US8119037B2 - Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components - Google Patents
Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components Download PDFInfo
- Publication number
- US8119037B2 US8119037B2 US12/429,034 US42903409A US8119037B2 US 8119037 B2 US8119037 B2 US 8119037B2 US 42903409 A US42903409 A US 42903409A US 8119037 B2 US8119037 B2 US 8119037B2
- Authority
- US
- United States
- Prior art keywords
- transition metal
- metal complex
- singly
- organic
- multiply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 58
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 28
- 230000005693 optoelectronics Effects 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims description 59
- 239000002019 doping agent Substances 0.000 claims description 45
- 150000001875 compounds Chemical class 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- 125000001072 heteroaryl group Chemical group 0.000 claims description 16
- 229910052736 halogen Inorganic materials 0.000 claims description 15
- -1 halogen heteroaromatics Chemical class 0.000 claims description 14
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 10
- 150000002367 halogens Chemical class 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 150000004982 aromatic amines Chemical class 0.000 claims description 5
- 150000004696 coordination complex Chemical class 0.000 claims description 5
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 5
- 150000002390 heteroarenes Chemical class 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 5
- 125000002577 pseudohalo group Chemical group 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 150000003003 phosphines Chemical class 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- MVRNAPZMQQYTIN-UHFFFAOYSA-N 2,3,4,5-tetrafluoropyridine Chemical group FC1=CN=C(F)C(F)=C1F MVRNAPZMQQYTIN-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 claims description 2
- 150000008282 halocarbons Chemical class 0.000 claims 6
- 125000004122 cyclic group Chemical group 0.000 claims 3
- 239000010410 layer Substances 0.000 description 59
- 239000004065 semiconductor Substances 0.000 description 19
- 239000000370 acceptor Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 0 [1*]C1=C([2*])CC(C)(C)C1.[1*]C1=CC2(C=C1[2*])CC([3*])=C([4*])C2 Chemical compound [1*]C1=C([2*])CC(C)(C)C1.[1*]C1=CC2(C=C1[2*])CC([3*])=C([4*])C2 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 5
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- HXWWMGJBPGRWRS-CMDGGOBGSA-N 4- -2-tert-butyl-6- -4h-pyran Chemical compound O1C(C(C)(C)C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(C(CCN2CCC3(C)C)(C)C)=C2C3=C1 HXWWMGJBPGRWRS-CMDGGOBGSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- ROSJAGJNRATUGF-UHFFFAOYSA-L [Ni+2].C=C.C=C.[O-]C(=O)C1SSC=C1.[O-]C(=O)C1SSC=C1 Chemical class [Ni+2].C=C.C=C.[O-]C(=O)C1SSC=C1.[O-]C(=O)C1SSC=C1 ROSJAGJNRATUGF-UHFFFAOYSA-L 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- FWLLWHCFLMXGDG-UHFFFAOYSA-N 1,3-dithiol-2-one Chemical class O=C1SC=CS1 FWLLWHCFLMXGDG-UHFFFAOYSA-N 0.000 description 1
- IYZMXHQDXZKNCY-UHFFFAOYSA-N 1-n,1-n-diphenyl-4-n,4-n-bis[4-(n-phenylanilino)phenyl]benzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 IYZMXHQDXZKNCY-UHFFFAOYSA-N 0.000 description 1
- KTSGGWMVDAECFK-UHFFFAOYSA-N 2,4,7,9-tetraphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC(C=2C=CC=CC=2)=C(C=CC=2C3=NC(=CC=2C=2C=CC=CC=2)C=2C=CC=CC=2)C3=N1 KTSGGWMVDAECFK-UHFFFAOYSA-N 0.000 description 1
- RZLJGMIZWFBKPS-UHFFFAOYSA-N B[Al]=N.CC(C)OC(=S)SSC(=S)OC(C)C.O=C1SC([Ar])=C([Rf])S1.O=C1SC([Ar])=C([Rf])S1.[Ar]C#C[Rf].[Ar]C1=C([Rf])SC2(S1)SC([Ar])C([Rf])S2 Chemical compound B[Al]=N.CC(C)OC(=S)SSC(=S)OC(C)C.O=C1SC([Ar])=C([Rf])S1.O=C1SC([Ar])=C([Rf])S1.[Ar]C#C[Rf].[Ar]C1=C([Rf])SC2(S1)SC([Ar])C([Rf])S2 RZLJGMIZWFBKPS-UHFFFAOYSA-N 0.000 description 1
- RMZCARBYCZRWIK-QFQVTVNCSA-N C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(N(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=N3/C2=N\C2=C4C=CC=CC4=C4N=C5C6=C(C=CC=C6)C6=N5[Zn]3(N42)N2/C(=N\6)C3=C(C=CC=C3)/C2=N/1.[2H]P[3H] Chemical compound C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(N(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=N3/C2=N\C2=C4C=CC=CC4=C4N=C5C6=C(C=CC=C6)C6=N5[Zn]3(N42)N2/C(=N\6)C3=C(C=CC=C3)/C2=N/1.[2H]P[3H] RMZCARBYCZRWIK-QFQVTVNCSA-N 0.000 description 1
- VMPLMOXGWULJTH-UHFFFAOYSA-N CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C3C(=C2)C2(C4=CC(N(C5=CC=C(C)C=C5)C5=CC=C(C)C=C5)=CC=C4C4=C2C=C(N(C2=CC=C(C)C=C2)C2=CC=C(C)C=C2)C=C4)C2=C3C=CC(N(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)=C2)C=C1 Chemical compound CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C3C(=C2)C2(C4=CC(N(C5=CC=C(C)C=C5)C5=CC=C(C)C=C5)=CC=C4C4=C2C=C(N(C2=CC=C(C)C=C2)C2=CC=C(C)C=C2)C=C4)C2=C3C=CC(N(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)=C2)C=C1 VMPLMOXGWULJTH-UHFFFAOYSA-N 0.000 description 1
- BJRJCWRSUAADJO-WGRQQZTPSA-L F.F.F.F.FC(F)(F)C#CC1=CC=CC=C1.FC(F)(F)C1=C(C2=CC=CC=C2)SS1.FC(F)(F)C1=[SH][Ni]2(SC(C3=CC=CC=C3)=C(C(F)(F)F)S2)[SH]=C1C1=CC=CC=C1.S=S=S=S=S=S=S=S.[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[Ni] Chemical compound F.F.F.F.FC(F)(F)C#CC1=CC=CC=C1.FC(F)(F)C1=C(C2=CC=CC=C2)SS1.FC(F)(F)C1=[SH][Ni]2(SC(C3=CC=CC=C3)=C(C(F)(F)F)S2)[SH]=C1C1=CC=CC=C1.S=S=S=S=S=S=S=S.[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[Ni] BJRJCWRSUAADJO-WGRQQZTPSA-L 0.000 description 1
- WNCARPGURCGVKP-UHFFFAOYSA-M F.F.F.S=S=S=S=S=S=S=S.[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[Ni].[Rf]C#CC1=CC=NC=C1.[Rf]C1=[SH][Ni]2(SC([Rf])=C(C3=CC=NC=C3)S2)[SH]=C1C1=CC=NC=C1 Chemical compound F.F.F.S=S=S=S=S=S=S=S.[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[Ni].[Rf]C#CC1=CC=NC=C1.[Rf]C1=[SH][Ni]2(SC([Rf])=C(C3=CC=NC=C3)S2)[SH]=C1C1=CC=NC=C1 WNCARPGURCGVKP-UHFFFAOYSA-M 0.000 description 1
