US8065982B2 - Variable intake apparatus for V-type internal combustion engine - Google Patents
Variable intake apparatus for V-type internal combustion engine Download PDFInfo
- Publication number
- US8065982B2 US8065982B2 US12/309,883 US30988307A US8065982B2 US 8065982 B2 US8065982 B2 US 8065982B2 US 30988307 A US30988307 A US 30988307A US 8065982 B2 US8065982 B2 US 8065982B2
- Authority
- US
- United States
- Prior art keywords
- variable intake
- turning
- intake valves
- turning shaft
- side operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
- F02D9/109—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0205—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
- F02B27/0215—Oscillating pipe charging, i.e. variable intake pipe length charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0268—Valves
- F02B27/0273—Flap valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
- F02D9/1065—Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10242—Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
- F02M35/10255—Arrangements of valves; Multi-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/104—Intake manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/104—Intake manifolds
- F02M35/116—Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0247—Plenum chambers; Resonance chambers or resonance pipes
- F02B27/0263—Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a variable intake apparatus for a V-type internal combustion engine, such as a V-eight engine. More specifically, the invention relates to an arrangement of a plurality of valves provided in a variable intake apparatus and a drive mechanism thereof.
- variable intake apparatus for a V-type internal combustion engine in which each of intake pipes is separated from a surge tank by a partition wall is provided.
- communication ports are provided in the partition wall for the respective intake pipes, and opened and closed by respective variable intake valves to adjust the length of intake passages.
- Japanese Patent Publication No. 8-9969 describes a technology with respect to such a variable intake apparatus in which a plurality of variable intake valves are arranged in one row, and integrally connected to a single turning shaft.
- the turning shaft is turned by an actuator such that the variable intake valves synchronously open and close the respective communication ports.
- variable intake valves are arranged in one row, and therefore the length of the variable intake apparatus in the direction in which the variable intake valves are arranged may need to be long enough to accommodate the required number of the variable intake valves. This may increase the size of the variable intake apparatus.
- variable intake valves are arranged in one row, there is a restriction on the diameter of each valve. Due to this restriction, the requirement for the valve diameter to achieve the desired performance may not be satisfied.
- the invention to provide a variable intake apparatus for a V-type internal combustion engine, whose size is reduced with a simple mechanism without employing a complicated mechanism for driving valves, by devising an effective arrangement of the valves and an effective mechanism for driving the valves.
- a first aspect of the invention relates to a variable intake apparatus for a V-type internal combustion engine, in which each of a plurality of intake pipes is separated from a surge tank by a partition wall, and communication ports, provided in the partition wall for the respective intake pipes, are opened and closed by respective variable intake valves to adjust length of intake passages.
- the variable intake apparatus includes a first turning shaft and a second turning shaft that are disposed substantially parallel with each other. The first and second turning shafts are connected to the variable intake valves, and support the variable intake valves such that the variable intake valves are turned by turning the first and second turning shafts.
- the variable intake apparatus includes an actuator that turns the first turning shaft, and a synchronization mechanism that connects the first turning shaft and the second turning shaft such that the first and second turning shafts are synchronously turned.
- the variable intake valves connected to the first turning shaft are offset from the variable intake valves connected to the second turning shaft in a direction where the first and second turning shafts extend.
- a turning motion of the first turning shaft turned by the actuator is transmitted to the second turning shaft via the synchronization mechanism such that the variable intake valves connected to the first and second turning shafts synchronously open and close the respective communication ports.
- variable intake valves connected to one of two turning shafts that are disposed substantially parallel with each other are offset from the variable intake valves connected to the other turning shaft, as described above. Therefore, it is possible to decrease the length in the direction in which the variable intake valves are arranged, as compared to the case where all the variable intake valves are arranged in one row. Further, it is also possible to select the optimal length of the intake passages. Because the synchronization mechanism is provided, the two turning shafts are turned by a single actuator.
- the synchronization mechanism may be a synchronization link mechanism.
- the synchronization link mechanism may include at least a drive-side operation link connected to the first turning shaft to which the actuator is connected so that the first turning shaft functions as a driving shaft, a driven-side operation link connected to the second turning shaft that functions as a driven shaft, and a connection link that connects the drive-side operation link and the driven-side operation link.
- the synchronization link mechanism may further include a connection-side operation link that connects the connection link and the driven-side operation link, and the connection-side operation link may be turnably supported by the second turning shaft that functions as the driven shaft.
- the synchronization link mechanism may include at least one of first adjusting means and second adjusting means.
- the first adjusting means synchronously adjusts turning positions of the first turning shaft and the second turning shaft via the synchronization link mechanism such that the closed positions of the variable intake valves are adjusted.
- the second adjusting means adjusts the turning position of the first turning shaft and the turning position of the second turning shaft with respect to each other such that the closed position of the variable intake valves connected to the first turning shaft and the closed position of the variable intake valves connected to the second turning shaft are adjusted with respect to each other.
- the variable intake apparatus for a V-type internal combustion engine may further include a valve housing and a contact portion.
- the valve housing retains the variable intake valves.
- the contact portion is formed in the drive-side operation link and contacts the first adjusting means when the variable intake valves are placed in the closed positions.
- the first adjusting means may be provided in the valve housing, and a position of the first adjusting means may move in an axial direction of the first adjusting means.
- a state of the drive-side operation link when the variable intake valves are placed in the closed positions may be adjusted via the contact portion, and the turning positions of the first and second turning shafts may be adjusted via the synchronization link mechanism such that the closed positions of the variable intake valves are adjusted, by adjusting the position of the first adjusting means in the axial direction of the first adjusting means.
- variable intake apparatus for a V-type internal combustion engine may further include an elastic body provided between an end portion of the driven-side operation link and an end portion of the connection-side operation link.
- the second adjusting means may be connected to the end portion of the driven-side operation link and to the end portion of the connection-side operation link such that the elastic body is provided between the end portion of the driven-side operation link and the end portion of the connection-side operation link.
- a position of the second adjusting means may move in an axial direction of the second adjusting means.
- An interval between the end portion of the driven-side operation link and the end portion of the connection-side operation link, which are connected with each other via the elastic body, may be changed such that the turning position of the first turning shaft and the turning position of the second turning shaft are adjusted with respect to each other, and the closed position of the variable intake valves connected to the first turning shaft and the closed position of the variable intake valves connected to the second turning shaft are adjusted with respect to each other, by adjusting the position of the second adjusting means in the axial direction of the second adjusting means.
- a variable intake apparatus for a V-type internal combustion engine includes a plurality of intake pipes, a surge tank, a partition wall, communication ports, variable intake valves, a first turning shaft and a second turning shaft, an actuator, and a synchronization mechanism.
- the partition wall separates each of the intake pipes from the surge tank.
- the communication ports are provided in the partition wall for the respective intake pipes, and provide communication between the respective intake pipes and the surge tank.
- the variable intake valves open and close the respective communication ports to adjust length of intake passages.
- the first and second turning shafts are disposed substantially parallel with each other, and connected to the variable intake valves. The first and second turning shafts support the variable intake valves such that the variable intake valves are turned by turning the first and second turning shafts.
- the actuator turns the first turning shaft.
- the synchronization mechanism connects the first turning shaft and the second turning shaft such that the first and second turning shafts are synchronously turned.
- the variable intake valves connected to the first turning shaft are offset from the variable intake valves connected to the second turning shaft in a direction where the first and second turning shafts extend, and a turning motion of the first turning shaft turned by the actuator is transmitted to the second turning shaft via the synchronization mechanism such that the variable intake valves connected to the first and second turning shafts synchronously open and close the respective communication ports.
- the synchronization mechanism may be a synchronization link mechanism.
- the synchronization link mechanism may include at least a drive-side operation link connected to the first turning shaft to which the actuator is connected so that the first turning shaft functions as a driving shaft, a driven-side operation link connected to the second turning shaft that functions as a driven shaft, and a connection link that connects the drive-side operation link and the driven-side operation link.
- the synchronization link mechanism may further include a connection-side operation link that connects the connection link and the driven-side operation link, and the connection-side operation link may be turnably supported by the second turning shaft that functions as the driven shaft.
- the synchronization link mechanism may include at least one of first adjusting portion and second adjusting portion.
- the first adjusting portion synchronously adjusts turning positions of the first turning shaft and the second turning shaft via the synchronization link mechanism such that the closed positions of the variable intake valves are adjusted.
- the second adjusting portion adjusts the turning position of the first turning shaft and the turning position of the second turning shaft with respect to each other such that the closed position of the variable intake valves connected to the first turning shaft and the closed position of the variable intake valves connected to the second turning shaft are adjusted with respect to each other.
- the variable intake apparatus for a V-type internal combustion engine may further include a valve housing and a contact portion.
- the valve housing retains the variable intake valves.
- the contact portion is formed in the drive-side operation link and contacts the first adjusting portion when the variable intake valves are placed in the closed positions.
- the first adjusting portion may be provided in the valve housing, and a position of the first adjusting portion may move in an axial direction of the first adjusting portion.
- a state of the drive-side operation link when the variable intake valves are placed in the closed positions may be adjusted via the contact portion, and the turning positions of the first and second turning shafts may be adjusted via the synchronization link mechanism such that the closed positions of the variable intake valves are adjusted, by adjusting the position of the first adjusting portion in the axial direction of the first adjusting portion.
- variable intake apparatus for a V-type internal combustion engine may further include an elastic body provided between an end portion of the driven-side operation link and an end portion of the connection-side operation link.
- the second adjusting portion may be connected to the end portion of the driven-side operation link and to the end portion of the connection-side operation link such that the elastic body is provided between the end portion of the driven-side operation link and the end portion of the connection-side operation link.
- a position of the second adjusting portion may move in an axial direction of the second adjusting portion.
- An interval between the end portion of the driven-side operation link and the end portion of the connection-side operation link, which are connected with each other via the elastic body, may be changed such that the turning position of the first turning shaft and the turning position of the second turning shaft are adjusted with respect to each other, and the closed position of the variable intake valves connected to the first turning shaft and the closed position of the variable intake valves connected to the second turning shaft are adjusted with respect to each other, by adjusting the position of the second adjusting portion in the axial direction of the second adjusting portion.
- variable intake valves connected to one of two turning shafts that are disposed substantially parallel with each other are offset from the variable intake valves connected to the other turning shaft, as described above. Therefore, it is possible to decrease the length in the direction in which the variable intake valves are arranged, as compared to the case where all the variable intake valves are arranged in one row. Further, it is also possible to select the optimal length of the intake passages. Thus, the degree of freedom in layout of components for the variable intake apparatus is increased, and the flow of intake air is optimized. Accordingly, the required engine performance is optimized in a wide range (to achieve higher output).
- FIG. 1 is a diagram showing the schematic configuration of an intake manifold including a variable intake apparatus for an internal combustion engine according to an embodiment of the invention
- FIG. 2 is a diagram showing the schematic configuration of the intake manifold including the variable intake apparatus for an internal combustion engine according to the embodiment of the invention
- FIG. 3 is a plan view showing a situation where variable intake valves are disposed according to the embodiment of the invention.
- FIG. 4 is a bottom view showing the situation where variable intake valves are disposed according to the embodiment of the invention.
- FIG. 5 is a diagram showing the configuration of a synchronization link mechanism according to the embodiment of the invention, which is viewed in the direction shown by the arrow Q in FIG. 3 ;
- FIG. 6 is a perspective view showing the synchronization link mechanism when a valve housing is viewed from the bottom surface
- FIG. 7 is a diagram showing the operation of the synchronization link mechanism according to the embodiment of the invention, which is viewed in the direction shown by the arrow Q in FIG. 3 ;
- FIG. 8 is an outline view showing a situation where an actuator is disposed according to the embodiment of the invention when the intake manifold is viewed from the lateral side;
- FIG. 9 is a front view showing a valve housing and an upper cover that are fitted to each other via a gasket according to the embodiment of the invention.
- FIG. 1 and FIG. 2 shows the schematic configuration of an intake manifold including a variable intake apparatus for a V-type internal combustion engine according to the embodiment of the invention.
- V-type internal combustion engine for example, a V-eight engine is used.
- the variable intake apparatus according to the embodiment of the invention is applied to the V-eight engine.
- the intake manifold IM includes a plurality of intake pipes 1 .
- the number of the intake pipes 1 depends on the number of cylinders of the V-type internal combustion engine.
- Each of the intake pipes 1 is separated from a surge tank 2 by a partition wall 3 .
- Communication ports 31 provided in the partition wall 3 for the respective intake pipes 1 , are opened and closed by respective variable intake valves 4 of the variable intake apparatus to adjust the length of intake passages.
- variable intake valves 4 adjust the length of the intake passages through which air is introduced into intake ports P of the V-type internal combustion engine E from the surge tank 2 .
- variable intake valves 4 are provided in a valve housing 41 , as shown in FIG. 3 and FIG. 4 . That is, the number of the variable intake valves 4 is the same as the number of cylinders. All the variable intake valves 4 are disposed in two parallel rows, that is, the four variable intake valves 4 are disposed in one row, and the four variable intake valves 4 are disposed in the other row. The variable intake valves 4 in one row are offset from the variable intake valves 4 in the other row. That is, in FIG. 1 showing the intake manifold, the variable intake valve 4 disposed in one row is shown. In FIG.
- FIG. 3 is a plan view of the valve housing 41 viewed from above.
- FIG. 4 is a bottom view of the valve housing 41 viewed from below.
- the valve housing 41 is fastened to an upper cover C, which is a constituent component of the intake manifold, via a gasket G using blots 41 a , as shown in FIG. 9 .
- the upper cover C forms the upper portions of the intake pipes of the intake manifold IM.
- the variable intake valves 4 in the rows are connected to turning shafts 5 a and 5 b .
- the turning shafts 5 a and 5 b are inserted in the valve housing 41 and retained by the valve housing 41 .
- the turning shaft 5 a may be regarded as the first turning shaft according to the invention, and the turning shaft 5 b may be regarded as the second turning shaft according to the invention.
- variable intake valves 4 are axially supported by the two turning shafts 5 a and 5 b that are substantially parallel with each other.
- the variable intake valves 4 disposed along the turning shaft 5 a are offset from the variable intake valves 4 disposed along the turning shaft 5 b in the direction where the turning shafts 5 a and 5 b extend. Further, the variable intake valves 4 are connected to the turning shafts 5 a and 5 b.
- One turning shaft 5 a is turned by an actuator 7 (described later), and both of the turning shafts 5 a and 5 b are synchronously turned via a synchronization link mechanism 6 that is the synchronization mechanism.
- the variable intake valves 4 are synchronously operated to open and close the communication ports 31 .
- variable intake valves 4 At low engine speed, the variable intake valves 4 thus disposed increase the length of the intake passages by closing the communication ports 31 , as shown by the solid lines in FIG. 1 and FIG. 2 .
- air-intake efficiency is improved due to an intake air inertia effect, and thus the output from the engine is increased.
- variable intake valves 4 decrease the length of the intake passages by opening the communication ports 31 , as shown by the two dot chain lines in FIG. 1 and FIG. 2 .
- the air-intake efficiency reaches a peak at high engine speed.
- the output from the engine is increased at high engine speed.
- the turning shaft 5 a which is one of the above-described turning shafts 5 a and 5 b , is turned by the actuator 7 (described later) to drive the other turning shaft 5 b .
- the turning shaft 5 a will be referred to as “drive-side shaft 5 a ”
- the other turning shaft 5 b will be referred to as “driven-side shaft 5 b”.
- FIG. 5 is a diagram viewed in the direction shown by the arrow Q in FIG. 3 .
- FIG. 6 is a perspective view of the synchronization link mechanism when the valve housing is viewed from the bottom surface-side.
- the synchronization link mechanism 6 includes a drive-side operation link 61 , a connection-side operation link 62 , a connection link 63 , and a driven-side operation link 64 .
- a portion of the drive-side operation link 61 is integrally supported by the one end portion of the drive-side shaft 5 a .
- a portion of the connection-side operation link 62 is turnably supported by the one end portion of the driven-side shaft 5 b .
- the connection link 63 is connected to one end portion 61 a of the drive-side operation link 61 , and one end portion 62 a of the connection-side operation link 62 .
- a portion of the driven-side operation link 64 is integrally supported by one end of the driven-side shaft 5 b , which is positioned outside the connection-side operation link 62 .
- the other end portion 62 b of the connection-side operation link 62 is connected to one end portion 64 a of the driven-side operation link 64 .
- a contact portion 61 b is formed in the one end portion 61 a
- a contact portion 61 c is formed in the other end portion.
- the contact portion 61 b contacts the end of a stopper screw 42 that is the first adjusting means, and provided in the valve housing 41 .
- the contact portion 61 c contacts a stopper portion 43 provided in the valve housing 41 .
- the communication ports 31 may be fully closed, or may be slightly open due to adjustment of the positions of the stopper screw 42 (first adjusting means) and the screw member 65 (second adjusting means) performed by turning the stopper screw 42 and the screw member 65 , respectively. Adjustment of the stopper screw 42 and the screw member 65 will be described later.
- connection-side operation link 62 and the one end portion 64 a of the driven-side operation link 64 are disposed at a predetermined interval, and connected to each other by a screw member 65 that is the second adjusting means.
- a spring 66 is disposed between the other end portion 62 b of the connection-side operation link 62 and the one end portion 64 a of the driven-side operation link 64 such that the spring 66 is fitted to the outer periphery of the screw member 65 .
- both of the stopper screw 42 that is the first adjusting means and the screw member 65 that is the second adjusting means may be employed, or either of the stopper screw 42 or the screw member 65 may be employed.
- a spring 67 is disposed between the portion of the connection-side operation link 62 and the portion of the driven-side operation link 64 such that the spring 67 is fitted to the outer periphery of the one end portion of the driven-side shaft 5 b .
- the spring 67 presses the driven-side operation link 64 in such a direction that the variable intake valves 4 are placed in the open position, as shown in FIG. 7 .
- the synchronization link mechanism 6 when the synchronization link mechanism 6 is placed in such a state that the variable intake valves 4 are placed in the closed positions as shown in FIG. 5 , and then the position of the stopper screw 42 is adjusted by turning the stopper screw 42 to adjust the turning position of the drive-side shaft 5 a via the drive-side operation link 61 , and to adjust the turning position of the driven-side shaft 5 b via the synchronization link mechanism 6 , the closed positions (opening degrees) of the variable intake valves 4 are adjusted.
- the synchronization link mechanism 6 When the synchronization link mechanism 6 is placed in such a state that the variable intake valves 4 are placed in the closed positions as shown in FIG. 5 , and then the position of the screw member 65 is adjusted by turning the screw member 65 to change the interval between the other end portion 62 b of the connection-side operation link 62 and the one end portion 64 a of the driven-side operation link 64 , and to adjust the turning position of the driven-side operation link 64 with respect to the turning position of the connection-side operation link 62 , the closed position of the variable intake valves 4 connected to the driven-side shaft 5 b is adjusted via the driven-side shaft 5 b .
- the turning position of the drive-side shaft (one turning shaft) 5 a and the turning position of the driven-side shaft (the other turning shaft) 5 b are adjusted with respect to each other by adjusting the position of the screw member 65 .
- the closed position of the variable intake valves 4 connected to the drive-side shaft 5 a and the closed position of the variable intake valves 4 connected to the driven-side shaft 5 b are adjusted with respect to each other. In this way, when there is a difference between the closed position of the variable intake valves 4 connected to the drive-side shaft 5 a and the closed position of the variable intake valves 4 connected to the driven-side shaft 5 b , such a difference can be adjusted.
- the actuator 7 is connected to the drive-side shaft 5 a via coupling means 8 as shown in FIG. 8 .
- the actuator 7 brings the synchronization link mechanism 6 from the state shown in FIG. 5 to the state shown in FIG. 7 using the force of the spring 67 via the coupling means 8 and the drive-side shaft 5 a , the variable intake valves 4 are brought from the closed positions to the open positions.
- the coupling means 8 includes operation arms 81 and 82 , and a connection rod 83 .
- the base end portion of the operation arm 81 is connected to the output shaft of the actuator 7 such as an electric motor.
- the base end portion of the operation arm 82 is connected to a protrusion portion 5 a 1 that protrudes from the one end of the drive-side shaft 5 a toward the lateral side of the upper cover C.
- the connection rod 83 connects the end portions of the operation arms 81 and 82 .
- variable intake valves 4 are brought from the closed positions to the open positions.
- the operation arm 81 is turned in the opposite direction, the variable intake valves 4 are brought from the open positions to the closed positions.
- variable intake valves 4 are disposed in two parallel rows such that the variable intake valves 4 in one row are offset from the variable intake valves 4 in the other row, as described above. Therefore, it is possible to decrease the length in the direction in which the variable intake valves 4 are arranged, as compared to the case where all the variable intake valves are arranged in one row. Further, it is also possible to select the optimal length of the intake passages. Thus, the degree of freedom in layout of components for the variable intake apparatus is increased, and the flow of intake air is optimized. Accordingly, the required engine performance is optimized in a wide range (to achieve higher output).
- the synchronization link mechanism 6 is disposed in a space formed by decreasing the length in the direction in which the variable intake valves 4 are arranged. Further, the turning shafts 5 a and 5 b are turned by one actuator 7 . Thus, with the simple configuration, it is possible to open and close the communication ports 31 by synchronously operating the variable intake valves 4 while maintaining the compact size.
- the closed positions of all the variable intake valves 4 are adjusted using the stopper screw 42 . Also, the closed position of the variable intake valves 4 in one row is adjusted with respect to the closed position of the variable intake valves 4 in the other row, using the screw member 65 . Thus, it is possible to easily and quickly adjust the difference in the closed position caused due to use, and to constantly operate the variable intake apparatus in an appropriate state.
- a plurality of ribs 45 and 46 is formed on the bottom surface of the valve housing 41 .
- the ribs 45 are formed in an area between each pair of the adjacent variable intake valves 4 , and the turning shaft 5 a or 5 b extends through the area.
- the ribs 45 are parallel with the turning shafts 5 a and 5 b.
- fastening portions 47 are formed in the periphery of the valve housing 41 .
- Installation holes 47 a are formed in the respective fastening portions 47 .
- the valve housing 41 is fastened to the upper cover C by screwing the bolts 41 a into the installation holes 47 a .
- the rib 46 is formed in an area of the valve housing 41 , which is close to one of the communication ports 31 that is close to each of the fastening portions 47 .
- the valve housing 41 is generally made of metal to ensure the rigidity.
- the intake manifold IM is generally made of resin to reduce the weight.
- valve housing 41 made of metal is fitted to the upper cover C that constitutes a part of the intake manifold IM made of resin, mainly the ribs 45 ensure the accuracy of installing the variable intake valves 4 , and prevent the deformation of the turning shafts 5 a and 5 b such that the sliding resistance is reduced. Further, when the valve housing 41 and the upper cover C are fastened to each other, both of the ribs 45 and 46 prevent the separation of the upper cover C from the valve housing 41 .
- the valve housing 41 and the upper cover C are appropriately fitted to each other while the gasket G closely contacts the valve housing 41 and the upper cover C. That is, the valve housing 41 is appropriately fitted to the upper cover C by providing the ribs 45 and 46 in the main portions that need to have high rigidity while reducing the rigidity of the entire valve housing 41 . Also, the weight of the valve housing 41 itself is reduced.
- the synchronization mechanism is not limited to the synchronization link mechanism 6 . Any mechanism that synchronously turns a pair of turning shafts, such as a mechanism using gears and a mechanism using a combination of gears and links, may be employed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Characterised By The Charging Evacuation (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
Description
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-214371 | 2006-08-07 | ||
JP2006214371A JP4589276B2 (en) | 2006-08-07 | 2006-08-07 | Variable intake system for V-type internal combustion engine |
PCT/IB2007/002252 WO2008017919A1 (en) | 2006-08-07 | 2007-08-06 | Variable intake apparatus for v-type internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090250025A1 US20090250025A1 (en) | 2009-10-08 |
US8065982B2 true US8065982B2 (en) | 2011-11-29 |
Family
ID=38829563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/309,883 Expired - Fee Related US8065982B2 (en) | 2006-08-07 | 2007-08-06 | Variable intake apparatus for V-type internal combustion engine |
Country Status (6)
Country | Link |
---|---|
US (1) | US8065982B2 (en) |
EP (1) | EP2052143B1 (en) |
JP (1) | JP4589276B2 (en) |
KR (1) | KR101032594B1 (en) |
CN (1) | CN101501315B (en) |
WO (1) | WO2008017919A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101930133A (en) * | 2009-06-19 | 2010-12-29 | 台均科技(深圳)有限公司 | Liquid crystal panel and liquid crystal display |
US20150260088A1 (en) * | 2014-03-14 | 2015-09-17 | Chung-Shan Institute Of Science And Technology, Armaments Bureau, M.N.D | Intake/outlet pipe optimization method for rotary engine |
US10598087B2 (en) * | 2016-03-22 | 2020-03-24 | National Chung-Shan Institute Of Science And Techn | Intake/outlet pipe optimization method for rotary engine |
JP6729057B2 (en) | 2016-06-24 | 2020-07-22 | アイシン精機株式会社 | Intake device |
CN112796911A (en) * | 2020-12-21 | 2021-05-14 | 中国船舶重工集团公司第七一一研究所 | Variable-volume air inlet box for ship engine and power system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0177794A1 (en) | 1984-10-10 | 1986-04-16 | Audi Ag | Inlet system for multi-cylinder engines |
JPS6375528A (en) | 1986-09-18 | 1988-04-05 | Daikin Ind Ltd | infrared detection device |
DE3934906C1 (en) | 1989-10-20 | 1990-11-08 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De | |
JPH05302517A (en) | 1992-04-24 | 1993-11-16 | Honda Motor Co Ltd | Variable intake device in v-shaped engine |
JPH07102979A (en) | 1993-10-05 | 1995-04-18 | Nissan Motor Co Ltd | Variable intake device for internal combustion engine |
JPH089969B2 (en) | 1988-06-06 | 1996-01-31 | 日産自動車株式会社 | Variable intake system for V8 engine |
JP2000274321A (en) | 1999-03-24 | 2000-10-03 | Nissan Motor Co Ltd | Suction device of v-type internal combustion engine |
EP1270957A2 (en) | 2001-06-22 | 2003-01-02 | Keihin Corporation | Pressure-responsive actuator |
US20030213464A1 (en) | 2002-05-15 | 2003-11-20 | Werner Geyer | Diaphragm carburetor |
US6718930B2 (en) * | 2001-07-23 | 2004-04-13 | Suzuki Motor Corporation | Intake system of a V-type engine |
FR2860550A1 (en) | 2003-10-06 | 2005-04-08 | Mann & Hummel Gmbh | Intake module for internal combustion engine, has aerodynamic flaps rotating around respective axles that are parallel to each other, and inlet lines with oval section so that flaps present less width and large axial length |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4646138A (en) * | 1985-03-25 | 1987-02-24 | Rca Corporation | Video signal recursive filter with luma/chroma separation |
JPH0526261Y2 (en) * | 1986-11-05 | 1993-07-02 |
-
2006
- 2006-08-07 JP JP2006214371A patent/JP4589276B2/en not_active Expired - Fee Related
-
2007
- 2007-08-06 CN CN2007800296812A patent/CN101501315B/en not_active Expired - Fee Related
- 2007-08-06 US US12/309,883 patent/US8065982B2/en not_active Expired - Fee Related
- 2007-08-06 WO PCT/IB2007/002252 patent/WO2008017919A1/en active Application Filing
- 2007-08-06 KR KR1020097002230A patent/KR101032594B1/en not_active Expired - Fee Related
- 2007-08-06 EP EP07804711A patent/EP2052143B1/en not_active Not-in-force
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4643138A (en) | 1984-10-10 | 1987-02-17 | Audi Ag | Suction pipe system for multicylinder internal combustion engine |
EP0177794A1 (en) | 1984-10-10 | 1986-04-16 | Audi Ag | Inlet system for multi-cylinder engines |
JPS6375528A (en) | 1986-09-18 | 1988-04-05 | Daikin Ind Ltd | infrared detection device |
JPH089969B2 (en) | 1988-06-06 | 1996-01-31 | 日産自動車株式会社 | Variable intake system for V8 engine |
DE3934906C1 (en) | 1989-10-20 | 1990-11-08 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De | |
US5101792A (en) | 1989-10-20 | 1992-04-07 | Dr. Ing. H.C.F. Porsche, Ag | Internal combustion engine fuel distributor housing |
JPH05302517A (en) | 1992-04-24 | 1993-11-16 | Honda Motor Co Ltd | Variable intake device in v-shaped engine |
JPH07102979A (en) | 1993-10-05 | 1995-04-18 | Nissan Motor Co Ltd | Variable intake device for internal combustion engine |
JP2000274321A (en) | 1999-03-24 | 2000-10-03 | Nissan Motor Co Ltd | Suction device of v-type internal combustion engine |
EP1270957A2 (en) | 2001-06-22 | 2003-01-02 | Keihin Corporation | Pressure-responsive actuator |
US6718930B2 (en) * | 2001-07-23 | 2004-04-13 | Suzuki Motor Corporation | Intake system of a V-type engine |
US20030213464A1 (en) | 2002-05-15 | 2003-11-20 | Werner Geyer | Diaphragm carburetor |
FR2860550A1 (en) | 2003-10-06 | 2005-04-08 | Mann & Hummel Gmbh | Intake module for internal combustion engine, has aerodynamic flaps rotating around respective axles that are parallel to each other, and inlet lines with oval section so that flaps present less width and large axial length |
Non-Patent Citations (1)
Title |
---|
Japanese Office Action issued in Application No. 2006-214371; Dated May 12, 2010 (With Translation). |
Also Published As
Publication number | Publication date |
---|---|
KR101032594B1 (en) | 2011-05-06 |
JP4589276B2 (en) | 2010-12-01 |
KR20090035579A (en) | 2009-04-09 |
EP2052143B1 (en) | 2012-02-29 |
EP2052143A1 (en) | 2009-04-29 |
CN101501315B (en) | 2012-07-04 |
US20090250025A1 (en) | 2009-10-08 |
JP2008038758A (en) | 2008-02-21 |
WO2008017919A1 (en) | 2008-02-14 |
CN101501315A (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8065982B2 (en) | Variable intake apparatus for V-type internal combustion engine | |
US7861687B2 (en) | Multiple throttle device | |
JPH08240123A (en) | Suction system | |
US7784438B2 (en) | Mounting module of oil control valve for tappet control in cylinder deactivation engine | |
US6796280B2 (en) | Intake air control valve | |
US20080078342A1 (en) | Multi-cylinder internal combustion engine | |
JP4814158B2 (en) | Intake manifold device for internal combustion engine | |
US8307798B2 (en) | Internal combustion engine with a crankshaft and at least one cylinder head as well as a motor vehicle with such an internal combustion engine | |
US20090194055A1 (en) | Variable intake apparatus for internal combustion engine | |
JP2007024038A (en) | Intake module of particularly internal combustion engine | |
JP4530879B2 (en) | Variable valve engine | |
JP2007218100A (en) | Blow-by gas control device | |
US7111608B2 (en) | Device for adjusting the loading motion of the intake air in internal combustion engines | |
JP4602300B2 (en) | Auxiliary equipment arrangement structure in internal combustion engine | |
JP2007218166A (en) | Multiple electronic control throttle device | |
KR101080779B1 (en) | 2 Sstep Variable Valve Lift System | |
JP2009162071A (en) | Intake manifold device for internal combustion engine | |
JP2006242012A (en) | Variable valve engine | |
JP4546289B2 (en) | Variable valve engine for vehicles | |
US20210215092A1 (en) | Air intake apparatus of internal combustion engine | |
JP2006242018A (en) | Variable valve engine | |
JP4523455B2 (en) | Intake chamber | |
JP2011064154A (en) | Intake manifold device for internal combustion engine | |
JP2011064139A (en) | Engine intake control device | |
JP2005155396A (en) | Intake device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KITADANI, HIRONORI;TAKEUCHI, SHIGEO;IINUMA, MASAAKI;AND OTHERS;REEL/FRAME:022215/0534 Effective date: 20090129 Owner name: AISAN KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KITADANI, HIRONORI;TAKEUCHI, SHIGEO;IINUMA, MASAAKI;AND OTHERS;REEL/FRAME:022215/0534 Effective date: 20090129 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191129 |