US8258347B2 - Cyclopropenones and the photochemical generation of cyclic alkynes therefrom - Google Patents
Cyclopropenones and the photochemical generation of cyclic alkynes therefrom Download PDFInfo
- Publication number
- US8258347B2 US8258347B2 US12/708,617 US70861710A US8258347B2 US 8258347 B2 US8258347 B2 US 8258347B2 US 70861710 A US70861710 A US 70861710A US 8258347 B2 US8258347 B2 US 8258347B2
- Authority
- US
- United States
- Prior art keywords
- group
- alkyne
- azide
- cyclic
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- -1 cyclic alkynes Chemical class 0.000 title claims abstract description 146
- GGRQLKPIJPFWEZ-UHFFFAOYSA-N cycloprop-2-en-1-one Chemical class O=C1C=C1 GGRQLKPIJPFWEZ-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 238000006243 chemical reaction Methods 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 112
- 150000001875 compounds Chemical class 0.000 claims description 80
- 150000001540 azides Chemical class 0.000 claims description 78
- 125000003118 aryl group Chemical group 0.000 claims description 61
- 125000000217 alkyl group Chemical group 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 36
- 238000006352 cycloaddition reaction Methods 0.000 claims description 35
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 34
- 125000003545 alkoxy group Chemical group 0.000 claims description 33
- 125000001424 substituent group Chemical group 0.000 claims description 32
- 125000001072 heteroaryl group Chemical group 0.000 claims description 28
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 26
- 150000003852 triazoles Chemical class 0.000 claims description 26
- 229910052736 halogen Inorganic materials 0.000 claims description 24
- 125000005647 linker group Chemical group 0.000 claims description 24
- 150000002367 halogens Chemical group 0.000 claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 22
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 20
- ZUHQCDZJPTXVCU-UHFFFAOYSA-N C1#CCCC2=CC=CC=C2C2=CC=CC=C21 Chemical compound C1#CCCC2=CC=CC=C2C2=CC=CC=C21 ZUHQCDZJPTXVCU-UHFFFAOYSA-N 0.000 claims description 19
- ZPWOOKQUDFIEIX-UHFFFAOYSA-N cyclooctyne Chemical compound C1CCCC#CCC1 ZPWOOKQUDFIEIX-UHFFFAOYSA-N 0.000 claims description 19
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 17
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 16
- 150000001345 alkine derivatives Chemical class 0.000 claims description 15
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 15
- 125000004122 cyclic group Chemical group 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 125000000962 organic group Chemical group 0.000 claims description 14
- 150000002148 esters Chemical class 0.000 claims description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 125000003282 alkyl amino group Chemical group 0.000 claims description 10
- UDLLFLQFQMACJB-UHFFFAOYSA-N azidomethylbenzene Chemical compound [N-]=[N+]=NCC1=CC=CC=C1 UDLLFLQFQMACJB-UHFFFAOYSA-N 0.000 claims description 10
- 125000002252 acyl group Chemical group 0.000 claims description 9
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims description 9
- 230000001939 inductive effect Effects 0.000 claims description 9
- 239000003446 ligand Substances 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical group [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical group [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 8
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 150000001336 alkenes Chemical class 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- RZCHKVAAHJLNTA-UHFFFAOYSA-N 1-butoxy-3-[2-(3-butoxyphenyl)ethyl]benzene Chemical group CCCCOC1=CC=CC(CCC=2C=C(OCCCC)C=CC=2)=C1 RZCHKVAAHJLNTA-UHFFFAOYSA-N 0.000 claims description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 6
- 125000005257 alkyl acyl group Chemical group 0.000 claims description 5
- 125000005251 aryl acyl group Chemical group 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- 238000005698 Diels-Alder reaction Methods 0.000 claims description 4
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 4
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 4
- 210000000170 cell membrane Anatomy 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 4
- 239000012895 dilution Substances 0.000 claims description 4
- 150000002391 heterocyclic compounds Chemical group 0.000 claims description 4
- 150000002825 nitriles Chemical class 0.000 claims description 4
- PTXVSDKCUJCCLC-UHFFFAOYSA-N 1-hydroxyindole Chemical group C1=CC=C2N(O)C=CC2=C1 PTXVSDKCUJCCLC-UHFFFAOYSA-N 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 238000006952 Enyne metathesis reaction Methods 0.000 claims description 3
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 3
- 125000004414 alkyl thio group Chemical group 0.000 claims description 3
- 238000007302 alkyne metathesis reaction Methods 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 150000001993 dienes Chemical class 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000005298 iminyl group Chemical group 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 claims description 3
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 claims description 2
- 125000005125 aryl alkyl amino carbonyl group Chemical group 0.000 claims description 2
- 125000001691 aryl alkyl amino group Chemical group 0.000 claims description 2
- 125000005100 aryl amino carbonyl group Chemical group 0.000 claims description 2
- 125000001769 aryl amino group Chemical group 0.000 claims description 2
- 125000005418 aryl aryl group Chemical group 0.000 claims description 2
- 125000005129 aryl carbonyl group Chemical group 0.000 claims description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 claims description 2
- 125000005110 aryl thio group Chemical group 0.000 claims description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 125000004473 dialkylaminocarbonyl group Chemical group 0.000 claims description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 2
- 125000004663 dialkyl amino group Chemical group 0.000 claims 1
- 125000004986 diarylamino group Chemical group 0.000 claims 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims 1
- 125000001425 triazolyl group Chemical group 0.000 claims 1
- 238000002372 labelling Methods 0.000 abstract description 33
- 238000011065 in-situ storage Methods 0.000 abstract description 22
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 abstract description 12
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 abstract description 5
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 abstract description 4
- 150000002772 monosaccharides Chemical class 0.000 abstract description 2
- 238000000059 patterning Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 93
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 66
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 44
- 239000000243 solution Substances 0.000 description 38
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 27
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 20
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 20
- 0 [4*]C1([4*])C/C(C)=C(C)\C2=C(C2=O)/C(C)=C\1C.[Ar].[Ar] Chemical compound [4*]C1([4*])C/C(C)=C(C)\C2=C(C2=O)/C(C)=C\1C.[Ar].[Ar] 0.000 description 19
- 230000004913 activation Effects 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 150000002431 hydrogen Chemical group 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 125000002950 monocyclic group Chemical group 0.000 description 12
- 125000003367 polycyclic group Chemical group 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- 238000004587 chromatography analysis Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- HGMISDAXLUIXKM-LIADDWGISA-N [(2r,3s,4r,5s)-3,4,6-triacetyloxy-5-[(2-azidoacetyl)amino]oxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1OC(OC(C)=O)[C@@H](NC(=O)CN=[N+]=[N-])[C@@H](OC(C)=O)[C@@H]1OC(C)=O HGMISDAXLUIXKM-LIADDWGISA-N 0.000 description 10
- 150000002430 hydrocarbons Chemical group 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 239000002243 precursor Substances 0.000 description 10
- TZYWCYJVHRLUCT-VABKMULXSA-N N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal Chemical compound CC(C)C[C@@H](C=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)OCC1=CC=CC=C1 TZYWCYJVHRLUCT-VABKMULXSA-N 0.000 description 9
- 239000013592 cell lysate Substances 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 125000002355 alkine group Chemical group 0.000 description 8
- 238000012650 click reaction Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 8
- 150000001408 amides Chemical class 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 150000001720 carbohydrates Chemical group 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 125000004433 nitrogen atom Chemical group N* 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 108090000623 proteins and genes Chemical group 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- VEKJQXKBHZVGBK-UHFFFAOYSA-N 5,6-didehydro-11,12-dihydrodibenzo[2,1-a:1',2'-f][8]annulen-12-ol Chemical class OC1CC2=CC=CC=C2C#CC2=CC=CC=C12 VEKJQXKBHZVGBK-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 229960002685 biotin Drugs 0.000 description 6
- 235000020958 biotin Nutrition 0.000 description 6
- 239000011616 biotin Substances 0.000 description 6
- 235000019439 ethyl acetate Nutrition 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000006606 decarbonylation reaction Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- CTRLRINCMYICJO-UHFFFAOYSA-N phenyl azide Chemical compound [N-]=[N+]=NC1=CC=CC=C1 CTRLRINCMYICJO-UHFFFAOYSA-N 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- GCMGCUOONLVCAK-BQFCYCMXSA-N tert-butyl n-[2-[2-[2-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]ethoxy]ethoxy]ethyl]carbamate Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCOCCOCCNC(=O)OC(C)(C)C)SC[C@@H]21 GCMGCUOONLVCAK-BQFCYCMXSA-N 0.000 description 5
- XXXFZKQPYACQLD-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl acetate Chemical compound CC(=O)OCCOCCO XXXFZKQPYACQLD-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000012103 Alexa Fluor 488 Substances 0.000 description 4
- JUXIFNKLZHMFGE-UHFFFAOYSA-N CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(C)C=C1)CC2 Chemical compound CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(C)C=C1)CC2 JUXIFNKLZHMFGE-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000006736 Huisgen cycloaddition reaction Methods 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 230000006324 decarbonylation Effects 0.000 description 4
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 125000004474 heteroalkylene group Chemical group 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000002493 microarray Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 125000003107 substituted aryl group Chemical group 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 3
- QZOJRSAENHTURL-UHFFFAOYSA-N 1-azidobutane Chemical compound CCCCN=[N+]=[N-] QZOJRSAENHTURL-UHFFFAOYSA-N 0.000 description 3
- HLOBFGFNNLAFJJ-ZOBUZTSGSA-N 2-[2-[2-[2-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]ethoxy]ethoxy]ethoxy]ethylcarbamic acid Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCOCCOCCOCCNC(=O)O)SC[C@@H]21 HLOBFGFNNLAFJJ-ZOBUZTSGSA-N 0.000 description 3
- AFNOHTDETQTADW-YLRIPHBZSA-N 2-azido-n-[(3s,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound OC[C@H]1OC(O)[C@@H](NC(=O)CN=[N+]=[N-])[C@@H](O)[C@@H]1O AFNOHTDETQTADW-YLRIPHBZSA-N 0.000 description 3
- LDUSDJLJAUZKJD-UHFFFAOYSA-N 2-azidopropylbenzene Chemical compound [N-]=[N+]=NC(C)CC1=CC=CC=C1 LDUSDJLJAUZKJD-UHFFFAOYSA-N 0.000 description 3
- PRQPEQPONXIDBS-UFLZEWODSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid;cycloprop-2-en-1-one Chemical compound O=C1C=C1.N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 PRQPEQPONXIDBS-UFLZEWODSA-N 0.000 description 3
- QQUWPTSJEYBMTA-RXRQIEPESA-N C/C1=C(C)/C2=C(C2=O)\C(C)=C(\C)CC1.[Ar].[Ar] Chemical compound C/C1=C(C)/C2=C(C2=O)\C(C)=C(\C)CC1.[Ar].[Ar] QQUWPTSJEYBMTA-RXRQIEPESA-N 0.000 description 3
- RFWCFZHPSDRQPO-WGCWOXMQSA-N C/C=C(\C)C1=CC1=O.[Ar] Chemical compound C/C=C(\C)C1=CC1=O.[Ar] RFWCFZHPSDRQPO-WGCWOXMQSA-N 0.000 description 3
- MIQGRUIXNBAURU-UHFFFAOYSA-N COCCOC(=O)NCCOCCNC(=O)CC1SCC2CC(=O)NC21 Chemical compound COCCOC(=O)NCCOCCNC(=O)CC1SCC2CC(=O)NC21 MIQGRUIXNBAURU-UHFFFAOYSA-N 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000003547 Friedel-Crafts alkylation reaction Methods 0.000 description 3
- OVRNDRQMDRJTHS-OZRXBMAMSA-N N-acetyl-beta-D-mannosamine Chemical compound CC(=O)N[C@@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-OZRXBMAMSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PPZYBFUYKJPWBY-UHFFFAOYSA-N acetylene azide Chemical compound C#C.[N-]=[N+]=[N-] PPZYBFUYKJPWBY-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001745 anti-biotin effect Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000003068 molecular probe Substances 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- KAFZOLYKKCWUBI-HPMAGDRPSA-N (2s)-2-[[(2s)-2-[[(2s)-1-[(2s)-3-amino-2-[[(2s)-2-[[(2s)-2-(3-cyclohexylpropanoylamino)-4-methylpentanoyl]amino]-5-methylhexanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]butanediamide Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H](CCC(C)C)C(=O)N[C@@H](CN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(N)=O)C(N)=O)C(=O)CCC1CCCCC1 KAFZOLYKKCWUBI-HPMAGDRPSA-N 0.000 description 2
- BLZOHTXDDOAASQ-UHFFFAOYSA-N 1,2,3,3-tetrachlorocyclopropene Chemical compound ClC1=C(Cl)C1(Cl)Cl BLZOHTXDDOAASQ-UHFFFAOYSA-N 0.000 description 2
- MIWGFVCCCKZKCS-UHFFFAOYSA-N 1,2-dichlorocyclopropene Chemical compound ClC1=C(Cl)C1 MIWGFVCCCKZKCS-UHFFFAOYSA-N 0.000 description 2
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 2
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 2
- VCFHBYUCPLPFMM-UHFFFAOYSA-N 3-[2-(3-hydroxyphenyl)ethyl]phenol Chemical compound OC1=CC=CC(CCC=2C=C(O)C=CC=2)=C1 VCFHBYUCPLPFMM-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical group C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 238000006647 Pauson-Khand annulation reaction Methods 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical group C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical group C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- QHNORJFCVHUPNH-UHFFFAOYSA-L To-Pro-3 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 QHNORJFCVHUPNH-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 238000010958 [3+2] cycloaddition reaction Methods 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 2
- ROSVUDLPLHNVHN-UHFFFAOYSA-N dibenzocyclooctynol Chemical compound C1#CCCC2=CC=CC=C2C2=C1C=CC=C2O ROSVUDLPLHNVHN-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- HCIBTBXNLVOFER-UHFFFAOYSA-N diphenylcyclopropenone Chemical class O=C1C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 HCIBTBXNLVOFER-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002900 effect on cell Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical class N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- 230000002186 photoactivation Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- RWWYLEGWBNMMLJ-YSOARWBDSA-N remdesivir Chemical compound NC1=NC=NN2C1=CC=C2[C@]1([C@@H]([C@@H]([C@H](O1)CO[P@](=O)(OC1=CC=CC=C1)N[C@H](C(=O)OCC(CC)CC)C)O)O)C#N RWWYLEGWBNMMLJ-YSOARWBDSA-N 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Natural products C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 125000005309 thioalkoxy group Chemical group 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 238000002211 ultraviolet spectrum Methods 0.000 description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 150000000177 1,2,3-triazoles Chemical class 0.000 description 1
- BTARCYDJTMRPBY-UHFFFAOYSA-N 1-methoxy-3-[2-(3-methoxyphenyl)ethyl]benzene Chemical compound COC1=CC=CC(CCC=2C=C(OC)C=CC=2)=C1 BTARCYDJTMRPBY-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001462 1-pyrrolyl group Chemical group [*]N1C([H])=C([H])C([H])=C1[H] 0.000 description 1
- ZVEWRLXDIYOFTH-UHFFFAOYSA-N 2-(6,6-difluorocyclooct-4-yn-1-yl)oxyacetic acid Chemical compound OC(=O)COC1CCC#CC(F)(F)CC1 ZVEWRLXDIYOFTH-UHFFFAOYSA-N 0.000 description 1
- PBMAXJYRUNURNB-UHFFFAOYSA-N 2-[2-[(15-butoxy-3-oxo-8-tetracyclo[11.4.0.02,4.05,10]heptadeca-1(13),2(4),5(10),6,8,14,16-heptaenyl)oxy]ethoxy]ethyl N-[2-[2-[2-[5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanoylamino]ethoxy]ethoxy]ethyl]carbamate Chemical compound C12=CC=C(OCCOCCOC(=O)NCCOCCOCCNC(=O)CCCCC3C4NC(=O)NC4CS3)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C2=O PBMAXJYRUNURNB-UHFFFAOYSA-N 0.000 description 1
- NUXADWKXISKYGW-UHFFFAOYSA-N 2-[2-[(8-butoxy-11,12-didehydro-5,6-dihydrodibenzo[3,1-a:3',1'-f][8]annulen-3-yl)oxy]ethoxy]ethanol Chemical compound C1#CC2=CC=C(OCCOCCO)C=C2CCC2=CC(OCCCC)=CC=C21 NUXADWKXISKYGW-UHFFFAOYSA-N 0.000 description 1
- PYOLHMIFQRDUEA-UHFFFAOYSA-N 2-[2-[(8-butoxy-11,12-didehydro-5,6-dihydrodibenzo[3,1-a:3',1'-f][8]annulen-3-yl)oxy]ethoxy]ethyl (3-nitrophenyl) carbonate Chemical compound C1=C2CCC3=CC(OCCCC)=CC=C3C#CC2=CC=C1OCCOCCOC(=O)OC1=CC=CC([N+]([O-])=O)=C1 PYOLHMIFQRDUEA-UHFFFAOYSA-N 0.000 description 1
- WFANFBQEDUEDMO-UHFFFAOYSA-N 2-[2-[(8-butoxy-11,12-didehydro-5,6-dihydrodibenzo[3,1-a:3',1'-f][8]annulen-3-yl)oxy]ethoxy]ethyl n-[2-[2-[2-[5-(2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl)pentanoylamino]ethoxy]ethoxy]ethyl]carbamate Chemical compound C1=C2CCC3=CC(OCCCC)=CC=C3C#CC2=CC=C1OCCOCCOC(=O)NCCOCCOCCNC(=O)CCCCC1C2NC(=O)NC2CS1 WFANFBQEDUEDMO-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- LXELBISQABCQRG-UHFFFAOYSA-N 2-ethenyl-2,5-dimethyl-5-(4-methylpent-3-enyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]chromene Chemical compound O1C(C)(C=C)CCC2C(CCC=C(C)C)(C)OC3=CC=CC=C3C21 LXELBISQABCQRG-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical group C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- VHNHZCYXBWDBDO-UHFFFAOYSA-N 2-{2-[(9-butoxy-5',5'-dimethyl-6,7-dihydrospiro-[dibenzo[a,e]cyclopropa[c][8] annulene-1,2'-[1,3]dioxan]-4-yl)oxy]ethoxy}ethyl acetate Chemical compound C12=CC=C(OCCOCCOC(C)=O)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C21OCC(C)(C)CO1 VHNHZCYXBWDBDO-UHFFFAOYSA-N 0.000 description 1
- JSMRDQQOEXBMAR-UHFFFAOYSA-N 2-{2-[(9-butoxy-5',5'-dimethyl-6,7-dihydrospiro-[dibenzo[a,e]cyclopropa[c][8]annulene-1,2'-[1,3]dioxan]-4-yl)oxy]ethoxy}ethanol Chemical compound C12=CC=C(OCCOCCO)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C21OCC(C)(C)CO1 JSMRDQQOEXBMAR-UHFFFAOYSA-N 0.000 description 1
- YLQKPIVDNUMSNF-UHFFFAOYSA-N 2-{2-[(9-butoxy-5',5'-dimethyl-6,7-dihydrospiro-[dibenzo[a,e]cyclopropa[c][8]annulene-1,2'-[1,3]dioxan]-4-yl)oxy]ethoxy}ethyl 4-nitrophenyl carbonate Chemical compound C1=C2CCC3=CC(OCCCC)=CC=C3C(C34OCC(C)(C)CO4)=C3C2=CC=C1OCCOCCOC(=O)OC1=CC=C([N+]([O-])=O)C=C1 YLQKPIVDNUMSNF-UHFFFAOYSA-N 0.000 description 1
- HMNKTRSOROOSPP-UHFFFAOYSA-N 3-Ethylphenol Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical group [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- LOEWAMGXPXPADV-UHFFFAOYSA-N C12=CC=C(O)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C2=O Chemical compound C12=CC=C(O)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C2=O LOEWAMGXPXPADV-UHFFFAOYSA-N 0.000 description 1
- WIPNAQPCWAXHMS-UHFFFAOYSA-N C12=CC=C(OCCCC)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C2=O Chemical compound C12=CC=C(OCCCC)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1C2=O WIPNAQPCWAXHMS-UHFFFAOYSA-N 0.000 description 1
- VXGKRNJSYPOGFN-UHFFFAOYSA-N C12=CC=C(OCCCC)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1N(CCCC)N=N2 Chemical compound C12=CC=C(OCCCC)C=C2CCC2=CC(OCCCC)=CC=C2C2=C1N(CCCC)N=N2 VXGKRNJSYPOGFN-UHFFFAOYSA-N 0.000 description 1
- HIQPNVKEVKJNHQ-UHFFFAOYSA-N C1=2C3=CC=C(OCCCC)C=C3CCC3=CC(OCCCC)=CC=C3C=2N=NN1C1=CC=CC=C1 Chemical compound C1=2C3=CC=C(OCCCC)C=C3CCC3=CC(OCCCC)=CC=C3C=2N=NN1C1=CC=CC=C1 HIQPNVKEVKJNHQ-UHFFFAOYSA-N 0.000 description 1
- UCJPADCHQFYSNR-UHFFFAOYSA-N CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(C)C=C1)CC2.CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(O)C=C1)CC2 Chemical compound CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(C)C=C1)CC2.CCCCOC1=CC2=C(C=C1)C1=C(C1=O)C1=C(C=C(O)C=C1)CC2 UCJPADCHQFYSNR-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- RRSNDVCODIMOFX-MPKOGUQCSA-N Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O Chemical compound Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O RRSNDVCODIMOFX-MPKOGUQCSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101150026303 HEX1 gene Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910007161 Si(CH3)3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- AAXILUCBQRGWQB-UHFFFAOYSA-N acetylene;methanol Chemical group OC.C#C AAXILUCBQRGWQB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000005237 alkyleneamino group Chemical group 0.000 description 1
- 125000005238 alkylenediamino group Chemical group 0.000 description 1
- 125000005530 alkylenedioxy group Chemical group 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- 125000005466 alkylenyl group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000005165 aryl thioxy group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UCSVJZQSZZAKLD-UHFFFAOYSA-N ethyl azide Chemical compound CCN=[N+]=[N-] UCSVJZQSZZAKLD-UHFFFAOYSA-N 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000018729 macromolecule modification Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000001466 metabolic labeling Methods 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- GRWIABMEEKERFV-UHFFFAOYSA-N methanol;oxolane Chemical compound OC.C1CCOC1 GRWIABMEEKERFV-UHFFFAOYSA-N 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 125000004572 morpholin-3-yl group Chemical group N1C(COCC1)* 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000007855 nitrilimines Chemical class 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004483 piperidin-3-yl group Chemical group N1CC(CCC1)* 0.000 description 1
- 229920005547 polycyclic aromatic hydrocarbon Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 238000012987 post-synthetic modification Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000005344 pyridylmethyl group Chemical group [H]C1=C([H])C([H])=C([H])C(=N1)C([H])([H])* 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Chemical group C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000004964 sulfoalkyl group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000004192 tetrahydrofuran-2-yl group Chemical group [H]C1([H])OC([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/16—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/215—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/23—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/753—Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/36—Ortho- or ortho- and peri-condensed systems containing three rings containing eight-membered rings
Definitions
- the present disclosure is generally related to methods for light-induced ligation of molecules, preferably without the use of a catalyst.
- the disclosure relates to the generation of reactive acetylenes produced by the light-induced decarbonylation of cyclopropenones as disclosed herein.
- the photochemical ligation method of the present disclosure provides a method of linking two molecules triggered by the photochemical generation of cyclic alkynes (e.g., cyclooctynes) from corresponding cyclopropenones.
- the present disclosure provides cyclopropenones and methods of photochemically inducing the reaction of two materials using the cyclopropenones.
- the method includes: photochemically generating a cyclic alkyne from a cyclopropenone; and contacting the cyclic alkyne with a material including an alkyne-reactive group (e.g., a 1,3-dipole-functional compound) under conditions effective for the cyclic alkyne and the material including the alkyne-reactive group to react.
- a material including an alkyne-reactive group e.g., a 1,3-dipole-functional compound
- the method photochemically induces the ligation of the cyclic alkyne and the material including the alkyne-reactive group through the formation, for example, of a cyclic adduct (e.g., a heterocyclic compound), preferably without the use of a catalyst (e.g., a metal-containing catalyst).
- a cyclic adduct e.g., a heterocyclic compound
- a catalyst e.g., a metal-containing catalyst
- the cyclopropenone has the formula:
- Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- the dashed line represents a four atom bridge.
- the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof.
- the cyclopropenone has the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- E represents NR 6 , + N(R 6 ) 2 , S, S ⁇ O, SO 2 , O, PR 6 , or C(R 4 ) 2
- each R 4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group
- each R 6 is independently hydrogen, a C1-C10 organic group, and/or a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- cyclopropenone have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- G represents CR 6 , N, or P
- each R 5 and R 6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- cyclopropenone have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring.
- the photochemically generated cycloalkynes may then undergo a facile “strain-promoted” cycloaddition reaction with at least one 1,3-dipole-functional compound (e.g., an azide-functional compound, a nitrile oxide-functional compound, a nitrone-functional compound, an azoxy-functional compound, and/or an acyl diazo-functional compound) to form a heterocyclic compound, preferably in the absence of added catalyst (e.g., Cu(I)).
- 1,3-dipole-functional compound e.g., an azide-functional compound, a nitrile oxide-functional compound, a nitrone-functional compound, an azoxy-functional compound, and/or an acyl diazo-functional compound
- the cyclopropenone precursor itself does not react with 1,3-dipole-functional compound (e.g., azide functional compounds) in the absence of light, and are stable.
- 1,3-dipole-functional compound e.g., azide functional compounds
- the present disclosure provides a method of photochemically inducing the ligation of two molecules.
- the method includes: (a) photochemically generating a cyclic alkyne (e.g., a cyclooctyne) from a cyclopropenone; and (b) contacting the cyclic alkyne with an azide under conditions effective to form a triazole.
- a cyclic alkyne e.g., a cyclooctyne
- the cyclopropenone is a dibenzocyclopropenone having the formula I:
- R 1 is selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen
- the cyclooctyne is a dibenzocyclooctyne.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- PEGylated and biotinylated are meant to describe groups that include a polyethylene glycol (PEG) fragment or a biotin fragment, respectively.
- PEG polyethylene glycol
- at least one of the azide or the cyclooctyne precursor can be bound to the surface of a substrate (e.g., a solid substrate or a cell membrane) and/or integrated into a substrate layer.
- step (a) includes irradiating the cyclopropenone with light having a wavelength (e.g., 220 nm to about 450 nm) selectively absorbed by the cyclopropenone, and substantially not absorbed by a cyclic alkyne or by a triazole.
- a wavelength e.g., 220 nm to about 450 nm
- the method further includes the step of providing a cyclopropenone, said step including: (i) providing a 3,3′-dialkyloxybibenzyl; and (ii) reacting the 3,3′-dialkyloxybibenzyl with tetrachloropenone in the presence of anhydrous aluminum chloride under medium dilution conditions effective to generate a cyclopropenone.
- the present disclosure provides cyclopropenones.
- the cyclopropenones have the formula:
- Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- the dashed line represents a four atom bridge.
- the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof.
- cyclopropenones have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- E represents NR 6 , + N(R 6 ) 2 , S, S ⁇ O, SO 2 , O, PR 6 , or C(R 4 ) 2
- each R 4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group
- each R 6 is independently hydrogen, a C1-C10 organic group, and/or a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- cyclopropenones have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- G represents CR 6 , N, or P
- each R 5 and R 6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- cyclopropenones have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring.
- the cyclopropenone has the formula I:
- R 1 is selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen
- the cyclooctyne is a dibenzocyclooctyne.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- the present disclosure provides a dibenzocyclooctyne of the formula:
- R 1 is selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen
- the cyclooctyne is a dibenzocyclooctyne.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- the present disclosure provides a triazole of the formula:
- R 1 is selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen
- R 3 is selected from the group consisting of a primary alkyl, a secondary alkyl, a tertiary alky, an aryl, an alkylaryl, an acyl, an alkylacyl, and an arylacyl.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- the photochemically generated cycloalkynes may then undergo cycloaddition reactions (e.g., thermally promoted reactions) with dienes to give Diels-Alder adducts; with nitrocreasenes to give N-hydroxy indoles; with an alkene and a metal carbene complex to give butadiene products (e.g., enyne metathesis); with alkynes and a metal catalyst to give new alkynes (e.g., alkyne metathesis); with other metal-containing compounds such as, for example, four- and/or five-membered platinacycles to give cycloaddition products; with alkenes and carbon monoxide to give [2+2+1] cycloaddition products (e.g., a Pauson Khand reaction); with compounds bearing intermetallic multiple bonds (e.g., ( ⁇ -C 5 Me 5 ) 2 Rh 2 ( ⁇ -CO) 2 , [RO] 3 Mo ⁇ Mo[OR] 3
- cycloaddition refers to a chemical reaction in which two or more pi-electron systems (e.g., unsaturated molecules or unsaturated parts of the same molecule) combine to form a cyclic product in which there is a net reduction of the bond multiplicity.
- pi-electron systems e.g., unsaturated molecules or unsaturated parts of the same molecule
- the product of a cycloaddition is called an “adduct” or “cycloadduct”.
- Different types of cycloadditions are known in the art including, but not limited to, [3+2] cycloadditions and Diels-Alder reactions.
- [3+2] cycloadditions which are also called 2,3-dipolar cycloadditions, occur between a 1,3-dipole and a dipolarophile and are typically used for the construction of five-membered heterocyclic rings.
- compositions comprising, “comprising,” “containing” and “having” and the like can have the meaning ascribed to them in U.S. Patent law and can mean “includes,” “including,” and the like; “consisting essentially of” or “consists essentially” or the like, when applied to methods and compositions encompassed by the present disclosure refers to compositions like those disclosed herein, but which may contain additional structural groups, composition components or method steps (or analogs or derivatives thereof as discussed above).
- compositions or methods do not materially affect the basic and novel characteristic(s) of the compositions or methods, compared to those of the corresponding compositions or methods disclosed herein.
- Consisting essentially of” or “consists essentially” or the like when applied to methods and compositions encompassed by the present disclosure have the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.
- ratios, concentrations, amounts, and other numerical data may be expressed herein in a range format. It is to be understood that such a range format is used for convenience and brevity, and thus, should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
- a concentration range of “about 0.1% to about 5%” should be interpreted to include not only the explicitly recited concentration of about 0.1 wt % to about 5 wt %, but also include individual concentrations (e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.5%, 1.1%, 2.2%, 3.3%, and 4.4%) within the indicated range.
- the term “about” can include ⁇ 1%, ⁇ 2%, ⁇ 3%, ⁇ 4%, ⁇ 5%, ⁇ 6%, ⁇ 7%, ⁇ 8%, ⁇ 9%, or ⁇ 10%, or more of the numerical value(s) being modified.
- FIG. 1 illustrates a generalized scheme for the photochemical generation of a dibenzocyclooctyne from a cyclopropenone precursor followed by reaction with an azide to produce a triazole.
- FIG. 2 illustrates an exemplary embodiment in which cyclopropenone-based “photo-click” chemistry can be used to label living organisms.
- FIG. 3 illustrates a generalized scheme for photochemical initiation of a acetylene-azide cycloaddition, preferably without the use of a copper catalyst.
- FIG. 4 illustrates a generalized scheme for the preparation of various cyclopropenones.
- Reagents and conditions a) AlCl 3 ; b) HO(CH 2 ) 2 O(CH 2 ) 2 OAc, PPh 3 , DEAD, THF; c) neopentyl glycol, BF 4 O(C 2 H 5 ) 3 , Et 3 N, CH 2 Cl 2 ; d) NaOH, MeOH; e) p-nitrophenyl chloroformate, pyridine; f) N-Boc-N′-biotinyl-3,6-dioxaoctane-1,8-diamine, Et 3 N, DMF; g) Amberyst-15 H + , acetone.
- FIG. 5 illustrates an independent preparation of biotinylated acetylene 6b. Reagents and conditions. a) 350 nm irradiation, MeOH-THF; b) NaOH, MeOH; c) p-nitrophenyl chloroformate, pyridine; d) N-Boc-N′-biotinyl-3,6-dioxaoctane-1,8-diamine, Et 3 N, DMF.
- FIG. 6 is a graph illustrating the spectra of (about 5 ⁇ 10 ⁇ 5 M) methanol solutions of cyclopropenone 14; acetylene 15; and triazole 16.
- FIG. 7 illustrates cell surface labeling with compounds 4b, 5b, and 6b.
- Jurkat cells grown for 3 days in the presence of a) Ac 4 ManNAc (25 micromolar) or a-c) Ac 4 ManNAz (25 micromolar) were incubated at room temperature with compounds 4b, 5b, and 6b at a) 30 micromolar for 1 hour, b) 0-100 micromolar for 1 hour, or c) 30 micromolar for 0-90 minutes.
- Compound 5b was assessed without activation (5b NA) and after light activation in situ (1 minute at 350 nm; 5b IS).
- AU indicates arbitrary fluorescence units.
- FIG. 8 illustrates a Western blot analysis of cell surface labeling with compounds 5b and 6b.
- Jurkat cells grown for 3 days in the presence of Ac 4 ManNAc (25 micromolar; lanes 1, 3, and 5) or Ac 4 ManNAz (25 micromolar; lanes 2, 4, and 6) were incubated with 5b (lanes 3 and 4), 6b (lanes 5 and 6) (30 micromolar), or without compound (lanes 1 and 2) for 1 hour at room temperature.
- Compound 5b was assessed after light activation in situ (5b IS).
- Cell lysates (20 micrograms total protein per lane) were resolved by SDS-PAGE and the blot was probed with an anti-biotin antibody conjugated to HRP. Total protein loading was confirmed by Coomassie staining of the gel (not shown).
- FIG. 9 is a graph illustrating a toxicity assessment of cycloaddition reaction with compound 5b.
- Jurkat cells grown for 3 days in the presence of Ac 4 ManNAz (25 micromolar) were incubated with compound 5b (30 micromolar) for 1 hour at room temperature.
- Cell viability after incubation with 5b was assessed without activation (5b NA; III) and after light activation in situ (1 minute at 350 nm; 5b IS; IV).
- Control cells were treated similarly, but without exposure to 5b and UV light (II).
- Cell viability was assessed with trypan blue exclusion.
- Cell viability values were normalized for the amount of viable cells of the sample with control cells before the incubation period (100%; I).
- FIG. 10 illustrates exemplary fluorescence images of cells labeled with compound 5b and avidin-Alexa fluor 488.
- 5b IS in situ activation
- cells were incubated with avidin-Alexa Fluor 488 for 15 minutes at 4° C. and, after washing, fixing, and staining for the nucleus with the far-red-fluorescent dye TO-PRO-3 iodide, imaged.
- Merged indicate that the images of cells labeled with Alexa Fluor (488 nm) and TO-PRO iodide (633 nm) are merged and shown in white and gray, respectively.
- FIG. 11 illustrates a scheme for the synthesis of embodiments of a triazole from a dibenzocyclooctyne, where the R substituent on the triazole is defined.
- FIG. 12 illustrates a generalized scheme for cyclopropenone synthesis, where substituents may be attached to the cyclopropenone precursor by replacement of a hydroxyl group with a linker.
- the reaction of 17 with butanol or diethylene glycol acetate in the presence of PPh 3 and DEAD at 0° C. produces 18a and 18b.
- the reaction of 17 with a carboxylic acid in the presence of DCC and catalytic amount of DMAP provided ester 18c.
- Diethylene glycol-derivatized cyclopropenone 18b can be further linked to biotin, producing the biotin-cyclopropenone conjugate 19.
- FIG. 13 illustrates a generalized scheme for the preparation of cyclopropenones 14 and 18. Reagents and conditions for the reactions were a) BBr 3 , CH 2 Cl 2 ; then BuBr, K 2 CO 3 , DMF; 72% over 2 steps; and c) AlCl 3 , CH 2 Cl 2 , 35%.
- FIGS. 14-16 illustrate exemplary methods for preparing cyclopropenones as further described herein.
- the methods of the present disclosure provide for photochemically inducing the reaction of two materials by photochemically generating an activated alkyne (e.g., a cyclooctyne) from a cyclopropenone.
- an activated alkyne e.g., a cyclooctyne
- the generated cyclic alkyne can react with another material, which in certain embodiments causes ligation of the cyclic alkyne with the other material.
- activated alkyne refers to a chemical group that selectively reacts with an alkyne-reactive group, such as an azido group or a phosphine group, on another molecule to form a covalent chemical bond between the activated alkyne group and the alkyne reactive group.
- alkyne-reactive groups include azides.
- Alkyne-reactive can also refer to a molecule that contains a chemical group that selectively reacts with an alkyne group.
- activated alkyne encompasses any terminal alkynes or cyclic alkynes (dipolarophiles) that will react with 1,3-dipoles such as azides in a facile fashion.
- azide reactive refers to a material that selectively reacts with an azido modified group on another molecule to form a covalent chemical bond between the azido modified group and the azide reactive group.
- azide-reactive groups include alkynes and phosphines (e.g., triaryl phosphine).
- Azide-reactive can also refer to a molecule that selectively reacts with an azido group.
- the photochemically generated cycloalkynes may then undergo a facile “strain-promoted” cycloaddition reaction with at least one 1,3-dipole-functional compound (e.g., an azide-functional compound, a nitrile oxide-functional compound, a nitrone-functional compound, an azoxy-functional compound, and/or an acyl diazo-functional compound) to form a heterocyclic compound, preferably in the absence of added catalyst (e.g., Cu(I)).
- 1,3-dipole-functional compound e.g., an azide-functional compound, a nitrile oxide-functional compound, a nitrone-functional compound, an azoxy-functional compound, and/or an acyl diazo-functional compound
- the cyclopropenone precursor itself does not react with 1,3-dipole-functional compound (e.g., azide functional compounds) in the absence of light, and are stable, capable of withstanding prolonged heating).
- 1,3-dipole-functional compound e.g., azide functional compounds
- the photochemically generated cycloalkynes may then undergo cycloaddition reactions (e.g., thermally promoted reactions) with dienes to give Diels-Alder adducts; with nitrocreasenes to give N-hydroxy indoles; with an alkene and a metal carbene complex to give butadiene products (e.g., enyne metathesis); with alkynes and a metal catalyst to give new alkynes (e.g., alkyne metathesis); with other metal-containing compounds such as, for example, four- and/or five-membered platinacycles to give cycloaddition products; and with alkenes and carbon monoxide to give [2+2+1] cycloaddition products (e.g., a Pauson Khand reaction).
- cycloaddition reactions e.g., thermally promoted reactions
- dienes Diels-Alder adducts
- nitrocreasenes to give N-hydroxy indoles
- the methods encompassed by the present disclosure may be useful for generating surfaces, modified with cyclopropenone-containing compounds, which may be used for the patterned immobilization of a broad range of biomolecules.
- the present disclosure provides a method of photochemically inducing the ligation of two molecules, the method including: (a) photochemically generating a cyclic alkyne (e.g., a cyclooctyne) from a cyclopropenone; and (b) contacting the cyclic alkyne with an azide under conditions effective to form a triazole.
- a cyclic alkyne e.g., a cyclooctyne
- the cyclopropenones have the formula:
- Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- the dashed line represents a four atom bridge.
- the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof.
- Such cyclopropenones can be prepared, for example, by the addition of a dihalocarbene to a corresponding cyclic alkyne followed by hydrolysis in methods similar to those further described herein below.
- cyclopropenones have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- E represents NR 6 , + N(R 6 ) 2 , S, S ⁇ O, SO 2 , O, PR 6 , or C(R 4 ) 2
- each R 4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group
- each R 6 is independently hydrogen, a C1-C10 organic group, and/or a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- such cyclopropenones can be prepared, for example, via a double Friedel-Crafts alkylation as illustrated, for example, in FIG. 14 .
- such cyclopropenones can be prepared, for example, by the addition of a dihalocarbene to a corresponding cyclic alkyne followed by hydrolysis as illustrated, for example, in FIG. 15 .
- a dihalocarbene to a corresponding cyclic alkyne followed by hydrolysis as illustrated, for example, in FIG. 15 .
- Poloukhtine et al. Chemical Communications 2005, 617-619
- Kuzmin et al. Chemical Communications 2009, 5707-5709.
- Poloukhtine et al. Journal of Organic Chemistry 2005, 70(4):1297-1305.
- cyclopropenones have the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring
- G represents CR 6 , N, or P
- each R 5 and R 6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group.
- Linking groups can be useful, for example, for attaching substrates and/or tags.
- such cyclopropenones can be prepared, for example, via a double Friedel-Crafts alkylation as illustrated, for example, in FIG. 16 .
- the cyclopropenone has the formula:
- each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring.
- organic group is used for the purpose of this disclosure to mean a hydrocarbon group that is classified as an aliphatic group, cyclic group, or combination of aliphatic and cyclic groups (e.g., alkaryl and aralkyl groups).
- suitable organic groups for cyclopropenones and compounds having alkyne reactive groups as disclosed herein are those that do not interfere with the photochemical generation of the cyclic alkyne or the reaction of the cyclic alkyne with a compound having an alkyne reactive group.
- the term “aliphatic group” means a saturated or unsaturated linear or branched hydrocarbon group.
- alkyl group means a saturated linear or branched monovalent hydrocarbon group including, for example, methyl, ethyl, n-propyl, isopropyl, tert-butyl, amyl, heptyl, and the like.
- alkenyl group means an unsaturated, linear or branched monovalent hydrocarbon group with one or more olefinically unsaturated groups (i.e., carbon-carbon double bonds), such as a vinyl group.
- alkynyl group means an unsaturated, linear or branched monovalent hydrocarbon group with one or more carbon-carbon triple bonds.
- cyclic group means a closed ring hydrocarbon group that is classified as an alicyclic group, aromatic group, or heterocyclic group.
- alicyclic group means a cyclic hydrocarbon group having properties resembling those of aliphatic groups.
- aromatic group or “aryl group” means a mono- or polynuclear aromatic hydrocarbon group.
- heterocyclic group means a closed ring hydrocarbon in which one or more of the atoms in the ring is an element other than carbon (e.g., nitrogen, oxygen, sulfur, etc.).
- group and “moiety” are used to differentiate between chemical species that allow for substitution or that may be substituted and those that do not so allow for substitution or may not be so substituted.
- group when the term “group” is used to describe a chemical substituent, the described chemical material includes the unsubstituted group and that group with nonperoxidic O, N, S, Si, or F atoms, for example, in the chain as well as carbonyl groups or other conventional substituents.
- teen “moiety” is used to describe a chemical compound or substituent, only an unsubstituted chemical material is intended to be included.
- alkyl group is intended to include not only pure open chain saturated hydrocarbon alkyl substituents, such as methyl, ethyl, propyl, tert-butyl, and the like, but also alkyl substituents bearing further substituents known in the art, such as hydroxy, alkoxy, alkylsulfonyl, halogen atoms, cyano, nitro, amino, carboxyl, etc.
- alkyl group includes ether groups, haloalkyls, nitroalkyls, carboxyalkyls, hydroxyalkyls, sulfoalkyls, etc.
- the phrase “alkyl moiety” is limited to the inclusion of only pure open chain saturated hydrocarbon alkyl substituents, such as methyl, ethyl, propyl, tert-butyl, and the like.
- azide refers to organic azides having the general formula R—N 3 where R is an organic group selected from the group consisting of alkyl, alkyl amino, nitrogen-containing heterocyclic-substituted alkyl (that is, an alkyl group substituted with at least one nitrogen-containing heterocycle), and alkyl amine substituted with at least one alkyl azide group.
- R is an organic group selected from the group consisting of alkyl, alkyl amino, nitrogen-containing heterocyclic-substituted alkyl (that is, an alkyl group substituted with at least one nitrogen-containing heterocycle), and alkyl amine substituted with at least one alkyl azide group.
- alkyl groups include methyl, ethyl, propyl, butyl, and isomers (iso-, sec-, tert-, etc.) thereof.
- Non-limiting examples of alkyl amino groups include dimethylamino, diethylamino, dipropylamino, dibutylamino, and isomers thereof, as well as “mixed” alkyl amino groups, e.g., N-methyl, N-ethylamino; N-propyl, N-butylamino; etc.; and isomers thereof.
- Non-limiting examples of nitrogen-containing heterocyclic-substituted alkyl groups include alkyl groups substituted with pyrrolidine, imidazole, pyrrole, piperidine, pyrroline, pyrazole, piperazine, or 1,2,4-triazole.
- R is an “alkyl amine substituted with at least one alkyl azide group”
- the organic azide has the formula R 1 NH(R 2 N 3 ) or R 1 N(R 2 N 3 )(R 3 N 3 ), where R 1 , R 2 , and R 3 are each, independently, an alkyl group as described above.
- a non-limiting example of such a compound is bis(ethylazide) methylamine.
- the organic azides referred to herein have, in each case, a carbon atom bound directly to one of the nitrogen atoms of the azide (N 3 ) group. Hence, in some cases, it may be more appropriate to refer to the alkyl groups as “alkylenyl” groups.
- dibenzocyclooctynes 2 can be generated by the photo-induced decarbonylation reaction of the corresponding cyclopropenones 1.
- the dibenzocyclooctynes 2 can then undergo facile reactions with azides preferably to produce quantitative yields of a corresponding triazole 3.
- substituents R 1 , R 2 , etc
- R 1 , R 2 , etc can be introduced into the aromatic rings of 1 to serve as linkers to substrates of interest, or remain as a substrate of interest themselves.
- a preferred group R 1 can be either a hydroxyl or an alkoxy group, and in certain embodiments, any substituent linked to an aromatic ring of the dibenzocyclooctyne or dibenzocyclooctyne precursor is not a strong electron withdrawing group such as, but not limited to, a nitro group, a carbonyl group, and a cyano group.
- a bulky group (R 2 ) is not linked to a position on an aromatic ring of the dibenzocyclooctyne or dibenzocyclooctyne precursor that is ortho to an alkyne or cyclopropenone substituent of the aromatic ring.
- the method of the present disclosure is a two-step procedure where the “click chemistry’ that allows the conjugation of the cyclic alkyne (e.g., a cyclooctyne) with an azide is preceded by the light-inducible formation of the cyclic alkyne, which provides a selective means of initiating the overall pathway, under conditions conducive to their use in living cells without toxic effects from such as cuprous catalysts.
- click chemistry refers to the Huisgen cycloaddition or the 2,3-dipolar cycloaddition between an azide and a terminal alkyne to form a 1,2,4-triazole.
- the conversion of a cyclopropenone to a cyclic alkyne can be induced by a light source such as, but not limited to, a laser light having a wavelength of from about 220 nm to about 450 nm or even longer (e.g., 350 nm, 405 nm, and 425 nm), from about 325 nm to about 375 nm, from about 325 nm to about 355 nm, and from about 350 nm to about 355 nm.
- a light source such as, but not limited to, a laser light having a wavelength of from about 220 nm to about 450 nm or even longer (e.g., 350 nm, 405 nm, and 425 nm), from about 325 nm to about 375 nm, from about 325 nm to about 355 nm, and from about 350 nm to about 355 nm.
- light with a wavelength from about 340 nm to about 375 nm, for example, is desirable when such as dibenzocyclooctyne or the triazole do not absorb light at these wavelengths.
- the light-inducible reaction therefore, provides for initiating or triggering the reaction when desired, and focusing of the laser light may allow triggering of the reaction, and therefore the coupling between the cyclopropenone and the azide, at a specific and confined location, such as, for example, a single cell, or at a previously selected location within a cell.
- the present disclosure therefore, provides embodiments of a method of photochemically inducing the ligation of two molecules, the method including: (a) photochemically generating a cyclic alkyne (e.g., cyclooctyne) from a cyclopropenone; and (b) contacting the cyclic alkyne with an azide under conditions effective to form a triazole.
- a cyclic alkyne e.g., cyclooctyne
- the cyclopropenone may be a dibenzocyclopropenone having the formula I:
- R 1 can be selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 can be a substituent
- R 2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- the cyclooctyne can be a dibenzocyclooctyne.
- R 1 and R 2 can each be independently linked to any available position of an aromatic ring of the dibenzocyclooctyne or dibenzocyclooctyne precursor.
- the compounds described herein may be prepared as a single isomer (e.g., enantiomer, cis-trans, positional, diastereomer) or as a mixture of isomers.
- the compounds are prepared as substantially a single isomer.
- Methods of preparing substantially isomerically pure compounds are known in the art.
- enantiomerically enriched mixtures and pure enantiomeric compounds can be prepared by using synthetic intermediates that are enantiomerically pure in combination with reactions that either leave the stereochemistry at a chiral center unchanged or result in its complete inversion.
- the final product or intermediates along the synthetic route can be resolved into a single stereoisomer.
- resonance stabilization may permit a formal electronic charge to be distributed over the entire molecule. While a particular charge may be depicted as localized on a particular ring system, or a particular heteroatom, it is commonly understood that a comparable resonance structure can be drawn in which the charge may be formally localized on an alternative portion of the compound.
- substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH 2 O— is intended to also recite —OCH 2 —.
- acyl or “alkanoyl” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and an acyl radical on at least one terminus of the alkane radical.
- the “acyl radical” is the group derived from a carboxylic acid by removing the —OH therefrom.
- alkyl by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include divalent (“alkylene”) and multivalent radicals, having the number of carbon atoms designated (i.e. C 1 -C 10 means one to ten carbons).
- saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
- An unsaturated alkyl group is one having one or more double bonds or triple bonds.
- alkyl groups examples include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
- alkyl unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups that are limited to hydrocarbon groups are termed “homoalkyl”.
- alkyl groups of use in the present disclosure contain between about one and about twenty five carbon atoms (e.g., methyl, ethyl and the like). Straight, branched or cyclic hydrocarbon chains having eight or fewer carbon atoms will also be referred to herein as “lower alkyl”.
- alkyl as used herein further includes one or more substitutions at one or more carbon atoms of the hydrocarbon chain fragment.
- amino refers to the group —NR′R′′ (or NRR′R′′) where R, R′ and R′′ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, aryl alkyl, substituted aryl alkyl, heteroaryl, and substituted heteroaryl.
- a substituted amine being an amine group wherein R′ or R′′ is other than hydrogen. In a primary amino group, both R′ and R′′ are hydrogen, whereas in a secondary amino group, either, but not both, R′ or R′′ is hydrogen.
- the terms “amine” and “amino” can include protonated and quaternized versions of nitrogen, including the group —NRR′R′′ and its biologically compatible anionic counterions.
- aryl refers to cyclic aromatic carbon chain having twenty or fewer carbon atoms, e.g., phenyl, naphthyl, biphenyl, and anthracenyl.
- One or more carbon atoms of the aryl group may also be substituted with, e.g., alkyl; aryl; heteroaryl; a halogen; nitro; cyano; hydroxyl, alkoxyl or aryloxyl; thio or mercapto, alkyl-, or arylthio; amino, alkylamino, arylamino, dialkyl-, diaryl-, or arylalkylamino; aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, dialkylaminocarbonyl, diarylaminocarbonyl, or arylalkylaminocarbonyl; carboxyl, or alkyl- or aryloxycarbonyl; aldehyde
- alkyl or heteroalkyl substituents of an aryl group may be combined to form fused aryl-alkyl or aryl-heteroalkyl ring systems (e.g., tetrahydronaphthyl).
- aryl-alkyl or aryl-heteroalkyl ring systems e.g., tetrahydronaphthyl.
- Substituents including heterocyclic groups e.g., heteroaryloxy, and heteroaralkylthio
- heterocyclic groups e.g., heteroaryloxy, and heteroaralkylthio
- alkoxy alkylamino
- alkylthio or thioalkoxy
- heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a straight or branched chain, or cyclic carbon-containing radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from the group consisting of O, N, Si, P, S, and Se, and wherein the nitrogen, phosphorous, sulfur, and selenium atoms are optionally oxidized, and the nitrogen heteroatom is optionally be quaternized.
- the heteroatom(s) O, N, P, S, Si, and Se may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
- Examples include, but are not limited to, —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —CH 3 , —CH 2 —CH 2 , —S(O)—CH 3 , —CH 2 —CH 2 —S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH—N(CH 3 )—CH 3 .
- heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH 2 —CH 2 —S—CH 2 —CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —.
- heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O) 2 R′— represents both —C(O) 2 R′— and —R′C(O) 2 —.
- cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
- heterocycloalkyl examples include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
- aryl means, unless otherwise stated, a polyunsaturated, aromatic group that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently.
- heteroaryl refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, S, and Se, wherein the nitrogen, sulfur, and selenium atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized.
- a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
- Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinoly
- aryl when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above.
- arylalkyl is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
- alkyl group e.g., benzyl, phenethyl, pyridylmethyl and the like
- an oxygen atom e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naph
- alkyl and heteroalkyl radicals are generically referred to as “allyl group substituents,” and they can be one or more of a variety of groups selected from, but not limited to: —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR
- R′, R′′, R′′′ and R′′′′ each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
- each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
- R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
- —NR′R′′ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl.
- alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF 3 and —CH 2 CF 3 ) and acyl (e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like).
- substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents.”
- the substituents are selected from, for example: halogen, —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR—C(NR′R′′R′′′) ⁇ NR′′′′, —NR—C(NR′R′′) ⁇ NR′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′
- each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
- the symbol X represents “R” as described above.
- Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′)q-U-, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 )r-B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 NR′— or a single bond, and r is an integer of from 1 to 4.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′)s-X—(CR′′R′′′)d-, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O) 2 —, or —S(O) 2 NR′—.
- the substituents R, R′, R′′ and R′′′ are preferably independently selected from hydrogen or substituted or unsubstituted (C1-C6)alkyl.
- heteroatom includes oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), silicon (Si), and selenium (Se).
- amino refers to the group —NR′R′′ (or N + RR′R′′) where R, R′ and R′′ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, aryl alkyl, substituted aryl alkyl, heteroaryl, and substituted heteroaryl.
- a substituted amine being an amine group wherein R′ or R′′ is other than hydrogen. In a primary amino group, both R′ and R′′ are hydrogen, whereas in a secondary amino group, either, but not both, R′ or R′′ is hydrogen.
- the terms “amine” and “amino” can include protonated and quaternized versions of nitrogen, including the group —N + RR′R′′ and its biologically compatible anionic counterions.
- carboxyalkyl refers to a group having the general formula —(CH 2 ) n COOH, where n is 1-18.
- linking group is broadly used herein to refer to any organic (e.g., hydrocarbon) or inorganic (e.g., N, P, O) group that can be used for attaching another group (e.g., a substrate or tag).
- the azide or the cyclic alkyne may be bound to the surface of a substrate.
- the substrate may be a solid substrate or a cell membrane.
- the azide or the cyclic alkyne may be integrated into a substrate layer.
- the cyclic alkyne e.g., a cyclooctyne
- the azide is a ligand that binds to the cyclic alkyne
- the azide ligand or the cyclic alkyne ligand is a detectable label.
- R 1 may be a butoxy group and R 2 may be selected from the group consisting of the formulae:
- R 1 may be a butoxy group and R 2 may be a PEGylated or biotinylated group.
- the biotinylated group has the formula:
- the cyclopropenone may have the formula II:
- the azide may be selected from the group consisting of an alkyl azide, a heteroalkyl azide, a cycloalkyl azide, a heterocycloalkyl azide, an alkylamino azide, a benzyl azide, an aryl azide an alkylacyl azide, and an arylacyl azide.
- step (a) includes irradiating the cyclopropenone with light having a wavelength selectively absorbed by the cyclopropenone, and substantially not absorbed by a cyclic alkyne (e.g., a cyclooctyne) or by a triazole.
- a cyclic alkyne e.g., a cyclooctyne
- triazole e.g., a cyclic alkyne
- the term “substantially not absorbed” as used in the embodiments of the present disclosure therefore, indicates that a cyclic alkyne or triazole will absorb less than about 20%, advantageously less than about 10%, more advantageously less than about 5%, and most advantageously about 0% of the light absorbed by a cyclopropenone that has a wavelength able to initiate the conversion of the cyclopropenone to a cyclic alkyne.
- the wavelength of light is from about 220 nm to about 450 nm or even longer (e.g., 350 nm, 405 nm, and 425 nm). In certain embodiments of the disclosure, the wavelength of light may be from about 325 nm to about 375 nm. In other embodiments, the wavelength of light may be from about 325 nm to about 360 nm. In yet other embodiments, the wavelength of light may be from about 350 nm to about 355 nm. In still other embodiments, the wavelength of light may be from about 340 nm to about 355 nm.
- the method may further include the step of providing a cyclooctyne, said step including: (i) providing a 3,3′-dialkyloxybibenzyl; and (ii) reacting the 3,3′-dialkyloxybibenzyl with tetrachloropenone in the presence of anhydrous aluminum chloride under medium dilution conditions effective to form a cyclopropenone.
- the 3,3′-dialkyloxybibenzyl is 3,3′-dibutoxybibenzyl
- the cyclopropenone has the formula I:
- R 1 is selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 is a substituent.
- R 2 may be selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- the yield of the reaction in step (ii) may include a compound having the formula II and a compound having the formula III:
- the azide may have the formula: R 3 —N 3 , where R 3 may be selected from the group consisting of an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylamino, an aryl, an alkylacyl, and an arylacyl.
- the triazole may have the formula:
- R 1 can be selected from the group consisting of: an alkoxy and a hydroxyl
- R 2 can be selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen
- R 3 can be selected from the group consisting of a primary alkyl, a secondary alkyl, a tertiary alky, an aryl, an alkylaryl, an acyl, an alkylacyl, and an arylacyl.
- R 2 may be selected from the group consisting of an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen.
- R 2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
- cycloadditions e.g., catalyst-free cycloadditions
- In-situ light activation of a cyclopropenone linked to biotin made it possible to label living cells expressing glycoproteins containing N-azidoacetyl-sialic acid.
- the cyclopropenone-based “photo-click” chemistry offers exciting opportunities to label living organisms in a temporal and for spatial controlled and may facilitate the preparation of microarrays.
- the bioorthogonal chemical reporter strategy is emerging as a versatile method for labeling of biomolecules such as nucleic acids, lipids, proteins, and carbohydrates.
- a unique chemical functionality is incorporated into a targeted biomolecule, preferably by the biosynthetic machinery of the cell, followed by a specific chemical reaction of the functional group with an appropriate probe.
- the azide is an attractive chemical reporter because of its small size, diverse mode of reactivity, and bio-orthogonality.
- Azides can be incorporated into biomolecules using a variety of strategies such as post synthetic modification, in-vitro enzymatic transfer, the use of covalent inhibitors, and metabolic labeling by feeding cells a biosynthetic precursor modified with an azido function.
- bioorthogonal reactions with azides include the Staudinger ligation with phosphines, copper(I)-catalyzed cycloaddition with terminal alkynes, and strain-promoted cycloaddition with cyclooctynes.
- Staudinger ligation with phosphines copper(I)-catalyzed cycloaddition with terminal alkynes
- strain-promoted cycloaddition with cyclooctynes strain-promoted cycloaddition with cyclooctynes.
- the latter type of reaction which was coined copper-free click chemistry, does not require a cytotoxic metal catalyst, which can therefore offer a unique opportunity for labeling living cells.
- azide-based bioorthogonal reporter strategy can be further extended by the development of a photochemically-triggered click reaction, as this approach allows for the spatial and temporal control of the labeling of the target substrates.
- photochemical release or generation of an active molecule is widely employed strategy to deliver bioactive compounds to small, addressable target sites in a time-controlled manner (e.g., Pelliccioli et al., Photochem. Photobiol. Sci. 2002, 1:441-458; Mayer et al., Angew. Chem. Int. Ed. 2006, 45:4900-4921; Ellis-Davies, Nat. Methods 2007, 4:619-628; and Song et al., J. Am. Chem. Soc.
- Dibenzocyclooctyne 14 was synthesized by the preparative photolysis of cyclopropenone 9. Conjugation of the former with a biotin group followed procedures used in the conversion of acetal 10 into compound 13 ( FIG. 4 ).
- Jurkat cells were employed that were grown in the presence of peracetylated N-acetylmannosamine (Ac 4 ManNAc). The cells were exposed to 30 micromolar of compound 4b, 5b, and 6b for 1 hour at room temperature. In addition, cells and cyclopropenone 5b were exposed to light (350 nm) for 1 minute to form in-situ cyclooctyne 6b and then incubated for 1 hour at room temperature. Next, the cells were washed and stained with avidin-fluorescein isothiocyanate (FITC) for 15 minutes at 4° C. The efficiency of the two-step cell surface labeling was determined by measuring the fluorescence intensity of the cell lysates.
- FITC avidin-fluorescein isothiocyanate
- Cyclooctynes 4b and 6b exhibited strong labeling of the cells ( FIG. 7 a ). Furthermore, in-situ activation of 5b to give 6b resulted in equally efficient cell labeling. As expected, low fluorescence intensities were measured when cells were exposed to cyclopropenone 5b in the dark demonstrating that this compound can be selectively activated by a short irradiation with 350 nm light. Corresponding control cells showed negligible background labeling.
- the concentration-dependency of the cell surface labeling was studied by incubating cells with various concentrations of 4b, in-situ activated 5b, and 6b, followed by staining with avidin-FTIC ( FIG. 7 b ).
- Jurkat cells were cultured in the presence of 25 mM of peracetylated N-azidoacetylmannosamine (Ac 4 ManNAz) for 3 days to metabolically introduce N-azidoacetyl-sialic acid (SiaNAz) groups into glycoproteins.
- Ac 4 ManNAz peracetylated N-azidoacetylmannosamine
- SiaNAz N-azidoacetyl-sialic acid
- the cyclopropenone-based “photo-click” chemistry reported here can provide greater bioorthogonality and versatility than recently developed reaction of alkenes with a photo-generated nitrile imine (e.g., Song et al., J. Am. Chem. Soc. 2008, 130:9654-9655). It is to be expected that the properties of compounds such as 5b will make it possible to label living organisms in a temporal and spatial controlled manner (e.g., Pelliccioli et al., Photochem. Photobiol. Sci. 2002, 1:441-458; Mayer et al., Angew. Chem. Int. Ed. 2006, 45:4900-4921; and Ellis-Davies, Nat.
- the hydroxy group in 5a can be easily esterified or converted to an ether (e.g., 9) thus allowing for the attachment of the “photo-click” group to various substrates or surfaces.
- Compounds derived from 5a can offer opportunities for temporal and spatial controlled ligation (e.g., copper-free ligation in preferred embodiments), which may for example be attractive for microarray development.
- temporal and spatial controlled ligation e.g., copper-free ligation in preferred embodiments
- Cu-mediated click reactions have been used for the fabrication of saccharide microarrays by offering a convening approach to immobilize azide-modified saccharides to an alkyne-modified surface (e.g., Sun et al., Bioconjugate Chem. 2006, 17:52). It is to be expected that surface modification with compounds 5a will offer an exciting opportunities for spatially controlled ligand immobilization using light activation followed by ligation (e.g., copper-free ligation in preferred embodiments). Furthermore, metal-free click reactions have been applied in materials chemistry (e.g., Johnson et al., Chem. Com. 2008, 3064-3066; Lallana et al., J. Am. Chem. Soc.
- aqueous solution refers to a solution that is predominantly water and retains the solution characteristics of water. Where the aqueous solution contains solvents in addition to water, water is typically the predominant solvent.
- FIG. 11 Photophysical properties, generation, and reactivity of dibenzocyclooctynes.
- FIG. 11 The UV spectrum, as shown in FIG. 6 , of cyclopropenone 14 in methanol contained two close-lying bands ( ⁇ max of about 331 nm and about 347 nm) of similar intensity (logs approximately 4.5; FIG. 6 ).
- the photochemistry is very clean since no additional photoproducts were detected in the photolysates.
- the rate measurements of the cycloaddition reaction of acetylene 15 with azides was conducted by UV spectroscopy following the decay of the 317 nm band of 15 (as shown in FIG. 6 ) in the photolysate at various concentrations of azides from about 0.5 mM to about 20 mM).
- the reaction followed a first order equation, and the pseudo-first order rate constants were obtained by the by least-squares fitting of the data to a single exponential equation.
- the dependence of the observed rates on the concentration of azides was linear.
- the least-squares fitting of the data to a linear equation produced bimolecular rate constants summarized in Table 1.
- Substituents may be attached to the cyclopropenone precursor by replacement of one of the butoxy groups with an appropriate linker.
- cyclopropenone 17 was prepared (as shown in FIG. 12 ). The hydroxy group of the latter may be readily converted into an ether or an ester.
- the reaction of 17 with butanol or diethylene glycol acetate in the presence of PPh 3 and DEAD at 0° C. produced 18a and 18b in a good yield (see FIG. 12 ).
- Diphenyl cyclopropenones such as 14, 17, 18a-c, and 19, had long shelf lives, and could withstand elevated temperatures. Thus, the parent diphenylcyclopropenone was quantitatively recovered after stirring for 5 hours in DMSO at 130° C. (Poloukhtine & Popik (2003) J. Org. Chem. 68: 7833-7840).
- the cyclopropenones are also stable in solution in the absence of light. For example, cyclopropenone 14 showed no decomposition after incubation for 3 days at 40° C. in aqueous and methanol solutions.
- cyclopropenones 14, 17, 18a-c, and 19 do not react with azides at room temperature.
- a central step in the preparation of the cyclopropenones 14 and 18 is a double Friedel-Crafts reaction of 3,3′-dibutoxybibenzyl 8 with tetrachlorocyclopenone in the presence of anhydrous aluminum trichloride under medium dilution conditions (about 0.05 M in methylene chloride, as shown in FIG. 13 ).
- the mono-hydroxy substituted cyclopropenone 18 was the major product of this reaction. Formation of bis-butoxy derivative 14 depended on the reaction conditions. Thus, after overnight incubation of the reaction mixture at room temperature, only 18 was isolated. However, incubation for only 5 hours resulted in formation of both 14 and 18 in 1:2 ratio.
- 1,2-Bis(3-butoxyphenyl)ethane (8) 1,2-Bis(3-butoxyphenyl)ethane (8).
- BBr 3 (11.3 g, 45 mmol) was added to a solution of 1,2-bis(3-methoxyphenyl)ethane (Brunner et al., Inorg. Chim. Acta 2003, 350:39-48; 11.56 g; 47.8 mmol) in CH 2 Cl 2 at ⁇ 78° C.
- the reaction mixture was slowly warmed to room temperature, and stirred overnight.
- the reaction mixture was quenched with water, diluted with CH 2 Cl 2 , and the reaction mixture extracted with 2 M solution of NaOH (3 ⁇ 100 mL).
- the aqueous layer was slowly acidified at 0° C.
- reaction mixture was partially concentrated under reduced pressure, diluted with EtOAc (approximately 25 mL) and water (approximately 10 mL), the organic layer was separated, washed with brine, and dried over anhydrous MgSO 4 . Solvents were evaporated under reduced pressure, and the residue was separated by chromatography (Hex:ExOAc:CH 2 Cl 2 3:2:1+1.5% of Et 3 N) to provide 0.493 g (0.89 mmol, 81%) of an alcohol 11 as slightly yellow oil that crystallizes on standing.
- Synthetic compounds 4b, 5b, and 6b were reconstituted in DMF and stored at ⁇ 80° C. Final concentrations of DMF never exceeded 0.56% to avoid toxic effects.
- biotinilated cyclopropenone 5b mini-photoreactor available under the trade designation Rayonet equipped with 350 nm florescent tubes was employed.
- CHO cells Chinese hamster ovary (CHO) cells (Clone K1; ATCC) were cultured in Kaighn's modification of Ham's F-12 medium (F-12K) with L-glutamine (2 mM), adjusted to contain sodium bicarbonate (1.5 g L ⁇ 1 ) and supplemented with penicillin (100 u mL ⁇ 1 )/streptomycin (100 micrograms mL ⁇ 1 ) and FBS (10%). Cells were maintained in a humid 5% CO 2 atmosphere at 37° C.
- Jurkat cells were seeded at a density of 75,000 cells mL ⁇ 1 in a total volume of 40 mL culture medium in the presence of peracetylated N-azidoacetylmannosamine (Ac 4 ManNaz; 25 micromolar final concentration) and grown for 3 days, leading to the metabolic incorporation of the corresponding N-azidoacetyl sialic acid (SiaNAz) into their cell surface glycoproteins.
- Control cells were grown in the presence of peracetylated N-acetylmannosamine (Ac 4 ManNac; 25 micromolar final concentration) for 3 days.
- CHO cells were grown for 3 days in the presence of Ac 4 ManNaz (100 micromolar final concentration) or Ac 4 ManNac (100 micromolar final concentration).
- Jurkat cells bearing azides and control cells were washed with labeling buffer (DPBS, pH 7.4 containing 1% FBS and 1% BSA), transferred to round bottom tubes (1 ⁇ 10 6 cells/sample) and incubated with the biotinylated compounds 4b, 5b, or 6b (0-100 micromolar) in labeling buffer for 0-90 minutes at room temperature.
- labeling buffer DPBS, pH 7.4 containing 1% FBS and 1% BSA
- the biotinylated compounds 4b, 5b, or 6b (0-100 micromolar) in labeling buffer for 0-90 minutes at room temperature.
- UV light 350 nm
- the cells were washed three times with cold labeling buffer and then incubated with avidin conjugated with fluorescein (0.5 microgram/ml; Molecular Probes) for 15 minutes at 4° C.
- Jurkat cells were harvested by centrifugation (5 minutes at 1,400 rpm) and resuspended as 5 ⁇ 10 6 cells/mL.
- the cell suspensions (250 microliters per sample) were incubated with biotin-conjugated alkynes 4b, 5b, and 6b (30 micromolar) or without compound as control for 1 hour.
- biotin-conjugated alkynes 4b, 5b, and 6b (30 micromolar) or without compound as control for 1 hour.
- UV light 350 nm
- the cells were washed (4 ⁇ 10 minutes) with cold DPBS, pH 7.4 containing FBS (1%) and lysed in passive lysis buffer.
- the cell lysates were clarified by centrifugation at 15,000 rpm for 15 minutes and the total protein content of the clear supernatants was assessed using the bicinchonic acid assay (BCA; Pierce Biotechnology).
- Cell lysate samples (20 micrograms protein) in SDS-PAGE sample buffer containing 2-mercaptoethanol were boiled for 5 minutes, resolved on a 4-20% Tris-HCl gel (Bio-Rad) and transferred to nitrocellulose membrane. Next the membrane was blocked in blocking buffer (non-fat dry milk (5%; Bio-Rad) in PBST (PBS containing 0.1% Tween-20 and 0.1% Triton X-100)) for 2 hours at room temperature.
- blocking buffer non-fat dry milk (5%; Bio-Rad) in PBST (PBS containing 0.1% Tween-20 and 0.1% Triton X-100)
- the blocked membrane was incubated for 1 hour at room temperature with an anti-biotin antibody conjugated to horseradish peroxidase (HRP) (1:100,000; Jackson ImmunoResearch Lab, Inc.) in blocking buffer and washed with PBST (4 ⁇ 10 minutes).
- HRP activity was performed using ECL Plus chemiluminescent substrate available under the trade designation Amersham), exposure to film (Kodak) and development using a digital X-ray imaging machine (Kodak).
- the gel was stained by Coomassie to confirm total protein loading.
- CHO cells bearing azides and untreated control cells were transferred to glass coverslips and cultured for 36 hours in their original medium.
- Live CHO cells were treated with the biotinylated compound 5b (30 micromolar) in labeling buffer (DPBS, supplemented with FBS (1%)) for 1 hour at room temperature.
- labeling buffer DPBS, supplemented with FBS (1%)
- the cells were subjected to UV light (350 nm) for 1 minute.
- the cells were incubated with avidin conjugated with Alexa Fluor 488 (Molecular Probes) for 15 minutes at 4° C. Cells were washed 3 times with labeling buffer and fixed with formaldehyde (3.7% in PBS).
- the nucleus was labeled with the far red-fluorescent TO-PRO-3 dye (Molecular Probes).
- the cells were mounted with PermaFluor (Thermo Electron Corporation) before imaging.
- Initial analysis was performed on a Zeiss Axioplan2 fluorescent microscope. Confocal images were acquired using a 60 ⁇ (NA1.42) oil objective. Stacks of optical sections were collected in the z dimensions. The step size, based on the calculated optimum for each objective, was between 0.25 and 0.5 micrometers. Subsequently, each stack was collapsed into a single image (z-projection). Analysis was performed offline using ImageJ 1.39f software (National Institutes of Health, USA) and Adobe Photoshop CS3 Extended Version 10.0 (Adobe Systems Incorporated), whereby all images were treated equally.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
wherein Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring, and the dashed line represents a four atom bridge. In certain embodiments, the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; E represents NR6, +N(R6)2, S, S═O, SO2, O, PR6, or C(R4)2; each R4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group; and each R6 is independently hydrogen, a C1-C10 organic group, and/or a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; G represents CR6, N, or P; and each R5 and R6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring.
wherein: R1 is selected from the group consisting of: an alkoxy and a hydroxyl; R2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen; and the cyclooctyne is a dibenzocyclooctyne. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker. As used herein, the terms “PEGylated” and “biotinylated” are meant to describe groups that include a polyethylene glycol (PEG) fragment or a biotin fragment, respectively. Optionally at least one of the azide or the cyclooctyne precursor can be bound to the surface of a substrate (e.g., a solid substrate or a cell membrane) and/or integrated into a substrate layer.
wherein Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring, and the dashed line represents a four atom bridge. In certain embodiments, the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; E represents NR6, +N(R6)2, S, S═O, SO2, O, PR6, or C(R4)2; each R4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group; and each R6 is independently hydrogen, a C1-C10 organic group, and/or a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; G represents CR6, N, or P; and each R5 and R6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring. In certain preferred embodiments, the cyclopropenone has the formula I:
wherein: R1 is selected from the group consisting of: an alkoxy and a hydroxyl; R2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen; and the cyclooctyne is a dibenzocyclooctyne. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
wherein: R1 is selected from the group consisting of: an alkoxy and a hydroxyl; R2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen; and the cyclooctyne is a dibenzocyclooctyne. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
wherein: R1 is selected from the group consisting of: an alkoxy and a hydroxyl; R2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen; and R3 is selected from the group consisting of a primary alkyl, a secondary alkyl, a tertiary alky, an aryl, an alkylaryl, an acyl, an alkylacyl, and an arylacyl. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
wherein Ar is a group representing a monocyclic or polycyclic, aromatic or heteroaromatic ring, and the dashed line represents a four atom bridge. In certain embodiments, the four atom bridge includes carbon atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, or combinations thereof. Such cyclopropenones can be prepared, for example, by the addition of a dihalocarbene to a corresponding cyclic alkyne followed by hydrolysis in methods similar to those further described herein below.
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; E represents NR6, +N(R6)2, S, S═O, SO2, O, PR6, or C(R4)2; each R4 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group; and each R6 is independently hydrogen, a C1-C10 organic group, and/or a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags. In some embodiments, such cyclopropenones can be prepared, for example, via a double Friedel-Crafts alkylation as illustrated, for example, in
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring; G represents CR6, N, or P; and each R5 and R6 is independently selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, nitrate, nitrite, sulfate, a C1-C10 organic group, and a linking group. Linking groups can be useful, for example, for attaching substrates and/or tags. In some embodiments, such cyclopropenones can be prepared, for example, via a double Friedel-Crafts alkylation as illustrated, for example, in
wherein each Ar is a group independently representing a monocyclic or polycyclic, aromatic or heteroaromatic ring.
where R1 can be selected from the group consisting of: an alkoxy and a hydroxyl, and R2 can be a substituent, and where, when the cyclooctyne is a dibenzocyclooctyne, R2 is selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker. The cyclooctyne can be a dibenzocyclooctyne.
where R1 is selected from the group consisting of: an alkoxy and a hydroxyl, and R2 is a substituent. In these embodiments of the methods of the disclosure, R2 may be selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen. Alternatively, or in addition to, R2 can be a PEGylated group, a biotinylated group, and/or a group containing an amide or carbamate linker.
R3—N3,
where R3 may be selected from the group consisting of an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylamino, an aryl, an alkylacyl, and an arylacyl.
where R1 can be selected from the group consisting of: an alkoxy and a hydroxyl; R2 can be selected from the group consisting of: an alkyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an aryl, an alkoxy, a carboxy, a hydroxyl, an ether, an ester, and a halogen; and wherein R3 can be selected from the group consisting of a primary alkyl, a secondary alkyl, a tertiary alky, an aryl, an alkylaryl, an acyl, an alkylacyl, and an arylacyl.
TABLE 2 |
Bimolecular rate constants for the reaction of |
acetylene 4a and 6c with azides in methanol |
Acetylene | Azide | Rate (M−1 s−1) | ||
4a | Benzyl azide | 5.67 × 10−2 | ||
6c | Benzyl azide | 7.63 × 10−2 | ||
6c | n-Butyl azide | 5.86 × 10−2 | ||
6c | 1-Phenyl-2-azidopropane | 3.43 × 10−2 | ||
6c | Phenyl azide | 1.63 × 10−2 | ||
TABLE 1 |
Bimolecular rate constants for the reaction |
of |
Azide | Rate (M−1 s−1) | ||
n-Butyl azide | 5.86 × 10−2 | ||
1-Phenyl-2-azidopropane | 3.43 × 10−2 | ||
Phenyl azide | 1.63 × 10−2 | ||
Benzyl azide | 7.63 × 10−2 | ||
TABLE 3 |
Bimolecular rate constants for the reaction |
of acetylene 6c with azides in methanol. |
Azide | Rate (M−1 s−1) | ||
n-Butyl azide | 5.86 × 10−2 | ||
1-Phenyl-2-azidopropane | 3.43 × 10−2 | ||
Phenyl azide | 1.63 × 10−2 | ||
Benzyl azide | 7.63 × 10−2 | ||
General Conditions for Biological Experiments
Claims (44)
R3—N3
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/708,617 US8258347B2 (en) | 2009-02-19 | 2010-02-19 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US13/182,683 US8426649B2 (en) | 2009-02-19 | 2011-07-14 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US13/567,509 US8541625B2 (en) | 2009-02-19 | 2012-08-06 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15376209P | 2009-02-19 | 2009-02-19 | |
US23883509P | 2009-09-01 | 2009-09-01 | |
US12/708,617 US8258347B2 (en) | 2009-02-19 | 2010-02-19 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/182,683 Continuation-In-Part US8426649B2 (en) | 2009-02-19 | 2011-07-14 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US13/567,509 Division US8541625B2 (en) | 2009-02-19 | 2012-08-06 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100210854A1 US20100210854A1 (en) | 2010-08-19 |
US8258347B2 true US8258347B2 (en) | 2012-09-04 |
Family
ID=42560507
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/708,617 Expired - Fee Related US8258347B2 (en) | 2009-02-19 | 2010-02-19 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US13/567,509 Expired - Fee Related US8541625B2 (en) | 2009-02-19 | 2012-08-06 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/567,509 Expired - Fee Related US8541625B2 (en) | 2009-02-19 | 2012-08-06 | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
Country Status (1)
Country | Link |
---|---|
US (2) | US8258347B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8541625B2 (en) | 2009-02-19 | 2013-09-24 | University Of Georgia Research Foundation, Inc. | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US20130310570A1 (en) * | 2010-09-27 | 2013-11-21 | University Of Georiga Research Foundation, Inc. | Methods including latent 1,3-dipole-functional compounds and materials prepared thereby |
US8912322B2 (en) | 2010-07-29 | 2014-12-16 | University Of Georgia Research Foundation, Inc. | Aza-dibenzocyclooctynes and methods of making and using same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8426649B2 (en) * | 2009-02-19 | 2013-04-23 | University Of Georgia Research Foundation, Inc. | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
WO2012054784A1 (en) | 2010-10-20 | 2012-04-26 | Li-Cor, Inc. | Fluorescent imaging with substituted cyanine dyes |
WO2014022535A1 (en) * | 2012-07-31 | 2014-02-06 | The University Of Akron | Polymeric structures containing strained cycloalkyne functionality for post-fabrication azidealkyne cycloaddition functionalization |
CN104292454B (en) * | 2013-07-17 | 2017-12-01 | 北京键凯科技股份有限公司 | Polyethylene glycol cyclooctyne derivative |
US20170096443A1 (en) * | 2014-03-04 | 2017-04-06 | University Of Georgia Research Foundation, Inc. | Platinum(iv) compounds and methods of making and using same |
CN103983764B (en) * | 2014-04-17 | 2016-06-29 | 深圳先进技术研究院 | Cell is carried out the methods and applications of labeled in situ |
JP7020403B2 (en) | 2016-05-02 | 2022-02-16 | 味の素株式会社 | Azide group-containing Fc protein |
EP3798215A1 (en) * | 2019-09-26 | 2021-03-31 | Université de Nantes | Covalent printing by photo-triggered click ligation |
TW202203973A (en) | 2020-04-22 | 2022-02-01 | 美商默沙東藥廠 | HUMAN INTERLEUKIN-2 CONJUGATES BIASED FOR THE INTERLEUKIN-2 RECEPTOR βγcDIMER AND CONJUGATED TO A NONPEPTIDIC, WATER-SOLUBLE POLYMER |
JP2023538365A (en) | 2020-08-19 | 2023-09-07 | バックスサイト・インコーポレイテッド | Carrier-protein polysaccharide binding method |
WO2022250679A1 (en) * | 2021-05-27 | 2022-12-01 | Massachusetts Institute Of Technology | Cyclooctynes for click chemistry |
US11377424B1 (en) | 2021-05-27 | 2022-07-05 | Massachusetts Institute Of Technology | Cyclooctynes for click chemistry |
US20230280275A1 (en) * | 2021-10-06 | 2023-09-07 | California Institute Of Technology | Photoactivatable vibrational probes and uses thereof |
AU2023331268A1 (en) * | 2022-08-26 | 2025-03-06 | Peptidream Inc. | Cycloalkyne derivative |
CN116947581A (en) * | 2023-05-19 | 2023-10-27 | 西湖大学 | Method for realizing allylic C-H alkylation reaction in LMCT process with participation of photoinduction metal chromium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067663A1 (en) | 2007-11-21 | 2009-05-28 | University Of Georgia Research Foundation, Inc. | Alkynes and methods of reacting alkynes with 1,3-dipole-functional compounds |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8258347B2 (en) | 2009-02-19 | 2012-09-04 | University Of Georgia Research Foundation, Inc. | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US8426649B2 (en) | 2009-02-19 | 2013-04-23 | University Of Georgia Research Foundation, Inc. | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US8912322B2 (en) * | 2010-07-29 | 2014-12-16 | University Of Georgia Research Foundation, Inc. | Aza-dibenzocyclooctynes and methods of making and using same |
-
2010
- 2010-02-19 US US12/708,617 patent/US8258347B2/en not_active Expired - Fee Related
-
2012
- 2012-08-06 US US13/567,509 patent/US8541625B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067663A1 (en) | 2007-11-21 | 2009-05-28 | University Of Georgia Research Foundation, Inc. | Alkynes and methods of reacting alkynes with 1,3-dipole-functional compounds |
Non-Patent Citations (103)
Title |
---|
Aamer et al., "RAFT Polymerization of a Novel Activated Ester Monomer and Conversion to a Terpyridine-Containing Homopolymer," J. Polym. Sci., Part A: Polym. Chem., Dec. 1, 2007; 45(23): 5618-5625. Available online Oct. 22, 2007. |
Afroz et al., "Photo-Removable Protecting Groups for in Situ DNA Microarray Synthesis," Clin. Chem., Oct. 2004; 50(10): 1936-1939. |
Agard et al., "A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems," J. Am. Chem. Soc., Nov. 24, 2004; 126(46): 15046-15047; published on Web Nov. 2, 2004. |
Angiolini et al., "Cross-linked polystyrene resins containing triorganotin-4-vinylbenzoates: Assessment of their catalytic activity in transesterification reactions," J. Organometallic Chem., Jun. 15, 2006; 691(13): 3043-3052. Available online Mar. 14, 2006. |
Baskin et al., "Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems," QSAR Comb. Sci., Dec. 2007; 26(11-12): 1211-1219. Available online Oct. 22, 2007. |
Baskin et al., "Copper-free click chemistry for dynamic in vivo imaging," Proc. Natl. Acad. Sci. USA, Oct. 23, 2007; 104(43): 16793-16797. Available online Oct. 17, 2007. |
Becer et al., "Click Chemistry beyond Metal-Catalyzed Cycloaddition," Angew. Chem. Int. Ed., Jun. 22, 2009; 48(27): 4900-4908. Available online May 27, 2009. |
Begum et al., "Autocatalytic Alkyne Cycloadditions: Evidence for Collodial Pt Catalysis," J. Am. Chem. Soc., Oct. 5, 2005; 127(39): 13494-13495. Available online Sep. 13, 2005. |
Biotin (from Wikipedia). Retrieved on Jan. 19, 2012. Retrieved from the Internet: http://en.wikipedia.org/wiki/Biotin. 8 pages; last modified Jan. 15, 2012. |
Blawas et al., "Protein patterning," Biomaterials, Apr. 1998; 19(7-9): 595-609. |
Boons, "Elucidating structure-function relationships of lipid A: A synthetic approach," Grant Description. Grant No. 5-R01-GM061761-07. National Institute of Health [online]. Project dates Jul. 1, 2000 to Jul. 31, 2010. [Retrieved from the Internet on Aug. 22, 2011] Available online: , 3 pgs. |
Boons, "Elucidating structure-function relationships of lipid A: A synthetic approach," Grant Description. Grant No. 5-R01-GM061761-07. National Institute of Health [online]. Project dates Jul. 1, 2000 to Jul. 31, 2010. [Retrieved from the Internet on Aug. 22, 2011] Available online: <URL: http://datalab-1.ics.uci.edu/nih/crisp/2007/getdoc.php?did=46686>, 3 pgs. |
Breinbauer et al., "Azide-Alkyne Coupling: A Powerful Reaction for Bioconjugate Chemistry," Chembiochem., Nov. 7, 2003; 4(11): 1147-1149. |
Brunner et al., "New porphyrin platinum conjugates for the cytostatic and photodynamic tumor therapy," Inorganica Chiica Acta, Jul. 4, 2003; 350: 39-48. Available online May 22, 2003. |
Carroll et al., "Photons to illuminate the universe of sugar diversity through bioarrays," Glycoconj. J., Jan. 2008; 25(1): 5-10. Available online Jul. 4, 2007. |
Chapman et al., "Acenaphthyne," J. Am. Chem. Soc., Nov. 1981; 103(23): 7033-7036. |
Chen et al., "Cell shape provides global control of focal adhesion assembly," Biochem. Biophys. Res. Commun., Jul. 25, 2003; 307(2): 355-361. |
Chiang et al., "Reactive species: Ynols and Ynamines," J. Phys. Org. Chem., Jun. 1996; 9(6): 361-370. |
Chiellini et al., "Patterning of Polymeric Hydrogels for Biomedical Applications," Macromol. Rapid. Commun., Oct. 2001; 22(15): 1284-1287. Available online Oct. 17, 2001. |
Choi et al., "Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin," Anal. Biochem., Dec. 1, 2005; 347(1): 60-66. Available online Sep. 28, 2005. |
Codelli et al., "Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry," J. Am. Chem. Soc., Aug. 27, 2008; 130(34): 11486-11493. Available online Aug. 5, 2008. |
Crawford et al., "Antibody Array Technology: Screening and Profiling Protein Expression in Human Cancer Serum using Antibody Array Technologies," [online]. SIGMA Life Science Innovations, 2008; (24): 10-3. [Retrieved from the Internet on Aug. 25, 2011.] Available online at: <URL: http://www.sigmaaldrich.com/etc/medialib/flashapps/life-science-innovations/pdfs/lsiweb24-pdf.Par.0001.File.dat/lsiweb24.pdf>. |
Dehmlow et al., "Cyclopropenonchemie, X. 2-Alkoxy-3-alkylcyclopropenone," Chem. Ber., Mar. 1988; 121(3): 569-571 (English language abstract). Available online Jan. 23, 2006. |
Delehanty et al., "A Microarray Immunoassay for Simultaneous Detection of Proteins and Bacteria," Anal. Chem., Nov. 1, 2002; 74(21): 5681-5687. Available online Oct. 1, 2002. |
Dillmore et al., "A Photochemical Method for Patterning the Immobilization of Ligands and Cells to Self-Assembled Monolayers," Langmuir, Aug. 17, 2004; 20(17): 7223-7231; published on Web Jul. 24, 2004. |
Eischer, et al., Tet. Lett., 1984, vol. 25(40), pp. 4495-4498. * |
Ellis-Davies, "Caged Compounds: photorelease technology for control of cellular chemistry and physiology," Nat. Methods, Aug. 2007; 4(8): 619-628. |
Ess et al., "Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes," Organic Letters, Apr. 17, 2008; 10(8): 1633-1636. Available online Mar. 26, 2008. |
Fernández-Suárez et al., "Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes," Nat. Biotechnol., Dec. 2007; 25(12): 1483-1487. Available online Dec. 2, 2007. |
Fleischmann et al., "Modification of Polymer Surfaces by Click Chemistry," Macromolecular Rapid Communications, Jul. 1, 2008; 29(12-13): 1177-1185. Available online May 27, 2008. |
Fournier et al., "Clicking polymers: a straightforward approach to novel macromolecular architectures," Chem. Soc. Rev., Aug. 2007; 36(8): 1369-1380. Available online May 3, 2007. |
Furniss et al., Vogel's Textbook of Practical Organic Chemistry, 5th Ed. Supp., Longman Scientific and Technical Ltd, Harlow, England, 1991, 809-816. |
Ganesan et al., "Simple micropatterning of biomolecules on a diazoketo-functionalized photoresist," J. Mater. Chem., 2008; 18(6): 703-709. Available online Jan. 7, 2008. |
Gramlich et al., "Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction," Angew. Chem. Int. Ed. Engl., Oct. 20, 2008; 47(44): 8350-8358. |
Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, Sausalito, California, 1994. Cover page, copyright page, and table of contents; 6 pgs. |
Heller, "Electrical wiring of redox enzymes," Acc. Chem. Res., May 1990; 23(5): 128-134. |
Himo et al., "Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates," J. Am. Chem. Soc., Jan. 12, 2005; 127(1): 210-216. Available online Dec. 8, 2004. |
Huisgen. "1,3-Dipolar Cycloadditions, Past and Future". Angewandte Chemie International Edition. 2(10):565-598. 35 pages total, 1963. |
Huisgen. "Kinetics and Mechanism of 1,3-Dipolar Cycloadditions". 1963. Angewandte Chemie International Edition. 2(11):633-645. 14 pages total. |
Inglis et al., "Ultrafast click conjugation of macromolecular building blocks at ambient temperature," Angew. Chem. Int. Ed. Engl., Mar. 16, 2009; 48(13): 2411-2414. Available online Feb. 18, 2009. |
Johnson et al., "Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers," Chem. Commun. (Camb.), Jul. 14, 2008; (26): 3064-3066. Available online Apr. 24, 2008. |
Johnsson, "Visualizing biochemical activities in living cells," Nat. Chem. Biol., Feb. 2009; 5(2): 63-65. |
Kolb et al., "Click Chemistry: Diverse Chemical Function from a Few Good Reactions," Angew. Chem. Int. Ed., Jun. 1, 2001; 40(11): 2004-2021. Available online May 28, 2001. |
Kolb et al., "The growing impact of click chemistry on drug discovery," Drug Discov. Today, Dec. 15, 2003; 8(24): 1128-1137. |
Ku et al., "Surface patterning with fluorescent molecules using click chemistry directed by scanning electrochemical microscopy," J. Am. Chem. Soc., Feb. 27, 2008; 130(8): 2392-2393. Available online Feb. 2, 2008. |
Kuzmanich et al., "Photonic Amplification by a Singlet-State Quantum Chain Reaction in the Photodecarbonylation of Crystalline Diarylcyclopropenones," J. Am. Chem. Soc., 2009; 131(32): 11606-11614. Available online Jul. 28, 2009. |
Kuzmanich et al., "Solid-State Photodecarbonylation of Diphenylcyclopropenone: A Quantum Chain Process Made Possible by Ultrafast Energy Transfer," J. Am. Chem. Soc., Jan. 30, 2008; 130(4): 1140-1141. Available online Jan. 10, 2008. |
Kuzmin et al., "Dual reactivity of a photochemically-generated cyclic enyne-allene," Chem. Commun. (Camb.), Oct. 14, 2009; (38): 5707-5709. Available online Aug. 14, 2009. |
Lallana et al., "Surpassing the use of copper in the click functionalization of polymeric nanostructures: a strain-promoted approach," J. Am. Chem. Soc., Apr. 29, 2009; 131(16): 5748-5750; published on Web Apr. 6, 2009. |
Laughlin et al., "Imaging the glycome," Proc. Natl. Acad. Sci. USA, Jan. 6, 2009; 106(1): 12-17. Available online Dec. 22, 2008. |
Laughlin et al., "In vivo imaging of membrane-associated glycans in developing zebrafish," Science, May 2, 2008; 320(5876): 664-667. |
Li et al., "Synthesis of Novel Heterobifunctional Isocyanato Cross-Linkers and Their Applications for the Preparation of 10-Hydroxycamptothecin and SN-38 Conjugates with Melanotransferrin P97," Synth. Comm., 2007; 37(11): 1899-1915. Available online Jun. 30, 2007. |
Locklin et al., "Smart Autonomous Nanomotors through Orthogonal Self-Assembly," Grant Abstract. Grant No. ECCS 0901141 [online]. National Science Foundation. Project Dates: Aug. 1, 2009 to Jul. 31, 2012. Available online: URL:, 2 pgs. |
Locklin et al., "Smart Autonomous Nanomotors through Orthogonal Self-Assembly," Grant Abstract. Grant No. ECCS 0901141 [online]. National Science Foundation. Project Dates: Aug. 1, 2009 to Jul. 31, 2012. Available online: URL:<http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0901141>, 2 pgs. |
Lundberg et al., "Click Assisted One-Pot Multi-Step Reactions in Polymer Science: Accelerated Synthetic Protocols," Macromol. Rapid. Comm., Jul. 1, 2008; 29(12-13): 998-1015. Available online Jun. 10, 2008. |
Lutz, "1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science," Angew. Chem. Int. Ed. Engl., Feb. 5, 2007; 46(7): 1018-1025. Available online Jan. 9, 2007. |
MacBeath et al., "Printing Proteins as Microarrays for High-Throughput Function Determination," Science, Sep. 8, 2000; 289(5485): 1760-1763. |
Matyjaszewski et al., "Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator," Macromolecules, 1999; 32(26): 8716-8724. Available online Dec. 10, 1999. |
Mayer et al., "Biologically active molecules with a 'light switch,'" Angew. Chem. Int. Ed. Engl., Jul. 24, 2006; 45(30): 4900-4921. Available online Jul. 7, 2006. |
McGlennen, "Miniaturization Technologies for Molecular Diagnostics," Clin. Chem., Mar. 2001; 47(3) 393-402. |
Michael et al., "On the Formation of Imido-1,2-Diazol Derivatives from Aromatic Azimides and Esters of Acetylenecarboxylic Acids," Am. Chem. J., 1898; 20(7): 377-395. |
Michel et al., "Carbohydrate microarrays by microcontact 'click' chemistry," Langmuir, Nov. 4, 2008; 24(21): 12116-12118. Available online Oct. 7, 2008. |
Mita et al., "Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film," Macromolecules, Feb. 1989; 22(2): 558-563. |
Morais et al., "DNA microarraying on compact disc surfaces. Application to the analysis of single nucleotide polymorphisms in Plum pox virus," Chem. Commun. (Camb.), Jun. 14, 2006; (22): 2368-2370. Available online May 2, 2006. |
Moses et al., "The growing applications of click chemistry," Chem. Soc. Rev., Aug. 2007; 36(8): 1249-1262. Available online May 3, 2007. |
Murata et al., "Photochemistry of 1,3-bis(diazo)indan-2-one: consecutive decomposition and suppression of a Wolff rearrangement," J. Am. Chem. Soc., May 1993; 115(10): 4013-4023. |
Nakajima, "Patterning of Protein on the Macrochannel Wall," J. Flow. Inj. Anal., 2006; 23(2): 123. |
Nandivada et al., "Click Chemistry: Versatility and Control in the Hands of Materials Scientists," J. Adv. Mater., Sep. 2007; 19(17): 2197-2208. Available online Aug. 9, 2007. |
Ning et al., "Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copper-Free and Fast Huisgen Cycloadditions," Angew. Chem. Int. Ed. Engl., Mar. 7, 2008; 47(12): 2253-2255. Available online Feb. 14, 2008. |
Nozaki et al., "Mechanistic Aspects of the Alternating Copolymerization of Propene with Carbon Monoxide Catalyzed by Pd(II) Complexes of Unsymmetrical Phosphine-Phosphite Ligands," J. Am. Chem. Soc., 1997; 119(52): 12779-12795. Available online Dec. 31, 1997. |
Ochiai et al., "Expeditious Chemoenzymatic Synthesis of Homogenous N-Glycoproteins Carrying Defined Oligosaccharide Ligands," J. Am. Chem. Soc., 2008; 130(41): 13790-13803. Available online Sep. 20, 2008. |
Orski et al., "High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry," J. Am. Chem. Soc., Aug. 18, 2010; 132(32): 11024-11026; published on Web Jul. 22, 2010. |
Orski et al., "High Density Scaffolding of Functional Polymer Brushes: Surface Initiated Atom Transfer Radical Polymerization of Active Esters," Langmuir, 2010; 26(3): 2136-2143. Available online Oct. 2, 2009. |
Panda et al., "An array of insights: application of DNA chip technology in the study of cell biology," Trends Cell Biol., Mar. 2003; 13(3): 151-156. Available online Jan. 31, 2003. |
Pandithavidana et al., "Photochemical Generation and Reversible Cycloaromatization of a Nine-Membered Ring Cyclic Enediyne," J. Am. Chem. Soc., Jan. 14, 2009; 131(1): 351-356. Available online Dec. 3, 2008. |
Pelliccioli et al., "Photoremovable protecting groups: reaction mechanisms and applications," Photochem. Photobiol. Sci., Jul. 2002; 1(7): 441-458. Available online Jun. 6, 2002. |
Penoni et al., "On the mechanism of nitrosoarene-alkyne cycloaddition," J. Am. Chem. Soc., Jan. 21, 2009; 131(2): 653-661; published on Web Dec. 18, 2008. |
Poloukhtine et al., "Application of photochemical decarbonylation of cyclopropenones for the in situ generation of reactive enediynes. Construction of a cyclopropenone-containing enediyne precursor by using a cyclopropenone acetal building block," J. Org. Chem., Feb. 18, 2005; 70(4): 1297-1305. |
Poloukhtine et al., "Highly Efficient Photochemical Generation of a Triple Bond: Synthesis, Properties, and Photodecarbonylation of Cyclopropenones," J. Org. Chem., Oct. 3, 2003; 68(20): 7833-7840. Available online Sep. 9, 2003. |
Poloukhtine et al., "Mechanism of the cyclopropenone decarbonylation reaction. A density functional theory and transient spectroscopy study," J. Phys. Chem. A., Feb. 9, 2006; 110(5): 1749-1757. |
Poloukhtine et al., "Photoswitchable enediynes: use of cyclopropenone as photocleaveable masking group for the enediyne triple bond," Chem. Commun., Feb. 7, 2005; 617-619. Available online Dec. 10, 2004. |
Poloukhtine et al., "Selective Labeling of Living Cells by a Photo-Triggered Click Reaction," J. Am. Chem. Soc., Nov. 4, 2009;131(43): 15769-15776. Available online Oct. 8, 2009. |
Poloukhtine et al., "Two-photon photochemical generation of reactive enediyne," J. Org. Chem., Sep. 15, 2006; 71(19):7417-7421; published on Web Aug. 16, 2006. |
Polyethylene Glycol (from Wikipedia). Retrieved on Jan. 19, 2012. Retrieved from the Internet: http://en.wilipedia.org/wiki/Polyethylene-glycol. 8 pages; last modified Jan. 19, 2012. |
Popik, "Career: Towards Space- and Time-resolved Generation of p-Benzyne Diradical: Development of Photoswitchable Analogs of Natural Enediyne Antibiotics," Grant Abstract. Grant No. CHE 0449478. National Science Foundation [online]. Retrieved on Aug. 22, 2011. Available online at URL: , 2 pgs. |
Popik, "Career: Towards Space- and Time-resolved Generation of p-Benzyne Diradical: Development of Photoswitchable Analogs of Natural Enediyne Antibiotics," Grant Abstract. Grant No. CHE 0449478. National Science Foundation [online]. Retrieved on Aug. 22, 2011. Available online at URL: <http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0449478>, 2 pgs. |
Popper et al., "Proteomics-Tissue and Protein Microarrays and Antibody Array: what information is provided?" Arch. Path. & Lab. Med., Oct. 2008; 132(10): 1570-1572. |
Rostovtsev et al., "A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes," Angew. Chem. Int. Ed. Engl., Jul. 15, 2002; 41(14): 2596-2599. |
Saxon et al., "Cell surface engineering by a modified Staudinger reaction," Science, Mar. 17, 2000; 287(5460): 2007-2010. |
Sekkat et al., "Photoreactive Organic Thin Films," Academic Press, Waltham, Massachussetts, 2002. Cover page, copyright page, and table of contents. 12 pgs. |
Sgouras et al., "Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity," J. Mater. Sci.: Mater. Med., 1990; 1(2): 61-68. |
Sharpless et al., "In situ click chemistry: a powerful means for lead discovery," Exp. Opin. Drug Discov., Nov. 2006; 1(6): 525-538. |
Sletten et al., "A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry," Org. Lett., Jul. 17, 2008, 10(14):3097-3099. Available online Jun. 13, 2008. |
Song et al., "Selective Functionalization of a Genetically Encoded Alkene-Containing Protein Via 'Photoclick Chemistry' in Bacterial Cells," J. Am. Chem. Soc., Jul. 30, 2008;130(30): 9654-9655. Available online Jul. 2, 2008. |
Speers et al., "Activity-Based Protein Profiling in Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition," J. Am. Chem. Soc., Apr. 23, 2003; 125(16): 4686-4687; published on Web Mar. 28, 2003. |
Strable et al., "Unnatural amino acid incorporation into virus-like particles," Bioconjugate Chem., Apr. 2008; 19(4): 866-875. Available online Mar. 5, 2008. |
Sun et al., "Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions," Bioconjugate Chem., Jan.-Feb. 2006; 17(1): 52-57; published on Web Dec. 21, 2005. |
Tornøe et al., "Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides," J. Org. Chem., May 3, 2002; 67(9): 3057-3064. Available online Apr. 2, 2002. |
Urdabayev et al., "Two-photon induced photodecarbonylation reaction of cyclopropenones," Chem. Commun. (Camb.), Jan. 28, 2006; (4): 454-456. |
Van Eyk et al., "Chapter 8. Antibody Microarrays for Protein and Glycan Detection," in Clinical Proteomics: From Diagnosis to Therapy, Wiley-VCH Verlag GmbH and Co. KGaA, Berlin, Germany, 2008, 101-111. |
von Maltzahn et al., "In vivo tumor cell targeting with 'click' nanoparticles," Bioconjugate Chem., Aug. 2008; 19(8): 1570-1578. Available online Jul. 9, 2008. |
Wang et al., "Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition," J. Am. Chem. Soc., Mar. 19, 2003; 125(11): 3192-3193. Available online Feb. 22, 2003. |
Weisbrod et al., "Novel strategies for the site-specific covalent labelling of nucleic acids," Chem. Commun. (Comb.), Nov. 30, 2008; (44): 5675-5685. Available online Sep. 25, 2008. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8541625B2 (en) | 2009-02-19 | 2013-09-24 | University Of Georgia Research Foundation, Inc. | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom |
US8912322B2 (en) | 2010-07-29 | 2014-12-16 | University Of Georgia Research Foundation, Inc. | Aza-dibenzocyclooctynes and methods of making and using same |
USRE47539E1 (en) | 2010-07-29 | 2019-07-30 | University Of Georgia Research Foundation, Inc. | Aza-dibenzocyclooctynes and methods of making and using same |
US20130310570A1 (en) * | 2010-09-27 | 2013-11-21 | University Of Georiga Research Foundation, Inc. | Methods including latent 1,3-dipole-functional compounds and materials prepared thereby |
US9315468B2 (en) * | 2010-09-27 | 2016-04-19 | University Of Georgia Research Foundation, Inc. | Methods including latent 1,3-dipole-functional compounds and materials prepared thereby |
Also Published As
Publication number | Publication date |
---|---|
US20120295318A1 (en) | 2012-11-22 |
US20100210854A1 (en) | 2010-08-19 |
US8541625B2 (en) | 2013-09-24 |
US20130164803A9 (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8258347B2 (en) | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom | |
Poloukhtine et al. | Selective labeling of living cells by a photo-triggered click reaction | |
US8426649B2 (en) | Cyclopropenones and the photochemical generation of cyclic alkynes therefrom | |
CN111233907B (en) | A glutathione-responsive fluoroborodipyrrole anticancer photosensitizer and its preparation and application | |
McCracken et al. | Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers | |
Jaratjaroonphong et al. | Green synthesis and anti-inflammatory studies of a series of 1, 1-bis (heteroaryl) alkane derivatives | |
Bimoussa et al. | New enaminone sesquiterpenic: TiCl4-catalyzed synthesis, spectral characterization, crystal structure, Hirshfeld surface analysis, DFT studies and cytotoxic activity | |
Shit et al. | Synthesis of Spiro [furan-2, 1′-isoindolin]-3′-ones from 2-(4-Hydroxybut-1-yn-1-yl) benzonitriles and Aryl Aldehydes under the Action of Triflic Acid | |
US20230331652A1 (en) | Trans-cyclooctenes with high reactivity and favorable physiochemical properties | |
Shelke et al. | Bismuth triflate-catalyzed condensation of indoles with acetone | |
Yousef et al. | Recent progress in synthesis and application of furoxan | |
Doğan Ulu et al. | Water-soluble N-heterocyclic carbene precursors bearing benzimidazole core: synthesis, characterization, in vitro antioxidant and anticancer studies | |
Paul et al. | ESIPT-induced fluorescent o-hydroxycinnamate: a self-monitoring phototrigger for prompt image-guided uncaging of alcohols | |
CN109456352B (en) | Phenylboronic acid ester modified hydrogen peroxide activated type boron dipyrromethene photosensitizer and preparation thereof | |
KR101975299B1 (en) | Compounds containing core structure of indole acetic acid and uses thereof | |
JP2018512424A (en) | Reagents and methods for esterification | |
CN114195814B (en) | Hydroxynaphthone-phenylboronic acid compound, preparation method and use | |
Makarov et al. | 1, 5-Diaryl-3-oxo-1, 4-pentadienes based on (4-oxopiperidin-1-yl)(aryl) methyl phosphonate scaffold: synthesis and antitumor properties | |
CN110054645B (en) | Ferrocene-modified glutathione-activatable fluoroborondipyrrole derivatives and preparation method and application thereof | |
Patel et al. | In-vitro cytotoxicity, antioxidant, bleomycin-dependent DNA damage and immunomodulatory evaluation of 1-(4-acetylphenyl)-3-aryloxypyrrolidine-2, 5-dione based derivatives | |
Patel et al. | In silico exploration of acetic acid driven multicomponent synthesis: design, characterization, and antioxidant evaluation of spiroacridines and spiroquinolines | |
TW200418762A (en) | Fullerene compounds | |
EP3612538B1 (en) | Quinone-methide precursors with bodipy chromophore, method of preparation, biological activity and application in fluorescent labelling | |
Bock et al. | Deeper Insight into the Six‐Step Domino Reaction of Aldehydes with Malononitrile and Evaluation of Antiviral and Antimalarial Activities of the Obtained Bicyclic Products | |
RU2538982C1 (en) | Derivant of acetamid n-(1s)-1',2',3'-trimethoxy-6,7-dihydro-1h-benzo[5',6':5,4]cyclohepta-[3,2-f]benzofuran-1-il) and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC., G Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPIK, VLADIMIR V.;POLOUKHTINE, ANDREI A.;REEL/FRAME:024298/0177 Effective date: 20100317 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.;REEL/FRAME:025568/0634 Effective date: 20101117 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
AS | Assignment |
Owner name: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC., G Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPIK, VLADIMIR V.;POLOUKHTINE, ANDREI A.;BOONS, GEERT-JAN;AND OTHERS;SIGNING DATES FROM 20120130 TO 20120427;REEL/FRAME:028163/0135 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240904 |