US8025941B2 - IG window unit and method of making the same - Google Patents
IG window unit and method of making the same Download PDFInfo
- Publication number
- US8025941B2 US8025941B2 US11/290,812 US29081205A US8025941B2 US 8025941 B2 US8025941 B2 US 8025941B2 US 29081205 A US29081205 A US 29081205A US 8025941 B2 US8025941 B2 US 8025941B2
- Authority
- US
- United States
- Prior art keywords
- coating
- window unit
- blocking
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 174
- 239000011248 coating agent Substances 0.000 claims abstract description 160
- 230000000903 blocking effect Effects 0.000 claims abstract description 94
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 230000005855 radiation Effects 0.000 claims abstract description 59
- 239000011521 glass Substances 0.000 claims abstract description 33
- 125000006850 spacer group Chemical group 0.000 claims abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 36
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 23
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 14
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 13
- 239000011787 zinc oxide Substances 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- 229910001887 tin oxide Inorganic materials 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 description 20
- 230000001154 acute effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- WUOBERCRSABHOT-UHFFFAOYSA-N diantimony Chemical compound [Sb]#[Sb] WUOBERCRSABHOT-UHFFFAOYSA-N 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- -1 nickel-chrome (NiCr) Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910000410 antimony oxide Inorganic materials 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical group CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 4
- 150000003752 zinc compounds Chemical class 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 2
- AHBGXHAWSHTPOM-UHFFFAOYSA-N 1,3,2$l^{4},4$l^{4}-dioxadistibetane 2,4-dioxide Chemical compound O=[Sb]O[Sb](=O)=O AHBGXHAWSHTPOM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000006120 scratch resistant coating Substances 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- SOLUNJPVPZJLOM-UHFFFAOYSA-N trizinc;distiborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-][Sb]([O-])([O-])=O.[O-][Sb]([O-])([O-])=O SOLUNJPVPZJLOM-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 2
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 2
- 229940007718 zinc hydroxide Drugs 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- LYKRPDCJKSXAHS-UHFFFAOYSA-N phenyl-(2,3,4,5-tetrahydroxyphenyl)methanone Chemical group OC1=C(O)C(O)=CC(C(=O)C=2C=CC=CC=2)=C1O LYKRPDCJKSXAHS-UHFFFAOYSA-N 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- NSBGJRFJIJFMGW-UHFFFAOYSA-N trisodium;stiborate Chemical compound [Na+].[Na+].[Na+].[O-][Sb]([O-])([O-])=O NSBGJRFJIJFMGW-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- SRWMQSFFRFWREA-UHFFFAOYSA-M zinc formate Chemical compound [Zn+2].[O-]C=O SRWMQSFFRFWREA-UHFFFAOYSA-M 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- PCHQDTOLHOFHHK-UHFFFAOYSA-L zinc;hydrogen carbonate Chemical compound [Zn+2].OC([O-])=O.OC([O-])=O PCHQDTOLHOFHHK-UHFFFAOYSA-L 0.000 description 1
- ZPEJZWGMHAKWNL-UHFFFAOYSA-L zinc;oxalate Chemical compound [Zn+2].[O-]C(=O)C([O-])=O ZPEJZWGMHAKWNL-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3626—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3634—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing carbon, a carbide or oxycarbide
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3652—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/366—Low-emissivity or solar control coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3681—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/47—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
- C03C2217/475—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/74—UV-absorbing coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/75—Hydrophilic and oleophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/78—Coatings specially designed to be durable, e.g. scratch-resistant
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/113—Deposition methods from solutions or suspensions by sol-gel processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/365—Coating different sides of a glass substrate
Definitions
- the IG window unit includes first and second substrates (e.g., glass substrates) spaced apart from one another, wherein the first and/or second substrate supports a solar management coating such as a low-E (low emissivity) coating for blocking at least some infrared (IR) radiation and an ultraviolet (UV) radiation blocking coating for blocking at least some UV radiation.
- a solar management coating such as a low-E (low emissivity) coating for blocking at least some infrared (IR) radiation and an ultraviolet (UV) radiation blocking coating for blocking at least some UV radiation.
- An IG window unit typically includes at least first and second substrates spaced apart from one another by at least one spacer and/or seal.
- the gap or space between the spaced apart substrates may or may not be filled with a gas (e.g., argon) and/or may or may not be evacuated to a pressure less than atmospheric pressure in different instances.
- a gas e.g., argon
- IG window units include low-E coating (e.g., multi-layer coating including at least one IR reflecting layer such as a silver-based layer for reflecting at least some infrared radiation) on an interior surface of one of the two substrates. While such IG units enable significant amounts of infrared (IR) radiation to be blocked so that it does not reach the interior of the building (apartment, house, office building, or the like), such IG units are typically lacking in terms of blocking UV radiation. In other words, the low-E coatings provided on IG units while capable of blocking satisfactory amounts of IR radiation are often not capable of blocking as much UV radiation as would be desired.
- IR infrared
- an IG window unit that is capable of blocking both (a) significant amounts of IR radiation, and (b) significant amounts of UV radiation, so that the blocked amounts of IR and UV radiation do not reach the interior of the building in which the IG window unit is mounted.
- a method of making such an IG window unit may also exist.
- an IG window unit that is capable of blocking both (a) significant amounts of IR radiation, and (b) significant amounts of UV radiation, so that the blocked amounts of IR and UV radiation do not reach the interior of the building in which the IG window unit is mounted, and is also designed so that IG window fabricators can manufacture such windows with less risk of damage.
- a method of making such an IG window unit may also exist.
- an IG window unit is provided that is capable of blocking both (a) significant amounts of IR radiation, and (b) significant amounts of UV radiation, so that the blocked amounts of IR and UV radiation do not reach the interior of the building in which the IG window unit is provided.
- a single substrate e.g., glass substrate
- the IG window fabricator By providing both the low-E coating and the UV blocking coating on the same substrate, it is possible for the IG window fabricator to make an IG window unit using only one coated glass substrate thereby reducing the risk of damage during the manufacturing process (the other glass substrate(s) may either be not coated at all, or may be coated with a scratch resistant coating or the like). It will be appreciated that low-E and UV coatings are rather susceptible to damage such as scratching during the manufacturing and handling process.
- a IG window unit comprising: a first glass substrate supporting a solar management multi-layer coating (e.g., low-E coating); a second glass substrate spaced apart from the first glass substrate, wherein one of the first and second substrates supports both a solar management multi-layer coating and a UV blocking coating including at least one layer, wherein the UV blocking coating is located over the solar management coating on the one substrate; wherein the solar management coating comprises at least one IR blocking layer comprising Ag, at least one dielectric layer provided between the IR blocking layer and the one substrate, and at least another dielectric layer provided over the IR blocking layer, and wherein the solar management coating has an emissivity (E n ) of no greater than 0.10 and/or a sheet resistance (R s ) of no greater than 8 ohms/square; wherein the UV blocking coating blocks at least 50% of UV radiation from 300 to 380 nm; and wherein the IG window unit has a visible transmission of at least about 60%, and blocks
- E n emissivity
- FIG. 1 is a cross sectional view of part of an IG window unit according to an example embodiment of this invention.
- FIG. 2 is a cross sectional view of part of an IG window unit according to another example embodiment of this invention.
- FIG. 3 is a cross sectional view of part of an IG window unit according to another example embodiment of this invention.
- FIG. 4 is a cross sectional view of an example low-E coating that may be used in any of the embodiments of FIGS. 1-3 .
- Certain example embodiments of this invention relate to an IG window unit including at least first and second spaced apart substrates (e.g., glass or plastic substrates having at least some visible transmission) that are separated from one another by at least one seal and/or spacer.
- the first and/or second substrate supports a solar management coating such as a low-E (low-emissivity) coating for blocking at least some infrared (IR) radiation and a UV blocking coating for blocking at least some ultraviolet (UV) radiation.
- a single substrate (e.g., glass substrate) of the IG unit supports both a low-E coating and a UV blocking coating, so that the UV blocking coating is provided over the low-E coating on the substrate.
- the unit is much more durable if the UV blocking coating is located over the more stable low-E coating, as opposed to the other way around.
- the IG window fabricator By providing both the low-E coating and the UV blocking coating on the same substrate, it is possible for the IG window fabricator to make an IG window unit using only one coated glass substrate thereby reducing the risk of damage during the manufacturing process (the other glass substrate(s) may either be not coated at all, or may be coated with a scratch resistant coating or the like). It will be appreciated that low-E and UV coatings are rather susceptible to damage such as scratching during the manufacturing and handling process.
- the UV blocking coating is located over the more stable low-E coating in certain example embodiments, this invention is not so limited.
- the low-E or solar management coating may be deposited (e.g., sputter-deposited) over the UV blocking coating.
- the low-E coating may have an emissivity (E n ) of no greater than about 0.10 and/or a sheet resistance (R s ) of no greater than about 8 ohms/square, whereas the UV blocking coating may block at least 50% of UV radiation from 300 to 380 nm.
- FIG. 1 is a cross sectional view of a portion of an IG window unit according to an example embodiment of this invention.
- the IG window unit includes first substrate 1 and second substrate 3 that are spaced apart from one another at least by one or more peripheral seal(s) or spacer(s) 5 .
- an array of spacers may be provided between the substrates in a viewing area of the window for spacing the substrates from one another as in the context of a vacuum IG window unit.
- the spacer(s) 5 , other spacer(s), and/or peripheral seal space the two substrates 1 and 3 apart from one another so that the substrates do not contact one another and so that a space or gap 7 is defined therebetween.
- the space 7 between the substrates 1 , 3 may be evacuated to a pressure lower than atmospheric in certain example embodiments, and/or may be filled with a gas (e.g., Ar) in certain example embodiments. Alternatively, space 7 between the substrates 1 , 3 need not be filled with a gas and/or need not be evacuated to a low pressure. In certain example embodiments, it is possible to suspend foil or other radiation reflective sheet(s) (not shown) in space 7 .
- each glass substrate may be of the soda-lime-silica type of glass, or any other suitable type of glass, and may be for example from about 1 to 10 mm thick in certain example embodiments of this invention.
- the IG window unit of FIG. 1 includes a low-E coating 9 that is supported by substrate 1 .
- Low-E coating 9 includes one or more layers, although in many embodiments it is a multi-layer coating including at least one IR blocking layer (e.g., layer based on Ag, Au, or some other IR reflecting metal(s)) sandwiched between at least a pair of dielectric layers. Since one example function of low-E or solar management coating 9 is to block (i.e., reflect and/or absorb) certain amounts of IR radiation and prevent the same from reaching the building (or vehicle) interior, the coating 9 includes at least one IR blocking (i.e., IR reflecting and/or absorbing) layer.
- Example IR blocking layer(s) which may be present in coating 9 are of or include silver (Ag), nickel-chrome (NiCr), gold (Au), and/or any other suitable material that blocks significant amounts of IR radiation. It will be appreciated by those skilled in the art that IR blocking layer(s) of coating 9 need not block all IR radiation, but only need to block significant amounts thereof. In certain embodiments, each IR blocking layer (there may be more than one in the coating 9 ) is provided between at least a pair of dielectric layers.
- Example dielectric layers include silicon nitride, titanium oxide, silicon oxynitride, tin oxide, and/or other types of metal-oxides and/or metal-nitrides.
- each IR blocking layer may also be provided between a pair of contact layers of or including a material such as an oxide and/or nitride of nickel-chrome, titanium, or any other suitable material.
- An example non-limiting low-E coating 9 which may be provided on substrate 1 is illustrated in FIG. 4 , and is more fully discussed below.
- low-E/solar management coatings 9 herein are not limited to the illustrated coating, and any other suitable solar management coating capable of blocking amounts of IR radiation may instead be used.
- Low-E coating 9 may be deposited on substrate(s) 1 and/or 3 in any suitable manner, including but not limited to sputtering, vapor deposition, and/or any other suitable technique.
- the IG window unit further includes UV blocking coating 10 for blocking significant amounts of UV radiation.
- the UV blocking coating is provided on the same glass substrate 1 as is the low-E coating.
- the UV blocking coating 10 is provided over the low-E coating 9 on the glass substrate 1 .
- UV blocking coating 10 may be, for purposes of example and without limitation, any suitable commercially available UV blocking coating such as a UV blocking coating available from Guardian Industries, Corp., Auburn Hills, Mich., or a silica based UV blocking coating available from Tru-Vue, Inc., Chicago, Ill.
- UV blocking coating 10 includes at least one layer, and blocks at least some UV radiation.
- any of the coatings described and/or illustrated in any of U.S. Pat. Nos. 5,332,618 or 5,371,138 may also be used as a UV blocking coating 10 in certain embodiments of this invention.
- UV blocking coating 10 prevents at least about 50% of UV radiation (300-380 nm) reaching the same from passing therethrough, more preferably at least about 70%, even more preferably prevents at least about 80% of UV radiation reaching the same from passing therethrough, and most preferably prevents at least about 90% of UV radiation reaching the same from passing therethrough.
- UV blocking coating 10 preferably blocks at least about 50% of UV radiation (i.e., from 300-380 nm), more preferably at least about 70% of UV radiation, even more preferably at least about 80%, and most preferably at least about 90% of UV radiation.
- UV blocking coating 10 may block UV radiation (from 300-380 nm) by, for example and without limitation, reflecting such UV radiation, absorbing such UV radiation, and/or converting amounts of such UV radiation into other type(s) of radiation (e.g., IR), and/or the like. It is noted that coating 10 is not limited to the precise coatings described above, as any suitable UV blocking coating may be used as coating 10 in different embodiments of this invention. UV blocking coatings 10 according to different embodiments of this invention may be formed in any suitable manner (e.g., via sputter coating, via vapor deposition, via capillary action, via roll(s) coating, and/or the like).
- the UV blocking coating 10 may be of or include a colloidal electro-conductive oxide solution having both infrared (IR) and ultraviolet (UV) blocking characteristics.
- a substantially transparent composite oxide coating is provided that includes a silica matrix, zinc antimonite, and a UV blocking material, thereby permitting the coating (e.g., applied via a coating sol) after application to block significant amounts of both IR and UV radiation.
- a UV and IR blocking coating comprises each of cerium oxide and zinc antimonite in the form of nanoparticulate, and silicon oxide (e.g., SiO 2 ).
- the coated article has transmission for a wavelength of 2300 nm, of less than 10%.
- the sol type coating comprises from about 15 to 50% cerium oxide (more preferably from about 20 to 45%, and most preferably from about 30 to 40%), from about 30 to 70% zinc antimonate (more preferably from about 35 to 65%, and most preferably from about 40 to 55%), and from about 5 to 35% silicon oxide (more preferably from about 10 to 30%, and most preferably from about 12 to 25%). It has been found that these amounts of such materials in the sol type coating provide a coating that is effective at blocking both UV and IR radiation, and is also are resistant to high temperatures.
- the method of producing electroconductive anhydrdous zinc antimonate inclusive coatings can be produced by, inter alia, mixing antimony oxide sol and a zinc compound, and then calcining the mixture at 300 to 680 degrees C. after drying.
- the zinc compound which can be used in certain example embodiments is at least one zinc compound selected from the group consisting of zinc hydroxide, zinc oxide, inorganic acid salts of zinc and organic salts of zinc.
- the inorganic acid salts of zinc include zinc carbonate, basic zinc carbonate, zinc nitrate, zinc chloride, zinc sulfate and the like.
- the organic acid salts of zinc include zinc formate, zinc acetate, zinc oxalate and the like.
- These zinc compounds may be those put on the market as industrial chemicals. When zinc hydroxide and zinc oxide are used, it is preferred that they have a primary particle diameter of 100 nm or less.
- the salts containing acids that vaporize upon calcination for example, carbonate salts and organic acid salts, are preferred. They may be used alone or as admixtures of two or more of them.
- the colloidal antimony oxide which can be used is antimony oxide having a primary particle diameter of 100 nm or less and includes diantimony pentoxide sol, hexaantimony tridecaoxide sol, diantimony tetroxide hydrate sol, colloidal diantimony trioxide and the like.
- the diantimony pentoxide sol can be produced by known methods, for example, a method in which diantimony trioxide is oxidized, a method in which an alkali antimonate is dealkalized with ion exchange resin, a method in which sodium antimonate is treated with an acid, and/or the like.
- the hexaantimony tridecaoxide sol can be produced by a method in which diantimony trioxide is oxidized and the diantimony tetroxide hydrate sol can also be produced by a method in which diantimony trioxide is oxidized.
- the colloidal diantimony trioxide can be produced by a gas phase method in certain example instances.
- such a coating 10 that blocks both UV and IR may permit, for example, the low-E coating 9 to be omitted in certain example embodiments of this invention, or alternatively may permit a lesser type of low-E coating such as a pyrolytic coating that blocks less IR to be used as coating 9 in still further example embodiments of this invention. It will thus be appreciated that the low-E coating 9 may be omitted in certain example embodiments of this invention.
- the UV coating 10 may be of or include any coating mentioned in U.S. Pat. No. 6,649,212, the disclosure of which is hereby incorporated herein by reference.
- the UV blocking coating may comprise a UV-radiation absorbing compound, comprising: alternating repeat units of: (1) a first monomer derived from a compound having the general formula: (CH 2 OCHCH 2 )—R z —[(R a (OR) b —Si—O—Si—R a (OR) b )] c —R z —(CH 2 OCHCH 2 ) wherein (CH 2 OCHCH 2 ) is an epoxy group, R z is an organic group bonded to a siloxane silicon atom and epoxy groups, R a is an organic group bonded to a silicon atom and comprises from one to six carbon atoms, (OR) b is an alkoxy-group wherein R is an organic radical having from one to six carbon atoms,
- the second monomer may be a di-, tri-, or tetrafunctional hydroxybenzophenone. In certain example instances, the second monomer may be 2, 2′ dihydroxybenzophenone or 2, 2′-4, 4′tetrahydroxybenzophenone.
- the UV blocking coating 10 may be of any type discussed in U.S. Ser. No. 10/922,235, the disclosure of which is hereby incorporated herein by reference.
- a UV blocking coating that allows for relatively lower temperature cross-linkage reactions between a UV-absorbent compound and an epoxy alkoxysilane.
- UV-absorbent coatings on transparent substrates are formed by prepolymerizing a mixture consisting essentially of a hydroxy-benzophenone, an epoxyalkoxysilane and an organic catalyst at an elevated temperature of between about 40° C. to about 130° C.
- Such prepolymerized mixture may then be coated onto the surface of a transparent substrate. Most preferably, the prepolymerized mixture is hydrolyzed prior to being coated onto the substrate in an alcoholic acidic solution.
- a UV-absorbent compound there is tetrahydroxybenzophenone.
- An example epoxyalkoxysilane is 3-glycidoxypropyl trimethoxysilane (sometimes hereinafter referenced more simply as “glymo”).
- prepolymerization be effected in the presence of a tertiary amine such as triethylamine (TEA) as the organic catalyst which is only one of many possible amine catalysts that one practiced in the art will recognize.
- TAA triethylamine
- M an alkali metal or alkaline earth metal
- RO any suitable, soluble organic that will react with the glymo epoxy ring or with the RSi(OR) 3 group.
- species such as R 4 NOH and R 4 POH as catalysts for the ring-opening oligomerization or polymerization of the epoxy group on glymo.
- IG units typically are characterized as having four surfaces.
- surface # 1 faces the building exterior (where the sun is located in FIG. 1 )
- surface # 2 is the interior coated/uncoated surface of the same substrate 1 but faces the interior space/gap 7 of the IG unit
- surface # 3 is the interior coated/uncoated surface of the other substrate 3 facing the interior space/gap 7
- surface # 4 faces the building interior.
- low-E coating 9 and UV blocking coating 10 are both provided on surface # 2 . This may be advantageous in that it permits much IR and UV radiation to be blocked before reaching space 7 .
- FIG. 2 is a cross sectional view of a portion of an IG window unit according to a different embodiment of this invention.
- the FIG. 2 embodiment is the same as the FIG. 1 embodiment discussed above, except that the low-E coating 9 and the UV blocking coating 10 are provided on the other glass substrate 3 , and thus on surface # 3 of the IG window unit.
- FIG. 3 is a cross sectional view of a portion of an IG window unit according to a different embodiment of this invention.
- the FIG. 3 embodiment is the same as the FIG. 1 embodiment discussed above, except that the low-E coating 9 and the UV blocking coating 10 are provided on opposite substrates 1 and 3 .
- a low maintenance coating 12 such as one or more layer(s) of or including diamond-like carbon (DLC) layer(s) may be provided on surface # 1 as shown in FIGS. 1-3 .
- DLC layer(s) 12 is of or includes diamond-like-carbon (DLC), and may include one or more layers.
- DLC layer(s) 12 is preferably partially or entirely amorphous in certain embodiments of this invention.
- DLC layer(s) 12 preferably includes more sp 3 carbon-carbon bonds than sp 2 carbon-carbon bonds.
- the DLC layer(s) 12 has an average density of at least about 2.4 gm/cm 3 , more preferably of at least about 2.7 gm/cm 3 , and/or may have an average hardness of at least about 10 GPa (more preferably of at least about 20 GPa, and most preferably of at least about 30 GPa).
- DLC layer(s) 12 may include other materials such as hydrogen, boron, silicon, oxygen, and/or the like.
- DLC layer(s) 12 may include from about 5-25% hydrogen (H) in certain embodiments, more preferably from about 10-20% H.
- DLC layer(s) 12 may be hydrophobic (high contact angle), hydrophilic (low contact angle), or neither in different embodiments of this invention.
- DLC layer(s) 12 may be of or include any of the DLC inclusive layer(s) or coating systems described in any of U.S. Pat. Nos.
- DLC layer(s) 12 may be deposited on the substrate 1 via an ion beam deposition technique, or any other suitable deposition process (e.g., see the processes described in the aforesaid patents, incorporated herein by reference).
- layer 12 may instead be a photocatalytic coating such as TiO 2 , in certain example embodiments of this invention.
- DLC layer(s) 12 may instead, or in addition, be provided on surface # 4 l (i.e., on substrate 3 ) in a similar manner as shown by coating 12 a in FIG. 3 .
- IG window units may have the following solar characteristics (e.g., where the coated glass substrate 1 is a clear soda lime silica glass substrate from 2 to 3.2 mm thick, and the other soda lime silica glass substrate 3 is clear and from 2 to 3.2 mm thick).
- R g Y is visible reflection from the outside or exterior of the window/building (i.e., from where the sun is located
- R f Y is visible reflection from the interior side (e.g., from within the building interior)
- the a*, b* values under these respective reflection parameters also correspond to glass (g) side (i.e., from outside the window in FIGS. 1-2 ) and film (f) side (i.e., from interior the window in FIGS. 1-2 ).
- UV transmission T ultraviolet
- dielectric thickness(es) can be tuned by adjusting layer thicknesses.
- IG window units block at least about 80% of UV radiation at 300-380 nm thereby preventing the same from reaching the building interior (more preferably block at least about 90% of UV radiation at 300-380 nm, even more preferably block at least about 95% of UV radiation at 300-380 nm, and most preferably block at least about 97% of UV radiation at 300-380 nm thereby preventing the same from reaching the building interior).
- IG window units according to certain embodiments of this invention have a UV transmission from 300-380 nm of no greater than about 20%, more preferably no greater than about 10%, even more preferably no greater than about 5%, and most preferably no greater than about 3%.
- FIG. 4 is a side cross sectional view of an example low-E coating 9 that may be provided on substrate 1 (or 3 ) in certain example embodiments of this invention.
- Substrate 1 (and/or 3 ) may be, for example and without limitation, clear, green, bronze, or blue-green glass from about 1.0 to 10.0 mm thick, more preferably from about 1.8 mm to 4 mm thick). As shown in FIG.
- the low-E coating 9 may comprise dielectric layer 3 , dielectric layer 5 , zinc oxide inclusive layer 7 , IR reflecting layer 9 including or of silver, gold, or the like, upper contact layer 11 of or including an oxide of nickel chrome (e.g., NiCrO x ), a layer 12 consisting of or comprising titanium oxide (TiO x ), a metal oxide inclusive layer 13 , and dielectric layer 15 of or including a material such as silicon nitride and/or silicon oxynitride which may in certain example instances be a protective overcoat.
- NiCrO x nickel chrome
- TiO x titanium oxide
- metal oxide inclusive layer 13 e.g., titanium oxide inclusive layer 14
- dielectric layer 15 of or including a material such as silicon nitride and/or silicon oxynitride which may in certain example instances be a protective overcoat.
- Other layers and/or materials may also be provided in certain example embodiments of this invention, and it is also possible that certain layers may be removed or split in
- the bottom dielectric layer 3 may be of or include titanium oxide in certain example embodiments of this invention.
- the titanium oxide of layer 3 may in certain example instances be represented by TiO x , where x is from 1.5 to 2.5, most preferably about 2.0.
- the titanium oxide may be deposited via sputtering or the like in different embodiments.
- dielectric layer 3 may have an index of refraction (n), at 550 nm, of at least 2.0, more preferably of at least 2.1, and possibly from about 2.3 to 2.6 when the layer is of or includes titanium oxide.
- the thickness of titanium oxide inclusive layer 3 is controlled so as to allow a* and/or b* color values (e.g., transmissive, film side reflective, and/or glass side reflective) to be fairly neutral (i.e., close to zero) and/or desirable.
- a* and/or b* color values e.g., transmissive, film side reflective, and/or glass side reflective
- Other materials may be used in addition to or instead of titanium oxide in certain example instances.
- the Ti in oxide layer 3 may be replaced with another metal.
- Dielectric layer 5 is optional, and may be of or include a metal oxide such as tin oxide in certain example embodiments of this invention.
- Metal oxide inclusive layer 5 may be provided in order to improve adhesion between titanium oxide layer 3 and zinc oxide layer 7 in certain example embodiments.
- the tin oxide layer 5 may be doped with other materials such as nitrogen in certain example embodiments of this invention.
- tin oxide inclusive layer 5 may be advantageous in that it may increase the throughput of the coater producing the coating or save costs, compared to if this portion of the coating was of titanium oxide or silicon nitride which are slower to sputter and/or more expensive (although these materials are also possible).
- Lower contact layer 7 in certain embodiments of this invention is of or includes zinc oxide (e.g., ZnO).
- the zinc oxide of layer(s) 7 may contain other materials as well such as Al (e.g., to form ZnAlO x ) in certain example embodiments.
- zinc oxide layer 7 may be doped with from about 1 to 10% Al (or B), more preferably from about 1 to 5% Al (or B), and most preferably about 2 to 4% Al (or B).
- Al e.g., to form ZnAlO x
- zinc oxide layer 7 may be doped with from about 1 to 10% Al (or B), more preferably from about 1 to 5% Al (or B), and most preferably about 2 to 4% Al (or B).
- the use of zinc oxide 7 under the silver in layer 9 allows for an excellent quality of silver to be achieved.
- Infrared (IR) reflecting layer 9 is preferably substantially or entirely metallic and/or conductive, and may comprise or consist essentially of silver (Ag), gold, or any other suitable IR reflecting material. IR reflecting layer 9 helps allow the coating to have low-E and/or good solar control characteristics such as low emittance, low sheet resistance, and so forth.
- the IR reflecting layer may, however, be slightly oxidized in certain embodiments of this invention.
- the target-to-substrate distance of the silver target (e.g., silver planar target) used in sputtering IR reflecting layer 9 is reduced compared to conventional practice.
- the upper contact layer 11 may be of or include an oxide of Ni and/or Cr.
- upper contact layer 11 may be of or include nickel (Ni) oxide, chromium/chrome (Cr) oxide, or a nickel alloy oxide such as nickel chrome oxide (NiCrO x ), or other suitable material(s).
- NiCrO x nickel chrome oxide
- the use of, for example, NiCrO x in this layer allows durability to be improved.
- the NiCrO x layer 11 may be fully oxidized in certain embodiments of this invention (i.e., fully stoichiometric), or alternatively may only be partially oxidized. In certain instances, the NiCrO x layer 11 may be at least about 50% oxidized.
- Contact layer 11 may or may not be oxidation graded in different embodiments of this invention.
- Oxidation grading means that the degree of oxidation in the layer changes throughout the thickness of the layer so that for example a contact layer may be graded so as to be less oxidized at the contact interface with the immediately adjacent IR reflecting layer than at a portion of the contact layer(s) further or more/most distant from the immediately adjacent IR reflecting layer.
- Descriptions of various types of oxidation graded contact layers are set forth in U.S. Pat. No. 6,576,349, the disclosure of which is hereby incorporated herein by reference.
- Contact layer 11 e.g., of or including an oxide of Ni and/or Cr
- Titanium oxide layer 12 is provided on and over the IR reflecting layer 9 , and directly on and contacting the contact layer 11 in the FIG. 4 embodiment. As explained herein, it has unexpectedly been found that the provision of a layer 12 consisting essentially of or comprising titanium oxide over IR reflecting layer 9 unexpectedly improves the quality of the IR reflecting layer thereby permitting the coated article to realized improved thermal and/or optical properties.
- the titanium oxide layer 12 may be stoichiometric (TiO 2 ) or non-stoichiometric in different embodiments of this invention.
- Dielectric layer 13 may be of or include a metal oxide such as tin oxide in certain example embodiments of this invention.
- Metal oxide inclusive layer 13 is provided for antireflection purposes, and also improves the emissivity of the coated article and the stability and efficiency of the manufacturing process. Moreover, tin oxide in layer 13 provides good adhesion to the titanium oxide in layer 12 , and provides for good durability in this respect.
- the tin oxide layer 13 may be doped with other materials such as nitrogen in certain example embodiments of this invention. In certain instances, tin oxide inclusive layer 5 may be advantageous in that it may increase the throughput of the coater producing the coating or save costs, compared to if this portion of the coating was of titanium oxide or silicon nitride which are slower to sputter and/or more expensive (although these materials are also possible to replace the layer 13 ).
- Dielectric layer 15 which may be an overcoat in certain example instances, may be of or include silicon nitride (e.g., Si 3 N 4 ) or any other suitable material in certain example embodiments of this invention such as silicon oxynitride.
- silicon nitride e.g., Si 3 N 4
- other layers may be provided above layer 15 .
- Layer 15 is provided for durability purposes, and to protect the underlying layers.
- layer 15 may have an index of refraction (n) of from about 1.9 to 2.2, more preferably from about 1.95 to 2.05.
- layer(s) below or above the illustrated coating 9 may also be provided.
- the layer system or coating is “on” or “supported by” substrate 1 (directly or indirectly), other layer(s) may be provided therebetween.
- the coating of FIG. 4 may be considered “on” and “supported by” the substrate 1 (or 3 ) even if other layer(s) are provided between layer 3 and substrate 1 (or 3 ).
- certain layers of the illustrated coating may be removed in certain embodiments, while others may be added between the various layers or the various layer(s) may be split with other layer(s) added between the split sections in other embodiments of this invention without departing from the overall spirit of certain embodiments of this invention.
- layer 5 and/or layer 13 may be removed in certain example situations.
- example thicknesses and materials for the respective layers on the glass substrate 1 (or 3 ) in the FIG. 4 embodiment are as follows, from the glass substrate outwardly (e.g., the Al content in the zinc oxide layer 7 may be from about 1-10%, more preferably from about 1-3% in certain example instances):
- low-E coatings 9 may instead be used in any of the embodiments of FIGS. 1-3 .
- the solar management or low-E coatings described and/or illustrated in any of U.S. Pat. Nos. 6,632,491, 5,800,933, 5,837,108, 5,557,462, 6,014,872, 5,514,476, 5,935,702, 4,965,121, 5,563,734, 6,030,671, 4,898,790, 5,902,505, 3,682,528, or WO 01/66482, or WO 01/66483 may instead be used for coating 9 in any embodiment of this invention, all of these patent documents being incorporated herein by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Surface Treatment Of Glass (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
TABLE 1 |
IG Unit Solar Characteristics |
Characteristic | General | Preferred | More Preferred |
Tvis (or TY)(Ill. C, | >=60% | >=68% | >=70% |
2 deg.): | |||
a*t (Ill. C, 2°): | −10 to 10 | −5.0 to 0.0 | −3.5 to −1.5 |
b*t (Ill. C, 2°): | −10 to 10 | −2.0 to 4.0 | 1.0 to 3.0 |
RgY (Ill. C, 2 deg.): | 5 to 17% | 7 to 13% | 9 to 11% |
a*g (Ill. C, 2°): | −8.0 to 8.0 | −3.0 to 2.0 | −2.0 to 0.5 |
b*g (Ill. C, 2°): | −8.0 to 8.0 | −5.0 to 1.0 | −4.0 to −1.0 |
RfY (Ill. C, 2 deg.): | 5 to 20% | 7 to 14% | 10 to 12% |
a*f (Ill. C, 2°): | −8.0 to 8.0 | −3.0 to 2.0 | −1.5 to 0.5 |
b*f (Ill. C, 2°): | −8.0 to 8.0 | −5.0 to 1.0 | −4.0 to −1.5 |
SHGC: | <=0.50 | <=0.45 | <=0.40 |
SC: | <=0.55 | <=0.49 | <=0.46 |
U-value: | 0.10 to 0.40 | 0.20 to 0.30 | 0.22 to 0.25 |
Tultraviolet: | <=0.25 | <=0.15 | <=0.05 |
TUV damage weighted: | <=0.30 | <=0.20 | <=0.10 |
TABLE 2 |
(Example Materials/Thicknesses; FIG. 4 Embodiment) |
Preferred | More Preferred | ||
Layer | Range ({acute over (Å)}) | ({acute over (Å)}) | Example (Å) |
TiOx (layer 3) | 30-400 | {acute over (Å)} | 80-250 | {acute over (Å)} | 180 Å |
SnO2 (layer 5) | 10-300 | Å | 10-100 | Å | 20 Å |
ZnAlOx (layer 7) | 10-300 | {acute over (Å)} | 60-120 | {acute over (Å)} | 50 Å |
Ag (layer 9) | 50-250 | {acute over (Å)} | 80-150 | {acute over (Å)} | 130 Å |
NiCrOx (layer 11) | 10-80 | {acute over (Å)} | 20-70 | {acute over (Å)} | 30 Å |
TiOx (layer 12) | 10-300 | {acute over (Å)} | 20-100 | {acute over (Å)} | 40 Å |
SnO2 (layer 13) | 40-400 | Å | 100-200 | Å | 160 Å |
Si3N4 (layer 15) | 50-750 | {acute over (Å)} | 150-350 | {acute over (Å)} | 210 Å |
Claims (19)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/290,812 US8025941B2 (en) | 2005-12-01 | 2005-12-01 | IG window unit and method of making the same |
EP06827608A EP1954486A2 (en) | 2005-12-01 | 2006-11-07 | Ig window unit and method of making the same |
CA002625936A CA2625936A1 (en) | 2005-12-01 | 2006-11-07 | Ig window unit and method of making the same |
PCT/US2006/043364 WO2007064450A2 (en) | 2005-12-01 | 2006-11-07 | Ig window unit and method of making the same |
RU2008126719/03A RU2432329C2 (en) | 2005-12-01 | 2006-11-07 | Window block with insulating glass and method of making said window block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/290,812 US8025941B2 (en) | 2005-12-01 | 2005-12-01 | IG window unit and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070128449A1 US20070128449A1 (en) | 2007-06-07 |
US8025941B2 true US8025941B2 (en) | 2011-09-27 |
Family
ID=38092693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/290,812 Expired - Fee Related US8025941B2 (en) | 2005-12-01 | 2005-12-01 | IG window unit and method of making the same |
Country Status (5)
Country | Link |
---|---|
US (1) | US8025941B2 (en) |
EP (1) | EP1954486A2 (en) |
CA (1) | CA2625936A1 (en) |
RU (1) | RU2432329C2 (en) |
WO (1) | WO2007064450A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120151857A1 (en) * | 2010-12-17 | 2012-06-21 | Infinite Edge Technologies, Llc | Triple pane window spacer, window assembly and methods for manufacturing same |
US20120293862A1 (en) * | 2007-11-26 | 2012-11-22 | Guardian Industries Corp., | Ruggedized switchable glazing, and/or method of making the same |
US8586193B2 (en) | 2009-07-14 | 2013-11-19 | Infinite Edge Technologies, Llc | Stretched strips for spacer and sealed unit |
US8596024B2 (en) | 2007-11-13 | 2013-12-03 | Infinite Edge Technologies, Llc | Sealed unit and spacer |
US20140168760A1 (en) * | 2012-12-17 | 2014-06-19 | Guardian Industries Corp. | Window for reducing bird collisions |
US8834976B2 (en) | 2010-02-26 | 2014-09-16 | Guardian Industries Corp. | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US8939606B2 (en) | 2010-02-26 | 2015-01-27 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
US9221713B2 (en) | 2011-12-21 | 2015-12-29 | Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) | Coated article with low-E coating having barrier layer system(s) including multiple dielectric layers, and/or methods of making the same |
US9260907B2 (en) | 2012-10-22 | 2016-02-16 | Guardian Ig, Llc | Triple pane window spacer having a sunken intermediate pane |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0156720B1 (en) * | 1995-07-27 | 1999-03-20 | 김광호 | Reciprocating compressor |
KR0175890B1 (en) * | 1995-07-29 | 1999-10-01 | 윤종용 | Cylinder Head for Compressor |
KR100187223B1 (en) * | 1995-07-29 | 1999-05-01 | 김광호 | Muffler of a compressor |
KR0175891B1 (en) * | 1995-07-29 | 1999-10-01 | 윤종용 | compressor |
KR100194150B1 (en) * | 1995-12-05 | 1999-06-15 | 윤종용 | Hermetic reciprocating compressor |
US7473471B2 (en) * | 2005-03-21 | 2009-01-06 | Ppg Industries Ohio, Inc. | Coating composition with solar properties |
GB0602933D0 (en) * | 2006-02-14 | 2006-03-22 | Pilkington Automotive Ltd | Vehicle glazing |
US7695785B2 (en) | 2006-07-14 | 2010-04-13 | Guardian Industries Corp. | Coated article with oxides and/or oxynitrides of antimony and/or zinc dielectric layer(s) and corresponding method |
US20090004482A1 (en) * | 2007-06-28 | 2009-01-01 | Guardian Industries Corp. | Method of making a stabilized colloidal silica, compositions comprising the same, and coated articles including the same |
US8916328B2 (en) * | 2007-08-20 | 2014-12-23 | Guardian Industries Corp. | Coated glass substrate with ultraviolet blocking characteristics and including a rheological modifier |
US9333728B2 (en) | 2007-11-06 | 2016-05-10 | Guardian Industries Corp. | Ruggedized switchable glazing, and/or method of making the same |
US8110297B2 (en) * | 2009-02-18 | 2012-02-07 | Guardian Industries Corp. | Coated article supporting photocatalytic layer and UV-reflecting underlayer, and/or method of making the same |
CN102421862B (en) * | 2009-05-15 | 2014-11-12 | 旭硝子株式会社 | Coating fluid for forming ultraviolet-absorbing film, and ultraviolet-absorbing glass article |
US9272949B2 (en) * | 2010-07-09 | 2016-03-01 | Guardian Industries Corp. | Coated glass substrate with heat treatable ultraviolet blocking characteristics |
EP2450322A1 (en) * | 2010-09-13 | 2012-05-09 | Korea Electronics Technology Institute | Double window / door system for blocking infrared rays |
WO2012092466A1 (en) | 2010-12-29 | 2012-07-05 | Guardian Industries Corp. | Grid keeper for insulating glass unit, and insulating glass unit incorporating the same |
US8557391B2 (en) | 2011-02-24 | 2013-10-15 | Guardian Industries Corp. | Coated article including low-emissivity coating, insulating glass unit including coated article, and/or methods of making the same |
US8871316B2 (en) | 2011-05-31 | 2014-10-28 | Guardian Industries Corp. | Insulated glass (IG) units including spacer systems, and/or methods of making the same |
US8776350B2 (en) | 2011-05-31 | 2014-07-15 | Guardian Industries Corp. | Spacer systems for insulated glass (IG) units, and/or methods of making the same |
ES2710119T3 (en) * | 2011-07-01 | 2019-04-23 | Tropiglas Tech Ltd | A spectrally selective panel |
US9556066B2 (en) | 2011-12-13 | 2017-01-31 | Guardian Industries Corp. | Insulating glass units with low-E and antireflective coatings, and/or methods of making the same |
US9919959B2 (en) | 2012-05-31 | 2018-03-20 | Guardian Glass, LLC | Window with UV-treated low-E coating and method of making same |
FR2998564B1 (en) * | 2012-11-23 | 2016-12-23 | Saint Gobain | SUBSTRATE WITH PARTIALLY METALLIC LAYER STACK, GLAZING, USE AND METHOD. |
TWI654080B (en) * | 2013-05-28 | 2019-03-21 | 美商南垣工藝公司 | Insulating glass unit with crack-resistant low-emissivity suspended film |
FR3021310B1 (en) * | 2014-05-23 | 2022-11-18 | Saint Gobain | SUBSTRATE PROVIDED WITH A PARTIAL METALLIC LAYER STACK, GLAZING AND METHOD. |
FR3021311A1 (en) * | 2014-05-23 | 2015-11-27 | Saint Gobain | SUBSTRATE WITH PARTIALLY METALLIC LAYER STACK, GLAZING AND METHOD. |
FR3021312A1 (en) * | 2014-05-23 | 2015-11-27 | Saint Gobain | SUBSTRATE WITH PARTIAL METAL LAYER STACK, GLAZING AND METHOD. |
EP3356306B1 (en) | 2015-09-28 | 2021-06-16 | Tru Vue, Inc. | Near infrared reflective coated articles |
US10845512B2 (en) | 2016-12-23 | 2020-11-24 | Guardian Glass, LLC | Coated article for use in surveillance window or the like and method of making same |
EP3619176A1 (en) * | 2017-05-04 | 2020-03-11 | Apogee Enterprises, Inc. | Low emissivity coatings, glass surfaces including the same, and methods for making the same |
EP3619175A1 (en) * | 2017-05-04 | 2020-03-11 | AGC Glass Europe | Coated substrate |
RU2743986C1 (en) * | 2017-12-07 | 2021-03-01 | Сэн-Гобэн Гласс Франс | Insulating double-glazed unit containing unit for equalizing the pressure with membrane and capillary |
RU2694537C1 (en) * | 2018-04-27 | 2019-07-16 | Денис Александрович Волков | Translucent structure (versions) |
US10822270B2 (en) | 2018-08-01 | 2020-11-03 | Guardian Glass, LLC | Coated article including ultra-fast laser treated silver-inclusive layer in low-emissivity thin film coating, and/or method of making the same |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3682528A (en) | 1970-09-10 | 1972-08-08 | Optical Coating Laboratory Inc | Infra-red interference filter |
US4853264A (en) | 1988-01-14 | 1989-08-01 | Southwall Technologies | Curved triple-pane glazing |
US4898790A (en) | 1986-12-29 | 1990-02-06 | Ppg Industries, Inc. | Low emissivity film for high temperature processing |
US4965121A (en) | 1988-09-01 | 1990-10-23 | The Boc Group, Inc. | Solar control layered coating for glass windows |
US5156894A (en) | 1989-08-02 | 1992-10-20 | Southwall Technologies, Inc. | High performance, thermally insulating multipane glazing structure |
US5251064A (en) | 1991-03-08 | 1993-10-05 | Southwall Technologies Inc. | Lighting fixture reflector containing ultraviolet absorber |
US5306547A (en) | 1990-12-14 | 1994-04-26 | Southwall Technologies Inc. | Low transmission heat-reflective glazing materials |
US5308662A (en) | 1991-07-16 | 1994-05-03 | Southwall Technologies Inc. | Window construction with UV protecting treatment |
US5332618A (en) | 1992-02-07 | 1994-07-26 | Tru Vue, Inc. | Antireflection layer system with integral UV blocking properties |
US5371138A (en) | 1990-07-24 | 1994-12-06 | Tru Vue, Inc. | Ultraviolet blocking polysiloxane resin and process for making the same |
US5510173A (en) | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
US5514476A (en) | 1994-12-15 | 1996-05-07 | Guardian Industries Corp. | Low-E glass coating system and insulating glass units made therefrom |
US5557462A (en) | 1995-01-17 | 1996-09-17 | Guardian Industries Corp. | Dual silver layer Low-E glass coating system and insulating glass units made therefrom |
US5563734A (en) | 1993-04-28 | 1996-10-08 | The Boc Group, Inc. | Durable low-emissivity solar control thin film coating |
US5784853A (en) | 1989-08-02 | 1998-07-28 | Southwall Technologies Inc. | Thermally insulating multipane glazing structure |
US5800933A (en) | 1995-11-02 | 1998-09-01 | Guardian Industries Corp. | Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom |
US5837108A (en) | 1993-08-05 | 1998-11-17 | Guardian Industries Corp. | Matchable, heat treatable, durable, ir-reflecting sputter-coated glasses and method of making same |
US5840161A (en) | 1994-09-09 | 1998-11-24 | Southwall Technologies Inc. | Double-sided reflector films |
US5902505A (en) | 1988-04-04 | 1999-05-11 | Ppg Industries, Inc. | Heat load reduction windshield |
US5935702A (en) | 1994-12-23 | 1999-08-10 | Saint-Gobain Vitrage | Glass substrates coated with a stack of thin layers having reflective properties in the infra-red and/or solar ranges |
US5981059A (en) | 1995-04-03 | 1999-11-09 | Southwall Technologies, Inc. | Multi-layer topcoat for an optical member |
US6030671A (en) | 1998-01-09 | 2000-02-29 | Msc Specialty Films, Inc. | Low emissivity window films |
US6261693B1 (en) | 1999-05-03 | 2001-07-17 | Guardian Industries Corporation | Highly tetrahedral amorphous carbon coating on glass |
US6277480B1 (en) | 1999-05-03 | 2001-08-21 | Guardian Industries Corporation | Coated article including a DLC inclusive layer(s) and a layer(s) deposited using siloxane gas, and corresponding method |
US6280834B1 (en) | 1999-05-03 | 2001-08-28 | Guardian Industries Corporation | Hydrophobic coating including DLC and/or FAS on substrate |
WO2001066482A1 (en) | 2000-03-06 | 2001-09-13 | Guardian Industries, Inc. | Low-emissivity glass coatings having a layer of silicon oxynitride and methods of making same |
WO2001066483A1 (en) | 2000-03-06 | 2001-09-13 | Guardian Industries, Inc. | Low-emissivity glass coatings having a layer of nitrided nichrome and methods of making same |
US6303225B1 (en) | 2000-05-24 | 2001-10-16 | Guardian Industries Corporation | Hydrophilic coating including DLC on substrate |
WO2002004375A2 (en) | 2000-07-10 | 2002-01-17 | Guardian Industries Corporation | Heat treatable low-e coated articles and methods of making same |
US6368470B1 (en) | 1999-12-29 | 2002-04-09 | Southwall Technologies, Inc. | Hydrogenating a layer of an antireflection coating |
US20030190476A1 (en) | 2002-04-05 | 2003-10-09 | Veerasamy Vijayen S. | Vehicle window with ice removal structure thereon |
US6632491B1 (en) | 2002-05-21 | 2003-10-14 | Guardian Industries Corp. | IG window unit and method of making the same |
US6649212B2 (en) | 2001-07-30 | 2003-11-18 | Guardian Industries Corporation | Modified silicon-based UV absorbers useful in crosslinkable polysiloxane coatings via sol-gel polymerization |
US20040009356A1 (en) | 2002-05-03 | 2004-01-15 | Medwick Paul A. | Substrate having thermal management coating for an insulating glass unit |
US20050134959A1 (en) | 2003-05-28 | 2005-06-23 | Deron Simpson | System and method for filtering electromagnetic transmissions |
US20050145480A1 (en) | 2001-10-17 | 2005-07-07 | Guardian Industries Corp. | Heat treatable coated article with zinc oxide inclusive contact layer(s) |
US6936347B2 (en) | 2001-10-17 | 2005-08-30 | Guardian Industries Corp. | Coated article with high visible transmission and low emissivity |
US20050208319A1 (en) | 2004-03-22 | 2005-09-22 | Finley James J | Methods for forming an electrodeposited coating over a coated substrate and articles made thereby |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU657161A1 (en) * | 1976-05-20 | 1979-04-15 | Центральный Научно-Исследовательский И Проектный Институт Типового И Экспериментального Проектирования Школ, Дошкольных Учреждений,Средних И Высших Учебных Заведений | Heat-protecting glazing |
FR2744117B1 (en) * | 1996-01-11 | 1998-04-03 | Saint Gobain Vitrage | GLAZING WITH REFLECTIVE LAYERS AND MANUFACTURING METHOD THEREOF |
-
2005
- 2005-12-01 US US11/290,812 patent/US8025941B2/en not_active Expired - Fee Related
-
2006
- 2006-11-07 RU RU2008126719/03A patent/RU2432329C2/en not_active IP Right Cessation
- 2006-11-07 CA CA002625936A patent/CA2625936A1/en not_active Abandoned
- 2006-11-07 EP EP06827608A patent/EP1954486A2/en not_active Withdrawn
- 2006-11-07 WO PCT/US2006/043364 patent/WO2007064450A2/en active Application Filing
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3682528A (en) | 1970-09-10 | 1972-08-08 | Optical Coating Laboratory Inc | Infra-red interference filter |
US4898790A (en) | 1986-12-29 | 1990-02-06 | Ppg Industries, Inc. | Low emissivity film for high temperature processing |
US4853264A (en) | 1988-01-14 | 1989-08-01 | Southwall Technologies | Curved triple-pane glazing |
US5902505A (en) | 1988-04-04 | 1999-05-11 | Ppg Industries, Inc. | Heat load reduction windshield |
US4965121A (en) | 1988-09-01 | 1990-10-23 | The Boc Group, Inc. | Solar control layered coating for glass windows |
US5156894A (en) | 1989-08-02 | 1992-10-20 | Southwall Technologies, Inc. | High performance, thermally insulating multipane glazing structure |
US5784853A (en) | 1989-08-02 | 1998-07-28 | Southwall Technologies Inc. | Thermally insulating multipane glazing structure |
US5371138A (en) | 1990-07-24 | 1994-12-06 | Tru Vue, Inc. | Ultraviolet blocking polysiloxane resin and process for making the same |
US5306547A (en) | 1990-12-14 | 1994-04-26 | Southwall Technologies Inc. | Low transmission heat-reflective glazing materials |
US5251064A (en) | 1991-03-08 | 1993-10-05 | Southwall Technologies Inc. | Lighting fixture reflector containing ultraviolet absorber |
US5308662A (en) | 1991-07-16 | 1994-05-03 | Southwall Technologies Inc. | Window construction with UV protecting treatment |
US5332618A (en) | 1992-02-07 | 1994-07-26 | Tru Vue, Inc. | Antireflection layer system with integral UV blocking properties |
US5563734A (en) | 1993-04-28 | 1996-10-08 | The Boc Group, Inc. | Durable low-emissivity solar control thin film coating |
US5837108A (en) | 1993-08-05 | 1998-11-17 | Guardian Industries Corp. | Matchable, heat treatable, durable, ir-reflecting sputter-coated glasses and method of making same |
US5510173A (en) | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
US5840161A (en) | 1994-09-09 | 1998-11-24 | Southwall Technologies Inc. | Double-sided reflector films |
US5514476A (en) | 1994-12-15 | 1996-05-07 | Guardian Industries Corp. | Low-E glass coating system and insulating glass units made therefrom |
US5935702A (en) | 1994-12-23 | 1999-08-10 | Saint-Gobain Vitrage | Glass substrates coated with a stack of thin layers having reflective properties in the infra-red and/or solar ranges |
US5557462A (en) | 1995-01-17 | 1996-09-17 | Guardian Industries Corp. | Dual silver layer Low-E glass coating system and insulating glass units made therefrom |
US5981059A (en) | 1995-04-03 | 1999-11-09 | Southwall Technologies, Inc. | Multi-layer topcoat for an optical member |
US5800933A (en) | 1995-11-02 | 1998-09-01 | Guardian Industries Corp. | Neutral, high performance, durable low-E glass coating system and insulating glass units made therefrom |
US6014872A (en) | 1995-11-02 | 2000-01-18 | Guardian Industries Corp. | Methods of making insulating glass units with neutral, high performance, durable low-E glass coating systems |
US6030671A (en) | 1998-01-09 | 2000-02-29 | Msc Specialty Films, Inc. | Low emissivity window films |
US6277480B1 (en) | 1999-05-03 | 2001-08-21 | Guardian Industries Corporation | Coated article including a DLC inclusive layer(s) and a layer(s) deposited using siloxane gas, and corresponding method |
US6280834B1 (en) | 1999-05-03 | 2001-08-28 | Guardian Industries Corporation | Hydrophobic coating including DLC and/or FAS on substrate |
US6261693B1 (en) | 1999-05-03 | 2001-07-17 | Guardian Industries Corporation | Highly tetrahedral amorphous carbon coating on glass |
US6368470B1 (en) | 1999-12-29 | 2002-04-09 | Southwall Technologies, Inc. | Hydrogenating a layer of an antireflection coating |
WO2001066482A1 (en) | 2000-03-06 | 2001-09-13 | Guardian Industries, Inc. | Low-emissivity glass coatings having a layer of silicon oxynitride and methods of making same |
WO2001066483A1 (en) | 2000-03-06 | 2001-09-13 | Guardian Industries, Inc. | Low-emissivity glass coatings having a layer of nitrided nichrome and methods of making same |
US6303225B1 (en) | 2000-05-24 | 2001-10-16 | Guardian Industries Corporation | Hydrophilic coating including DLC on substrate |
WO2002004375A2 (en) | 2000-07-10 | 2002-01-17 | Guardian Industries Corporation | Heat treatable low-e coated articles and methods of making same |
US6649212B2 (en) | 2001-07-30 | 2003-11-18 | Guardian Industries Corporation | Modified silicon-based UV absorbers useful in crosslinkable polysiloxane coatings via sol-gel polymerization |
US20050145480A1 (en) | 2001-10-17 | 2005-07-07 | Guardian Industries Corp. | Heat treatable coated article with zinc oxide inclusive contact layer(s) |
US6936347B2 (en) | 2001-10-17 | 2005-08-30 | Guardian Industries Corp. | Coated article with high visible transmission and low emissivity |
US20030190476A1 (en) | 2002-04-05 | 2003-10-09 | Veerasamy Vijayen S. | Vehicle window with ice removal structure thereon |
US20040009356A1 (en) | 2002-05-03 | 2004-01-15 | Medwick Paul A. | Substrate having thermal management coating for an insulating glass unit |
US6632491B1 (en) | 2002-05-21 | 2003-10-14 | Guardian Industries Corp. | IG window unit and method of making the same |
US20050134959A1 (en) | 2003-05-28 | 2005-06-23 | Deron Simpson | System and method for filtering electromagnetic transmissions |
US20050208319A1 (en) | 2004-03-22 | 2005-09-22 | Finley James J | Methods for forming an electrodeposited coating over a coated substrate and articles made thereby |
Non-Patent Citations (3)
Title |
---|
U.S. Appl. No. 10/922,235, filed Oct. 25, 2004. |
U.S. Appl. No. 11/029,025, filed Jan. 5, 2005. |
U.S. Appl. No. 11/229,837, filed Sep. 20, 2005. |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9127502B2 (en) | 2007-11-13 | 2015-09-08 | Guardian Ig, Llc | Sealed unit and spacer |
US8596024B2 (en) | 2007-11-13 | 2013-12-03 | Infinite Edge Technologies, Llc | Sealed unit and spacer |
US9617781B2 (en) | 2007-11-13 | 2017-04-11 | Guardian Ig, Llc | Sealed unit and spacer |
US8795568B2 (en) | 2007-11-13 | 2014-08-05 | Guardian Ig, Llc | Method of making a box spacer with sidewalls |
US9187949B2 (en) | 2007-11-13 | 2015-11-17 | Guardian Ig, Llc | Spacer joint structure |
US20120293862A1 (en) * | 2007-11-26 | 2012-11-22 | Guardian Industries Corp., | Ruggedized switchable glazing, and/or method of making the same |
US8665384B2 (en) * | 2007-11-26 | 2014-03-04 | Guardian Industries Corp. | Ruggedized switchable glazing, and/or method of making the same |
US8586193B2 (en) | 2009-07-14 | 2013-11-19 | Infinite Edge Technologies, Llc | Stretched strips for spacer and sealed unit |
US9573845B2 (en) | 2010-02-26 | 2017-02-21 | Guardian Industries Corp. | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US8939606B2 (en) | 2010-02-26 | 2015-01-27 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
US8834976B2 (en) | 2010-02-26 | 2014-09-16 | Guardian Industries Corp. | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US9199875B2 (en) | 2010-02-26 | 2015-12-01 | Guardian Industries Corp. | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US9725356B2 (en) | 2010-02-26 | 2017-08-08 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
US9914661B2 (en) | 2010-02-26 | 2018-03-13 | Guardian Glass, LLC | Articles including anticondensation and/or low-E coatings and/or methods of making the same |
US9228389B2 (en) * | 2010-12-17 | 2016-01-05 | Guardian Ig, Llc | Triple pane window spacer, window assembly and methods for manufacturing same |
US20120151857A1 (en) * | 2010-12-17 | 2012-06-21 | Infinite Edge Technologies, Llc | Triple pane window spacer, window assembly and methods for manufacturing same |
US9221713B2 (en) | 2011-12-21 | 2015-12-29 | Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) | Coated article with low-E coating having barrier layer system(s) including multiple dielectric layers, and/or methods of making the same |
US10125266B2 (en) | 2011-12-21 | 2018-11-13 | Guardian Europe S.A.R.L. | Coated article with low-E coating having barrier layer system(s) including multiple dielectric layers, and/or methods of making the same |
US9260907B2 (en) | 2012-10-22 | 2016-02-16 | Guardian Ig, Llc | Triple pane window spacer having a sunken intermediate pane |
US20140168760A1 (en) * | 2012-12-17 | 2014-06-19 | Guardian Industries Corp. | Window for reducing bird collisions |
US10871600B2 (en) * | 2012-12-17 | 2020-12-22 | Guardian Glass, LLC | Window for reducing bird collisions |
Also Published As
Publication number | Publication date |
---|---|
CA2625936A1 (en) | 2007-06-07 |
EP1954486A2 (en) | 2008-08-13 |
US20070128449A1 (en) | 2007-06-07 |
WO2007064450A2 (en) | 2007-06-07 |
WO2007064450A3 (en) | 2007-11-08 |
RU2432329C2 (en) | 2011-10-27 |
RU2008126719A (en) | 2010-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8025941B2 (en) | IG window unit and method of making the same | |
US6632491B1 (en) | IG window unit and method of making the same | |
US8114488B2 (en) | Window for preventing bird collisions | |
US9212417B2 (en) | Coated article with low-E coating having titanium oxide layer and/or NiCr based layer(s) to improve color values and/or transmission, and method of making same | |
US20190047908A1 (en) | Coated article with low-e coating having absorbing layers for low film side reflectance and low visible transmission | |
EP3148948B1 (en) | Ig window unit for preventing bird collisions | |
US7744951B2 (en) | Coated glass substrate with infrared and ultraviolet blocking characteristics | |
EP3510003B1 (en) | Coated article with ir reflecting layer and method of making same | |
EP2279986B1 (en) | Carbon nanotube coating technology | |
EP2432745B1 (en) | Coated article with low-e coating having zinc stannate based layer between ir reflecting layers for reduced mottling and corresponding method | |
US10871600B2 (en) | Window for reducing bird collisions | |
CA2563945C (en) | Hybrid coating stack | |
EP2892857B1 (en) | Coated article with low-e coating having absorbing layers for low film side reflectance and low visible transmission | |
EP2043960B1 (en) | Coated article with oxynitrides of antimony and/or zinc and corresponding method of manufacture | |
EP2540681A2 (en) | Coated article with low-e-coating including ir reflecting layer(s) and corresponding method | |
WO2006063171A2 (en) | Coated article with low-e coating including ir reflecting layer(s) and corresponding method | |
US7153577B2 (en) | Heat treatable coated article with dual layer overcoat | |
KR20130041281A (en) | Glazing panel | |
CN102811966A (en) | Sun protection coating with discontinuous metal layer | |
EP4211091A1 (en) | Temperable uv reflecting coated glass sheet | |
EP2094928B1 (en) | Method of making ig window unit and forming silicon oxide based hydrophilic coating using chlorosilane vapor deposition | |
US20240253330A1 (en) | Glazing for preventing bird collisions | |
WO2018165136A1 (en) | Coated article having low-e coating with ir reflecting layer(s) and yttrium inclusive high index nitrided dielectric layer | |
US10618839B2 (en) | Low emissivity coatings with increased ultraviolet transmissivity | |
EP3322677A1 (en) | Architectural glass with low-e coating having multilayer layer structure with high durability and/or methods of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GUARDIAN INDUSTRIES CORP., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAYLOR, THOMAS J.;WANG, YEI-PING (MIMI) H.;VARAPRASAD, DESARAJU V.;REEL/FRAME:017592/0083;SIGNING DATES FROM 20060201 TO 20060209 Owner name: GUARDIAN INDUSTRIES CORP., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAYLOR, THOMAS J.;WANG, YEI-PING (MIMI) H.;VARAPRASAD, DESARAJU V.;SIGNING DATES FROM 20060201 TO 20060209;REEL/FRAME:017592/0083 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150927 |
|
AS | Assignment |
Owner name: GUARDIAN GLASS, LLC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUARDIAN INDUSTRIES CORP.;REEL/FRAME:044053/0318 Effective date: 20170801 |