- RKHJWZNDVKDBPE-UHFFFAOYSA-A FC1=C(F)C(F)=C(C2S[Ni]3(SC(C4=C(F)C(F)=C(F)C(F)=C4F)C(C(F)(F)F)S3)SC2C(F)(F)F)C(F)=C1F.FC1=C(F)C(F)=C(F)C(C2S[Ni]3(SC(C4=NC(F)=C(F)C(F)=C4F)C(C(F)(F)F)S3)SC2C(F)(F)F)=N1.N#CC1S[Ni]2(SC(C#N)C(C3=C(F)C(F)=C(F)C(F)=C3F)S2)SC1C1=C(F)C(F)=C(F)C(F)=C1F.[H]C1S[Ni]2(SC([H])C(C(F)(C(F)(F)F)C(F)(F)F)S2)SC1C(F)(C(F)(F)F)C(F)(F)F Chemical compound FC1=C(F)C(F)=C(C2S[Ni]3(SC(C4=C(F)C(F)=C(F)C(F)=C4F)C(C(F)(F)F)S3)SC2C(F)(F)F)C(F)=C1F.FC1=C(F)C(F)=C(F)C(C2S[Ni]3(SC(C4=NC(F)=C(F)C(F)=C4F)C(C(F)(F)F)S3)SC2C(F)(F)F)=N1.N#CC1S[Ni]2(SC(C#N)C(C3=C(F)C(F)=C(F)C(F)=C3F)S2)SC1C1=C(F)C(F)=C(F)C(F)=C1F.[H]C1S[Ni]2(SC([H])C(C(F)(C(F)(F)F)C(F)(F)F)S2)SC1C(F)(C(F)(F)F)C(F)(F)F RKHJWZNDVKDBPE-UHFFFAOYSA-A 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- DTMGYPHSSBKMJJ-UHFFFAOYSA-J N#CC1S[Ni]2(SC(C#N)C(C3=NC(F)=C(F)C(F)=C3F)S2)SC1C1=NC(F)=C(F)C(F)=C1F Chemical compound N#CC1S[Ni]2(SC(C#N)C(C3=NC(F)=C(F)C(F)=C3F)S2)SC1C1=NC(F)=C(F)C(F)=C1F DTMGYPHSSBKMJJ-UHFFFAOYSA-J 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- BYGZOPYWJLTOBW-UHFFFAOYSA-J S.[H]C#CC(F)(C(F)(F)F)C(F)(F)F.[H]C1=C(C(F)(C(F)(F)F)C(F)(F)F)SS1.[H]C1S[Ni]2(SC([H])C(C(F)(C(F)(F)F)C(F)(F)F)S2)SC1C(F)(C(F)(F)F)C(F)(F)F.[Ni] Chemical compound S.[H]C#CC(F)(C(F)(F)F)C(F)(F)F.[H]C1=C(C(F)(C(F)(F)F)C(F)(F)F)SS1.[H]C1S[Ni]2(SC([H])C(C(F)(C(F)(F)F)C(F)(F)F)S2)SC1C(F)(C(F)(F)F)C(F)(F)F.[Ni] BYGZOPYWJLTOBW-UHFFFAOYSA-J 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003477 Sonogashira cross-coupling reaction Methods 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000007239 Wittig reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- BOXSCYUXSBYGRD-UHFFFAOYSA-N cyclopenta-1,3-diene;iron(3+) Chemical compound [Fe+3].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 BOXSCYUXSBYGRD-UHFFFAOYSA-N 0.000 description 1
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XIUROWKZWPIAIB-UHFFFAOYSA-N sulfotep Chemical class CCOP(=S)(OCC)OP(=S)(OCC)OCC XIUROWKZWPIAIB-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/01—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton
- C07C323/02—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/03—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/01—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton
- C07C323/02—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/07—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and halogen atoms, or nitro or nitroso groups bound to the same carbon skeleton having sulfur atoms of thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/51—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/60—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/61—Halogen atoms or nitro radicals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/331—Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/50—Oxidation-reduction potentials, e.g. excited state redox potentials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to square planar transition metal complexes, organic semiconductive materials as well as electronic or optoelectric components.
- organic semiconductors can be chanced as regards their electrical properties, especially their electrical conductivity, as is also the case with inorganic semiconductors such as silicon semiconductors.
- An elevation of the conductivity, which is rather low at first, is achieved here by the producing of charge carriers in the matrix material, as well as a change in the Fermi level of the semiconductor according to the type of the used dopant.
- a doping results here in an elevation of the conductivity of the charge transport layers, which reduces ohmic losses, and in an improved transfer of the charge carriers between contacts and organic layer.
- Inorganic dopants such as alkali metals (e.g., cesium) or Lewis acids (e.g., FeCl3) are mostly disadvantageous in organic matrix material on account of their high coefficients of diffusion, since the function and stability of the electronic components is adversely affected. Furthermore, the release of dopants via chemical reactions into the semiconductive matrix material in order to make dopants available is known. However, the reduction potential of such released dopants is often not sufficient for various instances of application such as, in particular, for organic light-emitting diodes (OLED). Furthermore, further compounds and/or atoms, for example, atomic hydrogen, are produced in the release of the dopants, which affects the properties of the doped layer and of the corresponding electronic component.
- alkali metals e.g., cesium
- Lewis acids e.g., FeCl3
- the acceptor-like material can also be used as hole injection layer.
- a layered structure anode/acceptor/hole transporter can be produced.
- the hole transporter can be a pure layer or a mixed layer.
- the hole transporter can also be doped with an acceptor.
- the anode can be ITO, for example.
- the acceptor layer can be 0.5-100 nm thick, for example. In one embodiment the acceptor layer can be doped with a donor-like molecule.
- Square planar transition metal complexes are known, for example from the WO 2005/123754 A2, that can be used in a great plurality of electronic applications, for example, inactive electronic components, passive electronic components, in electroluminescence devices (e.g., organic light-emitting diodes), photovoltaic cells, light-emitting diodes, field effect transistors, photo transistors, etc.)
- electroluminescence devices e.g., organic light-emitting diodes
- photovoltaic cells e.g., light-emitting diodes
- field effect transistors e.g., field effect transistors, photo transistors, etc.
- the present invention has the objective of making novel square planar transition metal complexes in which their use results in improved organic semiconductor matrix materials, charge injection layers, electrode materials and storage materials, in particular in electronic or optoelectronic components, in comparison to the state of the art.
- the transition metal complexes should have sufficiently high reduction potentials, not have disturbing influences on the matrix material, and make available an effective elevation of the charge carrier number in the matrix material, and be able to be handled in a comparatively simple manner.
- M is a transition metal selected from the groups 8 to 12 of the periodic system of the elements
- X1, X2, X3 and X4 are independently selected from S, Se, NR5 and PR5, in which R5 is selected from, substituted or unsubstuted, linear or branched alkyl, cycloalkyl, aryl, heteroaryl, condensed aromatic rings, donor groups and acceptor groups,
- R1 and R2 are different from one another and/or R3 and R4 are different from one another, wherein R1, R2, R3 and R4 are otherwise independently selected from simply or multiply halogenated, fluorinated, aromatic structures and/or heteroaromatic structures, simply or multiply cyanated aromatic and heteroaromatic structures, cyanated halogen aromatics and halogen heteroaromatics, halogenated, preferably fluorinated, aliphatic, linear or branched, and cyclic hydrocarbons, cyano, and halogenated, preferably fluorinated, aliphatic nitrile compounds,
- L1 and L2 are independently selected from alkylated and/or aromatic amine, alkylated and/or aromatic phosphine, halogen, pseudohalogen, NCS, SCN and CN.
- the first objective is solved by a square planar transition metal complex according to any one of the following formulas (I) or (II):
- M is a transition metal selected from the groups 8 to 12 of the periodic system of the elements
- X1, X2, X3 and X4 are independently selected from S, Se, NR5, and PR5, in which R5 is selected from, substituted or unsubstuted, linear or branched alkyl, cycloalkyl, aryl, heteroaryl, condensed aromatic rings, donor groups and acceptor groups
- R1 and R2 are different from one another and/or R3 and R4 are different from one another, wherein, R1, R2, R3 and R4 are otherwise independently selected from singly or multiply halogenated, preferably fluorinated, aromatic structures and/or heteroaromatic structures, singly or multiply cyanated aromatic and heteroaromatic structures, cyanated halogen aromatics and halogen heteroaromatics, halogenated, preferably fluorinated, aliphatic, linear or branched, and cyclic hydrocarbons, cyano, and halogenated, preferably fluorinated,
- the further tasks are solved by an organic semiconductive material containing a metal complex of formula (I) or (II), as well as by an electronic or optoelectronic component containing a metal complex of formula (I) or (II), as well as by the use of a square planar transition metal complex according to formula (I) or (II) as dopant for doping an organic semiconductive matrix material, as charge injection layer, as electrode material or as storage material in electronic or optoelectronic components. Further preferred embodiments result from the subclaims.
- a significant feature of the square planar transition metal complexes in accordance with the invention is their asymmetry, that is, that the substituents R1 and R2 on the one side and/or the substituents R3 and R4 on the other side are different from each other. This leads to especially good results regarding the conductivity and the ability to use the complexes in organic semiconductive material and the like.
- the matrix material gains a conductivity that is greater in comparison to the conductivity of the undoped matrix material.
- Conductivities of undoped matrix materials are as a rule ⁇ 10-8 s/cm, in particular frequently ⁇ 10-10 s/cm. Care is to be taken here that the matrix materials have a sufficiently high purity. Such purities can be achieved with traditional methods, for example, gradient sublimation. With doping, the conductivity of such matrix material can be raised to greater than ⁇ 10-8 s/cm, frequently >10-5. This applies in particular to matrix materials that have an oxidation potential greater than ⁇ 0.5 V vs. Fc/Fc+, preferably greater than 0 V vs. Fc/Fc+, in particular greater than +0.2 V vs. ⁇ Fc/Fc+.
- the indication Fc/Fc+ refers to the redox pair ferrocene/ferrocenium, that is used as reference in an electrochemical determination of potential, for example, in cyclovoltammetry.
- the asymmetric transition metal complexes in accordance with the invention have, compared to the symmetric analogues, a distinctly poorer tendency to crystallization, so that it becomes easier for it to remain in the amorphous phases customary for inorganic semiconductors produced during the vapor deposition process.
- the herein described square planar transition metal complexes can also be used as injection layer in electronic components, preferably between an electrode and a semiconductor layer, that can also be doped, or also as blocker layer, preferably between emitter- and transport layer in electronic components.
- the use in accordance with the invention makes possible a photo- or light-induced irreversible doping of organic semiconductors.
- the described complex compounds are preferably isolated molecules that therefore are preferably present in the particular semiconductive layer as isolated molecules that are not fixed by chemical bonds to each other and/or to a matrix or to another component.
- the complexes in accordance with the invention have a surprisingly high stability regarding their reactivity with the atmosphere.
- transition metal complexes can be synthesized according to known processes and are also partly commercially obtainable. The synthesis of such compounds is described, for example, in the following literature passages that are included herewith in the application to their full extent as reference. It is understood that the cited literature passages are indicated only by way of example. According to Schrauzer et al. such transition metal complexes can be prepared from 1,2-diketones or 2-hydroxyketones, phosphorus pentasufide and a suitable transition metal salt, J. Am. Chem. Soc. (1965) 87/7 1483-9. The conversion of transition metal carbonyls with sulfur and acetylenes also results in the complexes in accordance with the invention, A. Davison et al. Inorg.
- transition metal carbonyls instead of the transition metal carbonyls even other formally 0-valent transition metal compounds such as, for example, appropriate cyclooctadienyls, phosphines, etc., but also pure transition metals can be used, G. N. Schrauzer et al. Z. Naturforschg. (1964) 19b, 192-8.
- the corresponding asymmetric acetylenes can be prepared, for example, via a Sonogashira coupling (Sonogashira, Tetrahedron Letters (1975) 50 4467; Doucet, Hierso, Angew. Chem. Int. Ed. (2007) 46 834, via a modified Wittig reaction (Huang, Shen, Ding, Zheng, Tetrahedron Letters (1981) 22 5283) or with butyllithium (Marder et al., J. Mater. Chem. (2004) 14 2395 and subsequently reacted with sulfur and nickel-(0) compounds or metallic nickel to the corresponding nickel bisethylene dithiolates, (Krespan, J. Am. Chem. Soc. (1961) 83 3434; Krebs et al, Heterocycles (1979) 12 1153).
- the acetylenes can be reacted with sulfur to dithiet- and dithione compounds that can then be reacted for their part with nickel-(0)-compounds or metallic nickel to the corresponding nickel bisethylene dithiolates.
- Nickel is used in all schemes to represent all claimed transition metals.
- transition metal dithiolates via 1,3-dithiole-2-ones, that can be prepared from acetylenes and diisopropylxanthogenedisulfide in the presence of azoisobutyronitrile (AIBN) (Gareau, Beauchemin, Heterocycles (1998) 48 2003).
- AIBN azoisobutyronitrile
- phthalocyanine complexes for example, Zn (ZnPc), Cu (CuPc), Ni (NiPc) or other metals can be used as p-dopable matrix materials and the phthalocyanine ligand can also be substituted.
- other metallic complexes of naphtocyanines and porphyrines can be optionally used.
- arylated or heteroarylated amines and benzidine derivatives can be used as matrix material that can be substituted or non-substituted, especially also spiro-linked ones, for example, TPD, a-NPD, TDATA, Spiro-TTB.
- a-NPD and SpiroTTB can be used as matrix material.
- heteroaromatic compounds such as especially imidazole, thiophene, thiazole derivatives, heterotriphenylenes or also others can be used as matrix material, optionally also heteroaromatic dimeric, oligomeric or polymeric compounds.
- the heteroaromatic compounds are preferably substituted, especially aryl-substituted, for example, phenyl- or naphthyl-substituted. They can also be present as Spiro compounds.
- matrix materials can also be used mixed with each other or with other materials within the scope of the invention. It is understood that even other suitable organic matrix materials can be used that have semiconductive properties.
- the dopant is preferably present in the doping concentration of ⁇ 1:1 to the matrix molecule or to the monomeric unit of a polymeric matrix molecule, such as in a doping concentration of 1:2 or less, especially preferably 1:5 or less or 1:10 or less.
- the doping concentration can be in the range of 20:1 to 1:100,000, in particular in the range of 10:1 to 1:1000, preferably in the range of 1:1 to 1:100, without being limited to them.
- the doping of the particular matrix material with the compounds in accordance with the invention can take place by one or a combination of the following processes:
- p-doped layers of organic semiconductors can be prepared in this manner that can be used in multiple ways.
- Semiconductive layers can be produced by the electron-poor transition metal complex compounds in accordance with the invention that are optionally formed rather linearly such as, e.g., conductivity paths, contacts or the like.
- the p-dopants transition metal complexes can be used together with another compound that can work as a matrix material, where the doping ratio can be 1:1 or smaller.
- the dopant used can also be present in higher portions relative to the other molecule or compound, so that the ratio dopant:compound can be in the ratio >1:1 e.g., in the ratio ⁇ 2:1, ⁇ 5:1, ⁇ 10:1 or ⁇ 20:1 or higher.
- the particular other component can be one that can be used as matrix material in the case of the production of doped layers, without being limited to this. If necessary, the dopant used can also be present in substantially pure form, for example, as pure layer.
- the area containing a dopant or consisting substantially or completely of it can be contacted in an electrically current-conducting manner in particular by an organic semiconductive material and/or an inorganic semiconductive material, for example, arranged on such a substrate.
- the mentioned electron-poor transition metal complex compounds are preferably used in accordance with the invention as p-dopants, e.g., in a ratio of ⁇ 1:1 or ⁇ 1:2.
- Semiconductive layers with conductivities at room temperature in the range of 10-5 s/cm or higher can be achieved, for example, of 10-3 s/cm or higher, for example of 10-1 s/cm by means of the electron-poor compounds used in accordance with the invention as p-dopants, for example, when using ZnPc, Spiro-TTB or a-NPD as matrix.
- zinc phthalocyanine As matrix a conductivity of greater than 10-8 s/cm was achieved, for example, 10-6 s/cm. It was previously not possible to dope this matrix with organic acceptors since the reduction potential of the matrix is too low. In contrast thereto, the conductivity of undoped zinc phthalocyanine is maximally 10-10 s/cm.
- the layer or the structure with the dopants can contain one or more different such electron-poor transition metal complex compounds.
- a plurality of electronic components or equipment containing them can be produced with a p-doped organic semiconductor layer using the described compounds for producing p-doped organic semiconductor materials that can be arranged in particular in the form of layers or electric wiring paths.
- the concept “electronic components” also comprises optoelectronic components.
- the electronic properties of an area of the component that is electronically functionally active such as its electrical conductivity, light-emitting properties or the like, can be advantageously changed by the described novel compounds.
- the conductivity of the doped layers can be improved and/or the improvement of the charge carrier injection of contacts into the doped layer can be achieved.
- the invention comprises in particular organic light-emitting diodes (OLED), organic solar cells, field effect transistors, organic diodes, in particular those with high rectification ratio such as 103-107, preferably 104-107 or 105-107, and organic field effect transistors produced by the electron-poor transition metal complex compounds.
- OLED organic light-emitting diodes
- organic solar cells organic solar cells
- field effect transistors organic diodes, in particular those with high rectification ratio such as 103-107, preferably 104-107 or 105-107
- organic field effect transistors produced by the electron-poor transition metal complex compounds.
- a p-doped layer based on an organic matrix material can be present in the electronic component in the following layer structures, in which the base materials or matrix materials of the individual layers are preferably organic:
- the layer structures can be supplemented or modified by the introduction of additional suitable layers.
- OLEDs with such layer sequences, especially with pin—or with a structure inverse to it, can fabricated with the described compounds.
- organic diodes of the type metal-insulator-p-doped semiconductors (min) or also, optionally of the pin-type, for example on the basis of zinc phthalocyanine can be produced with the aid of the described p-dopants. These diodes show a rectification ratio of 105 and higher.
- electronic components with p-n transitions can be produced using the dopants in accordance with the invention, in which case the same semiconductor material is used for the p- and the n-doped side (p-n-homojunction), wherein a described electron-poor transition metal complex compound is used for the p-doped semiconductor material.
- the electron-poor transition metal complex compounds can be used in accordance with the invention in the electronic components but also in layers, conductivity paths, point contacts or the like if they predominate in contrast to another component, for example, as injection layer in pure or in substantially pure form.
- An extremely electron-poor transition metal complex compound is prepared in a very clean manner.
- the proposed electron-poor transition metal complex compound is evaporated at the same time with the matrix material.
- the matrix material is zinc phthalocyanine, spiro-TTB or a-NDP.
- the p-dopant and the matrix material can be evaporated in such a manner that the layer precipitated on the substrate in a vacuum evaporation system has a doping ratio of p-dopant to matrix material of 1:10.
- the particular layer of the organic semiconductor material doped with the p-dopant is applied on an ITO layer (indium tin oxide) arranged on a glass substrate.
- ITO layer indium tin oxide
- a metal cathode is applied, for example, by vapor-depositing a suitable metal on it in order to produce an organic light-emitting diode.
- the organic light-emitting diode can also have a so-called inverted layer construction in which the layer sequence is: Glass substrate—metal cathode p-doped organic layer—transparent conductive cover layer (for example, ITO). It is understood that further layers can be provided between the individual named layers depending on the application.
- the nickel complex EX1 was synthesized according to the procedure below:
- the compound (1) passed as Vapour (or gas) trough boiling sulfur to obtain compound (2), which is used as raw material, without further purification.
- the neutral nickel complex EX1 was used for the doping of spiro-TTB as matrix material.
- the solution was deposited over a glass substrate comprising ITO electrodes with spin-coating at 1000 rpm for 30 seconds.
- the film was dryied at 110° C. for 10 minutes.
- the conductivity of such a film is about 5 ⁇ 10-5 S/cm, which is much higher than the conductivity of non-doped Sprio-TTB, which is lower than 5 ⁇ 10-8 S/cm.
- An OLED was constructed using a spin coated doped HTL as in the example above with a thickness of 120 nm, except that the ITO layer over the glass substrate was had a larger surface.
- the substrate was transferred to vacuum and the following layers were deposited by thermal evaporation:
- DCJTB is the a red fluorescent emitter dopant 4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran.
- Alq3 is Tris(8-hydroxyquinolinato)aluminum, a conventional emitter host.
- TTPP is 2,4,7,9-tetraphenyl-1,10-phenanthroline, an electron transport material.
- W2hpp is Tetrakis(1,3,4,6,7,8-Hexahydro-2H-pyrimido[1,2-a]pyrimidinato)ditungsten (II), a typical organic n-dopant.
- the OLED showed good performance with voltage onset at around 3 V, and a high brightness at 5 V.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
- a) a square planar transition metal complex according to any one of the following formulas (I) or (II):
in which M is a transition metal selected from the groups 8 to 12 of the periodic system of the elements,
- b) a square planar transition metal complex with the formula (I) or (II) where R1 and R4 are identical and/or R2 and R3 are identical.
- c) a square planar transition metal complex with the formula (I) or (II) where R1 and R4 are identical as well as are either H or CN, or R2 and R3 are identical as well as are either H or CN.
- d) a square planar transition metal complex with the formula (I) or (II) where M is selected from nickel, copper, gold, palladium, platinum, iron, cobalt, preferably nickel, palladium, platinum, cobalt and iron.
- e) a square planar transition metal complex where R1, R2, R3 and R4 are independently selected from perfluorinated and perchlorinated aromatics and heteroaromatics, especially pentafluorophenyl and tetrafluoropyridine.
- f) an organic semiconductive material containing an organic matrix compound and a square planar transition metal complex.
- g) an electrically doped organic semiconductive material according were the molar doping ratio of dopant to matrix molecule or the doping ratio of dopant to monomeric units of a polymeric matrix molecule is between 20:1 and 1:100,000, preferably 10:1 and 1:1,000, especially preferably 1:1 and 1:100.
- h) an electronic or optoelectronic component with an electronically functionally active area using the compounds (I) and/or (II).
- i) an electronic or optoelectronic component where the electronically active area comprises an organic semiconductive matrix material that is doped with at least one dopant in order to change the electronic properties of the semiconductive matrix material and that the dopant is a transition metal complex.
- j) an electronic or optoelectronic component in the form of an organic light-emitting diode, a photovoltaic cell, an organic solar cell, an organic diode or an organic field effect transistor.
- k) the use of a square planar transition metal complex with formula (I) ir (II) as dopant for doping an organic semiconductive matrix material, as charge injection layer, as electrode material or as storage material in electronic or optoelectronic components.
in which M is a transition metal selected from the groups 8 to 12 of the periodic system of the elements, X1, X2, X3 and X4 are independently selected from S, Se, NR5, and PR5, in which R5 is selected from, substituted or unsubstuted, linear or branched alkyl, cycloalkyl, aryl, heteroaryl, condensed aromatic rings, donor groups and acceptor groups, R1 and R2 are different from one another and/or R3 and R4 are different from one another, wherein, R1, R2, R3 and R4 are otherwise independently selected from singly or multiply halogenated, preferably fluorinated, aromatic structures and/or heteroaromatic structures, singly or multiply cyanated aromatic and heteroaromatic structures, cyanated halogen aromatics and halogen heteroaromatics, halogenated, preferably fluorinated, aliphatic, linear or branched, and cyclic hydrocarbons, cyano, and halogenated, preferably fluorinated, aliphatic nitrite compounds, L1 and L2 are independently selected from alkylated and/or aromatic amine, alkylated and/or aromatic phosphine, halogen, pseudohalogen, NCS, SCN and CN. The further tasks are solved by an organic semiconductive material containing a metal complex of formula (I) or (II), as well as by an electronic or optoelectronic component containing a metal complex of formula (I) or (II), as well as by the use of a square planar transition metal complex according to formula (I) or (II) as dopant for doping an organic semiconductive matrix material, as charge injection layer, as electrode material or as storage material in electronic or optoelectronic components. Further preferred embodiments result from the subclaims.
-
- a) Mixed evaporation in the vacuum with a source for the matrix material and one for the dopant.
- b) Sequential depositing of the matrix material and of the p-dopant on a substrate with subsequent inward diffusion of the dopant, in particular by thermal treatment.
- c) Doping of a matrix layer by a solution of p-dopant with subsequent evaporation of the solvent, in particular by thermal treatment.
- d) Surface doping of a matrix material layer by a layer of dopant applied on the surface.
- e) Preparation of a solution of matrix molecules and dopant and subsequent preparation of a layer of this solution by conventional methods such as, for example, evaporation of the solvent or spin-coating.
- p-i-M: p-doped semiconductor-insulator-metal,
- M-i-p: metal-insulator-p-doped semiconductor,
- p-i-n: p-doped semiconductor-insulator-n-doped semiconductor,
- n-i-p: n-doped semiconductor-insulator-p-doped semiconductor.
- “i” is again a undoped (intrinsic) layer, “p” is a p-doped layer. The contact materials are hole-injecting here, in which case on the p-side, for example, a layer or a contact of ITO or Au can be provided, or electron-injecting, in which case on the n-side a layer or a contact of ITO, Al or Ag can be provided.
Material | Layer thickness (nm) | ||
Spiro-TTB | 20 | ||
Alq3 doped with DCJTB (5 mol %) | 20 | ||
TTPP | 5 | ||
TTPP doped with W2hpp (4 mol %) | 40 | ||
Al | 100 | ||
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/429,034 US8119037B2 (en) | 2008-10-16 | 2009-04-23 | Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10584208P | 2008-10-16 | 2008-10-16 | |
US12/429,034 US8119037B2 (en) | 2008-10-16 | 2009-04-23 | Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100096600A1 US20100096600A1 (en) | 2010-04-22 |
US8119037B2 true US8119037B2 (en) | 2012-02-21 |
Family
ID=42107926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/429,034 Active 2030-04-23 US8119037B2 (en) | 2008-10-16 | 2009-04-23 | Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components |
Country Status (1)
Country | Link |
---|---|
US (1) | US8119037B2 (en) |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011134959A1 (en) * | 2010-04-27 | 2011-11-03 | University Of Princeton | Remote n-doping of organic thin film transistors |
CN103946215B (en) | 2011-11-17 | 2016-09-28 | 默克专利有限公司 | Spiral shell acridan derivant and it is as the purposes of material for organic electroluminescent device |
JP6242817B2 (en) | 2012-02-14 | 2017-12-06 | メルク パテント ゲーエムベーハー | Spirobifluorene compounds for organic electroluminescent devices |
WO2013135352A1 (en) | 2012-03-15 | 2013-09-19 | Merck Patent Gmbh | Electronic devices |
DE102012011335A1 (en) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Connections for Organic Electronic Devices |
US10454040B2 (en) | 2012-09-18 | 2019-10-22 | Merck Patent Gmbh | Materials for electronic devices |
WO2014067614A1 (en) | 2012-10-31 | 2014-05-08 | Merck Patent Gmbh | Electronic device |
WO2014072017A1 (en) | 2012-11-12 | 2014-05-15 | Merck Patent Gmbh | Materials for electronic devices |
CN104884572B (en) | 2013-01-03 | 2017-09-19 | 默克专利有限公司 | Materials for Electronic Devices |
EP3044286B1 (en) | 2013-09-11 | 2018-01-31 | Merck Patent GmbH | Organic electroluminescent device |
EP3345984B1 (en) | 2013-12-06 | 2020-03-04 | Merck Patent GmbH | Compounds and organic electronic devices |
CN105793246B (en) | 2013-12-06 | 2019-07-05 | 默克专利有限公司 | Substituted oxepin |
CN106104838B (en) | 2014-03-18 | 2018-07-17 | 默克专利有限公司 | Organic electroluminescence device |
CN115838341A (en) | 2014-12-12 | 2023-03-24 | 默克专利有限公司 | Organic compounds with soluble groups |
KR102660538B1 (en) | 2015-07-22 | 2024-04-24 | 메르크 파텐트 게엠베하 | Materials for organic electroluminescent devices |
EP4236652A3 (en) | 2015-07-29 | 2023-09-13 | Merck Patent GmbH | Materials for organic electroluminescent devices |
KR102599157B1 (en) | 2015-08-14 | 2023-11-06 | 메르크 파텐트 게엠베하 | Phenoxazine derivatives for organic electroluminescent devices |
EP3411455B1 (en) | 2016-02-05 | 2020-10-21 | Merck Patent GmbH | Materials for electronic devices |
KR102487147B1 (en) | 2016-06-03 | 2023-01-11 | 메르크 파텐트 게엠베하 | Materials for organic electroluminescent devices |
TWI764942B (en) | 2016-10-10 | 2022-05-21 | 德商麥克專利有限公司 | Electronic device |
DE102017008794A1 (en) | 2016-10-17 | 2018-04-19 | Merck Patent Gmbh | Materials for use in electronic devices |
JP2020512273A (en) | 2016-11-02 | 2020-04-23 | メルク パテント ゲーエムベーハー | Materials for electronic devices |
KR102564613B1 (en) | 2016-11-08 | 2023-08-07 | 메르크 파텐트 게엠베하 | Compounds for Electronic Devices |
TWI781123B (en) | 2016-11-25 | 2022-10-21 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
JP7101670B2 (en) | 2016-11-25 | 2022-07-15 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Bisbenzofuran Condensation 2,8-diaminoindeno [1,2-B] Fluorene Derivatives and Related Compounds as Materials for Organic Electroluminescence Devices (OLEDs) |
WO2018141706A1 (en) | 2017-02-02 | 2018-08-09 | Merck Patent Gmbh | Materials for electronic devices |
WO2018157981A1 (en) | 2017-03-02 | 2018-09-07 | Merck Patent Gmbh | Materials for organic electronic devices |
WO2018189134A1 (en) | 2017-04-13 | 2018-10-18 | Merck Patent Gmbh | Composition for organic electronic devices |
KR20200020841A (en) | 2017-06-23 | 2020-02-26 | 메르크 파텐트 게엠베하 | Materials for Organic Electroluminescent Devices |
WO2019002198A1 (en) | 2017-06-26 | 2019-01-03 | Merck Patent Gmbh | Homogeneous mixtures |
CN110799484B (en) | 2017-06-28 | 2023-09-26 | 默克专利有限公司 | Materials used in electronic devices |
EP3649213B1 (en) | 2017-07-05 | 2021-06-23 | Merck Patent GmbH | Composition for organic electronic devices |
EP4186898A1 (en) | 2017-07-05 | 2023-05-31 | Merck Patent GmbH | Composition for organic electronic compounds |
JP7413252B2 (en) | 2017-07-28 | 2024-01-15 | メルク パテント ゲーエムベーハー | Spirobifluorene derivatives for use in electronic devices |
EP3679024B1 (en) | 2017-09-08 | 2022-11-02 | Merck Patent GmbH | Materials for electronic devices |
CN108675975A (en) | 2017-10-17 | 2018-10-19 | 默克专利有限公司 | Material for organic electroluminescence device |
TWI785142B (en) | 2017-11-14 | 2022-12-01 | 德商麥克專利有限公司 | Composition for organic electronic devices |
EP4242286A3 (en) | 2017-11-23 | 2023-10-04 | Merck Patent GmbH | Materials for electronic devices |
TWI820057B (en) | 2017-11-24 | 2023-11-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
TWI838352B (en) | 2017-11-24 | 2024-04-11 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
WO2019115577A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Substituted aromatic amines for use in organic electroluminescent devices |
JP7402800B2 (en) | 2017-12-20 | 2023-12-21 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | heteroaromatic compounds |
TW201938761A (en) | 2018-03-06 | 2019-10-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
TWI802656B (en) | 2018-03-06 | 2023-05-21 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
CN111819167A (en) | 2018-03-16 | 2020-10-23 | 默克专利有限公司 | Materials for organic electroluminescent devices |
EP3802520A1 (en) | 2018-05-30 | 2021-04-14 | Merck Patent GmbH | Composition for organic electronic devices |
TWI823993B (en) | 2018-08-28 | 2023-12-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
TWI837167B (en) | 2018-08-28 | 2024-04-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
KR20210052487A (en) | 2018-08-28 | 2021-05-10 | 메르크 파텐트 게엠베하 | Materials for organic electroluminescent devices |
EP3850055A1 (en) | 2018-09-12 | 2021-07-21 | Merck Patent GmbH | Materials for organic electroluminescent devices |
JP2022509407A (en) | 2018-10-31 | 2022-01-20 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Materials for organic electroluminescence devices |
US20220127286A1 (en) | 2019-03-04 | 2022-04-28 | Merck Patent Gmbh | Ligands for nano-sized materials |
TW202136181A (en) | 2019-12-04 | 2021-10-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
TW202216952A (en) | 2020-07-22 | 2022-05-01 | 德商麥克專利有限公司 | Materials for organic electroluminescent devices |
CN113512073B (en) * | 2021-03-12 | 2024-01-12 | 云南大学 | Synthesis of undoped nickel-based metal organic complex hole transport material and application of undoped nickel-based metal organic complex hole transport material in perovskite solar cell |
DE112022004658A5 (en) | 2021-09-28 | 2024-07-25 | Merck Patent Gmbh | MATERIALS FOR ELECTRONIC DEVICES |
CN118056486A (en) | 2021-09-28 | 2024-05-17 | 默克专利有限公司 | Material for electronic devices |
EP4410071A1 (en) | 2021-09-28 | 2024-08-07 | Merck Patent GmbH | Materials for electronic devices |
WO2023052313A1 (en) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materials for electronic devices |
WO2023094412A1 (en) | 2021-11-25 | 2023-06-01 | Merck Patent Gmbh | Materials for electronic devices |
EP4452909A1 (en) | 2021-12-21 | 2024-10-30 | Merck Patent GmbH | Process for preparing deuterated organic compounds |
KR20240123834A (en) | 2021-12-21 | 2024-08-14 | 메르크 파텐트 게엠베하 | Electronic devices |
CN118355092A (en) | 2021-12-21 | 2024-07-16 | 默克专利有限公司 | Electronic device |
WO2023152346A1 (en) | 2022-02-14 | 2023-08-17 | Merck Patent Gmbh | Materials for electronic devices |
KR20250011205A (en) | 2022-05-18 | 2025-01-21 | 메르크 파텐트 게엠베하 | Method for the preparation of deuterated organic compounds |
WO2024013004A1 (en) | 2022-07-11 | 2024-01-18 | Merck Patent Gmbh | Materials for electronic devices |
WO2024170605A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024218109A1 (en) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materials for electronic devices |
WO2025012253A1 (en) | 2023-07-12 | 2025-01-16 | Merck Patent Gmbh | Materials for electronic devices |
WO2025021855A1 (en) | 2023-07-27 | 2025-01-30 | Merck Patent Gmbh | Materials for organic light-emitting devices and organic sensors |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1436230A (en) | 1972-06-30 | 1976-05-19 | Kernforschung Gmbh Ges Fuer | Method of converting radiation of frequency higher than that of visible light to radiation in the visible range |
JPS63126889A (en) | 1986-11-14 | 1988-05-30 | Fuji Photo Film Co Ltd | (dipyridyl) (cis-1,2-ethyleneditholato)nickel derivative |
JPH0393593A (en) | 1989-09-07 | 1991-04-18 | Ricoh Co Ltd | Optical data recording medium |
JPH03208689A (en) | 1990-01-12 | 1991-09-11 | Dainippon Printing Co Ltd | Optical data recording medium and preparation thereof |
DE4112793A1 (en) | 1991-04-19 | 1992-10-22 | Basf Ag | Ester gp.-contg. polyurethane prods. resistant to hydrolysis - contg. phenylene-bis-oxazoline cpd., used as moulded articles, foams in furniture, etc. |
US5792568A (en) | 1995-04-25 | 1998-08-11 | Sharp Kabushiki Kaisha | Organic electroluminescent element |
US20020042174A1 (en) | 1999-01-05 | 2002-04-11 | Yoshihito Kunugi | Vapochromic LED |
US20020179885A1 (en) | 2001-03-08 | 2002-12-05 | Chi-Ming Che | Organometallic light-emitting material |
US20030186080A1 (en) | 2001-09-04 | 2003-10-02 | Jun Kamatani | High-molecular compounds and organic luminescent devices |
US20030205707A1 (en) | 2002-05-01 | 2003-11-06 | Che Chi-Ming | Electroluminescent materials |
WO2004017043A2 (en) | 2002-08-16 | 2004-02-26 | The University Of Southern California | Organic light emitting materials with anionic ligand |
US20040065544A1 (en) | 2002-09-30 | 2004-04-08 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US20040121184A1 (en) | 2002-08-16 | 2004-06-24 | Thompson Mark E. | Organic light emitting materials and devices |
US20040241492A1 (en) | 2002-12-19 | 2004-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and a method of manufacturing thereof |
US20040262576A1 (en) | 1999-03-23 | 2004-12-30 | Thompson Mark E. | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6908783B1 (en) | 2003-12-04 | 2005-06-21 | Novaled Gmbh | Method of doping organic semiconductors with quinonediimine derivatives |
WO2005086251A2 (en) | 2004-03-03 | 2005-09-15 | Novaled Gmbh | Use of metal complexes as n-dopants for organic semiconductors and production thereof including their ligands |
US20050221115A1 (en) | 2002-05-09 | 2005-10-06 | Canon Kabushiki Kaisha | Light emitting device and display apparatus using same |
US20050260449A1 (en) | 2004-05-18 | 2005-11-24 | Robert Walters | Complexes with tridentate ligands |
US6984591B1 (en) | 2000-04-20 | 2006-01-10 | International Business Machines Corporation | Precursor source mixtures |
US20060071206A1 (en) | 2002-11-08 | 2006-04-06 | Philipp Stossel | Palladium and platinum complexes |
US20060208252A1 (en) | 2005-01-25 | 2006-09-21 | Sony Deutschland Gmbh | Molecular rectifiers |
US20060258043A1 (en) | 2003-08-19 | 2006-11-16 | Basf Aktiengesellschaft | Transition metal complexes comprising carbene ligands serving as emitters for organic light-emitting diodes (oled's) |
WO2007018065A1 (en) | 2005-08-10 | 2007-02-15 | Toyo Ink Mfg. Co., Ltd. | Near-infrared absorbing material and use thereof |
US20070111025A1 (en) | 2003-12-12 | 2007-05-17 | Basf Aktiengesellschaft | Use of platinum ll complexes as luminescent materials in organic light-emitting diodes (oleds) |
US20070135635A1 (en) | 2003-10-30 | 2007-06-14 | Merck Patent Gmbh | Method for the production of heteroleptic ortho-metallated organometallic compounds |
US20070264524A1 (en) | 2004-04-08 | 2007-11-15 | Basf Aktiengesellschaft | Use of Metallocene Complexes of Metals in the 4th Sub-Group of the Period Table as Triple Emitters in Organic Light-Emitting Diodes (Oleds) |
WO2007134873A1 (en) * | 2006-05-24 | 2007-11-29 | Novaled Ag | Use of square planar transition metal complexes as dopants |
US20080121870A1 (en) | 2004-06-14 | 2008-05-29 | Marder Seth | Transition-Metal Charge Transport Materials, Methods Of Fabrication Thereof, And Methods Of Use Thereof |
WO2008061517A2 (en) | 2006-11-20 | 2008-05-29 | Novaled Ag | Use of dithiol transition metal complexes and compounds analogous to selenium as dopants |
WO2008061518A2 (en) | 2006-11-20 | 2008-05-29 | Novaled Ag | Dithiol transition metal complexes and compounds analogous to selenium, use thereof as dopants, organic semi-conducting material containing said complexes and electronic or optoelectronic component containing a complex |
US20090318698A1 (en) | 2005-12-28 | 2009-12-24 | Novaled Ag | Use of Metal Complexes as Emitter in an Organic Light-Emitting Component and such a Component |
-
2009
- 2009-04-23 US US12/429,034 patent/US8119037B2/en active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1436230A (en) | 1972-06-30 | 1976-05-19 | Kernforschung Gmbh Ges Fuer | Method of converting radiation of frequency higher than that of visible light to radiation in the visible range |
JPS63126889A (en) | 1986-11-14 | 1988-05-30 | Fuji Photo Film Co Ltd | (dipyridyl) (cis-1,2-ethyleneditholato)nickel derivative |
JPH0393593A (en) | 1989-09-07 | 1991-04-18 | Ricoh Co Ltd | Optical data recording medium |
JPH03208689A (en) | 1990-01-12 | 1991-09-11 | Dainippon Printing Co Ltd | Optical data recording medium and preparation thereof |
DE4112793A1 (en) | 1991-04-19 | 1992-10-22 | Basf Ag | Ester gp.-contg. polyurethane prods. resistant to hydrolysis - contg. phenylene-bis-oxazoline cpd., used as moulded articles, foams in furniture, etc. |
US5792568A (en) | 1995-04-25 | 1998-08-11 | Sharp Kabushiki Kaisha | Organic electroluminescent element |
US20020042174A1 (en) | 1999-01-05 | 2002-04-11 | Yoshihito Kunugi | Vapochromic LED |
US20040262576A1 (en) | 1999-03-23 | 2004-12-30 | Thompson Mark E. | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6984591B1 (en) | 2000-04-20 | 2006-01-10 | International Business Machines Corporation | Precursor source mixtures |
US20020179885A1 (en) | 2001-03-08 | 2002-12-05 | Chi-Ming Che | Organometallic light-emitting material |
US20030186080A1 (en) | 2001-09-04 | 2003-10-02 | Jun Kamatani | High-molecular compounds and organic luminescent devices |
US20030205707A1 (en) | 2002-05-01 | 2003-11-06 | Che Chi-Ming | Electroluminescent materials |
US20050221115A1 (en) | 2002-05-09 | 2005-10-06 | Canon Kabushiki Kaisha | Light emitting device and display apparatus using same |
WO2004017043A2 (en) | 2002-08-16 | 2004-02-26 | The University Of Southern California | Organic light emitting materials with anionic ligand |
US20040121184A1 (en) | 2002-08-16 | 2004-06-24 | Thompson Mark E. | Organic light emitting materials and devices |
US20040065544A1 (en) | 2002-09-30 | 2004-04-08 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US20060071206A1 (en) | 2002-11-08 | 2006-04-06 | Philipp Stossel | Palladium and platinum complexes |
US20040241492A1 (en) | 2002-12-19 | 2004-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and a method of manufacturing thereof |
US20060258043A1 (en) | 2003-08-19 | 2006-11-16 | Basf Aktiengesellschaft | Transition metal complexes comprising carbene ligands serving as emitters for organic light-emitting diodes (oled's) |
US20070135635A1 (en) | 2003-10-30 | 2007-06-14 | Merck Patent Gmbh | Method for the production of heteroleptic ortho-metallated organometallic compounds |
US6908783B1 (en) | 2003-12-04 | 2005-06-21 | Novaled Gmbh | Method of doping organic semiconductors with quinonediimine derivatives |
US20070111025A1 (en) | 2003-12-12 | 2007-05-17 | Basf Aktiengesellschaft | Use of platinum ll complexes as luminescent materials in organic light-emitting diodes (oleds) |
WO2005086251A2 (en) | 2004-03-03 | 2005-09-15 | Novaled Gmbh | Use of metal complexes as n-dopants for organic semiconductors and production thereof including their ligands |
US20070264524A1 (en) | 2004-04-08 | 2007-11-15 | Basf Aktiengesellschaft | Use of Metallocene Complexes of Metals in the 4th Sub-Group of the Period Table as Triple Emitters in Organic Light-Emitting Diodes (Oleds) |
US20050260449A1 (en) | 2004-05-18 | 2005-11-24 | Robert Walters | Complexes with tridentate ligands |
US20080121870A1 (en) | 2004-06-14 | 2008-05-29 | Marder Seth | Transition-Metal Charge Transport Materials, Methods Of Fabrication Thereof, And Methods Of Use Thereof |
US20060208252A1 (en) | 2005-01-25 | 2006-09-21 | Sony Deutschland Gmbh | Molecular rectifiers |
WO2007018065A1 (en) | 2005-08-10 | 2007-02-15 | Toyo Ink Mfg. Co., Ltd. | Near-infrared absorbing material and use thereof |
US20090318698A1 (en) | 2005-12-28 | 2009-12-24 | Novaled Ag | Use of Metal Complexes as Emitter in an Organic Light-Emitting Component and such a Component |
WO2007134873A1 (en) * | 2006-05-24 | 2007-11-29 | Novaled Ag | Use of square planar transition metal complexes as dopants |
US20100044683A1 (en) | 2006-05-24 | 2010-02-25 | Novaled Ag | Use of Square Planar Transition Metal Complexes as Dopant |
WO2008061517A2 (en) | 2006-11-20 | 2008-05-29 | Novaled Ag | Use of dithiol transition metal complexes and compounds analogous to selenium as dopants |
WO2008061518A2 (en) | 2006-11-20 | 2008-05-29 | Novaled Ag | Dithiol transition metal complexes and compounds analogous to selenium, use thereof as dopants, organic semi-conducting material containing said complexes and electronic or optoelectronic component containing a complex |
Non-Patent Citations (46)
Also Published As
Publication number | Publication date |
---|---|
US20100096600A1 (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8119037B2 (en) | Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components | |
US11653557B2 (en) | Organic electronic device | |
US9722190B2 (en) | Use of square planar transition metal complexes as dopant | |
US10431747B2 (en) | Quinoid compounds and their use in semiconducting matrix materials, electronic and optoelectronic structural elements | |
US7972541B2 (en) | Doped organic semiconductor material | |
US9062064B2 (en) | Heterocyclic compounds and the use thereof in electronic and optoelectronic components | |
KR102156221B1 (en) | Use of a semiconducting compound in an organic light emitting device | |
KR101995047B1 (en) | Organic electronic device | |
US8778512B2 (en) | Chemical compound for organic electronic device and organic electronic device | |
EP2942826B1 (en) | Doped perovskites and their use as active and/or charge transport layers in optoelectronic devices | |
KR20120102518A (en) | Organic semiconductive material and organic component | |
TW201622202A (en) | Electro-doped organic semiconductor material and organic light-emitting device therewith | |
KR101934129B1 (en) | Optoelectronic component having doped layers and use of dopants of compound in optoelectronic component | |
WO2010063609A2 (en) | Hole injection material | |
US10941168B2 (en) | Phosphepine matrix compound for a semiconducting material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVALED AG,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZEIKA, OLAF;WERNER, ANSGAR;WILLMANN, STEFFEN;SIGNING DATES FROM 20090625 TO 20090628;REEL/FRAME:022911/0333 Owner name: NOVALED AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZEIKA, OLAF;WERNER, ANSGAR;WILLMANN, STEFFEN;SIGNING DATES FROM 20090625 TO 20090628;REEL/FRAME:022911/0333 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |