US8188170B2 - Polymers with low gel content and enhanced gas-fading - Google Patents
Polymers with low gel content and enhanced gas-fading Download PDFInfo
- Publication number
- US8188170B2 US8188170B2 US12/604,981 US60498109A US8188170B2 US 8188170 B2 US8188170 B2 US 8188170B2 US 60498109 A US60498109 A US 60498109A US 8188170 B2 US8188170 B2 US 8188170B2
- Authority
- US
- United States
- Prior art keywords
- phosphite
- composition
- tris
- butyl
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 0 CO.CO.CO.O=C1N(Cc2ccccc2)C(=O)N(Cc2ccccc2)C(=O)N1Cc1ccccc1.[1*]C.[1*]C.[1*]C.[2*]C.[2*]C.[2*]C.[3*]C.[3*]C.[3*]C Chemical compound CO.CO.CO.O=C1N(Cc2ccccc2)C(=O)N(Cc2ccccc2)C(=O)N1Cc1ccccc1.[1*]C.[1*]C.[1*]C.[2*]C.[2*]C.[2*]C.[3*]C.[3*]C.[3*]C 0.000 description 7
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34924—Triazines containing cyanurate groups; Tautomers thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/141—Esters of phosphorous acids
- C07F9/145—Esters of phosphorous acids with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
- C08K5/526—Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
Definitions
- the present invention relates to novel compositions of stabilizers for polymers that demonstrate low gel content and enhanced gas-fading. More specifically, the stabilizers comprise a sterically hindered phenol and a phosphite for stabilizing polyolefins.
- Polymers e.g., polyolefins, polyvinyl halides, polyesters, polyamides, nitrile polymers, styrenic polymers and acrylate polymers, and elastomeric materials such as butadiene rubber, polyisoprene etc., are inherently unstable and susceptible to thermal oxidative degradation. Thus, these polymers and elastomeric material often require stabilization during melt processing.
- Exemplary stabilizers include phenolic antioxidants, hindered amine light stabilizers, ultraviolet light absorbers, organophosphites, antioxidants, metal salts of fatty acids, hydrotalcites, metal oxides, epoxidized oils, hydroxylamines, amine oxides, lactones, and thiosynergists.
- Organophosphites are used broadly in the stabilization of polyolefins as non-discoloring antioxidants during melt processing, fabrication, and long term applications. Stabilization strategy of various polyethylene resins depends on the type (HDPE, LDPE, LLDPE, etc.), manufacturing process (gas-phase, slurry, solution), and catalyst (Ziegler-Natta, Chromium, metallocene, etc.) employed in the polymer production. Often times, the molar ratio of phosphite to hindered phenolics and the neutralizer package is dependent on the polymer grade. It is a common commercial practice to use combinations of sterically hindered phenols and phosphites in various molar ratios as a stabilizer system for polyethylene.
- sterically hindered phenols include tetrakismethylene (3,5-di-t-butyl-4-hydroxylhydrocinnamate)methane, octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, bis(octadecyl)hydroxylamine, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-benzenepropanoic acid and 2,6-di-t-butyl-4-ethyl-phenol.
- phosphites include tris-nonylphenyl phosphite (TNPP) and tris(2,4-di-t-butylphenyl)phosphite, commercially sold under the trade names AlkanoxTM 240 (Chemtura Corporation, Middlebury, Conn., USA), IrgafosTM 168 (Ciba Specialty Chemicals Corporation, Tarrytown, N.Y., USA), or DoverphosTM S-480 (Dover Chemical Corp, Dover, Ohio, USA).
- TNPP tris-nonylphenyl phosphite
- AlkanoxTM 240 Chemtura Corporation, Middlebury, Conn., USA
- IrgafosTM 168 Ciba Specialty Chemicals Corporation, Tarrytown, N.Y., USA
- DoverphosTM S-480 Dover Chemical Corp, Dover, Ohio, USA.
- TNPP and tris(2,4-di-t-butylphenyl)phosphite are commonly used in conjunction with octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate for melt stabilization of polyethylene.
- combinations of phosphites with octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate exhibit poor gas fading and high gel content when incorporated in polyethylene resins. Poor gas fading and high gel content render these stabilizers unsuitable for film applications.
- gels are small regions of high molecular weight polymers or loosely crosslinked polymers formed in the reactor and/or extruder, and are difficult to remove once formed.
- the gels are a common problem for low density polyethylenes and polyvinyl chlorides, and may cause distortions in film applications.
- Some prior attempts have been made to reduce gel content by adding anti-gel agents, such as polyethylene glycols/oxides or ethoxylated linear alcohols, as described in U.S. Pat. No. 4,540,538.
- the present invention in one embodiment, is directed to a stabilizing composition for polyolefins comprising: (1) a sterically hindered phenol; and (2) a phosphite composition comprising at least two different phosphites of the following: (i) a tris(dialkylaryl)phosphite, (ii) a tris(monoalkylaryl)phosphite, (iii) a bis(dialkylaryl)monoalkylaryl phosphite, and (iv) a bis(monoalkylaryl)dialkylaryl phosphite; wherein the phosphite composition is a liquid at ambient conditions.
- the sterically hindered phenol may be selected from the group consisting of 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 1,3,5-tris-(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-Triazine-2,4,6-(1H,3H,5H)-trione, and 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene.
- the phosphite composition may comprise from 0.1 to 20 wt. % of the tris(dialkylaryl) phosphite, based on the total weight of the phosphite composition; from 20 to 70 wt. % of the tris(monoalkylaryl)phosphite; from 2 to 20 wt. % of the bis(dialkylaryl)monoalkylaryl phosphite, and from 15 to 60 wt. % of the bis(monoalkylaryl)dialkylaryl phosphite.
- an article comprising: a) a polyolefin selected from the group consisting of polyethylene homopolymers, polyethylene copolymers, polypropylene homopolymers, and polypropylene copolymers; and b) an effective amount of a stabilizing composition.
- the stabilizing composition comprises (1) a sterically hindered phenol; and (2) a phosphite composition comprising at least two different phosphites of the following: (i) a tris(dialkylaryl)phosphite, (ii) a tris(monoalkylaryl)phosphite, (iii) a bis(dialkylaryl)monoalkylaryl phosphite, and (iv) a bis(monoalkylaryl)dialkylaryl phosphite; wherein the phosphite composition is a liquid at ambient conditions.
- the polyolefin is linear low density polyethylene produced from a metallocene catalyst.
- the article may have a gel content, the size of the gel being 200 ⁇ m to 400 ⁇ m, of from 0.01 to 0.5 gel per square meter (gel/m 2 ) of film.
- the composition has no detectable gel sized formations that are greater than 400 ⁇ m.
- the composition is substantially free of anti-gel agents.
- the article may have a yellowness index after exposure to NO x for 7 days of less than 0, for 18 days of less than 0.7, for 25 days of less than 1.1, for 33 days of less than 1.7 or for 41 days of less than 2.5.
- the article comprises from 250 to 5000 wppm of the stabilizing composition, based on the total weight of the article.
- the weight ratio of the sterically hindered phenol to the phosphite composition may be from 1:1 to 1:20 and in one embodiment from 1:10 to 1:20.
- an article comprising: (a) a polyolefin selected from the group consisting of polyethylene homopolymers, polyethylene copolymers, polypropylene homopolymers, and polypropylene copolymers; and (b) an effective amount of a stabilizing composition.
- the stabilizing composition comprises (1) a sterically hindered phenol; and (2) a phosphite selected from the group consisting of triphenyl phosphites, diphenylalkyl phosphites, phenyldialkyl phosphites, tris(nonyl-phenyl)phosphites, trilauryl phosphites, trioctadecyl phosphites, distearyl pentaerythritol diphosphites, tris(2,4-di-tert-butylphenyl)phosphites, diisodecyl pentaerythritol diphosphites, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphites tristearyl sorbitol triphosphites, bis(2,4-dicumylphenyl) pentaerythritol diphosphites, tetrakis(2,4
- the present invention relates to the stabilization of polymers using an effective amount of a stabilizing composition comprising a sterically hindered phenol and a phosphite, preferably a liquid phosphite.
- the stabilizer composition is particular useful for stabilizing polyolefins, such as polyethylenes and polypropylenes.
- the effective amount of a sterically hindered phenol and a phosphite of the invention contributes to increase color stability of the polyolefin when exposed to NO x .
- the effective amount of the sterically hindered phenol and the phosphite further reduces gel content of the polyolefins.
- the polymers stabilized by the stabilizing compositions of the invention may be a polyethylene homopolymer or copolymer, or a polypropylene homopolymer or copolymer.
- polyethylene and polypropylene other polymers known in the art, such as polyolefin homopolymers and copolymers, thermoplastics, rubbers, polyesters, polyurethanes, polyalkylene terephthalates, polysulfones, polyimides, polyphenylene ethers, styrenic polymers and copolymers, polycarbonates, acrylic polymers, polyamides, polyacetals, halide-containing polymers, and biodegradable polymers are contemplated by embodiments of the present invention.
- the polymers typically ethylene based polymers, have a density in the range of from 0.86 g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc.
- the polymers of the invention may have a narrow, wide or bimodal molecular weight distribution, a weight average molecular weight to number average molecular weight (Mw/Mn) of from about 1.5 to about 15, particularly from about 2 to about 10, more preferably from about 2.2 to about 8, even more preferably from about 2.2 to about 5, and most preferably from about 2.5 to about 4.
- Mw/Mn weight average molecular weight to number average molecular weight
- the polymers of the present invention may have a tailored molecular weight distribution.
- the ratio of Mw/Mn can be measured by gel permeation chromatography techniques well known in the art.
- the polymers of the present invention in one embodiment, have a melt index (MI) or I2), as measured by ASTM-D-1238-E, in the range from 0.01 to 1000 g per 10 mins, more preferably from about 0.01 to about 100 g per 10 mins, even more preferably from about 0.1 to about 50 g per 10 mins, and most preferably from about 0.1 to about 10 g per 10 mins.
- the polymers of the invention in one embodiment, have a melt index ratio (I21/I2) (I21 is measured by ASTM-D-1238-F) of from 10 to 25, e.g., from 15 to 5.
- the polymers of the invention in a preferred embodiment, have a melt index ratio (I21/I2) (I21 is measured by ASTM-D-1238-F) of from preferably greater than 25, more preferably greater than 30, even more preferably greater that 40, still even more preferably greater than 50 and most preferably greater than 65.
- I21/I2 melt index ratio
- Non-limiting polymers include ethylene based polymers such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), copolymers of ethylene and olefins having 3 or more carbon atoms, e.g., 3-12 carbon atoms, and propylene based polymers such as polypropylene polymers including atactic, isotactic, and syndiotactic polypropylene polymers, and propylene copolymers such as propylene random, block or impact copolymers.
- LLDPE linear low density polyethylene
- LDPE low density polyethylene
- copolymers of ethylene and olefins having 3 or more carbon atoms e.g., 3-12 carbon atoms
- propylene based polymers such as polypropylene polymers including atactic, isotactic, and syndiotactic polypropylene polymers, and propylene copolymers such as propylene random, block or impact copolymers.
- polymers of polyethylene include high density polyethylene (HDPE), mixtures with other olefins such as polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE), may also be used.
- HDPE high density polyethylene
- PP/HDPE polypropylene with polyethylene
- PP/LDPE polypropylene with polyethylene
- LDPE/HDPE low density polyethylene
- LDPE/HDPE low density polyethylene
- copolymers of monoolefins and diolefins with each other or with other vinyl monomers such as, for example, ethylene/propylene, LLDPE and its mixtures with LDPE, propylene/butene-1, ethylene/hexene, ethylene/ethylpentene, ethylene/heptene, ethylene/octene, propylene/isobutylene, ethylene/butane-1, propylene/butadiene, ethylene/alkyl acrylates, ethylene/alkyl methacrylates, ethylene/vinyl acetate (EVA) or ethylene/acrylic acid copolymers (EAA) and their salts (ionomers) and terpolymers of ethylene with propylene and a diene, such as hexadiene, dicyclopentadiene or ethylidene-norbornene; as well as mixtures of such copolymers and their mixtures with polymers,
- polyethylene polymers used herein can contain various comonomers such as, for example, 1-butene, 1-hexene and 1-octene comonomers.
- the polymers used in combination with stabilizing compositions of the present invention are produced using a variety of polymerization processes including solution, high-pressure, slurry and gas phase using free radical polymerization or various catalysts including, for example, Ziegler-Natta, single-site, metallocene, Phillips-type (chromium-based) catalysts, TNZ (DuPont) or Standard Oil Indiana.
- Polyethylene and/or polypropylene polymers may be produced by, for example, polymerization of olefins in the presence of Ziegler-Natta catalysts, optionally on supports such as, for example, MgCl 2 , chromium salts and complexes thereof, silica, silica-alumina and the like.
- the olefin polymers may also be produced utilizing chromium catalysts or single site catalysts, e.g., metallocene catalysts such as, for example, cyclopentadiene complexes of metals such as Ti and Zr.
- metallocene catalyst are described in U.S. Pat. Nos. 4,827,064, 4,892,851, 4,912,272, 5,012,020, 5,126,303, 5,296,434, 5,324,800, 5,731,254 6,706,828, and 6,858,767, the entire contents and disclosure of which are incorporated by reference.
- the polyethylene or polypropylene polymer may comprise a biodegradable polymer or compostable polymer.
- Biodegradable polymers are those in which the degradation results from the action of naturally occurring microorganisms, such as bacteria, fungi and algae. Compostable polymers undergoes degradation by biological processes during composting to yield CO 2 , water, inorganic compounds and a biomass at a rate consistent with other compostable materials.
- the biodegradable or compostable polymers are derived from plant sources and are synthetically produced. Examples of biodegradable or compostable polymers include poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and co-polymers thereof.
- Biodegradable or compostable polymers may also be derived from a blend of starch of a plant and a conventional petroleum-based polymer. For example, the biodegradable polymer may be blended with a polyolefin.
- the polymer is linear-low density polyethylene (LLDPE) that is an ethylene-hexene or ethylene-octene copolymer having a density of 0.88 to 0.94 g/cc, e.g., from 0.9 to 9.4 g/cc or from 0.91 to 9.4 g/cc and melt flow index of from 0.3 to 150 g per 10 min, e.g., from 0.6 to 15 g per 10 min or from 0.8 to 3 g per 10 min.
- LLDPE is produced with a metallocene catalyst (mLLDPE).
- mLLDPE metallocene catalyst
- the LLDPE has a wide molecular weight distribution of from 2.8 to 8.
- the stabilizing compositions of the present invention generally comprise a sterically hindered phenol and a phosphite, preferably a liquid phosphite.
- a stabilizing amount or effective amount of the sterically hindered phenol and liquid phosphite compositions of the invention may be used as stabilizers for various types of polymer resins.
- stabilizing amount and an “effective amount” it is meant when the polymer resins containing the stabilizing composition of the invention shows improved stability in any of its physical or color properties in comparison to an analogous polymer composition that does not include a stabilizing composition of the invention.
- improved stability examples include improved stabilization against, for example, molecular weight degradation, color degradation, and the like from, for example, melt processing, weathering, and/or long term field exposure to air, heat, light, and/or other elements.
- improved stability is obtained in the form of one or both of lower initial color as measured by yellowing index (YI) and/or melt flow rate of the molten polymer or additional resistance to weathering, as measured, for example, by initial yellowing index, or by resistance to yellowing and change in color, when compared to a polymer without the stabilizer additives or a polymer with a conventional stabilizer.
- the improved stability is measured by low gel content, no black specs, and/or improved screen pack plugging.
- the stabilizing composition is added to the polymer in an amount from 250 to 5000 wppm, e.g., from 300 to 3000 wppm or from 800 to 2600 wppm.
- the weight ratio of sterically hindered phenol to phosphite may be from 1:1 to 1:20, e.g., from 1:3 to 1:15 or from 1:5 to 1:12.
- conventional stabilizing compositions use more phenol or equivalent amounts of phenol and phosphites, in one embodiment of the present invention, the amount of sterically hindered phenol may be reduced such that the weight ratio is from 1:10 to 1:20, e.g., from 1:12 to 1:18 or from 1:12 to 1:15.
- the sterically hindered phenols employed in the present invention generally have two or more hydroxyl groups, e.g., three or more hydroxyl groups.
- the sterically hindered phenol has the structure as shown in compound I:
- the sterically hindered phenol has the structure as shown in compound II:
- x is independently 0, 1, 2, or 3; R 1 , R 2 , and R 3 is independently hydrogen, C 1 -C 12 alkyl, and C 5 -C 10 cycloalkyl, provided that at least one of R 1 , R 2 , and R 3 is not hydrogen; and R 4 is independently C 1 -C 6 alkyl.
- x is either 0 or 1.
- at least one of R 1 , R 2 , and R 3 is a branched C 3 -C 6 alkyl, e.g., branched butyl group or branched pentyl group.
- at least one of R 1 , R 2 , and R 3 is methyl.
- Suitable sterically hindered phenols of compound I include 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 1,3,5-tris-(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate commercially available as AnoxTM IC-14 (Chemtura) also available as IrganoxTM 3114 (Ciba), and 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-Triazine-2,4,6-(1H,3H,5H)-trione commercially available as LowinoxTM 1790 (Chemtura) also available as CyanoxTM 1790 (Cytec Industries).
- Suitable sterically hindered phenols of compound II include 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene commercially available as AnoxTM 330 (Chemtura) and also available as IrganoxTM 1330 (Ciba) and EthanoxTM 330 (Albemale).
- phosphites or phosphonites there are several different types of phosphites or phosphonites that may be combined with the sterically hindered phenols discussed above, e.g., compound I or II.
- the phosphite or phosphonite is a liquid. Phosphite performance may be affected by phosphorous content, hydrolytic stability, polymer compatibility, solubility, and loading level.
- the phosphite or phosphonite may be selected from a triphenyl phosphite, diphenylalkyl phosphite, phenyldialkyl phosphite, tris(nonyl-phenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphites tristearyl sorbitol triphosphite, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, tetrakis(2,
- phosphite compounds include triphenyl phosphite, tris(nonyl-phenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tris(dipropyleneglycol)phosphite, tetrakis(2,4-di-tert-butylphenyl)-4,4′-biphenylene diphosphonite, and mixtures thereof.
- Suitable commercially available phosphites include, for example, NaugalubeTM TPP, Naugalube TPP, AlkanoxTM 240, UltranoxTM 626, Naugard P, WestonTM 399, Weston TNPP, Weston 430, Weston 618F, Weston 619F, Weston DPDP, Weston DPP, Weston PDDP, Weston PTP, Weston TDP, Weston TLP, Weston TPP, and Weston TLTTP (trilauryl trithio phosphite) made by Chemtura Corporation; DoverphosTM 4, Doverphos 4-HR, Doverphos 4-HR Plus, Doverphos HiPure 4, and Doverphos S-9228 made by Dover Chemical; and Hostanox PEPQ made by Clariant Chemicals.
- the phosphite is a liquid phosphite composition comprising at least two different phosphites, e.g., at least three different phosphites, or at least four different phosphites, selected from the group consisting of a tris(dialkylaryl)phosphite, a tris(monoalkylaryl)phosphite, a bis(dialkylaryl)monoalklyaryl phosphite, and a bis(monoalklyaryl)dialklyaryl phosphite, as described in co-pending U.S. application Ser. Nos.
- liquid phosphite compositions include, for example, WestonTM 705 made by Chemtura Corporation.
- the phosphite composition comprises at least two different phosphites having the structure of formula III.
- R 5 , R 6 and R 7 are independently selected alkylated aryl groups and wherein the liquid phosphite composition is a liquid at ambient conditions.
- ambient conditions room temperature, e.g., 25° C., and 1 atmosphere pressure.
- the aryl moiety present in the phosphites of the liquid phosphite composition is preferably an aromatic moiety of from 6 to 18 carbon atoms, e.g., phenyl, naphthyl, phenanthryl, anthracyl, biphenyl, terphenyl, o-cresyl, m-cresyl, p-cresyl, and the like, preferably phenyl.
- Each aromatic moiety is substituted with at least one C 1 -C 18 , e.g., C 4 -C 10 , or C 4 -C 5 alkyl group.
- no aromatic moieties are substituted with any C 9 alkyl groups.
- aromatic moieties may be mono-, di-, or tri-substituted in the ortho and/or para positions, but preferably the phosphites themselves are not exclusively mono-substituted, are not exclusively di-substituted, and are not exclusively tri-substituted.
- the invention is to a stabilized liquid phosphite composition
- a stabilized liquid phosphite composition comprising a liquid phosphite composition and an amine compound, wherein the liquid phosphite composition comprises at least two of a tris(dialkylaryl)monophosphite, a tris(monoalkylaryl)phosphite, a bis(dialkylaryl)monoalkylaryl phosphite, and a bis(monoalkylaryl)dialkylaryl phosphite, wherein the phosphite composition is a liquid at ambient conditions.
- the liquid phosphite composition comprises at least one phosphite that has at least one aromatic moiety that is multiply substituted, such as a bis(dialkylaryl)monoalkylaryl phosphite, a bis(monoalkylaryl)dialkylaryl phosphite, or a tris(dialkylaryl)phosphite.
- the liquid phosphite composition also preferably includes at least one phosphite compound in which each aryl moiety is entirely monosubstituted, e.g., a tris(monoalkylaryl)phosphite.
- the alkyl group in the alkylaryl phosphite compounds preferably comprises a C 3 -C 5 alkyl group, e.g., a C 4 -C 5 alkyl group, most preferably t-butyl and/or t-amyl, and the aryl group preferably comprises phenyl or cresyl, e.g., o-, m-, and/or p-cresyl.
- the alkyl substituent(s) on the aryl moieties are selected from straight-chain or branched C 1 -C 18 alkyl, e.g., C 1 -C 8 alkyl, C 4 -C 6 alkyl, or C 4 -C 5 alkyl, preferably C 4 alkyl or C 5 alkyl.
- the alkyl substituent(s) is not C 8 -C 10 alkyl, e.g., not C 9 alkyl.
- the alkyl substituent may include, for example, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl (although less preferred), decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, and isomers thereof.
- the alkyl group(s) are selected from butyl (especially sec-butyl and/or tert-butyl) and amyl groups (especially sec-amyl, tert-amyl, and/or neo-amyl).
- the alkyl moieties do not include nonyl, meaning the phosphite composition preferably comprises less than 50 wppm, e.g., less than 10 wppm, or less than 5 wppm, nonyl substituted aryl phosphite compounds, and most preferably no detectable nonyl substituted aryl phosphite compounds.
- the phosphite composition preferably comprises less than 50 wppm, e.g., less than 10 wppm, or less than 5 wppm, nonylphenol. Most preferably, the phosphite composition comprises no detectable nonylphenol.
- the phosphite composition is substantially free of phosphite compounds having aryl groups that are substituted with alkyl groups having hydrogens in the ⁇ position. In preferred embodiments, at least 95%, at least 98%, or at least 99% of the aryl moieties are substituted with alkyl groups having tertiary ⁇ -carbons, e.g., tert-butyl and/or tert-amyl.
- R 5 , R 6 , and R 7 are independently selected alkylated aryl groups of the structure of formula (IV):
- R 8 , R 9 , and R 10 are independently selected from the group consisting of hydrogen and straight or branched C 1 -C 8 alkyl, e.g., methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, and isomers thereof, e.g., isopropyl, tert-butyl, tert-amyl, neo-amyl, provided that at least one of R 8 , R 9 , and R 10 is not hydrogen.
- R 8 and R 10 are hydrogen, and R 9 is not hydrogen.
- the ortho alkyl groups e.g., R 8 and R 10
- the ortho alkyl groups, e.g., R 8 and R 10 have tertiary ⁇ -carbon atoms selected from the group consisting of tert-butyl and tert-amyl.
- R 8 and R 9 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, amyl, hexyl, and isomers thereof, and R 10 is hydrogen.
- R 8 and R 10 are hydrogen and R 9 is independently selected from the group consisting of methyl, ethyl, propyl, butyl, amyl, hexyl, and isomers thereof.
- at least one of R 8 , R 9 , and R 10 are C 4 or C 5 alkyl, most preferably tert-butyl or tert-amyl.
- the alkylated aryl groups for R 5 , R 6 , and R 7 are provided as shown in Table 1.
- the liquid phosphite composition, as described herein, may comprise any two or more of these compounds in amounts sufficient for the phosphite composition to be a liquid at ambient conditions.
- R 5 , R 6 , and R 7 are independently selected alkylated aryl groups of the structure of formula (V):
- R 8 , R 9 , and R 10 are defined above and R 11 is hydrogen or methyl, provided that one of R 8 , R 9 , R 10 , and R 11 is methyl and that at least two of R 8 , R 9 , R 10 , and R 11 are not hydrogen.
- Such phosphites may be formed, for example, by the reaction of one or more alkylated cresol compounds, e.g., one or more of alkylated ortho-, meta-, and/or para-cresol, with PCl 3 .
- the liquid phosphite composition comprises at least two phosphites selected from the group consisting of tris(4-t-butylphenyl)phosphite, tris(2-t-butylphenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(4-t-butylphenyl)-2,4-di-t-butylphenyl phosphite, bis(2,4-di-t-butylphenyl)-4-t-butylphenyl phosphite, bis(2-t-butylphenyl)-2,4-di-t-butylphenyl phosphite, bis(2,4-di-t-butylphenyl)-2-t-butylphenyl phosphite, tris(4-t-amylphenyl)phosphite, tris(2-
- the phosphite composition does not comprise only phosphites that, when combined in a composition, would result in a solid composition.
- An example of a phosphite that would result in a solid composition is one produced from the reaction of 2,4-di-t-butylphenol and 2,4-di-t-amylphenol with phosphorus trichloride as described in U.S. Pat. No. 5,254,709.
- the phosphite composition has an overall phosphorus content that is equal to or greater than that of TNPP, e.g., at least 4.5 wt. %, e.g., at least 4.8 wt. %, or at least 5.1 wt. %.
- the overall phosphorus content of the phosphite composition may range, from 4.5 to 10.0 wt. %, e.g., from 4.8 to 8.0 wt. %, or 5.1 to 6.0 wt. %, based on the total weight of all phosphorous-containing compounds in the phosphite composition.
- the phosphite composition preferably comprises at least two of the following: a tris(dialkylaryl)monophosphite, a tris(monoalkylaryl)phosphite, a bis(dialkylaryl)monoalkylaryl phosphite, and a bis(monoalkylaryl)dialkylaryl phosphite, wherein the phosphite composition is a liquid at ambient conditions.
- the relative amounts of the respective phosphite components contained in the phosphite composition may vary somewhat so long as the phosphite composition itself is a liquid at ambient conditions.
- the phosphite composition comprises at least two of these compounds, at least three of these compounds, or all four of these compounds, in an amount greater than 80 wt. %, 90 wt. %, or 95 wt. %, based on the total weight of all phosphite compounds in the phosphite composition.
- phosphite or non-phosphite may be present, e.g., one or more of tris(2-tert-amylphenyl)phosphite, bis(2-tert-amylphenyl)-2,4-di-tert-amylphenyl phosphite, bis(2,4-di-tert-amylphenyl)-2-tert-amylphenyl phosphite, and the like.
- the relative amounts of the respective phosphite components contained in the liquid phosphite composition, as described herein, may vary somewhat so long as the phosphite composition is a liquid at ambient conditions.
- the phosphite composition comprises a tris(monoalkylaryl)phosphite, e.g., tris(4-t-amyl-phenyl)phosphite or tris(4-t-butyl-phenyl)phosphite, in an amount from 20 to 70 wt. %, e.g., from 15 to 55 wt. %, or from 37 to 54 wt.
- a bis(monoalkylaryl)dialkylaryl phosphite e.g., bis(4-t-amyl-phenyl)-2,4-di-t-amyl-phenyl)phosphite or bis(4-t-butyl-phenyl)-2,4-di-t-butyl-phenyl)phosphite, in an amount from 15 to 60 wt. %, e.g., from 31 to 50 wt. %, or from 34 to 45 wt. %.
- the phosphite composition further comprises a tris(dialkylaryl)phosphite, and/or bis(dialkylaryl)monoaryl phosphite.
- the tris(dialkylaryl)phosphite e.g., tris(2,4-di-tert-amyl-phenyl)phosphite or tris(2,4-di-tert-butyl-phenyl)phosphite, preferably is present in an amount of from 0.1 to 20 wt. %, e.g., from 0.3 to 5 wt. %, or from 0.5 to 1 wt. %.
- the bis(dialkylaryl)monoaryl phosphite e.g., bis(2,4-di-tert-amyl-phenyl)-4-t-amyl-phenyl phosphite or bis(2,4-di-tert-butyl-phenyl)-4-t-butyl-phenyl phosphite, preferably is present in an amount of from 2 to 20 wt. %, e.g., from 4 to 20 wt. %, or from 5 to 10 wt. %. Unless otherwise indicated, weight percent (wt. %) is based on the total weight of the phosphite composition.
- the phosphite composition optionally has a weight ratio of tris(monoalkylaryl)phosphites to the combination of bis(monoalkylaryl)dialkylaryl phosphites, bis(dialkylaryl)monoalkylaryl phosphites and tris(dialkylaryl)phosphites of from 1:4 to 7:3, e.g., from 2:5 to 3:2, or from 3:5 to 6:5.
- the phosphite composition optionally has a weight ratio of bis(monoalkylaryl)dialkylaryl phosphites to the combination of tris(monoalkylaryl)phosphites, bis(dialkylaryl)monoalkylaryl phosphites and tris(dialkylaryl)phosphites of from 1:6 to 3:2 e.g., from 1:3 to 1:1, or from 1:2 to 2:3.
- the phosphite composition optionally has a weight ratio of bis(dialkylaryl)monoalkylaryl phosphites to the combination of tris(monoalkylaryl)phosphites, bis(monoalkylaryl)dialkylaryl phosphites, and tris(dialkylaryl)phosphites of from 1:50 to 2:5, e.g., from 1:30 to 1:5, or from 1:20 to 1:9, or optionally less than 0.2:1, less than 0.1:1, less than 0.05:1, or less than 0.02:1.
- the phosphite composition optionally has a weight ratio of tris(dialkylaryl)phosphites to the combination of bis(monoalkylaryl)dialkylaryl phosphites, bis(dialkylaryl)monoalkylaryl phosphites and tris(monoalkylaryl)phosphites of from 1:10,000 to 2:5, e.g., from 1:5,000 to 1:20, or from 1:1,000 to 1:100, or optionally less than 0.02:1, less than 0.01:1, or less than 0.005:1.
- the liquid phosphite composition comprises at least two of a tris(di-C 3 -C 5 alkylaryl)phosphite, a tris(C 3 -C 5 alkylaryl)phosphite, a bis(di-C 3 -C 5 alkylaryl)C 3 -C 5 alkylaryl phosphite, and a bis(C 3 -C 5 alkylaryl)di-C 3 -C 5 alkylaryl phosphite.
- the composition comprises each of the these phosphites in the following amounts: 1-5 wt % of the tris(di-C 3 -C 5 alkylaryl)phosphite, 10-70 wt % of the tris(C 3 -C 5 alkylaryl)phosphite, 1-35 wt % of the bis(di-C 3 -C 5 alkylaryl)C 3 -C 5 alkylaryl phosphite, and 5-70 wt % of the bis(C 3 -C 5 alkylaryl)di-C 3 -C 5 alkylaryl phosphite.
- liquid phosphite compositions may be characterized based on how the aryl moieties, e.g., phenyl moieties, are substituted, e.g., alkyl (e.g., t-butyl or t-amyl) substituted, as a whole.
- aryl moieties e.g., phenyl moieties
- alkyl e.g., t-butyl or t-amyl
- a majority of the aryl moieties are mono substituted in the para-position, e.g., at least 50%, at least 70%, or at least 90% mono substituted in the para-position, optionally from 50 to 95%, e.g., from 55 to 90, or from 60 to 85% mono substituted in the para-position, based on the number of aryl moieties in the phosphite composition.
- some of the aryl moieties are disubstituted, e.g., ortho- and para-disubstituted, at least in part.
- the aryl moieties are ortho- and para-disubstituted, e.g., at least 20% ortho- and para-disubstituted, or at least 50% ortho- and para-disubstituted, optionally from 5 to 50% ortho- and para-disubstituted, e.g., from 10 to 45% ortho- and para-disubstituted, or from 15 to 40% ortho- and para-disubstituted, based on the total number of aryl moieties in the phosphite composition.
- the ratio of monoalkylaryl groups to dialkylaryl groups ranges from 5:1 to 1:1, e.g., from 4:1 to 1:1, or from 3.5:1 to 2:1.
- the phosphite compounds may be similarly substituted on each aryl moiety per molecule, e.g., some phosphite compounds may be exclusively monosubstituted, e.g., para-substituted, and/or some phosphite compounds may be exclusively disubstituted, e.g., ortho and para disubstituted, provided that at least some portion of the aryl moieties in the overall phosphite composition are mono-substituted and at least some portion of the aryl moieties in the overall phosphite composition are disubstituted.
- the phosphite molecules may contain both mono and disubstituted aryl moieties.
- the phosphite composition may comprise phosphite molecules that are exclusively monosubstituted, e.g., para substituted and/or phosphite molecules that are exclusively disubstituted, e.g., o/p disubstituted.
- the liquid phosphite composition includes phosphite compounds having aryl moieties that are monoalkylated and dialkylated. Ideally, few if any of the aryl moieties are trisubstituted. For example, fewer than 3 wt. % of the aryl moieties are trisubstituted, e.g., fewer than 2 wt. %, or fewer than 1 wt. %.
- the aryl moieties are monosubstituted in the ortho position.
- the aryl moieties are monosubstituted in the ortho position, if at all, in an amount less than 3 wt. %, e.g., less than 2 wt. %, or less than 1 wt. %.
- the phosphite composition has a low level or is substantially free of phenolics (e.g., phenols, cresols or xylenols), whether alkylated or unalkylated, which are referred to herein as “free phenolics” when contained in the phosphite composition.
- the phosphite composition preferably comprises less than 5 wt. %, e.g., less than 3 wt. %, or less than 1 wt. %, of free phenolics, based on the total weight of the phosphite composition. Any free phenolics, for example, may be removed by distillation.
- the phosphite composition may comprise less than 0.5 wt. %, e.g., less than 0.2 wt. %, or less than 0.1 wt. %, of free phenolics, based on the total weight of the phosphite composition.
- the phosphite composition may comprise a minor amount of free phenolics, e.g., from 1 to 4 weight percent, e.g., from 2 to 3 weight percent, based on the total weight of the phosphite composition.
- the phosphite composition is preferably substantially free of phosphite compounds having unsubstituted aryl moieties, e.g., triphenylphosphites, bis(phenyl)alkylphenyl phosphites, or bis(alkylphenyl)phenyl phosphites.
- the phosphite composition preferably comprises less than 2 wt. %, e.g., less than 1 wt. %, or less than 0.5 wt. %, phosphite compounds having at least one unsubstituted aryl moiety, based on the total weight of the phosphite composition.
- the phosphite composition is a liquid at ambient conditions.
- liquid it is meant that the phosphite composition remains liquid after at least three “freeze/thaw” cycles as opposed to “meta-stable liquids,” which do not remain liquid after three or fewer cycles.
- a freeze/thaw cycle is defined as follows: 1) An ambient temperature composition is stirred for 0.5 hours; 2) The stirred composition is then refrigerated at about 5° C. for three days; and 3) The refrigerated composition is then brought to ambient temperature and held at ambient for 3 days. Upon completion of step 3, the composition is checked for solids content, e.g., crystallization. Completion of steps 1-3 defines one freeze/thaw cycle.
- the phosphite composition is in liquid physical form at room temperature. This is clearly surprising, given that the prior art teaches several examples of solid phosphite compositions, the components of which are separately solids at ambient condition, (See JP 59030842; WO 9303092; CA 2,464,551). In contrast, the phosphite composition discussed herein is liquid even though the individual components are solid. Table 2 provides the melting points of several different individual phosphite compounds that may be included in the stabilized phosphite composition.
- the viscosity of the phosphite composition may vary depending on the relative amounts of the various phosphite compounds contained therein.
- the phosphite composition has a viscosity less than 11,000 cSt, e.g., less than 7,300 cSt, less than 5,000 cSt, less than 3,000 cSt, or less than 2850 cSt, these viscosities being measured at 30° C.
- viscosity of the composition may range from 1 cSt to 15,000 cSt, from 100 cSt to 12,000 cSt, from 500 cSt to 10,000 cSt, from 500 cSt to 6,500 cSt, from 500 cSt to 5,000 cSt, from 500 cSt to 3,000 cSt, from 1,000 cSt to 4,000 cSt, from 1,500 cSt to 3,500 cSt, from 2,000 cSt to 3,000 cSt, or from 2,000 to 2,800 cSt, these viscosities being measured at 30° C.
- the liquid phosphites, including the phosphite composition includes one or more hydrolytic stabilizers.
- Suitable hydrolytic stabilizers include triethanolamine, triisopropanolamine, diethanolamine, diisopropanolamine, and tetraisopropanolethylenediamine.
- the hydrolytic stabilizers include octyl-bis(2-ethanol)amine, nonyl-bis(2-ethanol)amine, decyl-bis(2-ethanol)amine, undecyl-bis(2-ethanol)amine, dodecyl-bis(2-ethanol)amine, tridecyl-bis(2-ethanol)amine, tetradecyl-bis(2-ethanol)amine, pentadecyl-bis(2-ethanol)amine, hexadecyl-bis(2-ethanol)amine, heptadecyl-bis(2-ethanol)amine, octadecyl-bis(2-ethanol)amine, octyl-bis(2-propanol)amine, nonyl-bis(2-propanol)amine, decyl-bis(2-propanol)amine, undecyl-bis(2-propanol)amine, dodecyl-bis(2-propanol)amine, tridecyl-bis(2-propanol)
- hydrolytic stabilizers include ArmostatTM 300 and Armostat 1800 manufactured by Akzo Nobel Polymers. Additional hydrolytic stabilizers include epoxies such as epoxidized soybean oil (ESBO) commercially available as DrapexTM 39, Drapex 392, Drapex 4.4, and Drapex 6.8 (Chemtura Corp.).
- ESBO epoxidized soybean oil
- the phosphite is a liquid tris(mono-alkyl)phenyl phosphite ester or a liquid mixture of liquid tris(mono-alkyl)phenyl phosphite esters, as described in U.S. Pat. No. 7,468,410, the entire contents and disclosures of which are hereby incorporated by reference.
- the phosphite may be tris(3-t-butylphenyl)phosphite, tris(2-sec-butylphenyl)phosphite, or tris(4-sec-butylphenyl)phosphite.
- the liquid mixture comprises different phosphites, one of which is tris(3-t-butylphenyl)phosphite, tris(2-sec-butylphenyl)phosphite, or tris(4-sec-butylphenyl)phosphite and the other of which is tris(3-t-butylphenyl)phosphite, tris(2-sec-butylphenyl)phosphite, tris(4-sec-butylphenyl)phosphite, tris(2-t-butylphenyl)phosphite, tris(4-t-butylphenyl)phosphite, or tris(2,4-di-t-butylphenyl)phosphite.
- phosphites one of which is tris(3-t-butylphenyl)phosphite, tris(2-sec-butylphenyl)phosphite, or
- additives and stabilizers that are preferably present in an amount effective to improve composition stability.
- the one or more additives and stabilizers include additional phenolic antioxidants, aromatic amines, hydroxylamines, alkylamine-N-oxides, lactones, and thioethers, hindered amine light stabilizers (HALS), the ultraviolet light absorbers, alkaline metal salts of fatty acids, hydrotalcites, metal oxides, epoxidized soybean oils, the hydroxylamines, the tertiary amine oxides, lactones, thermal reaction products of tertiary amine oxides, and the thiosynergists.
- HALS hindered amine light stabilizers
- the total amount of additives may from 0.025 wt % to 20 wt %, e.g., from 0.1 to 5 wt %, or from 0.3 to 3 wt %, based on the total weight the polymer and additives.
- the amount of each component in the stabilizing composition is shown in Table 3.
- the stabilizer compositions of the invention or the resulting stabilized polymer compositions optionally also comprise additional phenolic antioxidants that are blended or mixed with the sterically hindered phenols of the present invention.
- additional phenolic antioxidants include the following:
- Alkylated monophenols for example: 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2,6-bis( ⁇ -methylbenzyl)-4-methylphenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexyphenol, and 2,6-di-tert-butyl-4-methoxymethylphenol.
- Commercially available alkylated monophenols include LowinoxTM 624 and NaugardTM 431 made by Chemtura Corp. Other phenols are commercially available as BH
- Alkylated hydroquinones for example, 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butyl-hydroquinone, 2,5-di-tert-amyl-hydroquinone, and 2,6-diphenyl-4-octadecyloxyphenol.
- Commercially available alkylated hydroquinones include Lowinox AH25 made by Chemtura.
- Hydroxylated thiodiphenyl ethers for example, 2,2′-thio-bis-(6-tert-butyl-4-methylphenol), 2,2′-thio-bis-(4-octylphenol), 4,4′-thio-bis-(6-tert-butyl-3-methylphenol), and 4,4′-thio-bis-(6-tert-butyl-2-methylphenol).
- Commercially available hydroxylated thiodiphenyl ethers include Lowinox TMB6, and Lowinox TBP6 made by Chemtura.
- Alkylidene-bisphenols for example, 2,2′-methylene-bis-(6-tert-butyl-4-methylphenol), 2,2′-methylene-bis-(6-tert-butyl-4-ethylphenol), 2,2′-methylene-bis-(4-methyl-6-( ⁇ -methylcyclohexyl)phenol), 2,2′-methylene-bis-(4-methyl-6-cyclohexylphenol), 2,2′-methylene-bis-(6-nonyl-4-methylphenol), 2,2′-methylene-bis-(6-nonyl-4-methylphenol), 2,2′-methylene-bis-(6-( ⁇ -methylbenzyl)-4-nonylphenol), 2,2′-methylene-bis-(6-(alpha,alpha-dimethylbenzyl)-4-nonyl-phenol), 2,2′-methylene-bis-(4,6-di-tert-butylphenol), 2,2′-ethylidene-bisphenol
- (v) Acylaminophenols, for example, 4-hydroxylauric acid anilide, 4-hydroxy-stearic acid amilide, 2,4-bis-octylmercapto-6-(3,5-tert-butyl-4-hydroxyanilino)-s-triazine, and octyl-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamate.
- esters of beta-(3,5-di-tert-butyl-4-hydroxyphenol)-propionic acid with monohydric or polyhydric alcohols for example, methanol, diethyleneglycol, octadecanol, triethyleneglycol, 1,6-hexanediol, pentaerythritol, neopentylglycol, tris-hydroxyethylisocyanurate, thiodiethyleneglycol, di-hydroxyethyl oxalic acid diamide.
- Such phenols also include tetrakis[methylene ⁇ 3,5-di-tert-butyl-4-hydroxycinnamate ⁇ ]methane.
- Commercially available esters include Anox 20, Anox 1315, Lowinox GP45, Naugalube 38, Naugalube 531, Anox PP18, Naugard PS48 and Naugard XL-1 made by Chemtura.
- Thio esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols for example, methanol, diethyleneglycol, octadecanol, triethyleneglycol, 1,6-hexanediol, pentaerythritol, neopentylglycol, tris-hydroxyethyl isocyanurate, thiodiethyleneglycol, dihydroxyethyl oxalic acid diamide.
- Commercially available thio esters include NaugalubeTM 15 and Anox 70 made by Chemtura.
- (viii) Amides of beta-(3,5-di-tert-butyl-4-hydroxyphenol)-propionic acid for example, N,N′-di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexammethylen-diamine, N,N′-di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamine, N,N′-di-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazine, N,N′-Hexamethylene bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionamide, and 1,2-Bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine.
- Commercially available amides include Lowinox HD98 and Lowinox MD24 made by Chemtura.
- phenolic antioxidants include the following phenols.
- Polymeric phenols such as the reaction product of 4-methylphenol with dicyclopentadiene and isobutylene, commercially available as Lowinox CSTL; Chemtura.
- Alkylidene-poly-phenols such as 1,3 tris(3-methyl-4-hydroxyl-5-t-butyl-phenyl)-butane (Lowinox CA22; Chemtura).
- Thio phenols such as 2,6-di-tert-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol (IrganoxTM 565; Ciba), 4,6-bis(octylthiomethyl)-o-cresol (Irganox 1520; Ciba); 4,6-bis(dodecylthiomethyl)-o-cresol (Irganox 1726; Ciba). Hydroxylamines, such as bis(octadecyl)hydroxylamine (IrgastabTM FS 042; Ciba).
- Ester phenols include bis[3,3-bis(4-hydroxy-3-tert-butyl phenyl)butanoic acid]glycol ester (HostanoxTM O3; Clariant Chemicals). Still other phenols include 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate (Sumilizer GS; Sumitomo Chemical).
- the stabilizer compositions and/or the resulting stabilized polymer compositions optionally also comprise one or more UV absorbers and/or light stabilizers, such as the following:
- 2-(2′-hydroxyphenyl)-benzotriazoles for example, the 5′-methyl-, 3′5′-di-tert-butyl-, 3′5′-di-tert-amyl-, 5′-tert-butyl-, 5′-tert-amyl-, 5′(1,1,3,3-tetramethylbutyl)-, 5-chloro-3′,5′-di-tert-butyl-, 5-chloro-3′-tert-butyl-5′methyl-, 3′-sec-butyl-5′tert-butyl-,4′-octoxy, 3′,5′-ditert-amyl-3′,5′-bis-( ⁇ , ⁇ -dimethylbenzyl)-derivatives.
- Commercially available 2-(2′-hydroxyphenyl)-benzotriazoles include LowiliteTM 26, Lowilite 27, Lowilite 28, Lowilite 29, Lowilite 35, Lowilite 55, and Low
- 2-Hydroxy-benzophenones for example, the 4-hydroxy, 4-methoxy-, 4-octoxy, 4-decyloxy-, 4-dodecyloxy-, 4-benzyloxy-, 2,4-dihydroxy-, 4,2′,4′-trihydroxy- and 2′-hydroxy-4,4′-dimethoxy-derivative.
- Exemplary 2-hydroxy-benzophenones include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-ethoxybenzophenone, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-propoxybenzophenone.
- Commercially available 2-(2′-hydroxyphenyl)-benzotriazoles include Lowilite 20, Lowilite 22, Lowilite 20S, and Lowilite 24 made by Chemtura.
- esters of substituted and unsubstituted benzoic acids for example, phenyl salicylate, 4-tert-butylphenyl-salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis-(4-tert-butylbenzoyl)-resorcinol, benzoylresorcinol, 2,4-di-tert-butyl-phenyl-3,5-di-tert-butyl-4-hydroxybenzoate and hexadecyl-3,5-di-tert-butyl-4-hydroxybenzoate.
- UV absorbers and light stabilizers may also comprise acrylates, for example, alpha-cyano-beta, beta-diphenylacrylic acid-ethyl ester or isooctyl ester, alpha-carbomethoxy-cinnamic acid methyl ester, alpha-cyano-beta-methyl-p-methoxy-cinnamic acid methyl ester or butyl ester, alpha-carbomethoxy-p-methoxy-cinnamic acid methyl ester, N-(beta-carbomethoxy-beta-cyano-vinyl)-2-methyl-indoline.
- acrylates for example, alpha-cyano-beta, beta-diphenylacrylic acid-ethyl ester or isooctyl ester, alpha-carbomethoxy-cinnamic acid methyl ester, alpha-cyano-beta-methyl-p-methoxy-cin
- Nickel compounds are also suitable UV absorbers and light stabilizers.
- Exemplary nickel compounds include nickel complexes of 2,2′-thio-bis(4-(1,1,1,3-tetramethylbutyl)-phenol), such as the 1:1 or 1:2 complex, optionally with additional ligands such as n-butylamine, triethanolamine or N-cyclohexyl-diethanolamine, nickel dibutyldithiocarbamate, nickel salts of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid monoalkyl esters, such as of the methyl, ethyl, or butyl ester, nickel complexes of ketoximes such as of 2-hydroxy-4-methyl-penyl undecyl ketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxy-pyrazole, optionally with additional ligands.
- Commercially available nickel compounds include Lowilite Q84 (2,2′-Thiobis(4-tert-oc
- Sterically hindered amines may be used as UV absorbers and light stabilizers.
- Sterically hindered amines for example bis(2,2,6,6-tetramethylpiperidyl)-sebacate, bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacate, n-butyl-3,5-di-tert-butyl-4-hydroxybenzyl malonic acid bis(1,2,2,6,6-pentamethylpiperidyl)ester, condensation product of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidine and succinic acid, condensation product of N,N′-(2,2,6,6-tetramethylpiperidyl)-hexamethylendiamine and 4-tert-octylamino-2,6-dichloro-1,3,5-s-triazine, tris-(2,2,6,6-tetramethylpiperidyl)-nitrilotriacetate,
- Such amines include hydroxylamines derived from hindered amines, such as di(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate: 1-hydroxy 2,2,6,6-tetramethyl-4-benzoxypiperidine; 1-hydroxy-2,2,6,6-tetramethyl-4-(3,5-di-tert-butyl-4-hydroxy hydrocinnamoyloxy)-piperidine; and N-(1-hydroxy-2,2,6,6-tetramethyl-piperidin-4-yl)-epsiloncaprolactam.
- hindered amines include Lowilite 19, Lowilite 62, Lowilite 77, Lowilite 92 and Lowilite 94 made by Chemtura.
- Oxalic acid diamides for examples, 4,4′-dioctyloxy-oxanilide, 2,2′-di-octyloxy-5′,5′-di-tert-butyloxanilide, 2,2′-di-dodecyloxy-5′,5′di-tert-butyl-oxanilide, 2-ethoxy-2′-ethyl-oxanilide, N,N′-bis(3-dimethylaminopropyl)-oxalamide, 2-ethoxy-5-tert-butyl-2′-ethyloxanilide and its mixture with 2-ethoxy-2′ethyl-5,4-di-tert-butyloxanilide and mixtures of o- and p-methoxy- as well as of o- and p-ethoxy-disubstituted oxanilides.
- the polymer resins and phosphite compositions of the invention may also include one or more additional additives, including, for example, one or more of the following:
- Metal deactivators for example, N,N′-diphenyloxalic acid diamide, N-salicylal-N′-salicyloylhydrazine, N,N′-bis-salicyloylhydrazine, N,N′-bis-(3,5-di-tert-butyl-4-hydrophenylpropionyl)-hydrazine, salicyloylamino-1,2,4-triazole, bis-benzyliden-oxalic acid dihydrazide.
- N,N′-diphenyloxalic acid diamide for example, N-salicylal-N′-salicyloylhydrazine, N,N′-bis-salicyloylhydrazine, N,N′-bis-(3,5-di-tert-butyl-4-hydrophenylpropionyl)-hydrazine, salicyloylamino-1,2,4-triazole, bis
- Peroxide scavengers for example, esters of betathiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc-dibutyldithiocarbamate, dioctadecyldisulfide, pentaerythritoltetrakis-(beta-dodecylmercapto)-propionate.
- esters of betathiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
- mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc-dibutyldithiocarbamate
- dioctadecyldisulfide pentaerythritoltetrakis-(beta-
- Polyamide stabilizers for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese may also be included in the polymer resin and/or phosphite composition.
- Basic co-stabilizers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, hydrotalcites, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example, Ca stearate, calcium stearoyl lactate, calcium lactate, Zn stearate, Zn octoate, Mg stearate, Na ricinoleate and K palmirate, antimony pyrocatecholate or zinc pyrocatecholate.
- Basic co-stabilizers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, hydrotalcites, alkali metal salts and alkaline earth metal salts of higher
- co-stabilizers include MarkTM 6045, Mark 6045ACM, Mark 6055, Mark 6055ACM, Mark 6087ACM, Mark 6102, Mark CE 345, Mark CE 350, and Mark CE 387, made by Chemtura; and DHT-4ATM made by Kisuma Chemicals.
- Nucleating and clarifying agents for example, metal salts of 4-tert butylbenzoic acid, adipic acid, diphenylacetic acid, sorbitol and derivatives thereof, sodium benzoate, and benzoic acid.
- Aminoxy propanoate derivatives such as methyl-3-(N,N-dibenzylaminoxy)propanoate; ethyl-3-(N,N-dibenzylaminoxy)propanoate; 1,6-hexamethylene-bis(3-N,N-dibenzylaminoxy)propanoate); methyl-(2-(methyl)-3(N,N-dibenzylaminoxy)propanoate); octadecyl-3-(N,N-dibenzylaminoxy)propanoic acid; tetrakis (N,N-dibenzylaminoxy)ethyl carbonyl oxymethy)methane; octadecyl-3-(N,N-diethylaminoxy)-propanoate; 3-(N,N-dibenzylaminoxy)propanoic acid potassium salt; and 1,6-hexamethylene bis(3-(N-allyl-N-dibenz
- additives for example, plasticizers, lubricants, emulsifiers, pigments, optical brighteners, flameproofing agents, anti-static agents, blowing agents and thiosynergists such as dilaurythiodipropionate or distearylthiodipropionate.
- the stabilizing composition of the present invention is substantially free of anti-gel agents, such as polyethylene glycols/oxides or ethoxylated linear alcohols, and contains less than 5 wppm of anti-gel agents or less than 2 wppm of anti-gel agents or no anti-gel agents.
- anti-gel agents are those compounds added to the stabilizer mixture to reduce gel formation and does not include the stabilizing compositions of sterically hindered phenols and phosphites of the present invention.
- the polymer or polymeric resins there may also be from 5-50 wt %, e.g., 10-40 wt % or 15-30 wt % of fillers and reinforcing agents, for example, calcium carbonate, silicates, glass fibers, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black and graphite.
- fillers and reinforcing agents for example, calcium carbonate, silicates, glass fibers, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black and graphite.
- Polymers that are stabilized with a stabilizing composition comprising a sterically hindered phenol and a liquid phosphite are useful in forming operations such as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding.
- Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, general purpose bags, carrier bags, food packaging films, baked and frozen food packaging, agriculture films, medical packaging, industrial liners, or membranes, in food-contact or non-food contact applications.
- Fibers such as those prepared by melt spinning, solution spinning and melt blown fiber operations, are used in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc.
- Extruded articles include, for example, medical tubing, wire and cable coatings, geomembranes, and pond liners.
- Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.
- the stabilizer compositions may be used in various rubber based products such as tires, barriers and the like.
- the characteristics and/or properties of the polymeric composition for example, color stability, e.g., as measured by yellowing index, gel content, melt flow index, and oxygen induction time, may be significantly improved.
- color stability e.g., as measured by yellowing index, gel content, melt flow index, and oxygen induction time
- liquid phosphite compositions beneficially may be incorporated into polymeric compositions without melting.
- the stabilizers of the present invention provide improved resistance to discoloration from gas fading, as set forth by AATCC 23 at a temperature of 60° C.
- Oxides of nitrogen (NOx) in the atmosphere, caused by pollutants, can react with the stabilizers, especially phenolic stabilizers, to trigger discoloration which increases as the exposure time increase.
- the yellowness index, measured by ASTM D1925, of the polymer stabilized with the stabilizers of the present invention demonstrates a value at 7 days of exposure to NOx of less than 0, e.g., less than ⁇ 0.5 or less than ⁇ 0.9; at 18 days of less than 0.7, e.g., less than 0.1 or less than ⁇ 0.3; at 25 days of less than 1.2, e.g., less than 1.1 or less than 1; at 33 days of less than 1.8, e.g., less than 1.7 or less than 1.65; and at 41 days of less than 3, e.g., less than 2.5 or less than 2.4. This is a significant improvement over resins stabilized with conventional stabilizers.
- Gel content may be measured by counting the number of 200 to 400 ⁇ m gel sized formations in a square meter of polymeric film.
- the polymers stabilized with stabilizers of the present invention preferably have a gel content of 200 to 400 ⁇ m gel sized formations ranging from 0.01 to 0.5 gel per square meter (gel/m 2 ) of film, e.g., from 0.05 to 0.45 gel/m 2 , or from 0.1 to 0.42 gel/m 2 .
- These gel contents obtained with the stabilizing compositions of the invention are significantly lower than those achieved using conventional stabilizers which typically have gel contents of greater than 1 gel/m 2 , e.g., greater than 2 gel/m 2 , or greater than 3 gel/m 2 .
- the polymers stabilized with the stabilizing compositions of the invention have no detectable gel size formations greater than 400 ⁇ m.
- Conventional stabilizers which typically have detectable amount of gel contents greater than 400 ⁇ m of less than 5 gel/m 2 , e.g., less than 2 gel/m 2 or less than 0.5 gel/m 2 .
- LLDPE which is an ethylene-hexene copolymer having a density of 0.918 g/cc and melt flow index of 0.6 to 1.0 g per 10 mins, was stabilized with a 2150 wppm of 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-Triazine-2,4,6-(1H,3H,5H)-trione (Lowinox 1790) and tris(nonyl-phenyl)phosphite (Weston TNPP).
- the LLDPE was produced in a gas phase polymerization process using metallocene catalyst.
- LLDPE from Example 1 was stabilized with 2500 wppm of octadecyl-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate (Anox PP18) and tris(nonyl-phenyl)phosphite (Weston TNPP).
- LLDPE from Example 1 was stabilized with 2000 wppm of octadecyl-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate (Anox PP18) and tris(2,4-di-tert-butylphenyl)phosphite (Alkanox 240).
- Example 1 and Comparative Examples A and B demonstrated that Example 1 has a significantly lower gel content compared with Comparative Examples A and B as summarized in Table 4 below.
- Example 1 and Comparative Examples A and B did not contain any anti-gel agents.
- Example 1 had low gas fading (AATCC 23) to NOx over the test period as summarized in Table 5 below.
- the yellow index (YI) is determined by ASTM D1925.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
wherein R5, R6 and R7 are independently selected alkylated aryl groups and wherein the liquid phosphite composition is a liquid at ambient conditions. By “ambient conditions” it is meant room temperature, e.g., 25° C., and 1 atmosphere pressure.
wherein R8, R9, and R10 are independently selected from the group consisting of hydrogen and straight or branched C1-C8 alkyl, e.g., methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, and isomers thereof, e.g., isopropyl, tert-butyl, tert-amyl, neo-amyl, provided that at least one of R8, R9, and R10 is not hydrogen. In one embodiment R8 and R10 are hydrogen, and R9 is not hydrogen. In one embodiment, the ortho alkyl groups, e.g., R8 and R10, have no α-hydrogen atoms. In one embodiment, the ortho alkyl groups, e.g., R8 and R10, have tertiary α-carbon atoms selected from the group consisting of tert-butyl and tert-amyl.
TABLE 1 | ||||
R5 | R6 | R7 |
# | R8 | R9 | R10 | R8 | R9 | R10 | R8 | R9 | R10 |
1 | H | t-butyl | H | H | t-butyl | H | H | t-butyl | H |
2 | t-butyl | t-butyl | H | H | t-butyl | H | H | t-butyl | H |
3 | t-butyl | t-butyl | H | t-butyl | t-butyl | H | H | t-butyl | H |
4 | t-butyl | t-butyl | H | t-butyl | t-butyl | H | t-butyl | t-butyl | H |
5 | H | t-amyl | H | H | t-amyl | H | H | t-amyl | H |
6 | t-amyl | t-amyl | H | H | t-amyl | H | H | t-amyl | H |
7 | t-amyl | t-amyl | H | t-amyl | t-amyl | H | H | t-amyl | H |
8 | t-amyl | t-amyl | H | t-amyl | t-amyl | H | t-amyl | t-amyl | H |
9 | H | t-butyl | H | H | t-butyl | H | H | t-amyl | H |
10 | H | t-butyl | H | H | t-amyl | H | H | t-amyl | H |
11 | t-butyl | t-butyl | H | H | t-butyl | H | H | t-amyl | H |
12 | t-butyl | t-butyl | H | H | t-amyl | H | H | t-amyl | H |
13 | t-butyl | t-amyl | H | H | t-amyl | H | H | t-amyl | H |
14 | t-amyl | t-amyl | H | H | t-butyl | H | H | t-amyl | H |
15 | t-amyl | t-amyl | H | H | t-butyl | H | H | t-butyl | H |
16 | t-butyl | t-butyl | H | t-butyl | t-butyl | H | H | t-amyl | H |
17 | t-butyl | t-butyl | H | t-butyl | t-amyl | H | H | t-butyl | H |
18 | t-butyl | t-amyl | H | t-butyl | t-amyl | H | H | t-butyl | H |
19 | t-amyl | t-amyl | H | t-amyl | t-amyl | H | H | t-butyl | H |
20 | t-butyl | t-amyl | H | t-butyl | t-butyl | H | t-butyl | t-butyl | H |
21 | t-butyl | t-amyl | H | t-butyl | t-amyl | H | t-amyl | t-butyl | H |
TABLE 2 | |
Phosphite | Melting Point |
tris(4-tert-butylphenyl)phosphite | 75-76° C. |
tris(2,4-di-tert-butylphenyl)phosphite | 181-184° C. |
bis(4-tert-butylphenyl)-2,4-di-tert-butylphenyl phosphite | 63-65° C. |
bis(2,4-di-tert-butylphenyl)-4-tert-butylphenyl phosphite | 100-103° C. |
tris(4-tert-amylphenyl)phosphite | 52-54° C. |
tris(2,4-di-tert-amylphenyl)phosphite | 103° C. |
TABLE 3 | ||
Preferred | ||
Component | Range | Range |
Stabilizers of Present Invention | 0.025-0.5 wt % | 0.08-0.26 wt % |
Additional Phenolic Antioxidants | 0-3.0 wt % | 0.001-2.0 wt % |
UV or light stabilizers | 0-3.0 wt % | 0.001-2.0 wt % |
Metal deactivators | 0-3.0 wt % | 0.001-2.0 wt % |
Peroxide scavengers | 0-3.0 wt % | 0.001-2.0 wt % |
Polyamide stabilizers | 0-3.0 wt % | 0.001-2.0 wt % |
Basic co-stabilizers | 0-3.0 wt % | 0.001-2.0 wt % |
Nucleating and clarifying agents | 0-3.0 wt % | 0.001-2.0 wt % |
Aminoxy propanoate | 0-3.0 wt % | 0.001-2.0 wt % |
TABLE 4 | ||
Gel Counts of 200 to | Gel Counts of 400 μm | |
Example | 400 μm (gel/m2) | or greater (gel/m2) |
1 | Less than 0.42 | 0 |
A | 2.8-2.9 | Less than 0.5 |
B | 3.6-3.7 | Less than 0.5 |
TABLE 5 | |
NOx Exposure | Yellow Index (YI) |
(Days) | Example 1 | Comparative A | Comparative B |
0 | −1.099 | −1.094 | −0.896 |
7 | −0.307 | −0.662 | 0.259 |
18 | 0.649 | 0.732 | 2.494 |
25 | 1.098 | 1.686 | 3.692 |
33 | 1.614 | 2.566 | 4.6 |
41 | 2.496 | 4.184 | 6.071 |
Claims (19)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/604,981 US8188170B2 (en) | 2006-06-20 | 2009-10-23 | Polymers with low gel content and enhanced gas-fading |
BR112012009269-3A BR112012009269B1 (en) | 2009-10-23 | 2010-10-01 | METHOD FOR THE PREPARATION OF LOW GEL POLYLEPHINS AND DISAPPEARANCE OF GAS INCREASED BY THE ADDITION TO POLIOLEFINE OF A COMPOSITION AND ARTICLE |
EP10766428.6A EP2491078B1 (en) | 2009-10-23 | 2010-10-01 | Polymers with low gel content and enhanced gas-fading |
PCT/US2010/051036 WO2011049728A1 (en) | 2009-10-23 | 2010-10-01 | Polymers with low gel content and enhanced gas-fading |
JP2012535219A JP2013508507A (en) | 2009-10-23 | 2010-10-01 | Polymer with low gel content and enhanced gas fading |
IN3189DEN2012 IN2012DN03189A (en) | 2009-10-23 | 2010-10-01 | |
CA2777020A CA2777020C (en) | 2009-10-23 | 2010-10-01 | Polymers with low gel content and enhanced gas-fading |
CN201080047923.2A CN102712785B (en) | 2009-10-23 | 2010-10-01 | Polymers with low gel content and enhanced gas-fading |
US13/272,298 US8258214B2 (en) | 2006-06-20 | 2011-10-13 | Polymers with low gel content and enhanced gas-fading |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81581906P | 2006-06-20 | 2006-06-20 | |
US11/787,531 US7888414B2 (en) | 2006-06-20 | 2007-04-16 | Liquid phosphite blends as stabilizers |
US23065209P | 2009-07-31 | 2009-07-31 | |
US23065409P | 2009-07-31 | 2009-07-31 | |
US23065809P | 2009-07-31 | 2009-07-31 | |
US12/534,051 US8178005B2 (en) | 2006-06-20 | 2009-07-31 | Liquid phosphite compositions having different alkyl groups |
US12/534,043 US20100004363A1 (en) | 2006-06-20 | 2009-07-31 | Liquid phosphite blends as stabilizers |
US12/534,019 US7947769B2 (en) | 2006-06-20 | 2009-07-31 | Liquid amylaryl phosphite compositions and alkylate compositions for manufacturing same |
US12/534,035 US8183311B2 (en) | 2006-06-20 | 2009-07-31 | Liquid phosphite composition derived from cresols |
US12/534,010 US8008384B2 (en) | 2006-06-20 | 2009-07-31 | Liquid butylaryl phosphite compositions |
US12/534,000 US8008383B2 (en) | 2006-06-20 | 2009-07-31 | Liquid amylaryl phosphite compositions |
US12/534,025 US20100076131A1 (en) | 2006-06-20 | 2009-07-31 | Liquid butylaryl phosphite compositions and alkylate compositions for manufacturing same |
US12/604,981 US8188170B2 (en) | 2006-06-20 | 2009-10-23 | Polymers with low gel content and enhanced gas-fading |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/787,531 Continuation-In-Part US7888414B2 (en) | 2006-06-20 | 2007-04-16 | Liquid phosphite blends as stabilizers |
US12/534,000 Continuation-In-Part US8008383B2 (en) | 2006-06-20 | 2009-07-31 | Liquid amylaryl phosphite compositions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/272,298 Division US8258214B2 (en) | 2006-06-20 | 2011-10-13 | Polymers with low gel content and enhanced gas-fading |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100197837A1 US20100197837A1 (en) | 2010-08-05 |
US8188170B2 true US8188170B2 (en) | 2012-05-29 |
Family
ID=43216154
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/604,981 Expired - Fee Related US8188170B2 (en) | 2006-06-20 | 2009-10-23 | Polymers with low gel content and enhanced gas-fading |
US13/272,298 Active US8258214B2 (en) | 2006-06-20 | 2011-10-13 | Polymers with low gel content and enhanced gas-fading |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/272,298 Active US8258214B2 (en) | 2006-06-20 | 2011-10-13 | Polymers with low gel content and enhanced gas-fading |
Country Status (8)
Country | Link |
---|---|
US (2) | US8188170B2 (en) |
EP (1) | EP2491078B1 (en) |
JP (1) | JP2013508507A (en) |
CN (1) | CN102712785B (en) |
BR (1) | BR112012009269B1 (en) |
CA (1) | CA2777020C (en) |
IN (1) | IN2012DN03189A (en) |
WO (1) | WO2011049728A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110028616A1 (en) * | 2009-07-31 | 2011-02-03 | Gelbin Michael E | Liquid phosphite compositions having different alkyl groups |
WO2013109818A1 (en) | 2012-01-20 | 2013-07-25 | Chemtura Corporation | Polyolefin compositions for film, fiber and molded articles |
WO2014020170A1 (en) | 2012-08-02 | 2014-02-06 | Addivant Switzerland Gmbh | Phosphite compositions |
US9645066B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
US9645131B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
WO2017184234A1 (en) | 2016-04-22 | 2017-10-26 | Exxonmobil Chemical Patents Inc. | Polyethylene sheets |
WO2018017180A1 (en) | 2016-07-21 | 2018-01-25 | Exxonmobil Chemical Patents Inc. | Rotomolded compositions, articles, and processes for making the same |
WO2018102091A1 (en) | 2016-12-02 | 2018-06-07 | Exxonmobil Chemical Patents Inc. | Polyethylene films |
WO2018187047A1 (en) | 2017-04-06 | 2018-10-11 | Exxonmobil Chemical Patents Inc. | Cast films and processes for making the same |
WO2018226311A1 (en) | 2017-06-08 | 2018-12-13 | Exxonmobil Chemical Patents Inc. | Polyethylene blends and extrudates and methods of making the same |
WO2019022801A1 (en) | 2017-07-24 | 2019-01-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods od making the same |
WO2019209334A1 (en) | 2018-04-27 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods of making the same |
WO2020109870A2 (en) | 2018-06-28 | 2020-06-04 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions, wires and cables, and methods for making the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR080273A1 (en) * | 2009-07-31 | 2012-03-28 | Chemtura Corp | PROCESSES TO FORM ARILO PHOSPHITE COMPOSITIONS RENTED FROM COMPLEX HYDROCARBON CURRENTS |
CN102482302A (en) * | 2010-07-28 | 2012-05-30 | 科聚亚公司 | Liquid phosphite blends as stabilizers |
WO2012054395A1 (en) * | 2010-10-19 | 2012-04-26 | Dow Global Technologies Llc | Polyethylene compositions having reduced plate out, and films made therefrom having reduced blooming |
CN102532874B (en) * | 2010-12-29 | 2014-06-11 | 上海普利特复合材料股份有限公司 | Thermo-oxidative ageing-resistant nylon/acrylonitrile-butadiene-styrene resin mixed material |
CN103788446B (en) * | 2012-10-31 | 2016-08-17 | 中国石油化工股份有限公司 | A kind of polyethylene resin composition as geomembrane PP Pipe Compound and preparation method thereof |
US20140127438A1 (en) * | 2012-11-08 | 2014-05-08 | Robert L. Sherman, Jr. | Stabilized high-density polyethylene composition with improved resistance to deterioration and stabilizer system |
KR101783897B1 (en) * | 2014-12-10 | 2017-10-10 | 주식회사 엘지화학 | Polyolefin pellet for preparing fiber and fiber comprising the same |
JP2017031257A (en) * | 2015-07-29 | 2017-02-09 | 住友化学株式会社 | Phosphite composition |
GB2566557B (en) * | 2017-09-19 | 2020-05-27 | Si Group Switzerland Chaa Gmbh | Stabilising compositions |
GB201812145D0 (en) | 2018-07-25 | 2018-09-05 | Addivant Switzerland Gmbh | Composition |
GB2591482A (en) | 2020-01-29 | 2021-08-04 | Si Group Switzerland Chaa Gmbh | Non-dust blend |
CN114031813A (en) * | 2021-11-03 | 2022-02-11 | 天津利安隆新材料股份有限公司 | Antioxidant composition for linear low density polyethylene, and linear low density polyethylene resin composition |
WO2025021515A1 (en) * | 2023-07-24 | 2025-01-30 | Sabic Global Technologies B.V. | Composition for increased stability of recycled polyethylene |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2220845A (en) | 1938-08-12 | 1940-11-05 | Dow Chemical Co | Aromatic phosphites |
US2834798A (en) | 1957-12-20 | 1958-05-13 | Shea Chemical Corp | Heterocyclic phosphorus compounds |
US3412064A (en) | 1965-11-08 | 1968-11-19 | Uniroyal Inc | Olefin polymer composition |
US3492377A (en) | 1961-05-22 | 1970-01-27 | Goodyear Tire & Rubber | Triaryl phosphites |
US3558554A (en) | 1966-06-09 | 1971-01-26 | Yoshitomi Pharmaceutical | Oxidatively stable polyolefin composition |
US3644536A (en) | 1969-09-18 | 1972-02-22 | Pennwalt Corp | Process for 1 3 5-tris(alpha-hydroxy-isopropyl)benzene |
GB1298248A (en) | 1969-11-18 | 1972-11-29 | Pennwalt Corp | Preparation of tris-peroxides |
US3755200A (en) | 1972-02-14 | 1973-08-28 | Emery Industries Inc | Liquid stabilizer system for polyvinyl chloride |
US3756906A (en) | 1970-02-13 | 1973-09-04 | Ici Ltd | Rubber polyester compositions |
US3787537A (en) | 1970-07-17 | 1974-01-22 | Ugine Kuhlmann | Tri(isopropyl)phenyl phosphates |
US4261880A (en) | 1977-11-25 | 1981-04-14 | Mitsubishi Petrochemical Co., Ltd. | Polyolefin resin compositions |
DE2940620A1 (en) | 1979-10-06 | 1981-04-16 | Hoechst Ag, 6000 Frankfurt | Tri:aryl phosphite prodn. from phosphorus tri:halide - and aromatic hydroxy cpd. in presence of nitrogen heterocycle as catalyst |
US4276233A (en) | 1978-11-02 | 1981-06-30 | General Electric Company | Hindered phenol phosphites |
US4321218A (en) | 1978-01-10 | 1982-03-23 | Ciba-Geigy Corporation | Phosphite stabilizer |
US4383950A (en) | 1978-07-27 | 1983-05-17 | Ciba-Geigy Corporation | Phosphite stabilizers |
US4406842A (en) | 1978-04-20 | 1983-09-27 | Ciba-Geigy Corporation | Ortho-alkylated phenyl phosphonites |
EP0090524A1 (en) | 1982-03-26 | 1983-10-05 | General Electric Company | Thermal oxidation stabilizer composed of phosphite derivatives of an alcohol and PPE monomer still bottoms, and PPE compositions containing said phosphites |
JPS5930842A (en) | 1982-08-10 | 1984-02-18 | Sumitomo Chem Co Ltd | Stabilized polyolefin resin composition |
US4492661A (en) | 1977-08-08 | 1985-01-08 | Ciba-Geigy Corporation | Process for producing triarylphosphites |
US4540538A (en) | 1981-10-08 | 1985-09-10 | Union Carbide Corporation | Anti-block compounds for extrusion of transition metal catalyzed resins |
EP0245852A2 (en) | 1986-05-15 | 1987-11-19 | Akzo N.V. | Process for preparing liquid triaryl thiophosphate mixtures |
US4719257A (en) | 1985-04-09 | 1988-01-12 | Sumitomo Chemical Company, Ltd. | Polyolefin resin composition |
US4829112A (en) | 1985-08-07 | 1989-05-09 | Sumitomo Chemical Co., Ltd. | Polyolefin resin composition |
GB2227490A (en) | 1989-01-24 | 1990-08-01 | Sandoz Ltd | Polymer stabilisers |
EP0454378A1 (en) | 1990-04-25 | 1991-10-30 | Sumitomo Chemical Company, Limited | Stabilized polyolefin composition |
GB2252324A (en) | 1990-12-20 | 1992-08-05 | Bp Chem Int Ltd | Stabilizer composition |
US5208368A (en) | 1990-07-07 | 1993-05-04 | Basf Aktiengesellschaft | Preparation of mixtures of diphenylmethane diisocyanates and polyphenylpolymethylene polyisocyanates of reduced iodine color number |
EP0551062A2 (en) | 1992-01-10 | 1993-07-14 | Borealis A/S | Polymer composition which withstands sterilization carried out by irradiation, and a method for the production thereof |
JPH05202236A (en) | 1992-01-27 | 1993-08-10 | Asahi Denka Kogyo Kk | Polyolefin resin composition |
US5254610A (en) | 1991-08-02 | 1993-10-19 | Eastman Kodak Company | Polyester/polycarbonate blends containing phosphites |
US5254709A (en) | 1989-12-08 | 1993-10-19 | Uniroyal Chemical Company, Inc. | Method for preparing stearically hindered aryl phosphites |
US5322871A (en) | 1991-03-26 | 1994-06-21 | Ciba-Geigy Corporation | Asymmetric aryl phosphites |
JPH07309884A (en) | 1994-05-18 | 1995-11-28 | Yotsukaichi Gosei Kk | Production of trialkylphenyl phosphite |
US5561181A (en) | 1994-11-16 | 1996-10-01 | General Electric Company | Ultra high ortho nonyl phenyl phosphite and resin compositions stabilized therewith |
RO112871B1 (en) | 1994-04-11 | 1998-01-30 | Inst Cercetari Chim | Phenol 1-methyl-1-phenylethyl, phosphites and process for preparation |
RU2140938C1 (en) | 1998-12-15 | 1999-11-10 | Открытое акционерное общество "Органический синтез" | Composition of synergists for stabilization of polyolefins |
US20030078340A1 (en) | 2000-02-21 | 2003-04-24 | Fatnes Anne Marie | Process for the preparation of additive coated molding powder |
US6576788B1 (en) | 1998-04-21 | 2003-06-10 | Basf Aktiengesellschaft | Method for producing mixtures consisting of diphenylmethane diisocyanates and polyphenylene-polymethylene-polyisocyanates containing a reduced amount of chlorinated secondary products and with a reduced iodine color index |
US20030146542A1 (en) * | 2000-02-21 | 2003-08-07 | Fatnes Anne Marie | Process for addition of additives to polymer particles |
US20040048958A1 (en) | 2002-09-06 | 2004-03-11 | Didier David A. | High temperature ultra high molecular weight polyethylene |
US6824711B2 (en) | 2001-03-02 | 2004-11-30 | Dover Chemical Corporation | Phosphite ester additive composition |
US6846859B2 (en) | 2002-05-31 | 2005-01-25 | Fina Technology, Inc. | Polyolefin composition having reduced color bodies |
US6887926B1 (en) | 2001-11-16 | 2005-05-03 | Oatey Co. | Bonding compositions for chlorinated polymers and methods of using the same |
US7157511B2 (en) | 2003-11-21 | 2007-01-02 | Chevron Phillipschemical Company Lp | Phosphite additives in polyolefins |
WO2007009916A1 (en) | 2005-07-21 | 2007-01-25 | Ciba Specialty Chemicals Holding Inc. | Stabilization of polyolefins with liquid tris-(mono-alkyl)phenyl phosphites |
US20070149660A1 (en) | 2005-10-27 | 2007-06-28 | Vijayendra Kumar | Stabilized polyolefin compositions |
US20070228343A1 (en) | 2004-05-13 | 2007-10-04 | Michael Roth | Flame Retardants |
WO2007149143A2 (en) | 2006-06-20 | 2007-12-27 | Chemtura Corporation | Liquid phosphite blends as stabilizers |
US7320764B2 (en) | 2001-03-02 | 2008-01-22 | Dover Chemical Corporation | Phosphite ester additive compositions |
US7361703B2 (en) | 2004-05-18 | 2008-04-22 | Nova Chemical (International) S.A. | Phenol free stabilization of polyethylene film |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930842B2 (en) | 1975-08-18 | 1984-07-30 | オリエンタルコンクリ−ト (株) | How to build a long concrete bridge |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4827064A (en) | 1986-12-24 | 1989-05-02 | Mobil Oil Corporation | High viscosity index synthetic lubricant compositions |
US4912272A (en) | 1988-06-23 | 1990-03-27 | Mobil Oil Corporation | Lubricant blends having high viscosity indices |
US4892851A (en) | 1988-07-15 | 1990-01-09 | Fina Technology, Inc. | Process and catalyst for producing syndiotactic polyolefins |
IT1237398B (en) | 1989-01-31 | 1993-06-01 | Ausimont Srl | CATALYSTS FOR THE POLYMERIZATION OF OLEFINE. |
DE3907965A1 (en) | 1989-03-11 | 1990-09-13 | Hoechst Ag | METHOD FOR PRODUCING A SYNDIOTACTIC POLYOLEFIN |
SK154089A3 (en) | 1989-03-13 | 1997-11-05 | Polymer Inst Brno Spol S R O | Stabilized polypropylene and propylene copolymers |
US5012020A (en) | 1989-05-01 | 1991-04-30 | Mobil Oil Corporation | Novel VI enhancing compositions and Newtonian lube blends |
DE4120009A1 (en) | 1991-06-18 | 1992-12-24 | Basf Ag | SOLUBLE CATALYST SYSTEMS FOR THE PRODUCTION OF POLYALK-1-ENEN WITH HIGH MOLES |
EP0638183B1 (en) * | 1992-05-01 | 1997-03-05 | Seiko Epson Corporation | A system and method for retiring instructions in a superscalar microprocessor |
JP2001247728A (en) * | 2000-03-08 | 2001-09-11 | Sumitomo Chem Co Ltd | Polypropylene resin composition, molded article and film comprising the same |
JP2002003661A (en) * | 2000-06-16 | 2002-01-09 | Japan Polyolefins Co Ltd | Polyethylene resin composition, film thereof, porous film, molded product, and method for producing porous film |
US6858767B1 (en) | 2000-08-11 | 2005-02-22 | Uniroyal Chemical Company, Inc. | Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor, the resulting polymer and lubricant containing same |
US6706828B2 (en) | 2002-06-04 | 2004-03-16 | Crompton Corporation | Process for the oligomerization of α-olefins having low unsaturation |
GB0515602D0 (en) * | 2005-07-29 | 2005-09-07 | Great Lakes Chemical Europ | Colour stabilised polyolefins |
US7752427B2 (en) * | 2005-12-09 | 2010-07-06 | Atmel Corporation | Stack underflow debug with sticky base |
CN101472986B (en) * | 2006-06-20 | 2012-04-11 | 科聚亚公司 | Liquid phosphite blends as stabilizers |
-
2009
- 2009-10-23 US US12/604,981 patent/US8188170B2/en not_active Expired - Fee Related
-
2010
- 2010-10-01 WO PCT/US2010/051036 patent/WO2011049728A1/en active Application Filing
- 2010-10-01 BR BR112012009269-3A patent/BR112012009269B1/en not_active IP Right Cessation
- 2010-10-01 CN CN201080047923.2A patent/CN102712785B/en active Active
- 2010-10-01 CA CA2777020A patent/CA2777020C/en not_active Expired - Fee Related
- 2010-10-01 EP EP10766428.6A patent/EP2491078B1/en not_active Not-in-force
- 2010-10-01 IN IN3189DEN2012 patent/IN2012DN03189A/en unknown
- 2010-10-01 JP JP2012535219A patent/JP2013508507A/en active Pending
-
2011
- 2011-10-13 US US13/272,298 patent/US8258214B2/en active Active
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2220845A (en) | 1938-08-12 | 1940-11-05 | Dow Chemical Co | Aromatic phosphites |
US2834798A (en) | 1957-12-20 | 1958-05-13 | Shea Chemical Corp | Heterocyclic phosphorus compounds |
US3492377A (en) | 1961-05-22 | 1970-01-27 | Goodyear Tire & Rubber | Triaryl phosphites |
US3412064A (en) | 1965-11-08 | 1968-11-19 | Uniroyal Inc | Olefin polymer composition |
US3558554A (en) | 1966-06-09 | 1971-01-26 | Yoshitomi Pharmaceutical | Oxidatively stable polyolefin composition |
US3644536A (en) | 1969-09-18 | 1972-02-22 | Pennwalt Corp | Process for 1 3 5-tris(alpha-hydroxy-isopropyl)benzene |
GB1298248A (en) | 1969-11-18 | 1972-11-29 | Pennwalt Corp | Preparation of tris-peroxides |
US3756906A (en) | 1970-02-13 | 1973-09-04 | Ici Ltd | Rubber polyester compositions |
US3787537A (en) | 1970-07-17 | 1974-01-22 | Ugine Kuhlmann | Tri(isopropyl)phenyl phosphates |
US3755200A (en) | 1972-02-14 | 1973-08-28 | Emery Industries Inc | Liquid stabilizer system for polyvinyl chloride |
US4492661A (en) | 1977-08-08 | 1985-01-08 | Ciba-Geigy Corporation | Process for producing triarylphosphites |
US4261880A (en) | 1977-11-25 | 1981-04-14 | Mitsubishi Petrochemical Co., Ltd. | Polyolefin resin compositions |
US4261880B1 (en) | 1977-11-25 | 1992-12-22 | Mitsubishi Petrochemical Co | |
US4321218A (en) | 1978-01-10 | 1982-03-23 | Ciba-Geigy Corporation | Phosphite stabilizer |
US4406842A (en) | 1978-04-20 | 1983-09-27 | Ciba-Geigy Corporation | Ortho-alkylated phenyl phosphonites |
US4383950A (en) | 1978-07-27 | 1983-05-17 | Ciba-Geigy Corporation | Phosphite stabilizers |
US4276233A (en) | 1978-11-02 | 1981-06-30 | General Electric Company | Hindered phenol phosphites |
DE2940620A1 (en) | 1979-10-06 | 1981-04-16 | Hoechst Ag, 6000 Frankfurt | Tri:aryl phosphite prodn. from phosphorus tri:halide - and aromatic hydroxy cpd. in presence of nitrogen heterocycle as catalyst |
US4540538A (en) | 1981-10-08 | 1985-09-10 | Union Carbide Corporation | Anti-block compounds for extrusion of transition metal catalyzed resins |
EP0090524A1 (en) | 1982-03-26 | 1983-10-05 | General Electric Company | Thermal oxidation stabilizer composed of phosphite derivatives of an alcohol and PPE monomer still bottoms, and PPE compositions containing said phosphites |
JPS5930842A (en) | 1982-08-10 | 1984-02-18 | Sumitomo Chem Co Ltd | Stabilized polyolefin resin composition |
US4719257A (en) | 1985-04-09 | 1988-01-12 | Sumitomo Chemical Company, Ltd. | Polyolefin resin composition |
US4829112A (en) | 1985-08-07 | 1989-05-09 | Sumitomo Chemical Co., Ltd. | Polyolefin resin composition |
EP0245852A2 (en) | 1986-05-15 | 1987-11-19 | Akzo N.V. | Process for preparing liquid triaryl thiophosphate mixtures |
GB2227490A (en) | 1989-01-24 | 1990-08-01 | Sandoz Ltd | Polymer stabilisers |
US5254709A (en) | 1989-12-08 | 1993-10-19 | Uniroyal Chemical Company, Inc. | Method for preparing stearically hindered aryl phosphites |
EP0454378A1 (en) | 1990-04-25 | 1991-10-30 | Sumitomo Chemical Company, Limited | Stabilized polyolefin composition |
US5208368A (en) | 1990-07-07 | 1993-05-04 | Basf Aktiengesellschaft | Preparation of mixtures of diphenylmethane diisocyanates and polyphenylpolymethylene polyisocyanates of reduced iodine color number |
GB2252324A (en) | 1990-12-20 | 1992-08-05 | Bp Chem Int Ltd | Stabilizer composition |
US5322871A (en) | 1991-03-26 | 1994-06-21 | Ciba-Geigy Corporation | Asymmetric aryl phosphites |
US5401845A (en) | 1991-03-26 | 1995-03-28 | Ciba-Geigy Corporation | Asymmetric aryl phosphites |
US5254610A (en) | 1991-08-02 | 1993-10-19 | Eastman Kodak Company | Polyester/polycarbonate blends containing phosphites |
EP0551062A2 (en) | 1992-01-10 | 1993-07-14 | Borealis A/S | Polymer composition which withstands sterilization carried out by irradiation, and a method for the production thereof |
JPH05202236A (en) | 1992-01-27 | 1993-08-10 | Asahi Denka Kogyo Kk | Polyolefin resin composition |
RO112871B1 (en) | 1994-04-11 | 1998-01-30 | Inst Cercetari Chim | Phenol 1-methyl-1-phenylethyl, phosphites and process for preparation |
JPH07309884A (en) | 1994-05-18 | 1995-11-28 | Yotsukaichi Gosei Kk | Production of trialkylphenyl phosphite |
US5561181A (en) | 1994-11-16 | 1996-10-01 | General Electric Company | Ultra high ortho nonyl phenyl phosphite and resin compositions stabilized therewith |
US6576788B1 (en) | 1998-04-21 | 2003-06-10 | Basf Aktiengesellschaft | Method for producing mixtures consisting of diphenylmethane diisocyanates and polyphenylene-polymethylene-polyisocyanates containing a reduced amount of chlorinated secondary products and with a reduced iodine color index |
RU2140938C1 (en) | 1998-12-15 | 1999-11-10 | Открытое акционерное общество "Органический синтез" | Composition of synergists for stabilization of polyolefins |
US20030146542A1 (en) * | 2000-02-21 | 2003-08-07 | Fatnes Anne Marie | Process for addition of additives to polymer particles |
US20030078340A1 (en) | 2000-02-21 | 2003-04-24 | Fatnes Anne Marie | Process for the preparation of additive coated molding powder |
US7320764B2 (en) | 2001-03-02 | 2008-01-22 | Dover Chemical Corporation | Phosphite ester additive compositions |
US6824711B2 (en) | 2001-03-02 | 2004-11-30 | Dover Chemical Corporation | Phosphite ester additive composition |
US6887926B1 (en) | 2001-11-16 | 2005-05-03 | Oatey Co. | Bonding compositions for chlorinated polymers and methods of using the same |
US6846859B2 (en) | 2002-05-31 | 2005-01-25 | Fina Technology, Inc. | Polyolefin composition having reduced color bodies |
US20040048958A1 (en) | 2002-09-06 | 2004-03-11 | Didier David A. | High temperature ultra high molecular weight polyethylene |
US7157511B2 (en) | 2003-11-21 | 2007-01-02 | Chevron Phillipschemical Company Lp | Phosphite additives in polyolefins |
US20070228343A1 (en) | 2004-05-13 | 2007-10-04 | Michael Roth | Flame Retardants |
US7361703B2 (en) | 2004-05-18 | 2008-04-22 | Nova Chemical (International) S.A. | Phenol free stabilization of polyethylene film |
WO2007009916A1 (en) | 2005-07-21 | 2007-01-25 | Ciba Specialty Chemicals Holding Inc. | Stabilization of polyolefins with liquid tris-(mono-alkyl)phenyl phosphites |
US7468410B2 (en) | 2005-07-21 | 2008-12-23 | Ciba Specialty Chemicals Corporation | Stabilization of polyolefins with liquid tris-(mono-alkyl)phenyl phosphites |
US20070149660A1 (en) | 2005-10-27 | 2007-06-28 | Vijayendra Kumar | Stabilized polyolefin compositions |
WO2007149143A2 (en) | 2006-06-20 | 2007-12-27 | Chemtura Corporation | Liquid phosphite blends as stabilizers |
Non-Patent Citations (1)
Title |
---|
International Preliminary Report on Patentability mailed Dec. 22, 2008; of PCT Application No. PCT/US2007/009690; 6 pgs. |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110028616A1 (en) * | 2009-07-31 | 2011-02-03 | Gelbin Michael E | Liquid phosphite compositions having different alkyl groups |
US8633267B2 (en) * | 2009-07-31 | 2014-01-21 | Addivant Usa Llc | Liquid phosphite compositions having different alkyl groups |
WO2013109818A1 (en) | 2012-01-20 | 2013-07-25 | Chemtura Corporation | Polyolefin compositions for film, fiber and molded articles |
WO2014020170A1 (en) | 2012-08-02 | 2014-02-06 | Addivant Switzerland Gmbh | Phosphite compositions |
US8916065B2 (en) | 2012-08-02 | 2014-12-23 | Addivant Switzerland Gmbh | Phosphite compositions |
US9645066B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
US9645131B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
US9791358B2 (en) | 2015-12-04 | 2017-10-17 | Chevron Phillips Chemical Company, Lp | Polymer compositions having improved processability and methods of making and using same |
WO2017184234A1 (en) | 2016-04-22 | 2017-10-26 | Exxonmobil Chemical Patents Inc. | Polyethylene sheets |
WO2018017180A1 (en) | 2016-07-21 | 2018-01-25 | Exxonmobil Chemical Patents Inc. | Rotomolded compositions, articles, and processes for making the same |
WO2018102091A1 (en) | 2016-12-02 | 2018-06-07 | Exxonmobil Chemical Patents Inc. | Polyethylene films |
WO2018187047A1 (en) | 2017-04-06 | 2018-10-11 | Exxonmobil Chemical Patents Inc. | Cast films and processes for making the same |
WO2018226311A1 (en) | 2017-06-08 | 2018-12-13 | Exxonmobil Chemical Patents Inc. | Polyethylene blends and extrudates and methods of making the same |
WO2019022801A1 (en) | 2017-07-24 | 2019-01-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods od making the same |
WO2019209334A1 (en) | 2018-04-27 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods of making the same |
WO2020109870A2 (en) | 2018-06-28 | 2020-06-04 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions, wires and cables, and methods for making the same |
Also Published As
Publication number | Publication date |
---|---|
EP2491078A1 (en) | 2012-08-29 |
BR112012009269B1 (en) | 2019-08-06 |
JP2013508507A (en) | 2013-03-07 |
EP2491078B1 (en) | 2016-09-28 |
CN102712785B (en) | 2014-05-14 |
US20120035305A1 (en) | 2012-02-09 |
WO2011049728A1 (en) | 2011-04-28 |
US20100197837A1 (en) | 2010-08-05 |
IN2012DN03189A (en) | 2015-10-09 |
US8258214B2 (en) | 2012-09-04 |
BR112012009269A2 (en) | 2018-05-02 |
CN102712785A (en) | 2012-10-03 |
CA2777020A1 (en) | 2011-04-28 |
CA2777020C (en) | 2016-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8188170B2 (en) | Polymers with low gel content and enhanced gas-fading | |
US8048946B2 (en) | Hydrolytically stable phosphite compositions | |
US8178005B2 (en) | Liquid phosphite compositions having different alkyl groups | |
US8008383B2 (en) | Liquid amylaryl phosphite compositions | |
US8916065B2 (en) | Phosphite compositions | |
EP2459578B1 (en) | Solid alkylaryl phosphite compositions and methods for manufacturing same | |
US8008384B2 (en) | Liquid butylaryl phosphite compositions | |
US8309635B2 (en) | Solid alkylaryl phosphite compositions and methods for manufacturing same | |
WO2011014405A1 (en) | Liquid alkylated trisaryl phosphite compositions having two alkyl groups with different carbon number | |
US8183311B2 (en) | Liquid phosphite composition derived from cresols | |
WO2011014210A2 (en) | Liquid phosphite compositions having different alkyl groups |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CITIBANK, N.A., DELAWARE Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC;AND OTHERS;REEL/FRAME:023998/0001 Effective date: 20100212 |
|
AS | Assignment |
Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAHALKA, HAYDER;GELBIN, MICHAEL E.;POWER, MAURICE;AND OTHERS;SIGNING DATES FROM 20100308 TO 20100405;REEL/FRAME:024215/0180 |
|
AS | Assignment |
Owner name: UNIROYAL CHEMICAL COMPANY LIMITED (DELAWARE), CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BANK OF AMERICA, N.A., CONNECTICUT Free format text: FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISE COMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:026028/0622 Effective date: 20101110 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: A & M CLEANING PRODUCTS, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ASCK, INC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB COMPANY STORE, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ASEPSIS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB TEXTILES ADDITIVES, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON MONOCHEM, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ISCI, INC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: UNIROYAL CHEMICAL COMPANY LIMITED (DELAWARE), CONN Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: MONOCHEM, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: WRL OF INDIANA, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB FRANCHISE COMPANY, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BANK OF AMERICA, N. A., CONNECTICUT Free format text: SECDOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISE COMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:027881/0347 Effective date: 20101110 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: BIO-LAB INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: ASEPSIS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT ABL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030407/0063 Effective date: 20130430 Owner name: ASEPSIS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: BIO-LAB INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: ASEPSIS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: BIO-LAB INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT Free format text: PARTIAL RELEASE OF IP SECURITY AGREEMENT TL;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030411/0062 Effective date: 20130430 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, MASSACHUSE Free format text: SECURITY INTEREST;ASSIGNOR:ADDIVANT USA, LLC;REEL/FRAME:030872/0810 Effective date: 20130430 |
|
AS | Assignment |
Owner name: ADDIVANT USA LLC, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEMTURA CORPORATION;REEL/FRAME:031895/0895 Effective date: 20130430 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CERBERUS BUSINESS FINANCE, LLC, AS AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ADDIVANT USA, LLC;REEL/FRAME:037207/0959 Effective date: 20151203 |
|
AS | Assignment |
Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: RECREATIONAL WATER PRODUCTS, INC., GEORGIA Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: BIOLAB FRANCHISE COMPANY, LLC, GEORGIA Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: BIO-LAB, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: BIOLAB FRANCHISE COMPANY, LLC, GEORGIA Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: RECREATIONAL WATER PRODUCTS, INC., GEORGIA Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: BIO-LAB, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 |
|
AS | Assignment |
Owner name: ADDIVANT USA, LLC, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL 030872 FRAME 0810;ASSIGNOR:WELLS FARGO BANK;REEL/FRAME:047240/0580 Effective date: 20181015 Owner name: ADDIVANT USA, LLC, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL 037207 FRAME 0959;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:047775/0963 Effective date: 20181015 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNORS:SI GROUP, INC.;ADDIVANT USA, LLC;REEL/FRAME:048822/0965 Effective date: 20181015 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:SI GROUP, INC.;ADDIVANT USA, LLC;REEL/FRAME:048822/0965 Effective date: 20181015 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SI GROUP USA (USAA), LLC, CONNECTICUT Free format text: CHANGE OF NAME;ASSIGNOR:ADDIVANT USA, LLC;REEL/FRAME:051159/0077 Effective date: 20190331 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240529 |
|
AS | Assignment |
Owner name: SI GROUP USA (USAA), LLC (F/K/A ADDIVANT USA, LLC), CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:069290/0057 Effective date: 20241031 Owner name: ADDIVANT USA, LLC, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:069290/0057 Effective date: 20241031 Owner name: SI GROUP, INC., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:069290/0057 Effective date: 20241031 |