US8150343B2 - Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier - Google Patents
Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier Download PDFInfo
- Publication number
- US8150343B2 US8150343B2 US12/617,647 US61764709A US8150343B2 US 8150343 B2 US8150343 B2 US 8150343B2 US 61764709 A US61764709 A US 61764709A US 8150343 B2 US8150343 B2 US 8150343B2
- Authority
- US
- United States
- Prior art keywords
- module
- linear
- signal
- stage
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000004513 sizing Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 230000003321 amplification Effects 0.000 abstract description 21
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 21
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 238000004891 communication Methods 0.000 description 44
- 230000006870 function Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005513 bias potential Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
- H03F1/0227—Continuous control by using a signal derived from the input signal using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
- H03F1/0266—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
- H03F1/22—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
- H03F1/223—Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/72—Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0088—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/222—A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/318—A matching circuit being used as coupling element between two amplifying stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/405—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising more than three power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/411—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2201/00—Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
- H03F2201/32—Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
- H03F2201/3233—Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21142—Output signals of a plurality of power amplifiers are parallel combined to a common output
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21145—Output signals are combined by switching a plurality of paralleled power amplifiers to a common output
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/72—Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
- H03F2203/7206—Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias voltage in the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/72—Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
- H03F2203/7236—Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)
Definitions
- the present invention relates generally to radio frequency (RF) power amplifiers and, more particularly, to CMOS, FET, SOS and/or SOI power amplifiers that provide linear and non-linear amplification capability from the same PA.
- RF radio frequency
- Communication systems are known to support wireless and wire lined communications between wireless and/or wire lined communication devices.
- Such communication systems include national and/or international cellular telephone systems, the Internet, and point-to-point in-home wireless networks.
- Each type of communication system is constructed, and hence operates, in accordance with one or more communication standards or protocols.
- wireless communication systems may operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), wideband CDMA (WCDMA), local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), radio frequency identification (RFID), Enhanced Data rates for GSM Evolution (EDGE), General Packet Radio Service (GPRS), and extensions and/or variations thereof.
- GSM global system for mobile communications
- CDMA code division multiple access
- WCDMA wideband CDMA
- LMDS local multi-point distribution systems
- MMDS multi-channel-multi-point distribution systems
- RFID radio frequency identification
- EDGE Enhanced Data rates for GSM Evolution
- GPRS General Packet Radio Service
- a wireless communication device such as a mobile or cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, RFID reader, RFID tag, as well as others, communicates directly or indirectly with other wireless communication devices.
- PDA personal digital assistant
- PC personal computer
- laptop computer home entertainment equipment
- RFID reader RFID tag
- the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of RF carriers of the wireless communication system or a particular RF frequency for some systems) and communicate over that channel(s).
- each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel.
- an associated base station e.g., for cellular services
- an associated access point e.g., for an in-home or in-building wireless network
- the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other network.
- each wireless device For each wireless device to participate in wireless communications, it includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver (e.g., a station for in-home and/or in-building wireless communication networks, RF modem, etc.).
- the receiver is coupled to an antenna and includes a low noise amplifier, one or more signal conversion stage(s) and a data recovery stage.
- the transmitter includes a data processing stage, one or more frequency conversion stage(s) that may include a modulator, and a power amplifier.
- the power amplifier amplifies the RF signal prior to transmission via an antenna.
- PAs provide the necessary power amplification for transmitting the RF signal.
- the power provided by the PA typically depends on the particular wireless communication technology employed, the standard or protocol being utilized and the distance and/or medium that the transmitted signal traverses to an intended receiving device.
- BluetoothTM devices transmit at lower power than cell phones, because the distance between BluetoothTM wireless communication is much shorter than the distance between a cell phone and a base station, such as a cell phone tower.
- the size of a PA which relates directly to its power generation capability, depends on the power required for transmission.
- PAs are designed or configured to operate either in a linear mode or a non-linear mode.
- Linear PAs are widely used to transmit varying amplitude signals, such as OFDM (Orthogonal Frequency-Division Multiplexing), 8PSK (8 Phase Shift Keying), etc., in which the PA operates in class A, A/B, C, E, F etc.
- Linear PAs generally provide linear amplification of an input signal, but with reduced efficiency.
- non-linear PAs operate in class B, C, D or E to provide non-linear amplification, but with better power efficiency.
- the PA is typically designed to provide power amplification for a particular purpose and the ability to provide a certain amount of transmitted power.
- an integrated circuit that contains a PA may be selected for a mobile device (e.g. cell phone) based on the standard or protocol used for wireless communication and the linear or non-linear operation of the PA may be dictated by the specifications of the standard or protocol. If linear operation is to be practiced, the PA is designed accordingly. Similarly, if non-linear operation is to be practiced, the PA is designed accordingly.
- a device may support two different communication protocols that require the PA to switch between linear and non-linear modes of operation.
- GSM uses a constant amplitude modulation, so that a non-linear PA may be employed to provide upwards of 45% efficiency.
- EDGE/WCDMA which uses phase and amplitude modulation
- the PA is backed off into a linear range. This transition of the operating mode of the PA may reduce the efficiency to around 20%, or even less. Because the PA is typically the single largest consumer of current and PAs are usually optimized for the higher power mode, this reduction in efficiency results in significant waste of power.
- prior art practice has been to accept this power loss in efficiency at low-power linear amplification.
- FIG. 1 is a block diagram of a wireless communication system, wherein a device within the system may implement the present invention.
- FIG. 2 is a block schematic diagram of a wireless communication device showing one embodiment of a device for practicing the present invention.
- FIG. 3 is a circuit schematic diagram of a PA stage in a linear mode of operation and shows having a varying amplitude and phase signal at a gate terminal of an input transistor of the PA stage.
- FIG. 4 is a circuit schematic diagram of a PA stage in a non-linear mode of operation and shows having a constant amplitude signal at a gate terminal of an input transistor of the PA stage and a modulated envelop on a supply line to the PA stage.
- FIG. 5 is a power output graph for the PA and shows a linear range of operation and a non-linear range of operation for the PA in practicing one embodiment of the invention.
- FIG. 6 is a block schematic diagram of a two-stage PA, in which device sizing, biasing and impedance matching for the stages are adjusted based on a mode of operation of the PA, as well as having the ability to bypass one or more of the PA stages.
- FIG. 7 is a circuit schematic diagram showing one embodiment of a transistor circuitry that is used for the two-stage PA of FIG. 6 .
- FIG. 8 is a circuit schematic diagram showing one technique of switching transistors in and out in the transistor circuitry of FIG. 7 to obtain device sizing for the two-stage PA.
- FIG. 9 is a block schematic diagram showing one embodiment of a dual-PA for providing separate PAs for two separate range of transmission frequencies.
- the embodiments of the present invention may be practiced in a variety of settings that utilize a power amplifier (PA).
- PA power amplifier
- the described embodiments below pertain to PAs that are utilized with a baseband processor and a radio frequency (RF) transmitter to provide transmission signals for wireless communication.
- RF radio frequency
- the invention need not be limited to this use only and the invention may be implemented for use in other techniques.
- the PAs are described as integrated in an integrated circuit device, the invention may be practiced without such integration.
- CMOS Complementary Metal-Oxide-Semiconductor
- FET Field-Effect-Transistor
- JFET Junction-gate Field-Effect-Transistor
- LDMOS Laterally Diffused Metal-Oxide-Semiconductor
- SOS Silicon-On-Sapphire
- SOI Silicon-On-Insulator
- SiGe Silicon-Germanium
- FIG. 1 illustrates a block diagram of a communication system 10 that includes a plurality of base stations (BS) and/or access points (AP) 11 , 12 , 13 , a plurality of wireless communication devices 20 - 27 and a network hardware component 14 .
- the wireless communication devices 20 - 27 may be laptop computers 20 , 24 , personal digital assistants (PDAs) 21 , 26 , personal computers (PCs) 23 , 27 and/or mobile (e.g. cellular) telephones 22 , 25 .
- PDAs personal digital assistants
- PCs personal computers
- These devices 20 - 27 via corresponding BS/AP 11 - 13 , may be coupled to one or more networks 15 - 18 which allow communication between the devices.
- BSs/APs 11 - 13 are operably coupled to network hardware component 14 via local area network (LAN) connections 15 , 16 , 17 .
- the network hardware component 14 which may be a router, switch, bridge, modem, system controller, etc., provides a wide area network (WAN) connection 18 for the communication system 10 .
- WAN wide area network
- Each of the BS/AP 11 - 13 has an associated antenna or antenna array to communicate with the wireless communication devices in its area.
- the wireless communication devices register with a particular BS/AP 11 - 13 to receive services from the communication system 10 .
- wireless communication devices may communicate directly via an allocated channel.
- system 10 of FIG. 1 is presented as an example only and that other system and devices may be implemented to practice the present invention.
- the various devices, as well as BSs/APs, shown in FIG. 1 have a wireless transmitter if the communication is to be achieved wirelessly.
- a PA is generally resident in a transmitter to provide the power amplification to transmit a signal.
- a PA implementing an embodiment of the present invention may be utilized to provide the power amplification for transmitting a wireless signal.
- this transmission is a radio frequency (RF) signal, but the invention need not be limited to a specific frequency range (such as RF).
- FIG. 2 illustrates a block schematic diagram of a wireless communication device 30 that includes a host module 31 , baseband processing module 32 and radio module 33 .
- radio 33 is typically a built-in component.
- radio 33 may be built-in or may be an externally coupled component.
- Host module 31 generally includes those components that are utilized to provide a host function for device 30 . Accordingly, host module 31 may include or couple to various user interfaces, including, but not limited to, displays, hand operated devices (e.g. keyboards, keypads, mice, touchpads), speakers, headphones, microphones, etc. Host module 31 may also include a processor (e.g. central processing unit or CPU, micro-controller, etc.), memory and/or other components to provide the processing functions to operate device 30 . For example, when device 30 is a cell phone, host module 31 performs the corresponding communication functions in accordance with a particular cellular telephone standard or protocol.
- a processor e.g. central processing unit or CPU, micro-controller, etc.
- Baseband processing module 32 couples host module 31 to radio 33 and provides baseband processing functions for both outgoing and incoming signals. For outgoing signals from host module 31 , baseband processing module provides baseband processing of the outgoing signal and couples the outgoing digital signal for RF conversion by radio module 33 . For incoming signals, radio module 33 converts an incoming RF signal to a digital baseband signal and couples the incoming signal to baseband processing module 32 for further processing for use by host module 31 .
- radio module 33 and baseband module 32 may be constructed as separate components, in one embodiment, both modules 32 , 33 are integrated on the same integrated circuit chip. In one embodiment, this integrated circuit is constructed using CMOS technology. In some embodiments, host module 31 , or portions of host module 31 , may also be integrated on the same integrated circuit chip.
- Transmitter section of radio module 33 includes a transmitter module 40 , which typically includes a modulator module 41 , a PA module 42 , and direct current/direct current (DC/DC) interface module 43 .
- DC/DC interface module 43 may be part of PA module 42 , as shown by dotted line 44 .
- DC/DC interface module 43 may be distinctly separate from PA module 42 .
- DC/DC interface module 43 may not be present at all.
- there may be more than one DC/DC interface module 43 such as one DC/DC interface module 43 for each stage of PA module 42 .
- Receiver section of radio module 33 includes a low-noise amplifier (LNA) module 48 and receiver module 46 .
- LNA low-noise amplifier
- a local oscillator (LO) module 47 which typically includes an oscillator or a frequency synthesizer, provides local oscillation frequencies to transmitter module 40 and receiver module 46 for mixing or conversion operations.
- a transmit/receive (T/R) switch 45 provides the switching for coupling antenna 34 to either the receive side during receive operations or to the transmit side during transmit operations. It is to be noted that a first antenna may be used for transmitting and a separate second antenna for receiving, or multiple transmit/receive antennae for multiple antennae operations, such as for multiple-input-multiple-output (MIMO) communication.
- MIMO multiple-input-multiple-output
- LNA module 48 For receiving a signal, an inbound signal is received by antenna 34 and coupled to LNA module 48 via T/R switch 45 .
- LNA module 48 typically includes a low-noise amplifier for amplifying the incoming signal prior to down-conversion by receiver module 46 .
- a variety of down-conversion or detection techniques, including direct conversion techniques, may be used to convert the incoming analog signal, which may be RF, to a digital signal for coupling to baseband processing module 32 .
- an outbound signal from baseband processing module 32 is sent to transmitter module 40 .
- a modulator within modulator module 41 provides some form of modulation, such as by use of a sigma-delta ( ⁇ ) modulation technique, to convert the digital baseband signal to analog form (e.g. RF).
- transmitter module 40 provides a modulated signal of varying amplitude and phase as an input to PA module 42 , when in a linear mode of operation, and provides a constant amplitude signal from the transmitter module 40 , when in a non-linear mode of operation, but a modulated envelope is provided on a supply line via DC/DC interface module 43 to at least one stage of the PA module 42 .
- PA module 42 which includes one or more stages of power amplification, provides the requisite power output for coupling to antenna 34 .
- PA module 42 may include one or more DC/DC interface module(s) 43 .
- DC/DC interface module 43 provides the interface between baseband processing module 32 and one or more stages of PA module 42 to vary the supply voltage to a PA stage and, in one instance, to provide a modulated envelope on the supply line to one or more PA stages for polar modulation of the output signal from PA module 42 .
- PAs having one amplification stage or multiple amplification stages
- the embodiments of the PAs implementing the present invention are capable of operating in both linear and non-linear modes of operation, in which the two modes of operation may be dynamically switched.
- linear operation of an amplifier includes classes A, A/B, F (as well as other classes).
- non-linear operation of an amplifier includes classes B, C, D or E (as well as other classes). Accordingly, the PA of the present invention may operate in class A, A/B or F when operating in the linear mode and class B, C, D or E when operating in the non-linear mode.
- FIG. 3 shows one modulation scheme that is utilized for linear operation.
- a circuit 50 is comprised of an input transistor 52 and a cascode transistor 51 arranged between a supply source and its return (e.g. ground) having a load component 54 .
- Load component 54 is shown as an inductor, but other components may be used as a load for transistors 51 , 52 instead.
- a biasing resistor 53 is coupled between the gate of transistor 52 and a biasing voltage noted as BIAS. In other embodiments, other components, such as a transmission line, inductor, etc., may be used instead of a resistor.
- bias voltage BIAS is applied to the gate of transistor 52 and a separate biasing voltage BIAS_CAS is applied to the gate of cascode transistor 51 .
- a single biasing voltage may be used and applied to the gates of both transistors 51 and 52 .
- Resistor 53 may be variable, so that a variable bias potential and/or variable resistance is placed on the gate of transistor 52 .
- Proper biasing of transistor 52 ensures that circuit 50 operates in a linear mode. When operating in the linear mode, an analog signal having a varying amplitude and phase is coupled as an input to the gate of transistor 52 .
- linear operation is transmission using EDGE protocol for mobile phone communications.
- FIG. 4 shows one modulation scheme that is utilized for non-linear operation.
- a circuit 60 is equivalent to circuit 50 and is comprised of an input transistor 62 and a cascode transistor 61 arranged between a supply source and its return (e.g. ground) having a load component 64 .
- Load component 64 is shown as an inductor, but other components may be used as a load for transistors 61 , 62 instead.
- a biasing resistor 63 (or other circuit components as noted above for resistor 53 ) is coupled between the gate of transistor 62 and biasing voltage BIAS. The bias voltage BIAS is applied to the gate of transistor 62 and a separate biasing voltage BIAS_CAS is applied to the gate of cascode transistor 61 .
- a single biasing voltage may be used and applied to the gates of both transistors 61 and 62 .
- Resistor 63 may be variable, so that a variable bias potential and/or variable resistance value is placed on the gate of transistor 62 .
- Proper biasing of transistor 62 ensures that circuit 60 operates in a non-linear mode.
- an analog signal having a constant amplitude is coupled as an input to the gate of transistor 62 , but a modulated envelope is provided on the supply line for polar modulation.
- One example of non-linear operation is transmission using GSM protocol for mobile phone communications.
- FIG. 5 shows a graph 70 to illustrate output power from a PA when the same PA is used for both linear mode of operation and non-linear mode of operation in practicing one embodiment of the invention.
- a ⁇ 25 dB to +30 dB range is shown (55 dB total).
- the non-linear range is shown as +20 dB to +30 dB (effective 10 dB spread), and the linear range is below +20 dB.
- a bottom threshold is established for the linear range at +3 dB, so that the effective linear range is between +3 db to +20 dB (effective 17 dB spread), establishing an dynamic range of 27 dB for both linear and non-linear operation for the PA. It is to be noted that all values are approximate and in other embodiments, the values and ranges may differ considerably.
- an amplifying circuit such as that shown in FIGS. 3 and 4 , may be utilized for both linear and non-linear modes of operation based on output power.
- FIG. 6 shows one technique for providing a PA that operates in both linear and non-linear modes.
- FIG. 6 shows a PA circuit 80 which may be used as one embodiment for implementing a PA of the present invention.
- PA 80 may be used for PA 42 (or 44 ) of FIG. 2 .
- DC/DC interfaces 83 A, 83 B are shown (collectively referred to as DC/DC interface 83 herein), in which DC/DC interface 83 may be utilized for DC/DC interface module 43 of FIG. 2 .
- DC/DC interface 83 may be part of PA 80 or may be separate from PA 80 .
- PA 80 is shown having two stages of amplification by use of amplifier 81 (stage 1 ) and amplifier 82 (stage 2 ), but the actual number of such amplification stages is a design choice. Thus, some embodiments may have only one stage, while others may have more than two stages. In the two-stage PA of FIG. 6 , a separate DC/DC interface is used for each of the PA stages. That is, DC/DC interface 83 A operates with amplifier 81 and DC/DC interface 83 B operates with amplifier 82 of the PA. However, as noted above, other embodiments may use just one such DC/DC interface 83 to operate with one, some or all stage(s) of PA 80 .
- Amplifier 81 , 82 are each shown as scalable stages, wherein a device size may be scaled depending on the output power desired. For example, at higher power, a larger device is desired to draw more current to generate the requisite power output. At lower power, a smaller device is preferred since less power is required.
- the scaling of amplifiers 81 , 82 allows for an appropriate device size to be selected for a given output power. By scaling an amplifier stage to the output power, a smaller device may be utilized when less power is required. Thus, for example, when PA 80 is operating in the dynamic power range noted in graph 70 of FIG. 5 , amplifiers 81 and 82 may be scaled down in device size as the operating power is lowered.
- both amplifiers 81 , 82 are shown to have device scaling, other embodiments may have only the last stage of amplifier 82 scalable. With multiple stages, one, some or all stages may be scaled, depending on the embodiment implemented.
- the device scaling of PA 80 is utilized only in the linear mode. That is, when PA 80 operates in a non-linear zone, maximum device sizing is used. When PA 80 transitions to linear operation, the device size is reduced as power requirements are reduced. The device size reduction is employed only in the linear mode for this embodiment, since the PA power efficiency in the non-linear mode is much better than when the PA is operating in the linear mode. At lower power, device scaling provides power control and offers reduced feedthrough and higher efficiency. In another embodiment, device scaling is used for both linear and non-linear modes of operation. Although device scaling has little effect (to a first order) with power control, it does affect capacitance, so that feedthrough may still be controlled.
- a device scaling adjust signal SCALING_ADJ is used to set the device scaling for each stage.
- the SCALING_ADJ signal is a control signal that is generated in the baseband processing module, or alternatively in the transmitter module.
- a bias signal BIAS_ADJ is coupled to amplifiers 81 , 82 to adjust the biasing of the stages, by use of biasing circuits 84 , 85 .
- One way to change the bias is to change the biasing resistance to change the value of the bias voltage.
- a bias adjust signal BIAS_ADJ is used to control biasing circuits 84 , 85 , which adjusts the respective bias voltage.
- biasing circuits 84 , 85 may be employed by biasing circuits 84 , 85 , to adjust the biasing resistance to adjust the bias voltage
- a bank of resistors are utilized and appropriate resistor values are switched in under control of the BIAS_ADJ signal to select an appropriate value for biasing respective circuits 84 , 85 .
- the biasing voltage that is coupled is either fixed or variable, but wherein the adjustment to the biasing resistance is used to control stability.
- bias resistor for a smaller device size leads to a loss of power in the bias resistor and a large bias resistor for a large device size reduces stability
- one embodiment compensates for this by increasing the bias resistance for smaller device sizes and decreases the bias resistance for larger device sizes. These changes may be achieved incrementally based on the device size that is selected to improve stability for the PA.
- biasing voltages employed, such as for the examples shown in FIGS. 3 and 4 .
- Biasing circuits 84 , 85 are shown to represent that the respective bias voltage and/or bias resistance to amplifiers 81 , 82 may be adjusted, such as equivalently to the technique described in reference to FIGS. 3 and 4 .
- PA 80 has an adjustable matching network 86 at the input of amplifier 81 and an adjustable matching network 87 at the input of amplifier 82 .
- An adjustable matching network 88 may be present in some embodiments at the output of the last amplifier stage of PA 80 that directly or indirectly couples to antenna 89 .
- the sizing reconfiguration may change the impedance of the amplifier as it is viewed from circuitry coupled to the amplifier. This change in impedance may be pronounced since coupling capacitance changes with the change in the device size. Accordingly, in order to provide the desired impedance matching, matching networks 86 , 87 are adjusted by control signal SCALING_ADJ.
- matching network 88 at the output of PA 80 is used to provide the impedance matching between the last amplifier stage and antenna 89 .
- characteristics of the matching network(s) may be changed in order to perform wave-shaping on the signal.
- a control signal MATCH_ADJ is used to adjust matching networks 86 , 87 .
- a control signal OUTPUT_MATCH_ADJ is used to adjust matching network 88 .
- MATCH_ADJ may be used to adjust matching network 88 as well, instead of using OUTPUT_MATCH_ADJ.
- the various control signals are typically generated as part of baseband processing (or alternatively by the transmitter module) when baseband processing determines the appropriate combination for selecting device size, biasing resistance and match network parameters for a particular transmission.
- one, some or all of the PA stage(s) may be bypassed.
- the bypass functionality is represented by switches 71 , 72 for the two-stage PA shown in FIG. 6 .
- switch 71 When switch 71 is open amplifier 81 is operable to function as an amplification stage and when switch 71 is closed, amplifier 81 is bypassed.
- switch 72 when switch 72 is open amplifier 82 is operable to function as an amplification stage and when switch 72 is closed, amplifier 82 is bypassed.
- switch 71 when switch 71 is closed, only the amplifier stage of amplifier 81 is bypassed and in other embodiments, the amplifier and either the preceding or following matching network are bypassed.
- matching network 86 is bypassed when switch 73 is closed.
- Switch 73 may be closed along with the closing of switch 71 , so that both matching network 86 and amplifier 81 are bypassed.
- switch 74 is closed also to bypass matching network 87 .
- both switches 71 , 72 (as well as switches 73 , 74 ) are closed, both stages may be bypassed.
- switches 71 - 74 are shown for functionality only and that in implementing the stage-bypass scheme described, the switches may be actual switches or other active or passive components. Although one switch is shown for each of the switches 71 - 74 , generally multiple switches (or other components) are utilized to switch in or switch out relevant circuitry that provides a PA stage function. When a stage or stages is/are bypassed, the matching network(s) that remain, most likely need(s) to be adjusted to compensate for the bypass. A bypassing function, when implemented, allows for gain adjustments to be made by shutting off certain gain stages of the PA.
- both amplifiers 81 , 82 may be placed in the signal amplification path, but in a low gain mode, one of the stages (such as amplifier stage 82 ) may be bypassed so that the overall gain is lower than in the high gain mode.
- Other examples abound for bypassing one or more stages of PA 80 .
- FIG. 7 shows a circuit 90 that may be used for circuit 80 of FIG. 6 .
- Circuit 90 is one embodiment for implementing circuit 80 of FIG. 6 .
- Circuit 90 includes a transistor circuit 91 , comprised of input transistor 93 and cascode transistor 94 , that is used for amplifier 81 of FIG. 6 .
- An inductor 100 is present as a load for transistor circuit 91 .
- a transistor circuit 92 comprised of input transistor 98 and cascode transistor 99 , is used for amplifier 82 of FIG. 6 .
- An inductor 101 is present as a load for transistor circuit 92 .
- inductors 100 , 101 are used as drain loads for transistor circuits 91 , 92 , other embodiments may use other loads, such as inductor-capacitor (LC) tank circuits or P-type transistors.
- a supply voltage SUPPLY is coupled to load inductors 100 , 101 . As shown in FIG. 6 , separate supply voltages are coupled through respective DC/DC interfaces 83 A, 83 B to loads 100 , 101 .
- a resistor 95 and resistor 96 correspond respectively to biasing circuits 84 , 85 of FIG. 6 .
- the variable resistances are obtained by a bank of resistors and appropriate resistor values are switched in under control of the BIAS_ADJ signal.
- a bias voltage BIAS is coupled to PA 90 and to resistors 95 , 96 .
- the biasing resistance may be changed to stabilize circuit 90 based on device sizing.
- adjusting the resistance values may also control the bias voltage to the gates of input transistors 91 , 92 .
- the BIAS voltage may be coupled to the cascode transistors as well, in the shown example of FIG.
- circuit 90 uses a second biasing voltage, noted as cascode biasing voltage BIAS_CAS, to bias cascode transistors 94 , 99 (similar to FIGS. 3 and 4 ).
- This cascode biasing voltage may be fixed or varied.
- BIAS_CAS could be a function of the drain or supply voltage to adjust the cascode gates for better reliability or efficiency.
- Using separate biasing voltages for input transistors 93 , 98 and cascode transistors 94 , 99 allows for independent controls in controlling the biasing of the transistor circuits 91 , 92 .
- the same BIAS and BIAS_CAS may be applied to both the first and second transistor circuit stages, in other embodiments, separate voltages may be applied to each stage allowing for further independent control in biasing the stages.
- the input to PA 90 is coupled to the gate of the first stage input transistor 91 , via matching network 86 .
- the output of the first stage at the drain of cascode transistor 94 is coupled as input to the gate of the second stage input transistor 98 , via matching network 87 .
- the impedance adjustment of the two matching networks 86 , 87 are controlled by the MATCH_ADJ signal.
- the output from the second stage is coupled to output matching network 88 , which is controlled by the OUTPUT_MATCH_ADJ signal.
- a feedback circuit 78 is employed in one embodiment to provide a feedback signal to baseband processor and/or control circuits in the transmitting section. The feedback signal allows for open loop or closed loop control of one or more transmitting parameters.
- PA 90 may implement the PA stage bypassing technique described with reference to FIG. 6 .
- a variety of techniques may be used to change the impedance of the various matching networks, including the switching in and out of resistors, capacitors and/or inductors.
- active devices may be present in the matching networks to adjust the impedance.
- the matching network(s) may be used to impedance match and/or wave-shape by changing the components in one or more of the matching network(s).
- adjustment(s) of one or more of the matching networks allows for one or more of the following schemes to be practiced: 1) switching the PA between high frequency and low frequency operation where the matching networks may be tuned for high band or low band; 2) allows frequency tuning within a single band or plurality of channels; 3) allows for load line (impedance) matching between low power (low gain) and high power (high gain) operation; 4) allows for voltage Standing Wave Ratio (VSWR) control under antenna mismatch; and 5) allows for tuning when switching among classes of operation (e.g. A, A/B, B, C, D, E, F, etc.). These are examples only and other techniques may be practiced.
- classes of operation e.g. A, A/B, B, C, D, E, F, etc.
- transistor circuits 91 , 92 Although only two transistors are shown for each transistor circuit 91 , 92 , in actuality a plurality of transistors are present in each transistor circuit 91 , 92 .
- transistor circuits 91 , 92 are controlled by the SCALING_ADJ signal to set the device sizing for each of the stages.
- SCALING_ADJ the SCALING_ADJ signal
- FIG. 8 a variety of techniques may be employed to change the size of the transistors that are operational in transistor circuits 91 , 92 , one embodiment to achieve device scaling is shown in FIG. 8 . As noted in FIG.
- each stage is comprised of a plurality of pairs of input and cascode transistors arranged in parallel, wherein BIAS_CAS to each of the cascode transistors is controlled by SCALING_ADJ.
- BIAS_CAS to each of the cascode transistors is controlled by SCALING_ADJ.
- SCALING_ADJ For minimum power output (smallest device scaling), only one leg is made conductive by closing only one switch in each stage. Subsequent switches are closed to couple BIAS_CAS to respective gates of the cascode transistors to turn on subsequent legs to incrementally increase the device scaling, until full device size is achieved when all switches are closed.
- the weighting placed on each leg may have a variety of relationships. In one embodiment this weighting is done in binary increments, so that the weighting has the relationship of 2 0 X, 2 1 X, 2 2 X . . .
- each leg may have equal weighting.
- each leg may have equal weighting.
- modulation schemes may be used to provide linear and non-linear modes of operation for the various PAs described herein.
- the modulation scheme shown in FIG. 3 is used for linear operation and the modulation scheme of FIG. 4 is used for non-linear operation.
- the supply voltage may be modulated by the DC/DC interface to provide the modulated voltage on the SUPPLY line.
- Whit this polar modulation scheme one or more stages may have the SUPPLY line modulated. However, in one embodiment with two stages, only the first stage is modulated, since the second stage amplifies this modulated signal.
- linear operation is used to transmit using EDGE protocol
- non-linear operation is used to transmit using GSM protocol.
- the various control signals shown are typically generated as part of baseband processing (or alternatively by the transmitter module) when baseband processing module 32 determines the appropriate combination for selecting device size, biasing resistance and match network parameters for a particular transmission.
- a look-up table within baseband processing module 32 of FIG. 2 cross references a number of parameters in a look-up table to access a size of the device so that correct scaling signals may be sent to the PA.
- a feedback circuit may update the lookup table by constantly updating the parameters. In low power situations or under certain other conditions, such feedback loops may be shut off to save power.
- the signal coming in may be pre-distorted to not only vary the supply, but also the various biasing points and device size.
- Such parameters may include, communication standard or protocol being used, channels being used, distance for the signal to be sent, noise level, minimum or maximum specified power, etc.
- a separate look-up table may be used to determine the appropriate bias resistor value(s) and matching network setting(s), once device scaling is determined.
- This look-up table may take into account other factors (such as those noted above) as well.
- both look-up tables may be consolidated into one look-up table.
- FIGS. 3 , 4 and 6 - 8 show a single ended configuration. However, it is understood that these circuits may be implemented differentially. Accordingly, FIG. 9 is shown with a differentially arranged PA. FIG. 9 shows a more comprehensive embodiment for practicing the present invention. PA 110 is actually two complete sections of PAs. A higher frequency PA 120 is shown in the upper portion of the schematic and a lower frequency PA is shown in the bottom portion. Both PAs 120 , 130 are shown as differential amplifiers. For high frequency PA 120 , the input signal is coupled through balun 124 , through matching network 125 to inputs of the differential amplifiers 121 A-B. with biasing circuit 127 providing the bias.
- the differential output of amplifiers 121 A-B are coupled to matching network 126 and to input of the second amplification stage comprised of amplifiers 122 A-B, with biasing circuit 128 providing the bias.
- the differential output of amplifier 122 A-B is coupled to matching network 129 , which output is then coupled out for direct or indirect coupling to an antenna or antennae.
- the supply voltage SUPPLY_S 1 to the first stage is coupled through a DC/DC interface 123 and this supply voltage is modulated for polar modulation.
- the supply voltage SUPPLY_S 2 to the second stage is routed through output matching network 129 .
- a detector 140 is used as an output to provide an output detection feedback to the baseband processing module and/or to the transmitter module.
- the structure and operation of the lower frequency PA 130 is essentially identical to PA 120 .
- the input signal is coupled through balun 134 , through matching network 135 to inputs of the differential amplifiers 131 A-B. with biasing circuit 137 providing the bias.
- the differential output of amplifiers 131 A-B are coupled to matching network 136 and to input of the second amplification stage comprised of amplifiers 132 A-B, with biasing circuit 138 providing the bias.
- the differential output of amplifier 132 A-B is coupled to matching network 139 , which output is then coupled out for direct or indirect coupling to an antenna or antennae.
- the supply voltage SUPPLY_S 1 to the second stage is coupled through a DC/DC interface 133 and this supply voltage is modulated for polar modulation.
- the supply voltage SUPPLY_S 2 to the second stage is routed through output matching network 139 .
- a detector 141 is used as an output to provide an output detection feedback to the baseband processing module and/or to the transmitter module.
- a center frequency of operation may be set at approximately 1900 MHz and a second center frequency of operation may be set at approximately 900 MHz.
- a PA having dynamic stability, gain, efficiency and impedance control may be constructed to operate in both linear and non-linear modes of operation.
- the two modes of operation may be dynamically changed while the PA is in operation.
- the PA implementing the embodiments of the present invention may be constructed on a CMOS integrated circuit chip.
- Other techniques employing technologies, such as FET, JFET, LDMOS, SOS, SOI, SiGe, etc. may be practiced with the present invention. It is to be noted that various circuits, components, structures and modulation schemes are presented as examples and others may be readily implemented to practice the present invention, such as the described PA stage bypassing scheme.
- bias including cascode bias
- resistor value may be controlled by the baseband, a control unit and/or active/passive circuit in the radio, with or without feedback.
- the control may be a function of feedback for pre-distortion control, such as by use of a look up table, etc.
- One goal is to be able to have better efficiency, power and performance under varying conditions.
- the PA module may switch from linear to compressed mode, switch from one class to another (example Class A to Class E), switch from high power to low power mode, switch from high frequency to low frequency mode, etc.
- a use of DC/DC interface unit may enable polar operation and provide supply control for linear applications (efficiency enhancement) or both.
- the PA may be a switching amplifier and the matching circuit is optimized for max power and efficiency, the DC/DC interface may be bypassed and feedback turned off, the bias resistor may be set for max efficiency and biases adjusted for best GSM performance.
- the PA is switched to EDGE mode, the PA is able to operate in Polar/Linear mode, in which the PA is scaled accordingly and matching reset to allow for the best impedance and harmonics.
- adjusting the matching circuit allows the PA to switch between classes such as from Class E to linear operation.
- Feedback may be turned on to correct any errors and DC/DC interface may be turned on for polar operation efficiency enhancement.
- the PA feedback may also be dynamic and the feedback may be turned on at higher power levels and off at other power levels.
- the PA feedback may be turned on intermittently as well to provide correction only when needed.
- the various matching circuits may be tuned to offer the impedance and bandwidth that will allow the PA to operate in the optimum impedance level under backoff and/or VSWR conditions. Unwanted feedthrough is avoided by scaling the device size at lower supplies and by dynamically controlling the biases.
- the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent. Such relativity between items ranges from a difference of a few percent to magnitude differences.
- the term(s) “coupled” and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
- an intervening item e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module
- inferred coupling i.e., where one element is coupled to another element by inference
- inferred coupling includes direct and indirect coupling between two items in the same manner as “coupled to”.
- the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Amplifiers (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/617,647 US8150343B2 (en) | 2009-09-21 | 2009-11-12 | Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24421509P | 2009-09-21 | 2009-09-21 | |
US12/617,647 US8150343B2 (en) | 2009-09-21 | 2009-11-12 | Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110070848A1 US20110070848A1 (en) | 2011-03-24 |
US8150343B2 true US8150343B2 (en) | 2012-04-03 |
Family
ID=43757042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/617,647 Expired - Fee Related US8150343B2 (en) | 2009-09-21 | 2009-11-12 | Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier |
Country Status (1)
Country | Link |
---|---|
US (1) | US8150343B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120235746A1 (en) * | 2011-03-15 | 2012-09-20 | Nxp B.V. | Amplifier |
US8779859B2 (en) | 2012-08-08 | 2014-07-15 | Qualcomm Incorporated | Multi-cascode amplifier bias techniques |
US20140197893A1 (en) * | 2011-01-27 | 2014-07-17 | St-Ericsson Sa | Amplification Circuit Having Optimization of Power |
US20140266460A1 (en) * | 2013-03-12 | 2014-09-18 | Peregrine Semiconductor Corporation | Scalable Periphery Tunable Matching Power Amplifier |
US20150091656A1 (en) * | 2013-09-30 | 2015-04-02 | Peregrine Semiconductor Corporation | Methods and Devices for Impedance Matching in Power Amplifier Circuits |
US20150130537A1 (en) * | 2013-11-11 | 2015-05-14 | Murata Manufacturing Co., Ltd. | Power amplification module |
US20150137845A1 (en) * | 2013-11-15 | 2015-05-21 | Peregrine Semiconductor Corporation | Methods and Devices for Testing Segmented Electronic Assemblies |
US9306515B2 (en) * | 2014-06-12 | 2016-04-05 | Shenzhen South Silicon Valley Microelectronics Co. Ltd | Hybrid class operation power amplifier |
US9331643B2 (en) | 2013-09-30 | 2016-05-03 | Peregrine Semiconductor Corporation | Methods and devices for thermal control in power amplifier circuits |
US9407212B2 (en) | 2013-11-15 | 2016-08-02 | Peregrine Semiconductor Corporation | Devices and methods for improving yield of scalable periphery amplifiers |
US9438185B2 (en) | 2013-11-15 | 2016-09-06 | Peregrine Semiconductor Corporation | Devices and methods for increasing reliability of scalable periphery amplifiers |
US9602063B2 (en) | 2013-03-12 | 2017-03-21 | Peregrine Semiconductor Corporation | Variable impedance match and variable harmonic terminations for different modes and frequency bands |
US9712125B2 (en) | 2015-02-15 | 2017-07-18 | Skyworks Solutions, Inc. | Power amplification system with shared common base biasing |
US9800205B2 (en) | 2015-12-04 | 2017-10-24 | Industrial Technology Research Institute | Power amplifier circuit |
US20190131939A1 (en) * | 2017-11-01 | 2019-05-02 | The Boeing Company | Adjustable load line power amplifier circuits and methods |
US20200287510A1 (en) * | 2019-03-06 | 2020-09-10 | Samsung Electro-Mechanics Co., Ltd. | Bias circuit and amplifying device with bias compensation function |
US20220166386A1 (en) * | 2020-11-20 | 2022-05-26 | The Boeing Company | Amplifier with stacked transconducting cells in current mode combining |
US11923811B2 (en) * | 2019-02-22 | 2024-03-05 | Mitsubishi Electric Corporation | High-frequency power amplifier |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8811911B2 (en) * | 2010-07-02 | 2014-08-19 | Htc Corporation | Radio-frequency processing device and method and related wireless communication device |
KR101184503B1 (en) * | 2010-08-13 | 2012-09-20 | 삼성전기주식회사 | Wireless power transmission apparatus and transmission method thereof |
US8611834B2 (en) * | 2010-11-01 | 2013-12-17 | Cree, Inc. | Matching network for transmission circuitry |
US8380147B2 (en) * | 2011-04-05 | 2013-02-19 | Em Microelectronic-Marin S.A. | Power amplifier circuit with means for tuning wave shape of ASK RF signal envelope, and method for implementing the power amplifier circuit |
WO2013063212A1 (en) * | 2011-10-27 | 2013-05-02 | Marvell World Trade Ltd. | Systems and methods for performing multi-modal power amplification |
PT2608415E (en) * | 2011-12-20 | 2014-10-23 | Ericsson Telefon Ab L M | TRANSMITTER, TRANSCEIVER, COMMUNICATIONS DEVICE, METHOD AND COMPUTER PROGRAM |
WO2013184503A1 (en) * | 2012-06-08 | 2013-12-12 | Taluko Holding | Powerline control interface in cenelec (eu) a-d bands frequency and amplitude modulation transmitter |
US9419457B2 (en) | 2012-09-04 | 2016-08-16 | Google Technology Holdings LLC | Method and device with enhanced battery capacity savings |
US9356461B2 (en) | 2012-09-25 | 2016-05-31 | Google Technology Holdings, LLC | Methods and systems for rapid wireless charging where the low state of charge (SOC) temperature dependent charging current and low SOC temperature limit are higher than the high SOC temperature dependent charging current and high SOC temperature limit |
US9716477B2 (en) | 2012-12-28 | 2017-07-25 | Peregrine Semiconductor Corporation | Bias control for stacked transistor configuration |
US11128261B2 (en) | 2012-12-28 | 2021-09-21 | Psemi Corporation | Constant Vds1 bias control for stacked transistor configuration |
US9219445B2 (en) | 2012-12-28 | 2015-12-22 | Peregrine Semiconductor Corporation | Optimization methods for amplifier with variable supply power |
US20140235187A1 (en) * | 2013-02-15 | 2014-08-21 | Vrije Universiteit Brussel | Front-End System for a Radio Transmitter |
US9106185B2 (en) * | 2013-03-11 | 2015-08-11 | Qualcomm Incorporated | Amplifiers with inductive degeneration and configurable gain and input matching |
US9491706B2 (en) | 2013-03-13 | 2016-11-08 | Google Technology Holdings LLC | Reduced-power transmitting from a communications device |
US9246454B2 (en) * | 2013-03-14 | 2016-01-26 | Google Technology Holdings, LLC | Low power consumption adaptive power amplifier |
EP2782245A1 (en) * | 2013-03-20 | 2014-09-24 | ST-Ericsson SA | Amplifier topology for envelope tracking |
US9184702B2 (en) * | 2013-08-08 | 2015-11-10 | Peregrine Semiconductor Corporation | Peak-to-average ratio detector |
US9647631B2 (en) * | 2013-08-15 | 2017-05-09 | Peregrine Semiconductor Corporation | Tunable impedance matching network |
GB2517496A (en) * | 2013-08-23 | 2015-02-25 | Nujira Ltd | Optimisation of envelope tracked power amplifier |
US9160292B2 (en) * | 2013-10-08 | 2015-10-13 | Peregrine Semiconductor Corporation | Load compensation in RF amplifiers |
US20150149654A1 (en) * | 2013-11-22 | 2015-05-28 | Broadcom Corporation | Modular Analog Frontend |
TWI523442B (en) | 2013-11-22 | 2016-02-21 | Compensation Method of Power Amplification Unit for Radio Frequency Module | |
JP5861844B2 (en) | 2013-12-12 | 2016-02-16 | 株式会社村田製作所 | Power amplification module |
US9596653B2 (en) | 2013-12-16 | 2017-03-14 | Google Technology Holdings LLC | Remedying power drain via a coverage map |
JP6410007B2 (en) * | 2013-12-16 | 2018-10-24 | 株式会社村田製作所 | Cascode amplifier |
US9252713B2 (en) * | 2014-02-27 | 2016-02-02 | Qualcomm Incorporated | Bias circuits and methods for stacked devices |
US9865897B2 (en) | 2014-06-02 | 2018-01-09 | Google Llc | Stacked electrochemical cell with increased energy density |
US9438293B2 (en) | 2014-08-05 | 2016-09-06 | Google Technology Holdings LLC | Tunable circuit elements for dynamic, per element power |
US9472965B2 (en) | 2014-09-08 | 2016-10-18 | Google Technology Holdings LLC | Battery cycle life through smart overnight charging |
US9991856B2 (en) | 2014-09-25 | 2018-06-05 | Skyworks Solutions, Inc. | Variable load power amplifier supporting dual-mode envelope tracking and average power tracking performance |
GB2532573B (en) * | 2014-09-25 | 2020-10-28 | Skyworks Solutions Inc | Power amplifier supporting dual-mode envelope tracking and average power tracking |
US9473081B2 (en) * | 2014-10-20 | 2016-10-18 | Qualcomm Incorporated | Circuits and methods for reducing supply sensitivity in a power amplifier |
JP2017005641A (en) * | 2015-06-16 | 2017-01-05 | 株式会社村田製作所 | Power Amplifier Module |
EP3182664B1 (en) * | 2015-12-15 | 2019-12-04 | Huawei Technologies Co., Ltd. | Polar transmitter with tunable matching network |
US10063211B2 (en) * | 2016-02-03 | 2018-08-28 | Qualcomm Incorporated | Compact bypass and decoupling structure for millimeter-wave circuits |
US9887673B2 (en) * | 2016-03-11 | 2018-02-06 | Intel Corporation | Ultra compact multi-band transmitter with robust AM-PM distortion self-suppression techniques |
KR101746107B1 (en) * | 2016-04-12 | 2017-06-14 | (주)에프씨아이 | Adaptive Power Amplifier and RF Transmitter Including Same |
US10121030B1 (en) * | 2016-06-29 | 2018-11-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Frequency multiplexed radio frequency identification |
US9837965B1 (en) | 2016-09-16 | 2017-12-05 | Peregrine Semiconductor Corporation | Standby voltage condition for fast RF amplifier bias recovery |
US9929701B1 (en) | 2016-09-21 | 2018-03-27 | Psemi Corporation | LNA with programmable linearity |
US9960737B1 (en) | 2017-03-06 | 2018-05-01 | Psemi Corporation | Stacked PA power control |
US10276371B2 (en) | 2017-05-19 | 2019-04-30 | Psemi Corporation | Managed substrate effects for stabilized SOI FETs |
US10700643B2 (en) * | 2017-09-22 | 2020-06-30 | Qualcomm Incorporated | Envelope-shaped bias for power amplifier |
GB2577602B (en) * | 2018-08-01 | 2023-01-18 | Skyworks Solutions Inc | Variable power amplifier bias impedance |
EP3672074B1 (en) * | 2018-12-18 | 2023-11-01 | NXP USA, Inc. | Configurable switched power amplifier for efficient high/low output power |
US11329611B2 (en) * | 2019-03-06 | 2022-05-10 | Psemi Corporation | Transistor bias adjustment for optimization of third order intercept point in a cascode amplifier |
US10924063B2 (en) * | 2019-06-11 | 2021-02-16 | Analog Devices International Unlimited Company | Coupling a bias circuit to an amplifier using an adaptive coupling arrangement |
TWI710209B (en) * | 2019-07-02 | 2020-11-11 | 立積電子股份有限公司 | Amplifying apparatus |
CN114039561A (en) * | 2021-12-17 | 2022-02-11 | 北京昂瑞微电子技术股份有限公司 | RF Power Amplifier |
CN116346050A (en) * | 2023-05-24 | 2023-06-27 | 广州慧智微电子股份有限公司 | Power amplifier system and amplifier |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449465B1 (en) * | 1999-12-20 | 2002-09-10 | Motorola, Inc. | Method and apparatus for linear amplification of a radio frequency signal |
US20060040623A1 (en) * | 2004-08-19 | 2006-02-23 | Gunther Kraut | Amplitude modulator, in particular for mobile radio, and a method for modulation of a signal |
US20070184793A1 (en) * | 2006-02-03 | 2007-08-09 | Quantance, Inc. | RF Power Amplifier Controller Circuit With Compensation For Output Impedance Mismatch |
US20090054018A1 (en) * | 2007-08-22 | 2009-02-26 | Khurram Waheed | System And Method For Power Control In A Wireless Transmitter |
US7702299B2 (en) * | 2003-07-08 | 2010-04-20 | Panasonic Corporation | Modulation circuit device, modulation method and radio communication device |
-
2009
- 2009-11-12 US US12/617,647 patent/US8150343B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449465B1 (en) * | 1999-12-20 | 2002-09-10 | Motorola, Inc. | Method and apparatus for linear amplification of a radio frequency signal |
US7702299B2 (en) * | 2003-07-08 | 2010-04-20 | Panasonic Corporation | Modulation circuit device, modulation method and radio communication device |
US20060040623A1 (en) * | 2004-08-19 | 2006-02-23 | Gunther Kraut | Amplitude modulator, in particular for mobile radio, and a method for modulation of a signal |
US20070184793A1 (en) * | 2006-02-03 | 2007-08-09 | Quantance, Inc. | RF Power Amplifier Controller Circuit With Compensation For Output Impedance Mismatch |
US7917105B2 (en) * | 2006-02-03 | 2011-03-29 | Quantance, Inc. | RF power amplifier controller circuit with compensation for output impedance mismatch |
US20090054018A1 (en) * | 2007-08-22 | 2009-02-26 | Khurram Waheed | System And Method For Power Control In A Wireless Transmitter |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9166527B2 (en) * | 2011-01-27 | 2015-10-20 | St-Ericsson Sa | Amplification circuit having optimization of power |
US20140197893A1 (en) * | 2011-01-27 | 2014-07-17 | St-Ericsson Sa | Amplification Circuit Having Optimization of Power |
US20120235746A1 (en) * | 2011-03-15 | 2012-09-20 | Nxp B.V. | Amplifier |
US8872588B2 (en) * | 2011-03-15 | 2014-10-28 | Nxp, B.V. | Amplifier |
US8779859B2 (en) | 2012-08-08 | 2014-07-15 | Qualcomm Incorporated | Multi-cascode amplifier bias techniques |
US9602063B2 (en) | 2013-03-12 | 2017-03-21 | Peregrine Semiconductor Corporation | Variable impedance match and variable harmonic terminations for different modes and frequency bands |
US20140266460A1 (en) * | 2013-03-12 | 2014-09-18 | Peregrine Semiconductor Corporation | Scalable Periphery Tunable Matching Power Amplifier |
US11323078B2 (en) * | 2013-03-12 | 2022-05-03 | Psemi Corporation | Scalable periphery tunable matching power amplifier |
US9847759B2 (en) | 2013-03-12 | 2017-12-19 | Peregrine Semiconductor Corporation | Scalable periphery tunable matching power amplifier |
US11811367B2 (en) | 2013-03-12 | 2023-11-07 | Psemi Corporation | Scalable periphery tunable matching power amplifier |
US10756684B2 (en) | 2013-03-12 | 2020-08-25 | Psemi Corporation | Scalable periphery tunable matching power amplifier |
US9294056B2 (en) * | 2013-03-12 | 2016-03-22 | Peregrine Semiconductor Corporation | Scalable periphery tunable matching power amplifier |
US9276527B2 (en) * | 2013-09-30 | 2016-03-01 | Peregrine Semiconductor Corporation | Methods and devices for impedance matching in power amplifier circuits |
US9331643B2 (en) | 2013-09-30 | 2016-05-03 | Peregrine Semiconductor Corporation | Methods and devices for thermal control in power amplifier circuits |
US20150091656A1 (en) * | 2013-09-30 | 2015-04-02 | Peregrine Semiconductor Corporation | Methods and Devices for Impedance Matching in Power Amplifier Circuits |
US9559654B2 (en) * | 2013-11-11 | 2017-01-31 | Murata Manufacturing Co., Ltd. | Power amplification module |
US20150130537A1 (en) * | 2013-11-11 | 2015-05-14 | Murata Manufacturing Co., Ltd. | Power amplification module |
CN104639067A (en) * | 2013-11-11 | 2015-05-20 | 株式会社村田制作所 | Power amplification module |
CN104639067B (en) * | 2013-11-11 | 2018-07-17 | 株式会社村田制作所 | Power amplifier module |
US9391566B2 (en) * | 2013-11-15 | 2016-07-12 | Peregrine Semiconductor Corporation | Methods and devices for testing segmented electronic assemblies |
US9407212B2 (en) | 2013-11-15 | 2016-08-02 | Peregrine Semiconductor Corporation | Devices and methods for improving yield of scalable periphery amplifiers |
US9438185B2 (en) | 2013-11-15 | 2016-09-06 | Peregrine Semiconductor Corporation | Devices and methods for increasing reliability of scalable periphery amplifiers |
US9660598B2 (en) | 2013-11-15 | 2017-05-23 | Peregrine Semiconductor Corporation | Devices and methods for increasing reliability of scalable periphery amplifiers |
US20150137845A1 (en) * | 2013-11-15 | 2015-05-21 | Peregrine Semiconductor Corporation | Methods and Devices for Testing Segmented Electronic Assemblies |
US9306515B2 (en) * | 2014-06-12 | 2016-04-05 | Shenzhen South Silicon Valley Microelectronics Co. Ltd | Hybrid class operation power amplifier |
US9712125B2 (en) | 2015-02-15 | 2017-07-18 | Skyworks Solutions, Inc. | Power amplification system with shared common base biasing |
US10340862B2 (en) | 2015-02-15 | 2019-07-02 | Skyworks Solutions, Inc. | Methods for power amplification with shared common base biasing |
US10917056B2 (en) | 2015-02-15 | 2021-02-09 | Skyworks Solutions, Inc. | Devices and methods for power amplification with shared common base biasing |
TWI609570B (en) * | 2015-02-15 | 2017-12-21 | 西凱渥資訊處理科技公司 | Power amplification system with shared common base biasing |
US9800205B2 (en) | 2015-12-04 | 2017-10-24 | Industrial Technology Research Institute | Power amplifier circuit |
US10476452B2 (en) * | 2017-11-01 | 2019-11-12 | The Boeing Company | Adjustable load line power amplifier circuits and methods |
US20190131939A1 (en) * | 2017-11-01 | 2019-05-02 | The Boeing Company | Adjustable load line power amplifier circuits and methods |
US11923811B2 (en) * | 2019-02-22 | 2024-03-05 | Mitsubishi Electric Corporation | High-frequency power amplifier |
US20200287510A1 (en) * | 2019-03-06 | 2020-09-10 | Samsung Electro-Mechanics Co., Ltd. | Bias circuit and amplifying device with bias compensation function |
US10879861B2 (en) * | 2019-03-06 | 2020-12-29 | Samsung Electro-Mechanics Co., Ltd. | Bias circuit and amplifying device with bias compensation function |
US20220166386A1 (en) * | 2020-11-20 | 2022-05-26 | The Boeing Company | Amplifier with stacked transconducting cells in current mode combining |
US12261573B2 (en) * | 2020-11-20 | 2025-03-25 | The Boeing Company | Amplifier with stacked transconducting cells in current mode combining |
Also Published As
Publication number | Publication date |
---|---|
US20110070848A1 (en) | 2011-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8150343B2 (en) | Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier | |
US11973467B2 (en) | Multi-level envelope tracking with analog interface | |
US8212615B2 (en) | Variable-gain amplifier circuit and wireless communication device integrated circuit equipped therewith | |
US11082008B2 (en) | Multi-mode stacked amplifier | |
US11671061B2 (en) | Load-line switching for push-pull power amplifiers | |
Sowlati et al. | Quad-band GSM/GPRS/EDGE polar loop transmitter | |
US10601374B2 (en) | Power amplifier module | |
US8855584B2 (en) | Matching network for transmission circuitry | |
US6888411B2 (en) | Radio frequency variable gain amplifier with linearity insensitive to gain | |
US20140327483A1 (en) | Complementary metal oxide semiconductor power amplifier | |
US20090153250A1 (en) | Method and system for scaling supply, device size, and load of a power amplifier | |
US8718581B2 (en) | Method and apparatus for optimizing current consumption of amplifiers with power control | |
EP1524763B1 (en) | Modulation dependent biasing for efficient and high-linearity power amplifiers | |
US10389316B1 (en) | Apparatus and methods for power efficient CMOS and BiCMOS transmitters suitable for wireless applications | |
KR20160031416A (en) | Apparatus and method for dynamically biased baseband current amplifier | |
US20120326754A1 (en) | High Performance Pre-Mixer Buffer in Wireless Communications Systems | |
US20100109770A1 (en) | Reconfigurable power amplifier and use of such amplifier for making a multi-standard amplification stage for mobile phone communications | |
US11368176B2 (en) | Transmission unit | |
US7200370B2 (en) | Power amplifier having enhanced swing cascode architecture | |
US20250080069A1 (en) | Unit amplification circuit, amplifier and receiving circuit | |
US20240297625A1 (en) | Amplifier biasing for class-ab output stage in a transimpedance amplifier (tia)-based low-pass filter for a passive upconverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROADCOM CORPORATION, A CALIFORNIA CORPORATION, CA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAMACHANDRA REDDY, VIJAY;REEL/FRAME:023512/0790 Effective date: 20091111 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 |
|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001 Effective date: 20170119 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047230/0133 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE OF MERGER TO 09/05/2018 PREVIOUSLY RECORDED AT REEL: 047230 FRAME: 0133. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047630/0456 Effective date: 20180905 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200403 |