US7811987B2 - Methods for reducing CD36 expression - Google Patents
Methods for reducing CD36 expression Download PDFInfo
- Publication number
- US7811987B2 US7811987B2 US12/434,216 US43421609A US7811987B2 US 7811987 B2 US7811987 B2 US 7811987B2 US 43421609 A US43421609 A US 43421609A US 7811987 B2 US7811987 B2 US 7811987B2
- Authority
- US
- United States
- Prior art keywords
- arg
- lys
- phe
- dmt
- tyr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 108010045374 CD36 Antigens Proteins 0.000 title abstract description 94
- 102000049320 CD36 Human genes 0.000 title abstract 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 99
- 150000001413 amino acids Chemical class 0.000 claims abstract description 76
- 125000003118 aryl group Chemical group 0.000 claims abstract description 14
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 11
- SFVLTCAESLKEHH-WKAQUBQDSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxy-2,6-dimethylphenyl)propanoyl]amino]-n-[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]hexanamide Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)[C@H](N)CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 SFVLTCAESLKEHH-WKAQUBQDSA-N 0.000 claims description 92
- 241000124008 Mammalia Species 0.000 claims description 30
- 208000007342 Diabetic Nephropathies Diseases 0.000 claims description 5
- 208000033679 diabetic kidney disease Diseases 0.000 claims description 5
- 102000053028 CD36 Antigens Human genes 0.000 description 92
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 89
- 235000001014 amino acid Nutrition 0.000 description 83
- 229940024606 amino acid Drugs 0.000 description 78
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 52
- 210000002216 heart Anatomy 0.000 description 48
- 210000004027 cell Anatomy 0.000 description 47
- 102000004196 processed proteins & peptides Human genes 0.000 description 41
- 210000003734 kidney Anatomy 0.000 description 38
- 241000699670 Mus sp. Species 0.000 description 37
- 230000002829 reductive effect Effects 0.000 description 33
- 208000004608 Ureteral Obstruction Diseases 0.000 description 28
- 235000002639 sodium chloride Nutrition 0.000 description 26
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 24
- 241000700159 Rattus Species 0.000 description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 21
- 239000011780 sodium chloride Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 20
- 238000011282 treatment Methods 0.000 description 20
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 19
- 210000002540 macrophage Anatomy 0.000 description 19
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 18
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 18
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 17
- 229960001052 streptozocin Drugs 0.000 description 17
- 241001465754 Metazoa Species 0.000 description 16
- 208000028867 ischemia Diseases 0.000 description 16
- 108010018625 phenylalanylarginine Proteins 0.000 description 16
- 230000006907 apoptotic process Effects 0.000 description 15
- 108010071584 oxidized low density lipoprotein Proteins 0.000 description 15
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 14
- 230000000302 ischemic effect Effects 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 206010012601 diabetes mellitus Diseases 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 13
- 201000006474 Brain Ischemia Diseases 0.000 description 12
- 206010008120 Cerebral ischaemia Diseases 0.000 description 12
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 12
- 230000001640 apoptogenic effect Effects 0.000 description 12
- 210000004556 brain Anatomy 0.000 description 12
- 206010008118 cerebral infarction Diseases 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000011813 knockout mouse model Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- OZILORBBPKKGRI-RYUDHWBXSA-N Phe-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 OZILORBBPKKGRI-RYUDHWBXSA-N 0.000 description 11
- -1 methylamino, dimethylamino Chemical group 0.000 description 11
- 238000010186 staining Methods 0.000 description 11
- UEVAHGMTRWGMTB-JBXUNAHCSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-phenylpropanoyl]amino]hexanamide Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(N)=O)NC(=O)[C@@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 UEVAHGMTRWGMTB-JBXUNAHCSA-N 0.000 description 9
- AHLPHDHHMVZTML-SCSAIBSYSA-N D-Ornithine Chemical compound NCCC[C@@H](N)C(O)=O AHLPHDHHMVZTML-SCSAIBSYSA-N 0.000 description 9
- 108091005804 Peptidases Proteins 0.000 description 9
- 239000004365 Protease Substances 0.000 description 9
- 102000051367 mu Opioid Receptors Human genes 0.000 description 9
- 108010094098 tyrosyl-arginyl-phenylalanyl-lysinamide Proteins 0.000 description 9
- 108020001612 μ-opioid receptors Proteins 0.000 description 9
- TWJPSNFPBZSAEJ-VMPITWQZSA-N (e)-non-1-ene-1,4-diol Chemical compound CCCCCC(O)C\C=C\O TWJPSNFPBZSAEJ-VMPITWQZSA-N 0.000 description 8
- 206010016654 Fibrosis Diseases 0.000 description 8
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 230000004761 fibrosis Effects 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 210000000110 microvilli Anatomy 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002756 mu opiate receptor agonist Substances 0.000 description 8
- 229940126487 mu opioid receptor agonist Drugs 0.000 description 8
- 230000010410 reperfusion Effects 0.000 description 8
- 230000003827 upregulation Effects 0.000 description 8
- PECYZEOJVXMISF-UWTATZPHSA-N 3-amino-D-alanine Chemical compound NC[C@@H](N)C(O)=O PECYZEOJVXMISF-UWTATZPHSA-N 0.000 description 7
- 241000700199 Cavia porcellus Species 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 230000001154 acute effect Effects 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 210000000497 foam cell Anatomy 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 239000012188 paraffin wax Substances 0.000 description 7
- 230000002035 prolonged effect Effects 0.000 description 7
- 210000000512 proximal kidney tubule Anatomy 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- 239000006172 buffering agent Substances 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229960003180 glutathione Drugs 0.000 description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 235000002374 tyrosine Nutrition 0.000 description 6
- 201000001320 Atherosclerosis Diseases 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 206010061216 Infarction Diseases 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 230000007574 infarction Effects 0.000 description 5
- 230000003447 ipsilateral effect Effects 0.000 description 5
- 230000003859 lipid peroxidation Effects 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 210000004926 tubular epithelial cell Anatomy 0.000 description 5
- 108010051110 tyrosyl-lysine Proteins 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- 150000008574 D-amino acids Chemical class 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- FADYJNXDPBKVCA-STQMWFEESA-N Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 FADYJNXDPBKVCA-STQMWFEESA-N 0.000 description 4
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 235000009697 arginine Nutrition 0.000 description 4
- 229960005261 aspartic acid Drugs 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 239000008148 cardioplegic solution Substances 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 230000003511 endothelial effect Effects 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 229960002885 histidine Drugs 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 235000018977 lysine Nutrition 0.000 description 4
- 210000003657 middle cerebral artery Anatomy 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 150000003335 secondary amines Chemical class 0.000 description 4
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 239000012839 Krebs-Henseleit buffer Substances 0.000 description 3
- 150000008575 L-amino acids Chemical class 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 125000003636 chemical group Chemical group 0.000 description 3
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 235000014304 histidine Nutrition 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 108010038320 lysylphenylalanine Proteins 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- OZSNQMIQTHGXPJ-QMMMGPOBSA-N (2s)-2-amino-3-[(2-aminobenzoyl)amino]propanoic acid Chemical compound OC(=O)[C@@H](N)CNC(=O)C1=CC=CC=C1N OZSNQMIQTHGXPJ-QMMMGPOBSA-N 0.000 description 2
- LSNDLIKCFHLFKO-JTQLQIEISA-N (2s)-2-azaniumyl-3-(4-hydroxy-2,6-dimethylphenyl)propanoate Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](N)C(O)=O LSNDLIKCFHLFKO-JTQLQIEISA-N 0.000 description 2
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- JJMDCOVWQOJGCB-UHFFFAOYSA-N 5-aminopentanoic acid Chemical compound [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 2
- 208000030090 Acute Disease Diseases 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 102000050079 Class B Scavenger Receptors Human genes 0.000 description 2
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- QCZYYEFXOBKCNQ-STQMWFEESA-N Lys-Phe Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QCZYYEFXOBKCNQ-STQMWFEESA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 238000012288 TUNEL assay Methods 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- JXNRXNCCROJZFB-RYUDHWBXSA-N Tyr-Arg Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 JXNRXNCCROJZFB-RYUDHWBXSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000000185 intracerebroventricular administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 108010053037 kyotorphin Proteins 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000037356 lipid metabolism Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 210000001577 neostriatum Anatomy 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000003024 peritoneal macrophage Anatomy 0.000 description 2
- 150000002993 phenylalanine derivatives Chemical class 0.000 description 2
- 230000001292 preischemic effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 108091005484 scavenger receptor class B Proteins 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 150000003668 tyrosines Chemical class 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- WJJGAKCAAJOICV-JTQLQIEISA-N (2s)-2-(dimethylamino)-3-(4-hydroxyphenyl)propanoic acid Chemical group CN(C)[C@H](C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-JTQLQIEISA-N 0.000 description 1
- NHBKDLSKDKUGSB-VIFPVBQESA-N (2s)-2-amino-3-(2-methylphenyl)propanoic acid Chemical compound CC1=CC=CC=C1C[C@H](N)C(O)=O NHBKDLSKDKUGSB-VIFPVBQESA-N 0.000 description 1
- LCKZFWNZLABYEW-XQUALCHDSA-N (2s)-5-amino-2-[[(2s)-2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-phenylpropanoyl]amino]pentanamide Chemical compound C([C@@H](C(=O)N[C@@H](CCCN)C(N)=O)NC(=O)[C@@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 LCKZFWNZLABYEW-XQUALCHDSA-N 0.000 description 1
- CSEWAUGPAQPMDC-UHFFFAOYSA-N 2-(4-aminophenyl)acetic acid Chemical compound NC1=CC=C(CC(O)=O)C=C1 CSEWAUGPAQPMDC-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- RDFMDVXONNIGBC-UHFFFAOYSA-N 2-aminoheptanoic acid Chemical compound CCCCCC(N)C(O)=O RDFMDVXONNIGBC-UHFFFAOYSA-N 0.000 description 1
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 1
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-GSVOUGTGSA-N D-alpha-aminobutyric acid Chemical compound CC[C@@H](N)C(O)=O QWCKQJZIFLGMSD-GSVOUGTGSA-N 0.000 description 1
- OFVBLKINTLPEGH-UHFFFAOYSA-N DL-beta-Homophenylalanine Chemical compound OC(=O)CC(N)CC1=CC=CC=C1 OFVBLKINTLPEGH-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- RVKIPWVMZANZLI-UHFFFAOYSA-N H-Lys-Trp-OH Natural products C1=CC=C2C(CC(NC(=O)C(N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-UHFFFAOYSA-N 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDBDVESGGJYVEH-PMVMPFDFSA-N Lys-Trp-Phe Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](N)CCCCN)C(O)=O)C1=CC=CC=C1 KDBDVESGGJYVEH-PMVMPFDFSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 description 1
- 108010087066 N2-tryptophyllysine Proteins 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 238000010826 Nissl staining Methods 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- CJAHQEZWDZNSJO-KKUMJFAQSA-N Phe-Lys-Cys Chemical compound NCCCC[C@@H](C(=O)N[C@@H](CS)C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 CJAHQEZWDZNSJO-KKUMJFAQSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 206010038678 Respiratory depression Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000007614 Thrombospondin 1 Human genes 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- GRSCONMARGNYHA-PMVMPFDFSA-N Trp-Lys-Phe Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GRSCONMARGNYHA-PMVMPFDFSA-N 0.000 description 1
- JZSLIZLZGWOJBJ-PMVMPFDFSA-N Trp-Phe-Lys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N JZSLIZLZGWOJBJ-PMVMPFDFSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 235000021068 Western diet Nutrition 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 229940124326 anaesthetic agent Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000004289 cerebral ventricle Anatomy 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000008971 epithelial apoptosis Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 108010003700 lysyl aspartic acid Proteins 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Substances [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Natural products OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 1
- 210000005063 microvascular endothelium Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical class O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000007658 neurological function Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 238000013105 post hoc analysis Methods 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 102000014452 scavenger receptors Human genes 0.000 description 1
- 108010078070 scavenger receptors Proteins 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 150000003667 tyrosine derivatives Chemical group 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/07—Tetrapeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/03—Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/1008—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/101—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1016—Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1019—Tetrapeptides with the first amino acid being basic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1024—Tetrapeptides with the first amino acid being heterocyclic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- CD36 is a transmembrane protein of the class B scavenger receptor family.
- the protein is widely expressed on numerous cells, such as microvascular endothelium, macrophages, platelets, adipocytes, epithelial cells (e.g., intestinal epithelial and renal tubular cells, etc.), pancreatic islet cells and cardiac muscle.
- the receptor may interact with multiple extracellular ligands, such as thrombospondin-1, long-chain fatty acids, and oxidized low-density lipoprotein.
- CD36 knock out mice were reported to be protected against acute cerebral ischemia.
- methods for reducing expression of CD36 expression are beneficial for treating a disease or condition characterized by abnormal expression of CD36.
- the invention provides a method for reducing CD36 expression in a cell.
- the method comprises contacting the cell with an effective amount of an aromatic-cationic peptide.
- the invention provides a method for reducing CD36 expression in a mammal in need thereof.
- the method comprises administering to the mammal an effective amount of an aromatic-cationic peptide.
- the invention provides a method for treating a disease or condition characterized by increased CD36 expression in a mammal in need thereof.
- the method comprises administering to the mammal an effective amount of an aromatic-cationic peptide.
- the invention provides a method for treating ureteral obstruction in a mammal in need thereof.
- the method comprises administering to the mammal an effective amount of an aromatic-cationic peptide.
- the invention provides a method for treating diabetic nephropathy in a mammal in need thereof.
- the method comprises administering to the mammal an effective amount of an aromatic-cationic peptide.
- the invention provides a method for reducing CD36 expression in a removed organ or tissue.
- the method comprises administering to the mammal an effective amount of an aromatic-cationic peptide.
- the aromatic-cationic peptides useful in the methods of the present invention have at least one net positive charge; a minimum of four amino acids; a maximum of about twenty amino acids; a relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) wherein 3p m is the largest number that is less than or equal to r+1; and a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) wherein 2a is the largest number that is less than or equal to p t +1, except that when a is 1, p t may also be 1.
- FIG. 1 SS-31 reduced oxLDL-induced CD36 mRNA expression, CD36 protein expression, and foam cell formation in mouse peritoneal macrophages.
- FIG. 2 SS-31 treatment reduced infarct volume and hemispheric swelling in wild-type mice subjected to acute cerebral ischemia.
- FIG. 3 SS-31 treatment reduced the decrease in reduced glutathione (GSH) in post-ischemic brain in wild-type mice.
- FIG. 4 SS-31 had no effect in reducing infarct volume or hemispheric swelling in CD36 knock-out mice subjected to acute cerebral ischemia.
- FIG. 5 SS-31 did not reduce GSH depletion in post-ischemic brain from CD36 knock-out mice.
- FIG. 6 SS-31 reduced CD36 mRNA expression in post-ischemic brain in wild-type mice.
- FIG. 7 SS-31 decreases CD36 expression on renal tubular cells after unilateral ureteral obstruction (UUO). Contralateral unobstructed kidney ( FIG. 7A ); obstructed kidney in animals treated with saline ( FIG. 73B ); and obstructed kidneys obtained from rats treated with SS-31 ( FIG. 7C ).
- UUO unilateral ureteral obstruction
- FIG. 8 SS-31 reduces lipid peroxidation in kidney after UUO.
- Tubular cells in the obstructed kidney FIG. 8B
- contralateral unobstructed control FIG. 8A
- obstructed kidneys from rats treated with SS-31 FIG. 8C ).
- FIG. 9 SS-31 reduced tubular cell apoptosis in obstructed kidney after UUO. Obstructed kidney from saline-treated animals ( FIG. 9B ); contralateral unobstructed control ( FIG. 9A ); obstructed kidney from SS-31 treated animals ( FIG. 9C ).
- FIG. 10 SS-31 reduced macrophage infiltration in obstructed kidney induced by UUO. Obstructed kidney ( FIG. 10B ); contralateral unobstructed control ( FIG. 10A ); rats treated with SS-31 ( FIG. 10C ).
- FIG. 11 SS-31 reduced interstitial fibrosis in obstructed kidney after UUO. Obstructed kidney ( FIG. 11B ); contralateral unobstructed control ( FIG. 11A ); rats treated with SS-31 ( FIG. 11C ).
- FIG. 12 Cold storage of isolated hearts with SS-31 or SS-20 prevented upregulation of CD36 expression.
- the “background” control ( FIGS. 12A and 12B ) represents two sections from a normal non-ischemic heart that were not treated with the primary anti-CD-36 antibody.
- “Normal heart” ( FIGS. 12C and 12D ) represents two sections obtained from a non-ischemic heart.
- the sections from a representative heart stored in St. Thomas solution ( FIGS. 12E and 12F ) for 18 hours at 4° C. showed increased CD36 staining compared to “Normal heart.”
- CD36 staining was significantly reduced in hearts stored with either 1 nM SS-31 ( FIGS. 12G and 12H ) or 100 nM SS-20 ( FIGS. 12I and 12J ) in St. Thomas solution.
- FIG. 13 SS-31 and SS-20 reduced lipid peroxidation in isolated guinea pig hearts subjected to warm reperfusion after prolonged cold ischemia. HNE staining in hearts subjected to 18 hours of cold storage in St. Thomas solution ( FIG. 13B ) compared to non-ischemic hearts ( FIG. 13A ). HNE staining was reduced in hearts stored in SS-31 ( FIG. 9C ) or SS-20 ( FIG. 13D ).
- FIG. 14 SS-31 and SS-20 abolished endothelial apoptosis in isolated guinea pig hearts subjected to warm reperfusion after prolonged cold ischemia. Hearts subjected to 18 hours of cold storage in St. Thomas solution ( FIGS. 14C and 14D ); non-ischemic normal hearts ( FIGS. 14A and 14B ). Apoptotic cells were not observed in hearts stored in SS-31 ( FIGS. 14E and 14F ) or SS-20 ( FIGS. 14G and 14H ).
- FIG. 15 SS-31 and SS-20 preserves coronary flow in isolated guinea pig hearts subjected to warm reperfusion after prolonged cold ischemia.
- FIG. 16 SS-31 prevented damage to proximal tubules in diabetic mice. Diabetes was induced by streptozotocin (STZ) injection for 5 d. Kidney sections obtained after 3 weeks showed loss of brush border in STZ-treated animals ( FIG. 16A , panel B) that was not seen in mice not treated with STZ (panel A). The loss of brush border was not seen in STZ-treated animal that received daily SS-31 (3 mg/kg) (panel C).
- STZ streptozotocin
- FIG. 17 SS-31 prevented renal tubular epithelial cell apoptosis in diabetic mice. Diabetes was induced by streptozotocin (STZ) injection for 5 d. Kidney sections obtained after 3 weeks showed dramatic increase in apoptotic cells in proximal tubules in STZ-treated animals ( FIG. 17A , panel b) that was not seen in mice not treated with STZ ( FIG. 17A , panel a). The STZ-induced apoptosis was not seen in mice that received daily SS-31 (3 mg/kg) ( FIG. 17A , panel c). The percent of apoptotic cells caused by STZ was significantly reduced by SS-31 treatment ( FIG. 17B ).
- the invention is directed to the reduction of CD36 expression by certain aromatic-cationic peptides.
- the aromatic-cationic peptides are water-soluble and highly polar. Despite these properties, the peptides can readily penetrate cell membranes.
- aromatic-cationic peptides useful in the present invention include a minimum of three amino acids, and preferably include a minimum of four amino acids, covalently joined by peptide bonds.
- the maximum number of amino acids present in the aromatic-cationic peptides of the present invention is about twenty amino acids covalently joined by peptide bonds.
- the maximum number of amino acids is about twelve, more preferably about nine, and most preferably about six.
- the number of amino acids present in the peptides is four.
- amino acids of the aromatic-cationic peptides useful in the present invention can be any amino acid.
- amino acid is used to refer to any organic molecule that contains at least one amino group and at least one carboxyl group. Preferably, at least one amino group is at the position relative to a carboxyl group.
- the amino acids may be naturally occurring.
- Naturally occurring amino acids include, for example, the twenty most common levorotatory (L) amino acids normally found in mammalian proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (lieu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp) tyrosine (Tyr), and valine (Val).
- Naturally occurring amino acids include, for example, amino acids that are synthesized in metabolic processes not associated with protein synthesis.
- amino acids ornithine and citrulline are synthesized in mammalian metabolism during the production of urea.
- Another example of a naturally occurring amino acid include hydroxyproline (Hyp).
- the peptides useful in the present invention optionally contain one or more non-naturally occurring amino acids.
- the peptide has no amino acids that are naturally occurring.
- the non-naturally occurring amino acids may be levorotary (L-), dextrorotatory (D-), or mixtures thereof.
- Non-naturally occurring amino acids are those amino acids that typically are not synthesized in normal metabolic processes in living organisms, and do not naturally occur in proteins.
- the non-naturally occurring amino acids useful in the present invention preferably are also not recognized by common proteases.
- the non-naturally occurring amino acid can be present at any position in the peptide.
- the non-naturally occurring amino acid can be at the N-terminus, the C-terminus, or at any position between the N-terminus and the C-terminus.
- the non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups not found in natural amino acids.
- Some examples of non-natural alkyl amino acids include ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminovaleric acid, and ⁇ -aminocaproic acid.
- Some examples of non-natural aryl amino acids include ortho-, meta, and para-aminobenzoic acid.
- Some examples of non-natural alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and ⁇ -phenyl- ⁇ -aminobutyric acid.
- Non-naturally occurring amino acids include derivatives of naturally occurring amino acids.
- the derivatives of naturally occurring amino acids may, for example, include the addition of one or more chemical groups to the naturally occurring amino acid.
- one or more chemical groups can be added to one or more of the 2′, 3′, 4′, 5′, or 5′ position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4′, 5′, 6′, or 7′ position of the benzo ring of a tryptophan residue.
- the group can be any chemical group that can be added to an aromatic ring.
- Some examples of such groups include branched or unbranched C 1 -C 4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl, C 1 -C 4 alkyloxy (i.e., alkoxy), amino, C 1 -C 4 alkylamino and C 1 -C 4 dialkylamino (e.g., methylamino, dimethylamino), nitro, hydroxyl, halo (i.e., fluoro, chloro, bromo, or iodo).
- Some specific examples of non-naturally occurring derivatives of naturally occurring amino acids include norvaline (Nva) and norleucine (Nle).
- Another example of a modification of an amino acid in a peptide useful in the methods of the present invention is the derivatization of a carboxyl group of an aspartic acid or a glutamic acid residue of the peptide.
- derivatization is amidation with ammonia or with a primary or secondary amine, e.g. methylamine, ethylamine, dimethylamine or diethylamine.
- Another example of derivatization includes esterification with for example, methyl or ethyl alcohol.
- Another such modification includes derivatization of an amino group of a lysine, arginine, or histidine residue.
- amino groups can be acylated.
- suitable acyl groups include, for example, a benzoyl group or an alkanoyl group comprising any of the C 1 -C 4 alkyl groups mentioned above, such as an acetyl or propionyl group.
- the non-naturally occurring amino acids are preferably resistant, and more preferably insensitive, to common proteases.
- non-naturally occurring amino acids that are resistant or insensitive to proteases include the dextrorotatory (D-) form of any of the above-mentioned naturally occurring L-amino acids, as well as L- and/or D-non-naturally occurring amino acids.
- the D-amino acids do not normally occur in proteins, although they are found in certain peptide antibiotics that are synthesized by means other than the normal ribosomal protein synthetic machinery of the cell. As used herein, the D-amino acids are considered to be non-naturally occurring amino acids.
- the peptides useful in the methods of the invention should have less than five, preferably less than four, more preferably less than three, and most preferably, less than two contiguous L-amino acids recognized by common proteases, irrespective of whether the amino acids are naturally or non-naturally occurring.
- the peptide has only D-amino acids, and no L-amino acids.
- the peptide contains protease sensitive sequences of amino acids, at least one of the amino acids is preferably a non-naturally occurring D-amino acid, thereby conferring protease resistance.
- An example of a protease sensitive sequence includes two or more contiguous basic amino acids that are readily cleaved by common proteases, such as endopeptidases and trypsin. Examples of basic amino acids include arginine, lysine and histidine.
- the aromatic-cationic peptides have a minimum number of net positive charges at physiological pH in comparison to the total number of amino acid residues in the peptide.
- the minimum number of net positive charges at physiological pH will be referred to below as (p m ).
- the total number of amino acid residues in the peptide will be referred to below as (r).
- physiological pH refers to the normal pH in the cells of the tissues and organs of the mammalian body.
- physiological pH refers to the normal pH in the cells of the tissues and organs of the mammalian body.
- physiological pH of a human is normally approximately 7.4, but normal physiological pH in mammals may be any pH from about 7.0 to about 7.8.
- Net charge refers to the balance of the number of positive charges and the number of negative charges carried by the amino acids present in the peptide. In this specification, it is understood that net charges are measured at physiological pH.
- the naturally occurring amino acids that are positively charged at physiological pH include L-lysine, L-arginine, and L-histidine.
- the naturally occurring amino acids that are negatively charged at physiological pH include L-aspartic acid and L-glutamic acid.
- a peptide has a positively charged N-terminal amino group and a negatively charged C-terminal carboxyl group. The charges cancel each other out at physiological pH.
- the aromatic-cationic peptides have a relationship between the minimum number of net positive charges at physiological pH (p m ) and the total number of amino acid residues (r) wherein 3p m is the largest number that is less than or equal to r+1.
- the relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) is as follows:
- the aromatic-cationic peptides have a relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) wherein 2p m is the largest number that is less than or equal to r+1.
- the relationship between the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) is as follows:
- the minimum number of net positive charges (p m ) and the total number of amino acid residues (r) are equal.
- the peptides have three or four amino acid residues and a minimum of one net positive charge, preferably, a minimum of two net positive charges and more preferably a minimum of three net positive charges.
- aromatic-cationic peptides have a minimum number of aromatic groups in comparison to the total number of net positive charges (p t ).
- the minimum number of aromatic groups will be referred to below as (a).
- Naturally occurring amino acids that have an aromatic group include the amino acids histidine, tryptophan, tyrosine, and phenylalanine.
- the aromatic-cationic peptides useful in the methods of the present invention have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges at physiological pH (p t ) wherein 3a is the largest number that is less than or equal to p t +1, except that when p t is 1, a may also be 1.
- the relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) is as follows:
- the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p t ) wherein 2a is the largest number that is less than or equal to p t +1.
- the relationship between the minimum number of aromatic amino acid residues (a) and the total number of net positive charges (p t ) is as follows:
- the number of aromatic groups (a) and the total number of net positive charges (p t ) are equal.
- Carboxyl groups are preferably amidated with, for example, ammonia to form the C-terminal amide.
- the terminal carboxyl group of the C-terminal amino acid may be amidated with any primary or secondary amine.
- the primary or secondary amine may, for example, be an alkyl, especially a branched or unbranched C 1 -C 4 alkyl, or an aryl amine.
- amino acid at the C-terminus of the peptide may be converted to an amido, N-methylamido, N-ethylamido, N,N-dimethylamido, N,N-diethylamido, N-methyl-N-ethylamido, N-phenylamido or N-phenyl-N-ethylamido group.
- the free carboxylate groups of the asparagine, glutamine, aspartic acid, and glutamic acid residues not occurring at the C-terminus of the aromatic-cationic peptides of the present invention may also be amidated wherever they occur within the peptide.
- the amidation at these internal positions may be with ammonia or any of the primary or secondary amines described above.
- the aromatic-cationic peptide useful in the methods of the present invention is a tripeptide having two net positive charges and at least one aromatic amino acid. In a particular embodiment, the aromatic-cationic peptide useful in the methods of the present invention is a tripeptide having two net positive charges and two aromatic amino acids.
- Aromatic-cationic peptides useful in the methods of the present invention include, but are not limited to, the following peptide examples:
- Lys-D-Arg-Tyr-NH 2 Phe-D-Arg-His, D-Tyr-Trp-Lys-NH 2 , Trp-D-Lys-Tyr-Arg-NH 2 , Tyr-His-D-Gly-Met, Phe-Arg-D-His-Asp, Tyr-D-Arg-Phe-Lys-Glu-NH 2 , Met-Tyr-D-Lys-Phe-Arg, D-His-Glu-Lys-Tyr-D-Phe-Arg, Lys-D-Gln-Tyr-Arg-D-Phe-Trp-NH 2 , Phe-D-Arg-Lys-Trp-Tyr-D-Arg-His, Gly-D-Phe-Lys-Tyr-His-D-Arg-Tyr-NH 2 , Val-D-Lys-His-Tyr-D-Ser-T
- the peptides useful in the methods of the present invention have mu-opioid receptor agonist activity (i.e., they activate the mu-opioid receptor). Activation of the mu-opioid receptor typically elicits an analgesic effect.
- an aromatic-cationic peptide having mu-opioid receptor agonist activity is preferred.
- an aromatic-cationic peptide that activates the mu-opioid receptor may be beneficial in the treatment regimen of the human patient or other mammal.
- An aromatic-cationic peptide which does not activate the mu-opioid receptor may also be used with or without an analgesic, according to clinical requirements.
- an aromatic-cationic peptide that does not have mu-opioid receptor agonist activity is preferred.
- the use of an aromatic-cationic peptide that activates the mu-opioid receptor may be contraindicated.
- the potentially adverse or addictive effects of the aromatic-cationic peptide may preclude the use of an aromatic-cationic peptide that activates the mu-opioid receptor in the treatment regimen of a human patient or other mammal. Potential adverse effects may include sedation, constipation and respiratory depression.
- an aromatic-cationic peptide that does not activate the mu-opioid receptor may be an appropriate treatment.
- Peptides useful in the methods of the present invention which have mu-opioid receptor agonist activity are typically those peptides which have a tyrosine residue or a tyrosine derivative at the N-terminus (i.e., the first amino acid position).
- Preferred derivatives of tyrosine include 2′-methyltyrosine (Mmt); 2′,6′-dimethyltyrosine (2′6′Dmt); 3′,5′-dimethyltyrosine (3′5′Dmt); N,2′,6′-trimethyltyrosine (Tmt); and 2′-hydroxy-6′-methyltryosine (Hmt).
- a peptide that has mu-opioid receptor agonist activity has the formula Tyr-D-Arg-Phe-Lys-NH 2 (for convenience represented by the acronym: DALDA, which is referred to herein as SS-01).
- DALDA has a net positive charge of three, contributed by the amino acids tyrosine, arginine, and lysine and has two aromatic groups contributed by the amino acids phenylalanine and tyrosine.
- the tyrosine of DALDA can be a modified derivative of tyrosine such as in 2′,6′-dimethyltyrosine to produce the compound having the formula 2′,6′-Dmt-D-Arg-Phe-Lys-NH 2 (i.e., Dmt 1 -DALDA), which is referred to herein as SS-02).
- Peptides that do not have mu-opioid receptor agonist activity generally do not have a tyrosine residue or a derivative of tyrosine at the N-terminus (i.e., amino acid position 1).
- the amino acid at the N-terminus can be any naturally occurring or non-naturally occurring amino acid other than tyrosine.
- the amino acid at the N-terminus is phenylalanine or its derivative.
- Preferred derivatives of phenylalanine include 2-methylphenylalanine (Mmp), 2′,6′-dimethylphenylalanine (Dmp), N,2′,6′-trimethylphenylalanine (Tmp), and 2′-hydroxy-6′-methylphenylalanine (Hmp).
- Another aromatic-cationic peptide that does not have mu-opioid receptor agonist activity has the formula Phe-D-Arg-Phe-Lys-NH 2 (i.e., Phe 1 -DALDA, which is referred to herein as SS-20).
- the N-terminal phenylalanine can be a derivative of phenylalanine such as 2′,6′-dimethylphenylalanine (2′6′Dmp).
- DALDA containing 2′,6′-dimethylphenylalanine at amino acid position 1 has the formula 2′,6′-Dmp-D-Arg-Phe-Lys-NH 2 , (i.e. 2′6′Dmp 1 -DALDA).
- the amino acid sequence of Dmt 1 -DALDA (SS-02) is rearranged such that Dmt is not at the N-terminus.
- An example of such an aromatic-cationic peptide that does not have mu-opioid receptor agonist activity has the formula D-Arg-2′6′Dmt-Lys-Phe-NH 2 (referred to in this specification as SS-31).
- DALDA, Phe 1 -DALDA, SS-31, and their derivatives can further include functional analogs.
- a peptide is considered a functional analog of DALDA, Phe 1 -DALDA, or SS-31 if the analog has the same function as DALDA, Phe 1 -DALDA, or SS-31.
- the analog may, for example, be a substitution variant of DALDA, Phe 1 -DALDA, or SS-31, wherein one or more amino acids are substituted by another amino acid.
- Suitable substitution variants of DALDA, Phe 1 -DALDA, or SS-31 include conservative amino acid substitutions.
- Amino acids may be grouped according to their physiochemical characteristics as follows:
- Non-polar amino acids Ala(A) Ser(S) Thr(T) Pro(P) Gly(G);
- Aromatic amino acids Phe(F) Tyr(Y) Trp(W) His (H).
- substitutions of an amino acid in a peptide by another amino acid in the same group is referred to as a conservative substitution and may preserve the physiological characteristics of the original peptide.
- substitutions of an amino acid in a peptide by another amino acid in a different group is generally more likely to alter the characteristics of the original peptide.
- Examples of analogs useful in the practice of the present invention that activate mu-opioid receptors include, but are not limited, to the aromatic-cationic peptides shown in Table 1.
- Examples of analogs useful in the practice of the present invention that do not activate mu-opioid receptors include, but are not limited to, the aromatic-cationic peptides shown in Table 2.
- amino acids of the peptides shown in table 1 and 2 may be in either the L- or the D-configuration.
- CD36 expression in a cell is considered to be reduced if the expression of CD36 is decreased by about 10%, preferably by about 25%, more preferably by about 50%, even more preferably by about 75%. Optimally, CD36 is reduced to about normal levels in a cell.
- CD36 is expressed on a wide variety of cells.
- examples of such cells include macrophages, platelets, adipocytes, endothelial cells such as microvascular endothelial cells and umbilical vein endothelial cells; epithelial cells such as intestinal epithelial cells, gall bladder epithelial cells, bladder epithelial cells, bronchial epithelial cells and alveolar epithelial cells; renal tubular cells; pancreatic islet cells; hepatocytes; skeletal muscle cells; cardiac muscle cells; neuronal cells; glia cells; pancreas cells; sperm cells; etc.
- cells expressing about 10%, typically about 25%, about typically about 50%, and even more typically about 75% more CD36 than normal cells are considered to express increased levels of CD36.
- the invention provides a method for reducing CD36 expression in a cell.
- Any cell that expresses CD36 can be used in the method of the invention, and include those mentioned above.
- the method for reducing CD36 expression in a cell comprises contacting the cell with an effective amount of an aromatic-cationic peptide described above.
- the invention provides a method for reducing CD36 expression in a mammal in need thereof.
- the method for reducing CD36 expression in the mammal comprises administering to the mammal an effective amount of an aromatic-cationic peptide described herein.
- Mammals in need of reducing CD36 expression include, for example, mammals that have increased CD36 expression.
- the increased expression of CD36 is associated with various diseases and conditions. Examples of diseases and conditions characterized by increased CD36 expression include, but are not limited to, atherosclerosis, inflammation, abnormal angiogenesis, abnormal lipid metabolism, abnormal removal of apoptotic cells, ischemia such as cerebral ischemia and myocardial ischemia, ischemia reperfusion, ureteral obstruction, stroke, Alzheimer's Disease, diabetes, diabetic nephropathy and obesity.
- CD36 a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism
- Mammals in need of reducing CD36 expression also include mammals suffering from complications of diabetes. Some complications of diabetes include, in addition to nephropathy, neuropathy, retinopathy, coronary artery disease, and peripheral vascular disease associated with diabetes.
- the invention in another embodiment, relates to a method for reducing CD36 expression in removed organs and tissues.
- the method comprises contacting the removed organ or tissue with an effective amount of an aromatic-cationic peptide described above.
- An organ or tissue may, for example, be removed from a donor for autologous or heterologous transplantation.
- organs and tissues include heart, lungs, pancreas, kidney, liver, skin, etc.
- peptides useful in the methods of the present invention may be synthesized by any of the methods well known in the art. Suitable methods for chemically synthesizing the protein include, for example those described by Stuart and Young in “Solid Phase Peptide Synthesis,” Second Edition, Pierce Chemical Company (1984), and in “Solid Phase Peptide Synthesis,” Methods Enzymol., 289, Academic Press, Inc, New York (1997).
- Any method known to those in the art for contacting a cell, organ or tissue with a peptide may be employed. Suitable methods include in vitro, ex vivo, or in vivo methods.
- In vitro methods typically include cultured samples.
- a cell can be placed in a reservoir (e.g., tissue culture plate), and incubated with an aromatic-cationic peptide under appropriate conditions suitable for reducing CD36 expression. Suitable incubation conditions can be readily determined by those skilled in the art.
- Ex vivo methods typically include cells, organs or tissues removed from a mammal, such as a human.
- the cells, organs or tissues can, for example, be incubated with the peptide under appropriate conditions.
- the contacted cells, organs or tissues are normally returned to the donor, placed in a recipient, or stored for future use.
- the peptide is generally in a pharmaceutically acceptable carrier.
- In vivo methods are typically limited to the administration of an aromatic-cationic peptide, such as those described above, to a mammal, preferably a human.
- the peptides useful in the methods of the present invention are administered to a mammal in an amount effective in reducing expression CD36 or treating the mammal.
- the effective amount is determined during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians.
- An effective amount of a peptide useful in the methods of the present invention may be administered to a mammal in need thereof by any of a number of well-known methods for administering pharmaceutical compounds.
- the peptide may be administered systemically or locally.
- the peptide is administered intravenously.
- the aromatic-cationic peptides useful in the methods of the present invention may be administered via rapid intravenous bolus injection.
- the peptide is administered as a constant rate intravenous infusion.
- the peptide may also be administered orally, topically, intranasally, intramuscularly, subcutaneously, or transdermally.
- transdermal administration of the aromatic-cationic peptides by methods of the present invention is by iontophoresis, in which the charged peptide is delivered across the skin by an electric current.
- Intracerebroventiculatly refers to administration into the ventricular system of the brain.
- Intrathecally refers to administration into the space under the arachnoid membrane of the spinal cord.
- intracerebroventricular or intrathecal administration may be preferred for those diseases and conditions which affect the organs or tissues of the central nervous system.
- the peptides useful in the methods of the invention may also be administered to mammals by sustained release, as is known in the art.
- Sustained release administration is a method of drug delivery to achieve a certain level of the drug over a particular period of time. The level typically is measured by serum or plasma concentration.
- any formulation known in the art of pharmacy is suitable for administration of the aromatic-cationic peptides useful in the methods of the present invention.
- liquid or solid formulations may be used.
- Some examples of formulations include tablets, gelatin capsules, pills, troches, elixirs, suspensions, syrups, wafers, chewing gum and the like.
- the peptides can be mixed with a suitable pharmaceutical carrier (vehicle) or excipient as understood by practitioners in the art.
- suitable pharmaceutical carrier include starch, milk, sugar, certain types of clay, gelatin, lactic acid, stearic acid or salts thereof, including magnesium or calcium stearate, talc, vegetable fats or oils, gums and glycols.
- formulations of the aromatic-cationic peptides useful in the methods of the present inventions may utilize conventional diluents, carriers, or excipients etc., such as those known in the art to deliver the peptides.
- the formulations may comprise one or more of the following: a stabilizer, a surfactant, preferably a nonionic surfactant, and optionally a salt and/or a buffering agent.
- the peptide may be delivered in the form of an aqueous solution, or in a lyophilized form.
- the stabilizer may, for example, be an amino acid, such as for instance, glycine; or an oligosaccharide, such as for example, sucrose, tetralose, lactose or a dextran.
- the stabilizer may be a sugar alcohol, such as for instance, mannitol; or a combination thereof.
- the stabilizer or combination of stabilizers constitutes from about 0.1% to about 10% weight for weight of the peptide.
- the surfactant is preferably a nonionic surfactant, such as a polysorbate.
- suitable surfactants include Tween20, Tween80; a polyethylene glycol or a polyoxyethylene polyoxypropylene glycol, such as Pluronic F-68 at from about 0.001% (w/v) to about 10% (w/v).
- the salt or buffering agent may be any salt or buffering agent, such as for example, sodium chloride, or sodium/potassium phosphate, respectively.
- the buffering agent maintains the pH of the pharmaceutical composition in the range of about 5.5 to about 7.5.
- the salt and/or buffering agent is also useful to maintain the osmolality at a level suitable for administration to a human or an animal.
- the salt or buffering agent is present at a roughly isotonic concentration of about 150 mM to about 300 mM.
- the formulations of the peptides useful in the methods of the present invention may additionally contain one or more conventional additive.
- additives include a solubilizer such as, for example, glycerol; an antioxidant such as for example, benzalkonium chloride (a mixture of quaternary ammonium compounds, known as “quats”), benzyl alcohol, chloretone or chlorobutanol; anaesthetic agent such as for example a morphine derivative; or an isotonic agent etc., such as described above.
- a solubilizer such as, for example, glycerol
- an antioxidant such as for example, benzalkonium chloride (a mixture of quaternary ammonium compounds, known as “quats”), benzyl alcohol, chloretone or chlorobutanol
- anaesthetic agent such as for example a morphine derivative
- an isotonic agent etc. such as described above.
- the pharmaceutical compositions may be stored under nitrogen gas in vials
- the mammal treated in accordance with the invention can be any mammal, including, for example, farm animals, such as sheep, pigs, cows, and horses; pet animals such as dogs and cats; laboratory animals, such as rats, mice and rabbits.
- the mammal is a human.
- Atherosclerosis is thought to develop as a result of lipid uptake by vascular-wall macrophages leading to the development of foam cells and the elaboration of cytokines and chemokines resulting in smooth muscle-cell proliferation.
- CD36 is a scavenger receptor that mediates uptake of oxLDL into macrophages and subsequent foam-cell development.
- CD36 knock out mice showed reduced uptake of oxLDL and reduced atherosclerosis.
- CD36 expression is regulated at the transcriptional level by various cellular stimuli, including glucose and oxLDL. Macrophages were harvested from mice peritoneal cavity and culture overnight in the absence or presence of oxLDL (50 ⁇ g/ml) for 48 h. Incubation with oxLDL significantly increased CD36 mRNA ( FIG. 1A ). Inclusion of SS-31 (10 nM or 1 ⁇ M) to the culture medium abolished the up-regulation of CD36 ( FIG. 1A ). SS-31 by itself had no effect on CD36 expression.
- CD36 protein was also significantly increased after 48 h incubation with 25 ⁇ g/ml of oxLDL (oxL) when compared to vehicle control (V) ( FIG. 1B ).
- Other controls included CD36 expression from mouse heart (H) and macrophages obtained from CD36 knockout mice (KO). The amount of CD36 protein was normalized to ⁇ -actin.
- FIG. 1C Incubation of macrophages with oxLDL for 48 h also increased foam cell formation ( FIG. 1C ). Foam cell is indicated by oil red 0 which stains lipid droplets red. Inclusion of SS-31 (1 ⁇ M) prevented oxLDL-induced foam cell formation ( FIG. 1C ).
- Cerebral ischemia initiates a cascade of cellular and molecular events that lead to brain damage.
- One such event is postischemic inflammation.
- CD36 was upregulated in microglia and macrophages in the post-ischemic brain, and there was increased reactive oxygen species production.
- CD36 knock out mice had a profound reduction in reactive oxygen species after ischemia and improved neurological function compared to wild type mice.
- GSH glutathione
- CD36 knockout mice were subjected to acute cerebral ischemia as described under Example 2.
- Infarct volume ( FIG. 4A ) and hemispheric swelling ( FIG. 4B ) in CD36 KO mice were similar whether they received saline or SS-31.
- CD36 mRNA Transient occlusion of the middle cerebral artery has been shown to significantly increase the expression of CD36 mRNA in microglia and macrophages in the post-ischemic brain.
- CD36 expression was upregulated almost 6-fold in the ipsilateral brain compared to the contralateral brain in mice that received saline ( FIG. 6 ).
- CD36 mRNA was significantly reduced in the ipsilateral brain in mice that received SS-31 treatment ( FIG. 6 ).
- Unilateral ureteral obstruction is a common clinical disorder associated with tubular cell apoptosis, macrophage infiltration, and interstitial fibrosis. Interstitial fibrosis leads to a hypoxic environment and contributes to progressive decline in renal function despite surgical correction. CD36 has been shown to be expressed on renal tubular cells.
- CD36 was found to have been upregulated in tubular cells after UUO.
- the slides were then incubated with the second antibody conjugated with biotin (anti-rabbit IgG-G1; ABC kit, PK-6101) at room temperature for 30 min.
- biotin anti-rabbit IgG-G1; ABC kit, PK-6101
- the slides were then treated with avidin, developed with DAB and counterstained with 10% hematoxylin.
- the contralateral unobstructed kidney served as the control for each animal.
- SS-31 reduced tubular cell apoptosis in obstructed kidney after UUO
- Macrophage infiltration ( FIG. 10 ) and interstitial fibrosis ( FIG. 11 ) were also prevented by SS-31 treatment.
- FIG. 10B The number of macrophages in the obstructed kidney in saline-treated rats ( FIG. 10B ) was significantly increased compared to the contralateral unobstructed control ( FIG. 10A ). Macrophage infiltration was significantly reduced in rats treated with SS-31 ( FIG. 10C ) (P ⁇ 0.05; t-test).
- Organ transplantation requires hypothermic storage of the isolated organ for transport to the recipient.
- cardiac transplantation is limited by the short time of cold ischemic storage that can be tolerated before coronary blood flow is severely compromised ( ⁇ 4 hours).
- the expression of CD36 in coronary endothelium and cardiac muscles is up-regulated in isolated hearts subjected to prolonged cold ischemic storage and warm reperfusion.
- Isolated guinea pig hearts were perfused with St. Thomas solution alone, or St. Thomas solution containing 1 nM SS-31 or 100 nM SS-20, for 3 min. and then stored in the same solution at 4° C. for 18 hours. After ischemic storage, hearts were reperfused with 34° C. Kreb-Henseleit solution for 90 min. Hearts freshly isolated from guinea pigs were used as controls.
- FIG. 12 The hearts were fixed in paraffin and sliced for immunostaining with an anti-CD36 rabbit polyclonal antibody. The results are shown in FIG. 12 . Two sections are shown for each treatment group. Antibody staining showed that CD36 is expressed in endothelium and cardiac muscles in normal hearts.
- the “background” ( FIGS. 12A and 12B ) represents two sections from a normal non-ischemic heart that was not treated with the primary antibody.
- “Normal heart” FIGS. 12C and 12D ) represents two sections obtained from a non-ischemic heart. The sections from a representative heart stored in St. Thomas solution ( FIGS. 12E and 12F ) for 18 hours at 4° C.
- CD36 staining was significantly reduced in hearts stored with either 1 nM SS-31 ( FIGS. 12G and 12H ) or 100 nM SS-20 ( FIGS. 12I and 12J ) in St. Thomas solution for 18 h.
- CD36 staining is increased in hearts that have undergone 18 hours of cold ischemic storage and warm reperfusion. However, hearts that were stored with either 1 nM SS-31 or 100 nM SS-20 did not show the upregulation of CD36 expression.
- Lipid peroxidation in the hearts was also decreased by the aromatic-cationic peptides.
- Guinea pig hearts were perfused with a cardioplegic solution (St. Thomas solution) alone or St. Thomas solution containing either 1 nM SS-31 or 100 nM SS-20 for 3 min. and then subjected to 18 hours of cold ischemia (4° C.). The hearts were then reperfused with Krebs Henseleit buffer at 34° C. for 90 min.
- Immunohistochemical analysis of 4-hydroxynonenol (HNE)-modified proteins in paraffin sections from tissue slices were performed by incubation with an anti-HNE antibody (Santa Cruz) and a fluorescent secondary antibody.
- HNE staining was significantly increased in hearts subjected to 18 hours of cold storage in St. Thomas solution ( FIG. 13B ) compared to non-ischemic hearts ( FIG. 13A ). HNE staining was reduced in hearts stored in SS-31 ( FIG. 13C ) or SS-20 ( FIG. 13D ).
- FIG. 14 Guinea pig heats were perfused with a cardioplegic solution (St. Thomas solution) alone or St. Thomas solution containing either 1 nM SS-31 or 100 nM SS-20 for 3 min. and then subjected to 18 hours of cold ischemia (4° C.). The hearts were then reperfused with Krebs Henseleit buffer at 34° C. for 90 min. After deparaffinization, sections were incubated with deoxynucleotidyl transferase (Tdt) with digoxigenin-dNTP for 1 hour. The reaction was stopped with terminating buffer. A fluorescent anti-digoxigenin antibody was then applied.
- FIGS. 14C and 14D Hearts subjected to 18 hours of cold storage in St. Thomas solution ( FIGS. 14C and 14D ) showed prominent endothelial apoptosis whereas no endothelial apoptosis was observed in non-ischemic normal hearts ( FIGS. 14A and 14B ). Apoptotic cells were not observed in hearts stored in SS-31 ( FIGS. 14E and 14F ) or SS-20 ( FIGS. 14G and 14H ).
- FIG. 15 A significant improvement of coronary blood flow after prolonged cold ischemic storage and warm reperfusion occurred ( FIG. 15 ).
- Guinea pigs hearts were perfused with a cardioplegic solution (St. Thomas solution) alone or St. Thomas solution containing either 1 nM SS-31 ( FIG. 15A ) or 100 nM SS-20) ( FIG. 15B ) for 3 min. and then subjected to 18 hours of cold ischemia (4° C.). The hearts were then reperfused with Krebs Henseleit buffer at 34° C. for 90 min. Coronary flow was significantly reduced after prolonged ischemia compared to pre-ischemic control (expressed as 100%). Preservation in either SS-31 or SS-20 significantly restored coronary flow to approximately 80% of pre-ischemic flow.
- CD36 expression is upregulated in a variety of tissues of diabetic patients, including monocytes, heart, kidneys, and plasma. High glucose is known to upregulate the expression of CD36 by improving the translational efficiency of CD36 mRNA. Diabetic nephropathy is a common complication of type 1 and type 2 diabetes, and is associated with tubular epithelial degeneration and interstitial fibrosis. CD36 has been identified as a mediator of tubular epithelial apoptosis in diabetic nephropathy. High glucose stimulates CD36 expression and apoptosis in proximal tubular epithelial cells.
- Streptozotocin was used to induce diabetes in mice. Three groups of CD-1 mice were studied. Group I—no STZ treatment; Group II—STZ (50 mg/kg, ip) was given once a day for 5 d; Group III—STZ (50 mg/kg, ip) was given once a day for 5 d, and SS-31 (3 mg/kg, ip) was given once a day for 16 d. STZ treatment resulted in progressive increase in blood glucose. By week 3, blood glucose values were: Group I (10.6.noteq.0.27 mmol/L); Group II (24.5.noteq.1.15 mmol/L); Group III (21.3 1.48 mmol/L). Animals were sacrificed after 3 weeks and kidney tissues preserved for histopathology. Kidney sections were examined by Periodic Schiff (PAS) staining for renal tubular brush border.
- PAS Periodic Schiff
- FIG. 16 In mice not treated with STZ, the renal brush border in the cortex was stained red with PAS ( FIG. 16A , see white arrows). In mice treated with STZ, the brush border was obliterated, and the tubular epithelial cells showed small condensed nuclei ( FIG. 16B ).
- FIG. 17 Kidney sections were examined for apoptosis using the TUNEL assay. After deparaffinization, sections were incubated with deoxynucleotidyl transferase (Tdt) with digoxigenin-dNTP for 1 hour. The reaction was stopped with terminating buffer. A fluorescent anti-digoxigenin antibody was then applied. Kidney sections from mice treated with STZ showed large number of apoptotic nuclei in the proximal tubules (PT) ( FIG. 17A , panel b), compared to no apoptotic cells in mice not treated STZ ( FIG. 17A , panel a). Treatment with daily SS-31 dramatically reduced apoptotic cells in the proximal tubule ( FIG. 17A , panel c). FIG. 17B shows the significant decrease in tubular cell apoptosis provided by SS-31.
- Tdt deoxynucleotidyl transferase
- CD36 expression in proximal tubular epithelial cells is known to be increased by high glucose and is upregulated in diabetic models.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Gastroenterology & Hepatology (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Endocrinology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Biotechnology (AREA)
- Reproductive Health (AREA)
- Psychiatry (AREA)
Abstract
Description
(r) |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
(pm) | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
(r) |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
(pm) | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 10 | 10 |
(pt) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
(a) | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
(pt) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
(a) | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 10 | 10 |
Lys-D-Arg-Tyr-NH2, | |
Phe-D-Arg-His, | |
D-Tyr-Trp-Lys-NH2, | |
Trp-D-Lys-Tyr-Arg-NH2, | |
Tyr-His-D-Gly-Met, | |
Phe-Arg-D-His-Asp, | |
Tyr-D-Arg-Phe-Lys-Glu-NH2, | |
Met-Tyr-D-Lys-Phe-Arg, | |
D-His-Glu-Lys-Tyr-D-Phe-Arg, | |
Lys-D-Gln-Tyr-Arg-D-Phe-Trp-NH2, | |
Phe-D-Arg-Lys-Trp-Tyr-D-Arg-His, | |
Gly-D-Phe-Lys-Tyr-His-D-Arg-Tyr-NH2, | |
Val-D-Lys-His-Tyr-D-Phe-Ser-Tyr-Arg-NH2, | |
Trp-Lys-Phe-D-Asp-Arg-Tyr-D-His-Lys, | |
Lys-Trp-D-Tyr-Arg-Asn-Phe-Tyr-D-His-NH2, | |
Thr-Gly-Tyr-Arg-D-His-Phe-Trp-D-His-Lys, | |
Asp-D-Trp-Lys-Tyr-D-His-Phe-Arg-D-Gly-Lys-NH2, | |
D-His-Lys-Tyr-D-Phe-Glu-D-Asp-D-His-D-Lys-Arg-Trp-NH2, | |
Ala-D-Phe-D-Arg-Tyr-Lys-D-Trp-His-D-Tyr-Gly-Phe, | |
Tyr-D-His-Phe-D-Arg-Asp-Lys-D-Arg-His-Trp-D-His-Phe, | |
Phe-Phe-D-Tyr-Arg-Glu-Asp-D-Lys-Arg-D-Arg-His-Phe-NH2, | |
Phe-Try-Lys-D-Arg-Trp-His-D-Lys-D-Lys-Glu-Arg-D-Tyr-Thr, | |
Tyr-Asp-D-Lys-Tyr-Phe-D-Lys-D-Arg-Phe-Pro-D-Tyr-His-Lys, | |
Glu-Arg-D-Lys-Tyr-D-Val-Phe-D-His-Trp-Arg-D-Gly-Tyr-Arg-D-Met-NH2, | |
Arg-D-Leu-D-Tyr-Phe-Lys-Glu-D-Lys-Arg-D-Trp-Lys-D-Phe-Tyr-D-Arg-Gly, | |
D-Glu-Asp-Lys-D-Arg-D-His-Phe-Phe-D-Val-Tyr-Arg-Tyr-D-Tyr-Arg-His-Phe-NH2, | |
Asp-Arg-D-Phe-Cys-Phe-D-Arg-D-Lys-Tyr-Arg-D-Tyr-Trp-D-His-Tyr-D-Phe-Lys-Phe, | |
His-Tyr-D-Arg-Trp-Lys-Phe-D-Asp-Ala-Arg-Cys-D-Tyr-His-Phe-D-Lys-Tyr-His-Ser-NH2, | |
Gly-Ala-Lys-Phe-D-Lys-Glu-Arg-Tyr-His-D-Arg-D-Arg-Asp-Tyr-Trp-D-His-Trp-His-D- | |
Lys-Asp, | |
and | |
Thr-Tyr-Arg-D-Lys-Trp-Tyr-Glu-Asp-D-Lys-D-Arg-His-Phe-D-Tyr-Gly-Val-Ile-D-His-Arg- | |
Tyr-Lys-NH2. |
TABLE 1 | |||||
Amino Acid | |||||
Amino Acid | Amino Acid | Amino Acid | Amino Acid | Position 5 | C-Terminal |
Position 1 | Position 2 | Position 3 | Position 4 | (if present) | Modification |
Tyr | D-Arg | Phe | Lys | NH2 | |
Tyr | D-Arg | Phe | Orn | NH2 | |
Tyr | D-Arg | Phe | Dab | NH2 | |
Tyr | D-Arg | Phe | Dap | NH2 | |
2′6′Dmt | D-Arg | Phe | Lys | NH2 | |
2′6′Dmt | D-Arg | Phe | Lys | Cys | NH2 |
2′6′Dmt | D-Arg | Phe | Lys- | NH2 | |
NH(CH2)2—NH- | |||||
dns | |||||
2′6′Dmt | D-Arg | Phe | Lys- | NH2 | |
NH(CH2)2—NH- | |||||
atn | |||||
2′6′Dmt | D-Arg | Phe | dnsLys | NH2 | |
2′6′Dmt | D-Cit | Phe | Lys | NH2 | |
2′6′Dmt | D-Cit | Phe | Ahp | NH2 | |
2′6′Dmt | D-Arg | Phe | Orn | NH2 | |
2′6′Dmt | D-Arg | Phe | Dab | NH2 | |
2′6′Dmt | D-Arg | Phe | Dap | NH2 | |
2′6′Dmt | D-Arg | Phe | Ahp (2- | NH2 | |
aminoheptanoic | |||||
acid) | |||||
Bio-2′6′Dmt | D-Arg | Phe | Lys | NH2 | |
3′5′Dmt | D-Arg | Phe | Lys | NH2 | |
3′5′Dmt | D-Arg | Phe | Orn | NH2 | |
3′5′Dmt | D-Arg | Phe | Dab | NH2 | |
3′5′Dmt | D-Arg | Phe | Dap | NH2 | |
Tyr | D-Arg | Tyr | Lys | NH2 | |
Tyr | D-Arg | Tyr | Orn | NH2 | |
Tyr | D-Arg | Tyr | Dab | NH2 | |
Tyr | D-Arg | Tyr | Dap | NH2 | |
2′6′Dmt | D-Arg | Tyr | Lys | NH2 | |
2′6′Dmt | D-Arg | Tyr | Orn | NH2 | |
2′6′Dmt | D-Arg | Tyr | Dab | NH2 | |
2′6′Dmt | D-Arg | Tyr | Dap | NH2 | |
2′6′Dmt | D-Arg | 2′6′Dmt | Lys | NH2 | |
2′6′Dmt | D-Arg | 2′6′Dmt | Orn | NH2 | |
2′6′Dmt | D-Arg | 2′6′Dmt | Dab | NH2 | |
2′6′Dmt | D-Arg | 2′6′Dmt | Dap | NH2 | |
3′5′Dmt | D-Arg | 3′5′Dmt | Arg | NH2 | |
3′5′Dmt | D-Arg | 3′5′Dmt | Lys | NH2 | |
3′5′Dmt | D-Arg | 3′5′Dmt | Orn | NH2 | |
3′5′Dmt | D-Arg | 3′5′Dmt | Dab | NH2 | |
Tyr | D-Lys | Phe | Dap | NH2 | |
Tyr | D-Lys | Phe | Arg | NH2 | |
Tyr | D-Lys | Phe | Lys | NH2 | |
Tyr | D-Lys | Phe | Orn | NH2 | |
2′6′Dmt | D-Lys | Phe | Dab | NH2 | |
2′6′Dmt | D-Lys | Phe | Dap | NH2 | |
2′6′Dmt | D-Lys | Phe | Arg | NH2 | |
2′6′Dmt | D-Lys | Phe | Lys | NH2 | |
3′5′Dmt | D-Lys | Phe | Orn | NH2 | |
3′5′Dmt | D-Lys | Phe | Dab | NH2 | |
3′5′Dmt | D-Lys | Phe | Dap | NH2 | |
3′5′Dmt | D-Lys | Phe | Arg | NH2 | |
Tyr | D-Lys | Tyr | Lys | NH2 | |
Tyr | D-Lys | Tyr | Orn | NH2 | |
Tyr | D-Lys | Tyr | Dab | NH2 | |
Tyr | D-Lys | Tyr | Dap | NH2 | |
2′6′Dmt | D-Lys | Tyr | Lys | NH2 | |
2′6′Dmt | D-Lys | Tyr | Orn | NH2 | |
2′6′Dmt | D-Lys | Tyr | Dab | NH2 | |
2′6′Dmt | D-Lys | Tyr | Dap | NH2 | |
2′6′Dmt | D-Lys | 2′6′Dmt | Lys | NH2 | |
2′6′Dmt | D-Lys | 2′6′Dmt | Orn | NH2 | |
2′6′Dmt | D-Lys | 2′6′Dmt | Dab | NH2 | |
2′6′Dmt | D-Lys | 2′6′Dmt | Dap | NH2 | |
2′6′Dmt | D-Arg | Phe | dnsDap | NH2 | |
2′6′Dmt | D-Arg | Phe | atnDap | NH2 | |
3′5′Dmt | D-Lys | 3′5′Dmt | Lys | NH2 | |
3′5′Dmt | D-Lys | 3′5′Dmt | Orn | NH2 | |
3′5′Dmt | D-Lys | 3′5′Dmt | Dab | NH2 | |
3′5′Dmt | D-Lys | 3′5′Dmt | Dap | NH2 | |
Tyr | D-Lys | Phe | Arg | NH2 | |
Tyr | D-Orn | Phe | Arg | NH2 | |
Tyr | D-Dab | Phe | Arg | NH2 | |
Tyr | D-Dap | Phe | Arg | NH2 | |
2′6′Dmt | D-Arg | Phe | Arg | NH2 | |
2′6′Dmt | D-Lys | Phe | Arg | NH2 | |
2′6′Dmt | D-Orn | Phe | Arg | NH2 | |
2′6′Dmt | D-Dab | Phe | Arg | NH2 | |
3′5′Dmt | D-Dap | Phe | Arg | NH2 | |
3′5′Dmt | D-Arg | Phe | Arg | NH2 | |
3′5′Dmt | D-Lys | Phe | Arg | NH2 | |
3′5′Dmt | D-Orn | Phe | Arg | NH2 | |
Tyr | D-Lys | Tyr | Arg | NH2 | |
Tyr | D-Orn | Tyr | Arg | NH2 | |
Tyr | D-Dab | Tyr | Arg | NH2 | |
Tyr | D-Dap | Tyr | Arg | NH2 | |
2′6′Dmt | D-Arg | 2′6′Dmt | Arg | NH2 | |
2′6′Dmt | D-Lys | 2′6′Dmt | Arg | NH2 | |
2′6′Dmt | D-Orn | 2′6′Dmt | Arg | NH2 | |
2′6′Dmt | D-Dab | 2′6′Dmt | Arg | NH2 | |
3′5′Dmt | D-Dap | 3′5′Dmt | Arg | NH2 | |
3′5′Dmt | D-Arg | 3′5′Dmt | Arg | NH2 | |
3′5′Dmt | D-Lys | 3′5′Dmt | Arg | NH2 | |
3′5′Dmt | D-Orn | 3′5′Dmt | Arg | NH2 | |
Mmt | D-Arg | Phe | Lys | NH2 | |
Mmt | D-Arg | Phe | Orn | NH2 | |
Mmt | D-Arg | Phe | Dab | NH2 | |
Mmt | D-Arg | Phe | Dap | NH2 | |
Tmt | D-Arg | Phe | Lys | NH2 | |
Tmt | D-Arg | Phe | Orn | NH2 | |
Tmt | D-Arg | Phe | Dab | NH2 | |
Tmt | D-Arg | Phe | Dap | NH2 | |
Hmt | D-Arg | Phe | Lys | NH2 | |
Hmt | D-Arg | Phe | Orn | NH2 | |
Hmt | D-Arg | Phe | Dab | NH2 | |
Hmt | D-Arg | Phe | Dap | NH2 | |
Mmt | D-Lys | Phe | Lys | NH2 | |
Mmt | D-Lys | Phe | Orn | NH2 | |
Mmt | D-Lys | Phe | Dab | NH2 | |
Mmt | D-Lys | Phe | Dap | NH2 | |
Mmt | D-Lys | Phe | Arg | NH2 | |
Tmt | D-Lys | Phe | Lys | NH2 | |
Tmt | D-Lys | Phe | Orn | NH2 | |
Tmt | D-Lys | Phe | Dab | NH2 | |
Tmt | D-Lys | Phe | Dap | NH2 | |
Tmt | D-Lys | Phe | Arg | NH2 | |
Hmt | D-Lys | Phe | Lys | NH2 | |
Hmt | D-Lys | Phe | Orn | NH2 | |
Hmt | D-Lys | Phe | Dab | NH2 | |
Hmt | D-Lys | Phe | Dap | NH2 | |
Hmt | D-Lys | Phe | Arg | NH2 | |
Mmt | D-Lys | Phe | Arg | NH2 | |
Mmt | D-Orn | Phe | Arg | NH2 | |
Mmt | D-Dab | Phe | Arg | NH2 | |
Mmt | D-Dap | Phe | Arg | NH2 | |
Mmt | D-Arg | Phe | Arg | NH2 | |
Tmt | D-Lys | Phe | Arg | NH2 | |
Tmt | D-Orn | Phe | Arg | NH2 | |
Tmt | D-Dab | Phe | Arg | NH2 | |
Tmt | D-Dap | Phe | Arg | NH2 | |
Tmt | D-Arg | Phe | Arg | NH2 | |
Hmt | D-Lys | Phe | Arg | NH2 | |
Hmt | D-Orn | Phe | Arg | NH2 | |
Hmt | D-Dab | Phe | Arg | NH2 | |
Hmt | D-Dap | Phe | Arg | NH2 | |
Hmt | D-Arg | Phe | Arg | NH2 | |
Dab = diaminobutyric | |||||
Dap = diaminopropionic acid | |||||
Dmt = dimethyltyrosine | |||||
Mmt = 2′-methyltyrosine | |||||
Tmt = N,2′,6′-trimethyltyrosine | |||||
Hmt = 2′-hydroxy,6′-methyltyrosine | |||||
dnsDap = β-dansyl-L-α,β-diaminopropionic acid | |||||
atnDap = β-anthraniloyl-L-α,β-diaminopropionic acid | |||||
Bio = biotin |
TABLE 2 | ||||
Amino Acid | Amino Acid | Amino Acid | Amino Acid | C-Terminal |
Position 1 | Position 2 | Position 3 | Position 4 | Modification |
D-Arg | Dmt | Lys | Phe | NH2 |
D-Arg | Dmt | Phe | Lys | NH2 |
D-Arg | Phe | Lys | Dmt | NH2 |
D-Arg | Phe | Dmt | Lys | NH2 |
D-Arg | Lys | Dmt | Phe | NH2 |
D-Arg | Lys | Phe | Dmt | NH2 |
Phe | Lys | Dmt | D-Arg | NH2 |
Phe | Lys | D-Arg | Dmt | NH2 |
Phe | D-Arg | Dmt | Lys | NH2 |
Phe | D-Arg | Lys | Dmt | NH2 |
Phe | Dmt | D-Arg | Lys | NH2 |
Phe | Dmt | Lys | D-Arg | NH2 |
Lys | Phe | D-Arg | Dmt | NH2 |
Lys | Phe | Dmt | D-Arg | NH2 |
Lys | Dmt | D-Arg | Phe | NH2 |
Lys | Dmt | Phe | D-Arg | NH2 |
Lys | D-Arg | Phe | Dmt | NH2 |
Lys | D-Arg | Dmt | Phe | NH2 |
D-Arg | Dmt | D-Arg | Phe | NH2 |
D-Arg | Dmt | D-Arg | Dmt | NH2 |
D-Arg | Dmt | D-Arg | Tyr | NH2 |
D-Arg | Dmt | D-Arg | Trp | NH2 |
Trp | D-Arg | Phe | Lys | NH2 |
Trp | D-Arg | Tyr | Lys | NH2 |
Trp | D-Arg | Trp | Lys | NH2 |
Trp | D-Arg | Dmt | Lys | NH2 |
D-Arg | Trp | Lys | Phe | NH2 |
D-Arg | Trp | Phe | Lys | NH2 |
D-Arg | Trp | Lys | Dmt | NH2 |
D-Arg | Trp | Dmt | Lys | NH2 |
D-Arg | Lys | Trp | Phe | NH2 |
D-Arg | Lys | Trp | Dmt | NH2 |
Cha = cyclohexyl |
Claims (3)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/434,216 US7811987B2 (en) | 2005-09-16 | 2009-05-01 | Methods for reducing CD36 expression |
US12/850,079 US8603971B2 (en) | 2005-09-16 | 2010-08-04 | Methods for reducing CD36 expression |
US14/075,686 US9150614B2 (en) | 2005-09-16 | 2013-11-08 | Methods for reducing CD36 expression |
US14/285,226 US20140256620A1 (en) | 2005-09-16 | 2014-05-22 | Methods for reducing cd36 expression |
US15/369,281 US20170305967A1 (en) | 2005-09-16 | 2016-12-05 | Methods for reducing cd36 expression |
US16/140,325 US20190248833A1 (en) | 2005-09-16 | 2018-09-24 | Methods for reducing cd36 expression |
US16/838,290 US11447523B2 (en) | 2005-09-16 | 2020-04-02 | Methods for reducing CD36 expression |
US17/880,271 US20230212220A1 (en) | 2005-09-16 | 2022-08-03 | Methods for reducing cd36 expression |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71817005P | 2005-09-16 | 2005-09-16 | |
US11/532,764 US7541340B2 (en) | 2005-09-16 | 2006-09-18 | Methods for reducing CD36 expression |
US12/434,216 US7811987B2 (en) | 2005-09-16 | 2009-05-01 | Methods for reducing CD36 expression |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/532,764 Continuation US7541340B2 (en) | 2005-09-16 | 2006-09-18 | Methods for reducing CD36 expression |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/850,079 Continuation US8603971B2 (en) | 2005-09-16 | 2010-08-04 | Methods for reducing CD36 expression |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090264369A1 US20090264369A1 (en) | 2009-10-22 |
US7811987B2 true US7811987B2 (en) | 2010-10-12 |
Family
ID=37889419
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/532,764 Active 2027-01-15 US7541340B2 (en) | 2005-09-16 | 2006-09-18 | Methods for reducing CD36 expression |
US12/434,216 Active US7811987B2 (en) | 2005-09-16 | 2009-05-01 | Methods for reducing CD36 expression |
US12/850,079 Active 2026-12-26 US8603971B2 (en) | 2005-09-16 | 2010-08-04 | Methods for reducing CD36 expression |
US14/075,686 Active US9150614B2 (en) | 2005-09-16 | 2013-11-08 | Methods for reducing CD36 expression |
US14/285,226 Abandoned US20140256620A1 (en) | 2005-09-16 | 2014-05-22 | Methods for reducing cd36 expression |
US15/369,281 Abandoned US20170305967A1 (en) | 2005-09-16 | 2016-12-05 | Methods for reducing cd36 expression |
US16/140,325 Abandoned US20190248833A1 (en) | 2005-09-16 | 2018-09-24 | Methods for reducing cd36 expression |
US16/838,290 Active US11447523B2 (en) | 2005-09-16 | 2020-04-02 | Methods for reducing CD36 expression |
US17/880,271 Abandoned US20230212220A1 (en) | 2005-09-16 | 2022-08-03 | Methods for reducing cd36 expression |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/532,764 Active 2027-01-15 US7541340B2 (en) | 2005-09-16 | 2006-09-18 | Methods for reducing CD36 expression |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/850,079 Active 2026-12-26 US8603971B2 (en) | 2005-09-16 | 2010-08-04 | Methods for reducing CD36 expression |
US14/075,686 Active US9150614B2 (en) | 2005-09-16 | 2013-11-08 | Methods for reducing CD36 expression |
US14/285,226 Abandoned US20140256620A1 (en) | 2005-09-16 | 2014-05-22 | Methods for reducing cd36 expression |
US15/369,281 Abandoned US20170305967A1 (en) | 2005-09-16 | 2016-12-05 | Methods for reducing cd36 expression |
US16/140,325 Abandoned US20190248833A1 (en) | 2005-09-16 | 2018-09-24 | Methods for reducing cd36 expression |
US16/838,290 Active US11447523B2 (en) | 2005-09-16 | 2020-04-02 | Methods for reducing CD36 expression |
US17/880,271 Abandoned US20230212220A1 (en) | 2005-09-16 | 2022-08-03 | Methods for reducing cd36 expression |
Country Status (10)
Country | Link |
---|---|
US (9) | US7541340B2 (en) |
EP (5) | EP3549594A1 (en) |
JP (6) | JP5416971B2 (en) |
KR (9) | KR101426070B1 (en) |
CN (6) | CN102552874B (en) |
AU (1) | AU2006292352B2 (en) |
CA (8) | CA2947330C (en) |
DK (1) | DK1931369T3 (en) |
HK (4) | HK1173367A1 (en) |
WO (1) | WO2007035640A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090221514A1 (en) * | 2008-02-26 | 2009-09-03 | Szeto Hazel H | Methods for prevention and treatment of acute renal injury |
US20110039766A1 (en) * | 2009-08-12 | 2011-02-17 | Szeto Hazel H | Methods for preventing or treating metabolic syndrome |
US20110082084A1 (en) * | 2009-10-05 | 2011-04-07 | Szeto Hazel H | Methods for the prevention or treatment of heart failure |
US20110177047A1 (en) * | 2009-08-24 | 2011-07-21 | Liping Liu | Methods and compositions for preventing or treating ophthalmic conditions |
US11447523B2 (en) * | 2005-09-16 | 2022-09-20 | Cornell Research Foundation, Inc. | Methods for reducing CD36 expression |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102617706A (en) | 2003-02-04 | 2012-08-01 | 科内尔研究基金会 | Methods for preventing mitochondrial permeability transition |
DK2604285T3 (en) | 2003-05-01 | 2014-12-01 | Cornell Res Foundation Inc | Method and carrier complex for delivering molecules to cells |
JP4931604B2 (en) * | 2004-01-23 | 2012-05-16 | コーネル リサーチ ファウンデイション インコーポレイテッド | Methods for reducing oxidative damage |
US7687243B1 (en) * | 2005-06-06 | 2010-03-30 | Crook Tonia M | Automated method for detecting apoptosis in cells |
EP3103467A1 (en) * | 2008-02-07 | 2016-12-14 | Cornell University | Methods for preventing or treating insulin resistance |
CN103933542A (en) * | 2009-03-20 | 2014-07-23 | 通用医疗公司以马萨诸塞州通用医疗公司名义经营 | Methods For The Prevention And Treatment Of Burn Injuries And Secondary Complications |
JP2013516426A (en) | 2009-12-31 | 2013-05-13 | ステルス ペプチドズ インターナショナル インコーポレイテッド | Method for performing coronary artery bypass grafting |
EP3090754A1 (en) * | 2009-12-31 | 2016-11-09 | Stealth Peptides International, Inc. | Methods for the prevention or treatment of vessel occlusion injury |
CN103037901B (en) * | 2010-06-01 | 2018-04-27 | 康奈尔大学 | Suppress CD36 with obesity controlling and insulin sensitivity |
CN105879008A (en) * | 2010-07-09 | 2016-08-24 | 康德生物医疗技术公司 | Methods for the prevention or treatment of no-reflow following ischemia/reperfusion injury |
CN104244964A (en) * | 2012-02-22 | 2014-12-24 | 康肽德生物医药技术有限公司 | Methods and compositions for preventing or treating ophthalmic conditions |
CA2869080C (en) * | 2012-03-30 | 2020-09-01 | Stealth Peptides International, Inc. | Methods and compositions for the prevention and treatment neuropathy |
EP2879688A4 (en) * | 2012-08-02 | 2015-12-16 | Stealth Peptides Int Inc | Methods for treatment of atherosclerosis |
EP2936151B1 (en) * | 2012-12-18 | 2018-07-18 | BioCrine AB | Methods for treating and/or limiting development of diabetes |
US20160256514A1 (en) * | 2013-05-14 | 2016-09-08 | Stealth Biotherapeutics Corp | Methods for the prevention or treatment of left ventricle remodeling |
WO2014210056A1 (en) * | 2013-06-27 | 2014-12-31 | Stealth Peptides International, Inc. | Peptide therapeutics and methods for using same |
CN106163537A (en) * | 2013-09-30 | 2016-11-23 | 康奈尔大学 | Cuorin targeting peptides suppression amyloid beta oligomer toxicity |
US9895410B2 (en) * | 2013-12-12 | 2018-02-20 | Cornell University | Methods for preventing and treating oral cancers |
WO2015095077A1 (en) * | 2013-12-16 | 2015-06-25 | Cornell University | Methods and compositions for treating and preventing cognitive dysfunction |
CN107041946A (en) * | 2017-03-24 | 2017-08-15 | 南京大学 | Applications of the compound SS 31 on treatment atherosclerosis and relevant disease medicine or preparation is prepared |
US11392555B2 (en) | 2019-05-15 | 2022-07-19 | Pure Storage, Inc. | Cloud-based file services |
US20220288013A1 (en) * | 2019-07-26 | 2022-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | 1,8-cineol coated implants |
WO2025021993A1 (en) | 2023-07-27 | 2025-01-30 | Omnilinx Therapeutics Ag | Endocytic and scavenger receptor-targeting chimeric proteins and uses thereof |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5312899A (en) | 1988-06-30 | 1994-05-17 | Biochem Pharma, Inc. | Dermorphin analogs |
WO1995022557A1 (en) | 1994-02-21 | 1995-08-24 | Astra Aktiebolag | Novel opioid peptides for the treatment of pain and use thereof |
US5602100A (en) | 1988-06-30 | 1997-02-11 | Astra Ab | Dermorphin analogs having pharmacological activity |
US5652122A (en) | 1989-12-21 | 1997-07-29 | Frankel; Alan | Nucleic acids encoding and methods of making tat-derived transport polypeptides |
US5885958A (en) | 1997-03-25 | 1999-03-23 | Administrators Of The Tulane Educational Fund | Mu-opiate receptor peptides |
US5993848A (en) | 1995-06-09 | 1999-11-30 | Takeda Chemical Industries, Ltd. | Dissolution liquid for drug in iontophoresis |
US5994372A (en) | 1995-09-12 | 1999-11-30 | Regents Of The University Of California | Peripherally active anti-hyperalgesic opiates |
WO2000055189A1 (en) | 1999-03-16 | 2000-09-21 | Astrazeneca Ab | Dalda analogs and their use |
US6221355B1 (en) | 1997-12-10 | 2001-04-24 | Washington University | Anti-pathogen system and methods of use thereof |
US6268398B1 (en) | 1998-04-24 | 2001-07-31 | Mitokor | Compounds and methods for treating mitochondria-associated diseases |
WO2002005748A2 (en) | 2000-07-18 | 2002-01-24 | Cornell Research Foundation, Inc. | Medicinal uses of mu-opioid receptor agonists |
US6503713B1 (en) | 1999-10-04 | 2003-01-07 | University Of Medicine And Dentistry Of New Jersey | Methods for identifying RNA binding compounds |
US6759520B1 (en) | 1999-10-28 | 2004-07-06 | The New England Medical Center Hospitals, Inc. | Chimeric analgesic peptides |
WO2004070054A2 (en) | 2003-02-04 | 2004-08-19 | Cornell Research Foundation, Inc. | Methods for preventing mitochondrial permeability transition |
WO2005001023A2 (en) | 2003-05-01 | 2005-01-06 | Cornell Research Foundation, Inc. | Method and carrier complexes for delivering molecules to cells |
US20050096333A1 (en) | 2003-09-30 | 2005-05-05 | Sundeep Dugar | Quinazoline derivatives as medicaments |
US6900178B2 (en) | 2000-09-12 | 2005-05-31 | University Of Kentucky Research Foundation | Protection against ischemia and reperfusion injury |
WO2005072295A2 (en) | 2004-01-23 | 2005-08-11 | Cornell Research Foundation, Inc. | Methods for reducing oxidative damage |
US20050192215A1 (en) | 2000-01-21 | 2005-09-01 | Malabika Ghosh | Methods and materials relating to novel polypeptides and polynucleotides |
WO2007035640A2 (en) | 2005-09-16 | 2007-03-29 | Cornell Research Foundation, Inc. | Methods for reducing cd36 expression |
US20070093969A1 (en) | 2002-11-22 | 2007-04-26 | Mendrick Donna L | Molecular nephrotoxicology modeling |
US20070259377A1 (en) | 2005-10-11 | 2007-11-08 | Mickey Urdea | Diabetes-associated markers and methods of use thereof |
US20080014604A1 (en) | 2004-06-07 | 2008-01-17 | Prasad Devarajan | Method for the early detection of renal injury |
US20080027082A1 (en) | 2006-06-19 | 2008-01-31 | Berthold Hocher | Use of adenosine a1 antagonists in radiocontrast media induced nephropathy |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US5858784A (en) | 1991-12-17 | 1999-01-12 | The Regents Of The University Of California | Expression of cloned genes in the lung by aerosol- and liposome-based delivery |
US5674534A (en) | 1992-06-11 | 1997-10-07 | Alkermes, Inc. | Composition for sustained release of non-aggregated erythropoietin |
US5716644A (en) | 1992-06-11 | 1998-02-10 | Alkermes, Inc. | Composition for sustained release of non-aggregated erythropoietin |
FR2756284B1 (en) | 1996-11-26 | 2000-04-28 | Adir | NOVEL BENZOPYRANE DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US5989463A (en) | 1997-09-24 | 1999-11-23 | Alkermes Controlled Therapeutics, Inc. | Methods for fabricating polymer-based controlled release devices |
US6245740B1 (en) | 1998-12-23 | 2001-06-12 | Amgen Inc. | Polyol:oil suspensions for the sustained release of proteins |
WO2003048326A2 (en) * | 2001-12-03 | 2003-06-12 | Nuvelo, Inc. | Methods and materials relating to novel polypeptides and polynucleotides |
DE10051983A1 (en) | 2000-10-20 | 2002-06-13 | Beate Kehrel | Medicaments useful e.g. for preventing thrombosis, inhibiting transplant rejection or treating chronic inflammatory reactions comprises agents inhibiting binding of oxidized proteins to CD36, |
EP1994941A3 (en) * | 2000-10-20 | 2012-07-25 | Hamburger Stiftung zur Förderung von Wissenschaft und Kultur | Medicine containing at least one oxidised protein |
US20040115261A1 (en) | 2001-04-05 | 2004-06-17 | Ashley Robert A. | Controlled delivery of tetracycline compounds and tetracycline derivatives |
JP4346870B2 (en) * | 2002-07-05 | 2009-10-21 | キッコーマン株式会社 | Composition for inhibiting increase in blood glucose level |
EP1536817A1 (en) * | 2002-08-23 | 2005-06-08 | Gestion Univalor Société en Commandite | Growth hormone-releasing peptides in the treatment of prevention of atherosclerosis and hypercholesterolemia |
US20040229901A1 (en) | 2003-02-24 | 2004-11-18 | Lauren Otsuki | Method of treatment of disease using an adenosine A1 receptor antagonist |
KR20060026011A (en) | 2003-05-09 | 2006-03-22 | 노보 노르디스크 에이/에스 | Obesity Treatment Peptides |
US20050012597A1 (en) | 2003-07-02 | 2005-01-20 | Anderson Peter Traneus | Wireless electromagnetic tracking system using a nonlinear passive transponder |
EP1529533A1 (en) * | 2003-11-06 | 2005-05-11 | Sahltech I Göteborg AB | Use of GH secretagogues in hypoxic-ischemic brain injury |
KR20060114713A (en) | 2003-12-12 | 2006-11-07 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | Method for evaluating mexin / RAA / INOS expression disease model animal and compound using the animal |
US8157123B2 (en) * | 2005-02-23 | 2012-04-17 | The Glad Products Company | Container |
EP3103467A1 (en) * | 2008-02-07 | 2016-12-14 | Cornell University | Methods for preventing or treating insulin resistance |
EP3243521B1 (en) | 2008-02-26 | 2020-05-27 | Cornell University | A peptide for use for prevention and treatment of acute renal injury |
JP2012181082A (en) * | 2011-03-01 | 2012-09-20 | Tokyo Electric Power Co Inc:The | Gate valve disassembly and inspection auxiliary device, guide holder thereof, and gate valve disassembly and inspection method |
CN202756379U (en) | 2012-07-13 | 2013-02-27 | 滨中元川金属制品(昆山)有限公司 | Self-taping screw |
-
2006
- 2006-09-18 CN CN201210028972.2A patent/CN102552874B/en active Active
- 2006-09-18 JP JP2008531412A patent/JP5416971B2/en active Active
- 2006-09-18 AU AU2006292352A patent/AU2006292352B2/en active Active
- 2006-09-18 KR KR1020087009150A patent/KR101426070B1/en active Active
- 2006-09-18 WO PCT/US2006/036291 patent/WO2007035640A2/en active Application Filing
- 2006-09-18 CA CA2947330A patent/CA2947330C/en active Active
- 2006-09-18 KR KR1020157000640A patent/KR101621493B1/en active Active
- 2006-09-18 CN CN201510142734.8A patent/CN104788540B/en active Active
- 2006-09-18 CA CA2947335A patent/CA2947335A1/en not_active Abandoned
- 2006-09-18 CA CA2947340A patent/CA2947340C/en active Active
- 2006-09-18 CN CN2006800400192A patent/CN101296704B/en active Active
- 2006-09-18 CN CN201610884213.4A patent/CN107412723A/en active Pending
- 2006-09-18 EP EP19160103.8A patent/EP3549594A1/en not_active Withdrawn
- 2006-09-18 EP EP16176957.5A patent/EP3095454A1/en not_active Withdrawn
- 2006-09-18 CA CA2947341A patent/CA2947341C/en active Active
- 2006-09-18 CA CA2947343A patent/CA2947343C/en active Active
- 2006-09-18 KR KR1020147007878A patent/KR20140042940A/en not_active Ceased
- 2006-09-18 CA CA2947328A patent/CA2947328C/en active Active
- 2006-09-18 US US11/532,764 patent/US7541340B2/en active Active
- 2006-09-18 CN CN201410509385.4A patent/CN104324360A/en active Pending
- 2006-09-18 CA CA2947333A patent/CA2947333A1/en not_active Abandoned
- 2006-09-18 EP EP17172250.7A patent/EP3260127B1/en active Active
- 2006-09-18 CN CN201310627156.8A patent/CN103784937B/en active Active
- 2006-09-18 EP EP06814864.2A patent/EP1931369B1/en active Active
- 2006-09-18 EP EP20167024.7A patent/EP3725324A1/en active Pending
- 2006-09-18 DK DK06814864.2T patent/DK1931369T3/en active
- 2006-09-18 KR KR1020157000639A patent/KR20150013353A/en not_active Ceased
- 2006-09-18 KR KR1020147021832A patent/KR20140106761A/en not_active Ceased
- 2006-09-18 CA CA2622911A patent/CA2622911C/en active Active
-
2009
- 2009-04-28 HK HK13100442.9A patent/HK1173367A1/en unknown
- 2009-04-28 HK HK09103915.7A patent/HK1123992A1/en unknown
- 2009-05-01 US US12/434,216 patent/US7811987B2/en active Active
-
2010
- 2010-08-04 US US12/850,079 patent/US8603971B2/en active Active
-
2012
- 2012-08-17 JP JP2012181082A patent/JP5805596B2/en active Active
-
2013
- 2013-01-17 JP JP2013006199A patent/JP5809649B2/en active Active
- 2013-11-08 US US14/075,686 patent/US9150614B2/en active Active
-
2014
- 2014-05-22 US US14/285,226 patent/US20140256620A1/en not_active Abandoned
-
2015
- 2015-06-08 JP JP2015115856A patent/JP6157539B2/en active Active
- 2015-08-04 HK HK15107494.9A patent/HK1206971A1/en unknown
- 2015-08-07 JP JP2015156656A patent/JP6175107B2/en active Active
-
2016
- 2016-01-21 HK HK16100693.2A patent/HK1212718A1/en unknown
- 2016-05-09 KR KR1020160056491A patent/KR20160056863A/en not_active Ceased
- 2016-05-10 KR KR1020160057030A patent/KR20160057372A/en not_active Ceased
- 2016-12-05 US US15/369,281 patent/US20170305967A1/en not_active Abandoned
-
2017
- 2017-01-05 JP JP2017000444A patent/JP6385476B2/en active Active
- 2017-09-08 KR KR1020170115440A patent/KR101999756B1/en active Active
-
2018
- 2018-09-24 US US16/140,325 patent/US20190248833A1/en not_active Abandoned
-
2019
- 2019-07-08 KR KR1020190082102A patent/KR20190084025A/en not_active Ceased
-
2020
- 2020-04-02 US US16/838,290 patent/US11447523B2/en active Active
-
2022
- 2022-08-03 US US17/880,271 patent/US20230212220A1/en not_active Abandoned
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5312899A (en) | 1988-06-30 | 1994-05-17 | Biochem Pharma, Inc. | Dermorphin analogs |
US5602100A (en) | 1988-06-30 | 1997-02-11 | Astra Ab | Dermorphin analogs having pharmacological activity |
US5652122A (en) | 1989-12-21 | 1997-07-29 | Frankel; Alan | Nucleic acids encoding and methods of making tat-derived transport polypeptides |
WO1995022557A1 (en) | 1994-02-21 | 1995-08-24 | Astra Aktiebolag | Novel opioid peptides for the treatment of pain and use thereof |
US5993848A (en) | 1995-06-09 | 1999-11-30 | Takeda Chemical Industries, Ltd. | Dissolution liquid for drug in iontophoresis |
US5994372A (en) | 1995-09-12 | 1999-11-30 | Regents Of The University Of California | Peripherally active anti-hyperalgesic opiates |
US5885958A (en) | 1997-03-25 | 1999-03-23 | Administrators Of The Tulane Educational Fund | Mu-opiate receptor peptides |
US6221355B1 (en) | 1997-12-10 | 2001-04-24 | Washington University | Anti-pathogen system and methods of use thereof |
US6268398B1 (en) | 1998-04-24 | 2001-07-31 | Mitokor | Compounds and methods for treating mitochondria-associated diseases |
US6703483B1 (en) | 1999-03-16 | 2004-03-09 | Cornell Research Foundation, Inc. | Compounds useful in pain management |
WO2000055189A1 (en) | 1999-03-16 | 2000-09-21 | Astrazeneca Ab | Dalda analogs and their use |
US6503713B1 (en) | 1999-10-04 | 2003-01-07 | University Of Medicine And Dentistry Of New Jersey | Methods for identifying RNA binding compounds |
US6759520B1 (en) | 1999-10-28 | 2004-07-06 | The New England Medical Center Hospitals, Inc. | Chimeric analgesic peptides |
US20050192215A1 (en) | 2000-01-21 | 2005-09-01 | Malabika Ghosh | Methods and materials relating to novel polypeptides and polynucleotides |
WO2002005748A2 (en) | 2000-07-18 | 2002-01-24 | Cornell Research Foundation, Inc. | Medicinal uses of mu-opioid receptor agonists |
US7498297B2 (en) | 2000-07-18 | 2009-03-03 | Cornell Research Foundation | Medicinal uses of mu-opioid receptor agonists |
US20070027070A1 (en) | 2000-07-18 | 2007-02-01 | Hazel Szeto | Medicinal Uses of Mu-Opioid Receptor Agonists |
US6900178B2 (en) | 2000-09-12 | 2005-05-31 | University Of Kentucky Research Foundation | Protection against ischemia and reperfusion injury |
US20070093969A1 (en) | 2002-11-22 | 2007-04-26 | Mendrick Donna L | Molecular nephrotoxicology modeling |
US20070027087A1 (en) | 2003-02-04 | 2007-02-01 | Szeto Hazel H | Methods for preventing mitochondrial permeability transition |
US20040248808A1 (en) | 2003-02-04 | 2004-12-09 | Szeto Hazel H. | Methods for preventing mitochondrial permeability transition |
WO2004070054A2 (en) | 2003-02-04 | 2004-08-19 | Cornell Research Foundation, Inc. | Methods for preventing mitochondrial permeability transition |
US20050158373A1 (en) | 2003-05-01 | 2005-07-21 | Szeto Hazel H. | Method and carrier complexes for delivering molecules to cells |
WO2005001023A2 (en) | 2003-05-01 | 2005-01-06 | Cornell Research Foundation, Inc. | Method and carrier complexes for delivering molecules to cells |
US20050096333A1 (en) | 2003-09-30 | 2005-05-05 | Sundeep Dugar | Quinazoline derivatives as medicaments |
US20060084606A1 (en) | 2004-01-23 | 2006-04-20 | Szeto Hazel H | Methods for reducing oxidative damage |
US20070015711A1 (en) | 2004-01-23 | 2007-01-18 | Szeto Hazel H | Methods for reducing oxidative damage |
WO2005072295A2 (en) | 2004-01-23 | 2005-08-11 | Cornell Research Foundation, Inc. | Methods for reducing oxidative damage |
US20080014604A1 (en) | 2004-06-07 | 2008-01-17 | Prasad Devarajan | Method for the early detection of renal injury |
WO2007035640A2 (en) | 2005-09-16 | 2007-03-29 | Cornell Research Foundation, Inc. | Methods for reducing cd36 expression |
US20070129306A1 (en) | 2005-09-16 | 2007-06-07 | Szeto Hazel H | Methods for Reducing CD36 Expression |
US20070259377A1 (en) | 2005-10-11 | 2007-11-08 | Mickey Urdea | Diabetes-associated markers and methods of use thereof |
US20080027082A1 (en) | 2006-06-19 | 2008-01-31 | Berthold Hocher | Use of adenosine a1 antagonists in radiocontrast media induced nephropathy |
Non-Patent Citations (71)
Title |
---|
Aitman et al., Identification of CD36 (Fat) as an insulin resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats, Nature Genetics, 21(1):76-83 (1999). |
Azzouz, Mimoun, Gene therapy for ALS: progress and prospects, Biochemical et Biophysica Acta, 1762:1122-1127, 2006. |
Berendsen, Herman, A glimpse of the holy grail?, Science, 282:642-643, Oct. 23, 1998. |
Bickel et al., Synthesis and bioactivity of monobiotinylated DALDA: A Mu-specific opioid peptide designed for targeted brain delivery, J Pharmacol and Exp Therapeutics, 268(2): 791-796 (1994). |
Bork et al., Go hunting in sequence databases but watch out for the traps, Trends in Genetics, 12:425-427, 1996. |
Bork, Powers and pitfalls in sequence analysis: the 70% hurdle, Genome Research, 10:398-400, 2000. |
Bradley et al., Limits of cooperativity in a structurally modular protein: response of the notch ankyrin domain to analogous alanine substitutions in each repeat, J. Mol. Biol., 324:373-386, 2002. |
Brenner, Errors in genome annotation, Trends in Genetics, 15:132-133, 1999. |
Broekemeier et al., Inhibition of the mitochondrial permeability transition by Cyclosporin A during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases, Biochemistry, 34:16440-16449, 1995. |
Citron, Martin, Alzheimer's Disease: Treatments in discovery and development, Nature Neuroscience Supplement, 5:1055-1057, Nov. 2002. |
Clapp III et al., Cardiovascular and metabolic responses to two receptor-selective opioid agonists in pregnant sheep, American Journal of Obstetrics and Gynecology, 178(2):397-401, Feb. 1998. |
Corpeleijin et al. Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with Type 2 diabetes mellitus and insulin resistance, Diabet Med., 23(8):907-911 (2006). |
Demas, et al., Anaesthesia for heart transplantation, Br J. Anaesth, 58:1357-1564, 1986. |
Dimaio et al., Synthesis and pharmacological characterization in vitro of cyclic enkephalin analogues, Effect of Conformational Constraints on Opiate Receptor Selectivity, J. Med. Chem., 25:1432-1438, 1982. |
Doerks et al., Protein annotation: detective work for function prediction, Trends in Genetics, 14:248-250, 1998. |
Dooley, C T et al., Selective ligands for the mu, delta and kappa opioid receptors identified from a single mixture based tetrapeptide positional scanning combinatorial library, Journal of Biological Chemistry, American Society of Biochemistry and Molecular Biology, 273(30):18848-18856, Jul. 24, 1998. |
Drin et al., Studies on the internalization mechanism of cationic cell-penetrating peptides, Journal of Biological Chemistry, 278(33):31192-31201, 2003. |
Fuhrman et al., Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase, Atherosclerosis, 161(2):307-316, Mar. 7, 2002. |
Guerrini et al., Opioid receptor selectivity alteration by single residue replacement: synthesis and activity profile of [Dmt] deltorphin B, European Journal of Pharmacology, 302:37-42, 1996 (abstract only.). |
Herve et al., On the immunogenic properties of retro-inverso peptides. Total retro-inversion of t-cell epitopes causes a loss of binding to MHC II molecules, Molecular Immunology, 34(2):157-163, 1997. |
Holsey et al., Cardiovascular effects of a mu-selective opioid agonist (Tyrosine-D-Arginine-Phenylalanine-Lysine-NH2) in fetal sheep; Sites and Mechanisms of Action, Am. J. Obstet. Gynecol., 180(5):1127-1130, May 1999. |
Holsey et al., Cardiovascular effects of a μ-selective opioid agonist (Tyrosine-D-Arginine-Phenylalanine-Lysine-NH2) in fetal sheep; Sites and Mechanisms of Action, Am. J. Obstet. Gynecol., 180(5):1127-1130, May 1999. |
International Search Report and Written Opinion in International Application No. PCT/US2006/036291, dated Sep. 24, 2007. |
Kett et al., Baroreflex-mediated bradycardia but not tachycardia is blunted peripherally by intravenous mu-opioid agonists, Am. J. Obstet. Gynecol., 178(5):950-955, May 1998. |
Kett et al., Baroreflex-mediated bradycardia but not tachycardia is blunted peripherally by intravenous μ-opioid agonists, Am. J. Obstet. Gynecol., 178(5):950-955, May 1998. |
Korczyn et al., Emerging therapies in the pharmacological treatment of Parkinson's Disease, Drugs, 62(5):775-786, 2002. |
Lasukova et al., Activation of mu-opioid receptors and cardiomyocyte resistance to free radical damage, Patol Fiziol Eksp Ter., 2: English Abstract Only, 2001. |
Lishmanov et al., Ligands for opioid and o-receptors improve cardiac electrical stability in rat models of post-infarction cardiosclerosis and stress, Life Sciences, 65:13-17, 1999. |
Majer et al., Synthesis of methylated phenylalanines via hydrogenolysis of corresponding 1, 2, 3, 4 tetrahydroisoquinoline-3-caraboxylic acids, Int. Journal of Peptide & Protein Research, 43:62-68, 1994. |
Margolis et al., Diagnosis of Huntington Disease, Clinical Chemistry, 49(10):1726-1732, 2003. |
Merck Manual Online entry for Nephrotic Disease, Jan. 2010. * |
Moosman et al. Secretory peptide hormones are biochemical antioxidants: structure-activity relationship, Mol Pharmacol, 61:260-268, 2002. |
Neilan et al., Pharmacological characterization of the dermorphin analog [Dmt1]DALDA, a highly potent and selective u-opioid peptide, European Journal of Pharmacology, 419(1):15-23, 2001. |
Ngo et al., Computational complexity, protein structure prediction, and the leventhal paradox, the protein folding problem and tertiary structure prediction, (Ed. K. Merz Jr. and S. Le Grand), Birkhauser Boston, 492-495, 1994. |
Omoniyi et al., A peripheral site of action for the attenuation of baroreflex-mediated bradycardia by intravenous mu-opioid agonists, Journal of Cardiovascular Pharmocolgy(TM), 35(2):269-274, 2000. |
Omoniyi et al., A peripheral site of action for the attenuation of baroreflex-mediated bradycardia by intravenous μ-opioid agonists, Journal of Cardiovascular Pharmocolgy™, 35(2):269-274, 2000. |
Patel et al., Pharmacotherapy of cognitive impairment in Alzheimer's Disease: a review, J. Geriatr. Psychiatry Neurol., 8:81-95, 1995. |
Richard et al., Cell-penetrating peptides, Journal of Biological Chemistry, 278(1):585-590, 2003. |
Rudinger, J., Peptide hormones, (Ed. J. A. Parson), University Park Press, Baltimore, 1-7, 1976. |
Schiller et al., Dermorphin analogues carrying an increased positive net charge in their "message" domain display extremely high mu-opioid receptor selectivity, Journal of Medicinal Chemistry, 32(3):698-703, 1989. |
Schiller et al., Dermorphin analogues carrying an increased positive net charge in their "message" domain display extremely high μ-opioid receptor selectivity, Journal of Medicinal Chemistry, 32(3):698-703, 1989. |
Schiller et al., Opioid peptide analogs with novel activity profiles as potential therapeutic agents for use in analgesia, 1st Int. Pept. Symp., Program and Abstracts, 0-36, o. 77, 1997. |
Schiller et al., Opioid peptide analogs with novel activity profiles as potential therapeutic agents for use in analgesia, Peptide Science-Present and Future, Proc. 1st Int. Pept. Symp., 665-669, 1999. |
Schiller et al., Synthesis and in vitro opioid activity profiles of DALDA analogues, European Journal of Medicinal Chemistry, 35(10):895-901, Oct. 2000. |
Schiller et al., TIPP: A highly potent and stable pseudopeptide opioid receptor antagonist with extraordinary selectivity, J. Med. Chem., 36:3182-3187, 1993. |
Schiller et al., Unsulfated C-terminal 7-peptide of cholecystokinin: a new ligand of the opiate receptor, Biochemical and Biophysical Research Communications, 85:1332-1338, 1978. |
Schiller, P. W. et al., Opioid peptide analogs with novel activity profiles as potential therapeutic agents for use in analgesia, STN Caplus, 132:102403, 1997. |
Schwarze, Steven R., et al., In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA, Trends in Pharmacological Sciences, 21:45-48, 2000. |
Shimoyama, et al. Antinociceptive and respiratory effects of intrathecal H-Tyr-D-Arg-Phe-Lys-NH2 (DALDA) and [Dmtl] DALDA, The Journal of Pharmacology and Experimental Therapeutics, 297(1):364-371, Apr. 2001. |
Shroff et al., Effects of intrathecal opioid on extubation time, analgesia and intensive care unit stay following coronary artery bypass grafting, Journal of Clinical Anesthesia, 9:415-419, 1997. |
Simmons, Zachary, Management strategies for patients with Amyotrophic Lateral Sclerosis from diagnosis through death. The Neurologist, 11(5):257-270, Sep. 2005 (abstract only) (File Medline on STN. An No. 2005478947). |
Skolnick et al., From genes to protein structure and function: novel applications of computational approaches in the genomic era, Trends in Biotech, 18(1):34-39, 2000. |
Smith et al., The challenges of genome sequence annotation or the devil is in the details, Nature Biotechnology, 15:1222-1223, 1997. |
Song et al., A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats, Coronary Artery Disease, 16:407-410, 2005. |
Spetea, Mariana et al., Interaction of agonist peptides (3H) Tyr-D-Ala-Phe-Phe-NH2 with mu-opioid receptor in rat brain and CHO-mu/1 cell line, Peptides, 19(6):1091-1098, 1998. |
Sriram et al., Experimental allergic encephalomyelitis: a misleading model of Multiple Sclerosis, Ann. Neurol., 58:939-945, 2005. |
Szeto et al., In vivo disposition of dermorphin analog (DALDA) in nonpregnant and pregnant sheep, The Journal of Pharmacology and Experimental Therapeutics, 284(1):61-65, 1998. |
Szeto et al., In vivo pharmacokinetics of selective u-opioid peptide agonists, The Journal of Pharmacology and Experimental Therapeutics, 298(1):57-61, Jul. 2001. |
Szeto et al., Mu-opioid receptor densensitization and resensitization in vivo, International Narcotics Research Conference, Poster Abstracts, Monday, Mon19:5, 1999. |
Szeto et al., Respiratory depression after intravenous administration of o-Selective opioid peptide analogs, Peptides, 20:101-105, 1999. |
Unger et al. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes, Diabetologia, 28(3):119-121 (1985). |
Wells, James A., Additivity of mutational effects in proteins, Biochemistry, American Chemical Society, 29(37):8509-8517 Sep. 18, 1990. |
Wu et al., Myocardial protective effect of mu opioid agonists, International Narcotics Research Conference, Poster Abstracts, Sun59:15, 1999. |
Wu, et al., A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning, Am J Physiol Heart Circ Physiol, 283:H783-H791, 2002. |
Zadina, J. et al., A potent and selective endogenous agonist for the mu-opiate receptor, Nature, 386:499-502, Apr. 3, 1997. |
Zhao et al., Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury, J. Biol. Chem., 279(33):34682-34690, Aug. 2004. |
Zhao, Guo-Min et al., Profound spinal tolerance after repeated exposure to a highly selective u-opioid peptide agonist: Role of o-opioid receptors, J Pharma. Exper. Thera., 302(1):188-196, 2002. |
Zhao, Kesheng et al., Comparison of [Dmt1]DALDA and DAMGO in Binding and G Protein Activation at mu, d, and k Opioid Receptors, J. Parmacology and Experimental Therapeutics, 307(3):947-954, 2003. |
Zhao, Kesheng et al., Comparison of [Dmt1]DALDA and DAMGO in Binding and G Protein Activation at μ, d, and k Opioid Receptors, J. Parmacology and Experimental Therapeutics, 307(3):947-954, 2003. |
Zhao, Kesheng, et al., Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide, Journal of Pharmacology and Experimental Therapeutics, 304(1):425-432, 2003. |
Zhao, Kesheng, et al., Translocation of a 3+ net charge tetrapeptide across plasma membrane of mammalian cells, abstract published on-line May 1, 2002, World Congress of Pharmacology Meeting, held Jul. 2002. |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11447523B2 (en) * | 2005-09-16 | 2022-09-20 | Cornell Research Foundation, Inc. | Methods for reducing CD36 expression |
US20090221514A1 (en) * | 2008-02-26 | 2009-09-03 | Szeto Hazel H | Methods for prevention and treatment of acute renal injury |
US20230398172A1 (en) * | 2008-02-26 | 2023-12-14 | Cornell University | Methods for prevention and treatment of acute renal injury |
US11628198B2 (en) | 2008-02-26 | 2023-04-18 | Cornell University | Methods for prevention and treatment of acute renal injury |
US8143219B2 (en) * | 2008-02-26 | 2012-03-27 | Cornell University | Methods for prevention and treatment of acute renal injury |
US8592373B2 (en) | 2008-02-26 | 2013-11-26 | Cornell University | Methods for prevention and treatment of acute renal injury |
US8940696B2 (en) | 2008-02-26 | 2015-01-27 | Cornell University | Methods for prevention and treatment of acute renal injury |
US20110039766A1 (en) * | 2009-08-12 | 2011-02-17 | Szeto Hazel H | Methods for preventing or treating metabolic syndrome |
US9023807B2 (en) | 2009-08-24 | 2015-05-05 | Stealth Peptides International, Inc. | Methods and compositions for preventing or treating ophthalmic conditions |
US9549963B2 (en) | 2009-08-24 | 2017-01-24 | Stealth Biotherapeutics Corp | Methods and compositions for preventing or treating ophthalmic conditions |
US10188692B2 (en) | 2009-08-24 | 2019-01-29 | Stealth Biotherapeutics Corp | Methods and compositions for preventing or treating ophthalmic conditions |
US8470784B2 (en) | 2009-08-24 | 2013-06-25 | Stealth Peptides International, Inc. | Methods and compositions for preventing or treating ophthalmic conditions |
US11612633B2 (en) | 2009-08-24 | 2023-03-28 | Stealth Biotherapeutics Inc. | Methods and compositions for preventing or treating ophthalmic conditions |
US20110177047A1 (en) * | 2009-08-24 | 2011-07-21 | Liping Liu | Methods and compositions for preventing or treating ophthalmic conditions |
US11944662B2 (en) | 2009-08-24 | 2024-04-02 | Stealth Biotherapeutics Inc. | Methods and compositions for preventing or treating ophthalmic conditions |
US11534476B2 (en) | 2009-10-05 | 2022-12-27 | Cornell University | Methods for the prevention or treatment of heart failure |
US20110082084A1 (en) * | 2009-10-05 | 2011-04-07 | Szeto Hazel H | Methods for the prevention or treatment of heart failure |
US12102659B2 (en) | 2009-10-05 | 2024-10-01 | Cornell University | Methods for the prevention or treatment of heart failure |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11447523B2 (en) | Methods for reducing CD36 expression | |
AU2019257440B2 (en) | Methods for reducing CD36 expression | |
AU2016203803B2 (en) | Methods for reducing cd36 expression | |
AU2012202035B2 (en) | Methods for reducing CD36 expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CORNELL UNIVERSITY;REEL/FRAME:022701/0531 Effective date: 20090514 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: CORNELL RESEARCH FOUNDATION, INC.,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SZETO, HAZEL;LIU, SHAOYI;CHO, SUNGHEE;REEL/FRAME:024491/0965 Effective date: 20051107 Owner name: CORNELL RESEARCH FOUNDATION, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SZETO, HAZEL;LIU, SHAOYI;CHO, SUNGHEE;REEL/FRAME:024491/0965 Effective date: 20051107 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CORNELL UNIVERSITY;REEL/FRAME:040932/0713 Effective date: 20161208 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |