biochem., 34:1771-1778 (1995). |
Nucleotide sequence of human prothrombin (EBI accession No. AJ972449), last modified Oct. 21, 2008, 8 pages. |
PCT Written Opinion for Application No. PCT/SE2008/050836, dated Jan. 21, 2010, 10 pages. |
Pei et al., "Expression, isolation, and characterization of an active site (serine 528-alanine) mutant of recombinant bovine prothrombin," J. Biol. Chem., 266:9598-9604 (1991). |
Pejler et al. "Thrombin Is Inactivated by Mast Cell Secretory Granule Chymase" J. Biol. Chem. 1993 (268) 11817-11822. |
Rehemtulla et al. "In vitro and in vivo functional characterization of bovine vitamin K-dependent gamma-carboxylase expressed in Chinese hamster ovary cells" Proc. Natl. Acad. Sci. 1993 (90) 4611-4615. |
Rehemtulla et al. "In vitro and in vivo functional characterization of bovine vitamin K-dependent γ-carboxylase expressed in Chinese hamster ovary cells" Proc. Natl. Acad. Sci. 1993 (90) 4611-4615. |
Robertson "Genes Encoding Vitamin-K Epoxide Reductase Are Present in Drosophila and Trypanosomatid Protists" Genetics. 2004 (168) 1077-1080. |
Roddie at al. "Haemostasis and thrombosis: Recombinant coagulation factors" Blood Reviews. 1997 (11) 169-177. |
Rost et al. "Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2" Nature. 2004 (427) 537-541. |
Rouet et al. "A Potent Enhancer Made of Clustered Liver-specified Elements in the Transcription Control Sequences of Human alpha1-Microglobulin/Bikunin Gene" The Journal of Biological Chemistry. 1992 (267) 20765-20773. |
Rouet et al. "A Potent Enhancer Made of Clustered Liver-specified Elements in the Transcription Control Sequences of Human α1-Microglobulin/Bikunin Gene" The Journal of Biological Chemistry. 1992 (267) 20765-20773. |
Russo et al. "Biologically active recombinant prothrombin and antithrombin III expressed in a human hepatoma/vaccinia virus system" Biotechnology and Applied Biochemistry. 1991 (14) 222-223. |
Russo et al. "Stable expression and purification of a secreted human recombinant prethrombin-2 and its activation to thrombin" Protein Expression and Purification. 1997 (10) 214-225. |
Sadler "K is for koagulation" Nature. 2004 (427) 493-494. |
Scharrer "The Need for Highly Purified Products to Treat Hemophilia B" Acta Haematol. 1995 (94) 2-7. |
Scharrer et al. "Products used to treat hemophilia: evolution of treatment for hemophilia A and B" in: Lee et al. eds., Textbook of Hemophilia (New York, Blackwell, 2005), Ch. 23, pp. 131-135. |
Seffernick et al., Melamine deaminase and Atrazine chlorohydrolase: 98 percent identical but functionally different. J. Bacteriol.,2001, vol. 183 (8): 2405-2410. * |
Slimko et al. "Codon optimization of Caenorhabditis elegans GluC1 ion channel genes for mammalian cells dramatically improves expression levels" J. Neuroscience Methods. 2003 (124) 75-81. |
Stanley et al. "The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase" J. Biol. Chem. 1999 (274) 16940-16944. |
Strausberg et al. "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences" PNAS. 2002 (99) 16899-16903. |
Sun et al. "Vitamin K epoxide reductase significantly improves carboxylation in a cell line overexpressing factor X" Blood. 2005 (106) 3811-3815. |
Tans et al. "Prothrombin Activation by Snake Venom Proteases" J. Toxicol.-Toxin Reviews. 1993 (12) 155-173. |
Umaña et al. "Tetracycline-Regulated Overexpression of Glycosyltransferases in Chinese Hamster Ovary Cells" Biotechnology and Bioengineering. 1999 (65) 542-549. |
USPTO Final Office Action in U.S. Appl. No. 10/964,888, mailed Apr. 3, 2009, 6 pages. |
USPTO Final Office Action in U.S. Appl. No. 11/572,870, mailed Aug. 6, 2010, 18 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 10/964,888, mailed Apr. 19, 2007, 17 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 10/964,888, mailed Aug. 21, 2009, 5 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 10/964,888, mailed Jan. 27, 2010, 9 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 10/964,888, mailed Jan. 28, 2008, 29 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 11/572,870, mailed Jan. 26, 2010, 18 pages. |
USPTO Non-Final Office Action in U.S. Appl. No. 13/167,134, mailed Feb. 3, 2012, 16 pages. |
USPTO Notice of Allowance in U.S. Appl. No. 10/964,888, mailed Jul. 20, 2010, 6 pages. |
USPTO Notice of Allowance in U.S. Appl. No. 11/572,870, mailed Mar. 24, 2011, 8 pages. |
USPTO Restriction Requirement in U.S. Appl. No. 10/964,888, mailed Aug. 9, 2006, 10 pages. |
USPTO Restriction Requirement in U.S. Appl. No. 11/572,870, mailed Apr. 2, 2009, 5 pages. |
Vo et al. "Undercarboxylation of recombinant prothrombin revealed by analysis of gamma-carboxyglutamic acid using capillary electrophoresis and laser-induced fluorescence" Febs Letters. 1999 (445) 256-260. |
Vo et al. "Undercarboxylation of recombinant prothrombin revealed by analysis of γ-carboxyglutamic acid using capillary electrophoresis and laser-induced fluorescence" Febs Letters. 1999 (445) 256-260. |
Wajih et al. "Engineering of a Recombinant Vitamin K-dependent gamma-Carboxylation System with Enhanced gamma-Carboxyglutamic Acid Forming Capacity" J. Biol. Chem. 2005 (280) 10540-10547. |
Wajih et al. "Engineering of a Recombinant Vitamin K-dependent γ-Carboxylation System with Enhanced γ-Carboxyglutamic Acid Forming Capacity" J. Biol. Chem. 2005 (280) 10540-10547. |
Wajih et al. "Increased Production of Functional Recombinant Human Clotting Factor IX by Baby Hamster Kidney Cells Engineered to Overexpress VKORC1, the Vitamin K 2,3-Expoxide-reducing Enzyme of the Vitamin K Cycle" J. Biol. Chem. 2005 (280) 31603-31607. |
Wajih et al. "The Inhibitory Effect of Calumenin on the Vitamin K-dependent gamma-Carboxylation System" J. Biol. Chem. 2004 (279) 25276-25283. |
Wajih et al. "The Inhibitory Effect of Calumenin on the Vitamin K-dependent γ-Carboxylation System" J. Biol. Chem. 2004 (279) 25276-25283. |
Walker at al., "On a potential global role for vitamin K-dependent gamma-carboxylation in animal systems" J. Biol. Chem. 2001 (276) 7769-7774. |
Walker at al., "On a potential global role for vitamin K-dependent γ-carboxylation in animal systems" J. Biol. Chem. 2001 (276) 7769-7774. |
Wallin et al. "Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system" Thrombosis Research. 2003 (108) 221-226. |
Wallin et al. "Vitamin K 2,3-epoxide reductase and the vitamin K-dependent γ-carboxylation system" Thrombosis Research. 2003 (108) 221-226. |
Wallin et al. "Vitamin K-dependent Carboxylation and Vitamin K Metabolism in Liver" J. Clin. Invest. 1985 (76) 1879-1884. |
Wang et al. "The Growth Inhibitory Effects of Vitamins K and Their Actions on Gene Expression" Hepatology. 1995 (22) 876-882. |
Whisstock et al., Prediction of protein function from protein sequence. Q. Rev. Biophysics., 2003, vol. 36 (3): 307-340. * |
Witkowski et al., Conversion of b-ketoacyl synthase to a Malonyl Decarboxylase by replacement of the active cysteine with glutamine. Biochemistry, 1999, vol. 38: 11643-11650. * |
Wu et al. "Cloning and expression of the cDNA for human gamma-glutamyl carboxylase" Science. 1991 (254) 1634-1636. |
Wu et al. "Cloning and expression of the cDNA for human γ-glutamyl carboxylase" Science. 1991 (254) 1634-1636. |
Wu et al. "N-Glycosylation contributes to the intracellular stability of prothrombin precursors in the endoplasmic reticulum" Thrombosis Research. 1999 (96) 91-98. |
Yonemura et al., "Preparation of recombinant alpha-thrombin:high-level expression of recombinant human prethrombin-2 and its activation by recombinant ecarin," J. Biochem., 135:577-582 (2004). |
Zhang et al. "Relative Promoter Strengths in Four Human Prostate Cancer Cell Lines Evaluated by Particle Bombardment-Mediated Gene Transfer" The Prostate. 2002 (51) 286-292. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110092429A1 (en) * | 2003-10-14 | 2011-04-21 | Christel Fenge | Compositions and methods for producing gamma-carboxylated proteins |
US8697440B2 (en) | 2003-10-14 | 2014-04-15 | Medimmune Limited | Compositions and methods for producing gamma-carboxylated proteins |
USRE46830E1 (en) | 2004-10-19 | 2018-05-08 | Polypeptide Laboratories Holding (Ppl) Ab | Method for solid phase peptide synthesis |
US20120258090A1 (en) * | 2007-07-06 | 2012-10-11 | Medimmune Limited | Method for production of recombinant human thrombin |
WO2020229521A1 (en) | 2019-05-14 | 2020-11-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for inhibiting or reducing bacterial biofilms on a surface |
Also Published As
Publication number | Publication date |
---|---|
WO2009008821A1 (en) | 2009-01-15 |
CN101688195A (en) | 2010-03-31 |
AU2008275828B2 (en) | 2012-09-27 |
JP2010532661A (en) | 2010-10-14 |
CN101688195B (en) | 2014-12-03 |
US20090047273A1 (en) | 2009-02-19 |
US20120258090A1 (en) | 2012-10-11 |
EP2179038B1 (en) | 2014-04-02 |
JP5661459B2 (en) | 2015-01-28 |
CA2692656A1 (en) | 2009-01-15 |
AU2008275828A1 (en) | 2009-01-15 |
BRPI0813743A2 (en) | 2014-10-07 |
EP2179038A4 (en) | 2012-01-18 |
EP2179038A1 (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120258090A1 (en) | Method for production of recombinant human thrombin | |
US8304224B2 (en) | Compositions and methods relating to proteins requiring gamma-carboxylation | |
US8697440B2 (en) | Compositions and methods for producing gamma-carboxylated proteins | |
NO311299B1 (en) | Protein C derivatives, recombinant DNA molecule, encoding this as well as process for producing the proteins | |
CZ303199A3 (en) | Deletion mutants of factor X and their analogs | |
AU6280700A (en) | Factor x analog with an improved ability to be activated | |
Lee et al. | Proteolytic processing of human protein C in swine mammary gland | |
AU2012258329A1 (en) | Method for production of recombinant human thrombin '644 | |
Macgillivray et al. | 6 Molecular biology of factor X | |
KR20090116669A (en) | Mutant nucleotide sequence of batroxobin, α-factor secretion signal sequence variant, method for producing recombinant protein using same, and method for producing batroxobin using the same | |
AU2008202374A1 (en) | Genetically modified ecarin and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASTRAZENECA AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRYSSON, ANNA;LOVGREN, ANN;REEL/FRAME:021583/0696 Effective date: 20080811 |
|
AS | Assignment |
Owner name: MEDIMMUNE LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTRAZENECA AB;REEL/FRAME:025790/0990 Effective date: 20110208 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160626 |