US7868624B2 - Method and system for correcting the feedback from electrical measurement converters to a device under test - Google Patents
Method and system for correcting the feedback from electrical measurement converters to a device under test Download PDFInfo
- Publication number
- US7868624B2 US7868624B2 US11/815,953 US81595306A US7868624B2 US 7868624 B2 US7868624 B2 US 7868624B2 US 81595306 A US81595306 A US 81595306A US 7868624 B2 US7868624 B2 US 7868624B2
- Authority
- US
- United States
- Prior art keywords
- measurement converter
- measurements
- measurement
- power
- input impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/28—Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
- G01R27/32—Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
Definitions
- the invention relates to a method and an arrangement for correcting the feedback from electrical measurement converters to the device under test in measurements in the high-frequency and microwave range and also to an arrangement for implementing this method and to an appropriate measurement converter.
- Measurement technology is constantly faced with the problem that measurements cause feedback to the device under test. As a result, measuring instruments are designed to keep this feedback as small as possible: voltage meters have a high input impedance; power meters have an impedance value which is, if possible, as large as the rated impedance of the reference system (for example 50 ⁇ ). While it has been possible for a long time to come very close to the ideally-required impedance value in the low-frequency range, that is to say, to operate almost without feedback, this is possible only to a limited extent in the high-frequency and microwave range. For example, the design-determined parasitic input capacities of oscilloscope probe heads have the effect that the impedance value in the GHz range falls below the 1 k ⁇ -level. For example, in the case of microwave power sensors, it is the mechanical tolerance of the connecting jacks, which set a lower limit for the attainable matching.
- Power sensors are used to measure the rated power of a source, that is to say, the power, which the source can emit with surge-impedance-corrected matching.
- power sensors are designed in such a manner that their input impedance deviates as little as possible from the reference surge impedance (generally 50 ⁇ ), and that they display the power supplied.
- the reference surge impedance generally 50 ⁇
- this can impair the accuracy of power measurements.
- mismatching on the part of the sensor means that some of the power supplied to it is emitted again in the form of a reflected wave.
- this would have the effect that the net heat convertible into power is less than the power supplied to the sensor.
- power sensors are already adjusted (calibrated) in such a manner that they display the power of the incident wave independently of the level of power actually supplied to the measurement converter.
- a frequency-dependent sensitivity S is determined, which links the raw measured value (e.g. the output value X of a thermoelectric measuring cell) and the power of the incident wave:
- the measurement deviations caused by the feedback are generally negligible at low frequencies, where small reflection coefficients can easily be realised.
- measurement deviations can occur, which exceed the specified uncertainty of the sensor for the incident wave several times over.
- a sensor with a reflection coefficient of 0.13 specificallyation for R&S NRP-Z55 at 40 GHz
- a source with a reflection coefficient of 0.33 SWR 2.0
- a measurement deviation within the range from ⁇ 8.9% . . . +9.3% can occur. This is significantly more than the measurement uncertainty specified for this sensor (for the incident wave) at the level of approximately 2.5%.
- a method for correcting feedback from electrical measurement converters to the device under test.
- the feedback from an electrical measurement converter, for example, a power sensor or an oscilloscope probe head, to the device under test can be calculated in a simple manner and accordingly eliminated from the measured result.
- the rated power of the source can be measured successively with a differently-matched sensor, thereby increasing the accuracy of measurement.
- the sensor is designed in such a manner that it can be operated in at least three different configurations with different input impedances. These at least three different configurations are selected in such a manner that correspondingly-different reflection coefficients are obtained. Accordingly, the source to be measured with regard to its power reacts to these different reflection coefficients with greater or lesser changes to the outgoing wave and correspondingly-different raw measured values are obtained.
- FIG. 1 shows a known arrangement for power measurement using a power sensor, according to an exemplary embodiment
- FIG. 2 shows a measurement arrangement of this kind expanded according to an exemplary embodiment
- FIG. 3 shows the reflection-factor diagram obtained for a sensor of this kind with three successive measurements
- FIG. 4 shows a possible first practical solution for a power sensor according to an exemplary embodiment
- FIG. 5 shows the use of an exemplary embodiment in an oscilloscope probe head.
- FIG. 1 shows the schematic circuit diagram of a known arrangement for rated power measurement of a high-frequency or microwave generator 1 . It comprises a power detector 2 , which operates, for example, according to the thermal principle, and converts the power to be measured into heat. A data memory 3 , in which parameters of the detector, such as the sensitivity S are stored, is assigned to this power detector 2 . The detector 2 and the data memory 3 are connected to an evaluation and control unit 4 , in which the power of the incident wave of the generator 1 is calculated. This is then further processed in the display and output device 5 .
- FIG. 2 shows a measuring arrangement according to the invention, in which a component group 6 for changing the input impedance of the power detector is assigned to the power detector 2 .
- the sensor can be operated in at least three configurations j with different input impedances. For each configuration j, the complex reflection coefficients and the associated sensitivities, which have been determined by a preceding calibration, are stored in the data memory 7 .
- the raw measured values X must be present in at least three different configurations.
- the complex reflection coefficients ⁇ s,j and the associated sensitivities S j which can be determined by a calibration during the production process, must be known for each configuration. With four or more configurations, the equation system is over determined. The redundancy can be used to compensate measurement errors in the determination of X j , ⁇ s,j and S j . In the normal case, three or four configurations are provided.
- the reflection coefficient is changed in such a manner that two change vectors, for example, ⁇ s,2 ⁇ s,1 and ⁇ s,3 ⁇ s,1 enclose an angle from 30° to 150° —ideally 90° (see FIG. 3 ) and are sufficiently large so that a measurable change is obtained for the power
- the plan and design for a component group of this kind connected upstream of the power sensor are already known to a person skilled in the art of high-frequency and microwave measurement technology.
- the required value P GZ0 is determined from the raw measured values X j and the stored values S j and ⁇ s,j on the basis of equation system 4 and supplied to the output unit 5 .
- the component group 6 should be designed in such a manner that, on the one hand, the transmission behavior of the sensor does not differ substantially for the different configurations and, on the other hand, that changes in the reflection factor are caused (see above) in such a manner that an accurate determination of the rated power P GZ0 is possible.
- FIG. 4 shows one solution, in which a capacitor 9 and/or an ohmic resistor 10 can be connected in parallel to the terminating resistor 13 of the power detector 2 . Both elements are dimensioned in such a manner that the input-end reflection coefficient changes at the time of connection within the order of magnitude from 0.03 to 0.3. The 90° condition is automatically fulfilled. In total, four configurations are obtained with this arrangement, of which one is redundant:
- Configuration Switch 12 Switch 11 1 Off Off 2 Off On 3 On Off 4 On On
- the measure provided according to the invention can also be used for probe heads of oscilloscopes, although the scope of the evaluation is more extensive. While, in the case of the power measurement, the shape of the curve of the signal is known (sinusoidal oscillation of a given frequency) and only its level (effective value, power) must be determined, the signals normally supplied to oscilloscopes are complex, generally non-sinusoidal signals. There is therefore a mixture of frequencies, of which the individual spectral components are attenuated or amplified and changed in their phase position differently by loading the source with the input impedance of the probe head. Accordingly, all—or at least all relevant—spectral components of the measured value and the values of the source impedance present at these frequencies must be determined.
- FIG. 5 shows a circuit according to the invention.
- a probe head 15 of which the input impedance can be changed in at least three stages, is connected to the output of a source 14 with the open-circuit voltage ⁇ U g (f) (sum of all spectral components) and the output impedance Z g (f). For each of these stages (j), the input impedance Z s,j (f) and the complex transfer constant:
- F j ⁇ ( f ) X j ⁇ ( f ) U j ⁇ ( f ) ( 5 ) as a ratio of the output value X and the input value U, are known and stored in the memory 16 .
- the output value X for at least three configurations is registered in the memory and evaluation unit 17 and broken down in each case into its spectral components. For a frequency f, the following applies:
- X j ⁇ ( f ) F ⁇ ( f ) ⁇ Z s , j ⁇ ( f ) Z s , j ⁇ ( f ) + Z g ⁇ ( f ) ⁇ U g ⁇ ( f ) ( 6 )
- U g ⁇ ( f ) 1 F ⁇ ( f ) ⁇ Z s , j ⁇ ( f ) + Z g ⁇ ( f ) Z s , j ⁇ ( f ) ⁇ X j ⁇ ( f ) ( 7 )
- the principle according to the invention can also be used with other types of measurement converters by providing the measurement converter with a device, which changes the feedback in a targeted manner.
- the number of different configurations is determined by the number of unknowns in the system of transmission equations.
- the problem of orthogonality described above is attributable to the requirement for a linear independent equation system. The invention is therefore not restricted to the exemplary embodiments described. All of the elements described or illustrated can be combined with one another as required.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
ai incident wave
|ai|2 power of the incident wave
S sensitivity
X raw measured value
PGZ0 rated power of the source (with matching)
ΓG complex reflection coefficient of the source
ΓS complex reflection coefficient of the power sensor
2. Using a tuner connected upstream of the sensor, the reflection coefficient of the sensor is adjusted at the measurement frequency to zero, so that no measurement error can occur as a result of mismatching. In this case, a network analyser is also required, in fact, for the adjustment of the tuner. An additional difficulty with this method is that the tuner adjustment is frequency dependent, that is to say, the tuner must be readjusted each time for power measurements at different frequency points. Accordingly, a remote-controllable tuner is almost indispensable for practical implementation. This method is used in isolated cases in calibration laboratories, where the measurement accuracy attainable is comparable with that described above under 1.
| Switch | 12 | |
1 | | Off | |
2 | Off | On | |
3 | On | Off | |
4 | On | On | |
as a ratio of the output value X and the input value U, are known and stored in the
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005005887 | 2005-02-09 | ||
DE102005005887A DE102005005887A1 (en) | 2005-02-09 | 2005-02-09 | Method and arrangement for correcting the retroactivity of electrical transducers on the object to be measured |
DE102005005887.6 | 2005-02-09 | ||
PCT/EP2006/000923 WO2006084628A1 (en) | 2005-02-09 | 2006-02-02 | Method and device for adjusting a measuring transformer reaction to a measured object |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080143343A1 US20080143343A1 (en) | 2008-06-19 |
US7868624B2 true US7868624B2 (en) | 2011-01-11 |
Family
ID=36123940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/815,953 Active 2026-05-05 US7868624B2 (en) | 2005-02-09 | 2006-02-02 | Method and system for correcting the feedback from electrical measurement converters to a device under test |
Country Status (4)
Country | Link |
---|---|
US (1) | US7868624B2 (en) |
EP (1) | EP1846774B1 (en) |
DE (1) | DE102005005887A1 (en) |
WO (1) | WO2006084628A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213296A1 (en) | 2013-04-23 | 2014-10-23 | Rohde & Schwarz Gmbh & Co. Kg | Method and measuring device for characterizing an emitting test object |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010026630B4 (en) | 2010-01-12 | 2016-03-31 | Rohde & Schwarz Gmbh & Co. Kg | Power calibration system and method of power calibration |
DE102014200517B4 (en) * | 2013-10-07 | 2023-05-11 | Rohde & Schwarz GmbH & Co. Kommanditgesellschaft | Method, calibration unit and system for determining system errors and performance values for calibrating a network analyzer |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2044500A1 (en) | 1970-09-08 | 1971-08-26 | ||
DE3325701A1 (en) | 1983-07-16 | 1985-01-24 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Method and arrangement for iterative power matching |
DE3903719A1 (en) | 1988-02-08 | 1989-08-17 | Toshiba Kawasaki Kk | AUTOMATIC IMPEDANCE ADJUSTER |
EP0333521A1 (en) | 1988-03-18 | 1989-09-20 | CASCADE MICROTECH, INC. (an Oregon corporation) | System for setting reference reactance for vector corrected measurements |
US4871964A (en) * | 1988-04-12 | 1989-10-03 | G. G. B. Industries, Inc. | Integrated circuit probing apparatus |
EP0381398A2 (en) | 1989-01-30 | 1990-08-08 | Daihen Corporation | Automatic impedance adjusting apparatus for microwave load and automatic impedance adjusting method therefor |
DE3911254A1 (en) | 1989-04-07 | 1990-10-11 | Eul Hermann Josef Dipl Ing | Method for establishing the complex measuring capability of homodyne network analysers |
US5376902A (en) * | 1993-08-31 | 1994-12-27 | Motorola, Inc. | Interconnection structure for crosstalk reduction to improve off-chip selectivity |
US5502391A (en) * | 1992-09-11 | 1996-03-26 | Microtest, Inc. | Apparatus for measuring the crosstalk in a cable |
US5734268A (en) | 1996-04-08 | 1998-03-31 | Motorola, Inc. | Calibration and measurment technique and apparatus for same |
US20010009374A1 (en) * | 2000-01-20 | 2001-07-26 | Kazuyuki Yagi | Apparatus for measuring the ratio of electrical signals, electric component measuring instrument , method for calibrating electric component measuring instruments and method for measuring the ratio of electrical signals |
WO2004100513A1 (en) | 2003-05-12 | 2004-11-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for loop test of a disturbed line |
EP1542026A1 (en) | 2003-12-11 | 2005-06-15 | Siemens Aktiengesellschaft | Method and device for determining an electromagnetic reflection coefficient of an antenna, a method and device for automatically changing the matching of a power amplifier to an antenna, and a method and a device for automatically reducing the output power of a power amplifier |
EP1569005A2 (en) | 2004-02-25 | 2005-08-31 | Tektronix, Inc. | Calibration method and apparatus |
-
2005
- 2005-02-09 DE DE102005005887A patent/DE102005005887A1/en not_active Withdrawn
-
2006
- 2006-02-02 WO PCT/EP2006/000923 patent/WO2006084628A1/en active Application Filing
- 2006-02-02 US US11/815,953 patent/US7868624B2/en active Active
- 2006-02-02 EP EP06706593.8A patent/EP1846774B1/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2044500A1 (en) | 1970-09-08 | 1971-08-26 | ||
DE3325701A1 (en) | 1983-07-16 | 1985-01-24 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Method and arrangement for iterative power matching |
DE3903719A1 (en) | 1988-02-08 | 1989-08-17 | Toshiba Kawasaki Kk | AUTOMATIC IMPEDANCE ADJUSTER |
US4890062A (en) | 1988-02-08 | 1989-12-26 | Kabushiki Kaisha Toshiba | Automatic impedance adjuster for MRI system |
EP0333521A1 (en) | 1988-03-18 | 1989-09-20 | CASCADE MICROTECH, INC. (an Oregon corporation) | System for setting reference reactance for vector corrected measurements |
US4871964A (en) * | 1988-04-12 | 1989-10-03 | G. G. B. Industries, Inc. | Integrated circuit probing apparatus |
EP0381398A2 (en) | 1989-01-30 | 1990-08-08 | Daihen Corporation | Automatic impedance adjusting apparatus for microwave load and automatic impedance adjusting method therefor |
DE3911254A1 (en) | 1989-04-07 | 1990-10-11 | Eul Hermann Josef Dipl Ing | Method for establishing the complex measuring capability of homodyne network analysers |
US5502391A (en) * | 1992-09-11 | 1996-03-26 | Microtest, Inc. | Apparatus for measuring the crosstalk in a cable |
US5376902A (en) * | 1993-08-31 | 1994-12-27 | Motorola, Inc. | Interconnection structure for crosstalk reduction to improve off-chip selectivity |
US5734268A (en) | 1996-04-08 | 1998-03-31 | Motorola, Inc. | Calibration and measurment technique and apparatus for same |
US20010009374A1 (en) * | 2000-01-20 | 2001-07-26 | Kazuyuki Yagi | Apparatus for measuring the ratio of electrical signals, electric component measuring instrument , method for calibrating electric component measuring instruments and method for measuring the ratio of electrical signals |
WO2004100513A1 (en) | 2003-05-12 | 2004-11-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for loop test of a disturbed line |
EP1542026A1 (en) | 2003-12-11 | 2005-06-15 | Siemens Aktiengesellschaft | Method and device for determining an electromagnetic reflection coefficient of an antenna, a method and device for automatically changing the matching of a power amplifier to an antenna, and a method and a device for automatically reducing the output power of a power amplifier |
EP1569005A2 (en) | 2004-02-25 | 2005-08-31 | Tektronix, Inc. | Calibration method and apparatus |
Non-Patent Citations (2)
Title |
---|
International Preliminary Report on Patentability (IPRP) for PCT/EP2006/000923. |
WO PCT/EP2006/000923, International Search Report, Apr. 21, 2006. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213296A1 (en) | 2013-04-23 | 2014-10-23 | Rohde & Schwarz Gmbh & Co. Kg | Method and measuring device for characterizing an emitting test object |
DE102013213296B4 (en) | 2013-04-23 | 2024-01-04 | Rohde & Schwarz Gmbh & Co. Kg | Method and measuring device for characterizing an emitting measurement object |
Also Published As
Publication number | Publication date |
---|---|
EP1846774A1 (en) | 2007-10-24 |
DE102005005887A1 (en) | 2006-08-10 |
EP1846774B1 (en) | 2017-04-26 |
WO2006084628A1 (en) | 2006-08-17 |
US20080143343A1 (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6701265B2 (en) | Calibration for vector network analyzer | |
JP4282897B2 (en) | Automated microwave test system with improved accuracy | |
US11927661B2 (en) | Integrated vector network analyzer | |
US8686711B2 (en) | High-frequency measuring device and high-frequency measuring device calibration method | |
US7315170B2 (en) | Calibration apparatus and method using pulse for frequency, phase, and delay characteristic | |
US6397160B1 (en) | Power sensor module for microwave test systems | |
US20040095145A1 (en) | Method and apparatus for performing multiport through-reflect-line calibration and measurement | |
US8400165B2 (en) | Power calibration system | |
US7592818B2 (en) | Method and apparatus for measuring scattering coefficient of device under test | |
US9372248B2 (en) | Method for evaluating reliability of electrical power measuring device | |
US20050258815A1 (en) | Method for measuring a three-port device using a two-port vector network analyzer | |
US20090174415A1 (en) | Method for Calibrating a Real-Time Load-Pull System | |
US20070084035A1 (en) | Measurement error correcting method and electronic component characteristic measurement device | |
Sarkas et al. | A fundamental frequency 143-152 GHz radar transceiver with built-in calibration and self-test | |
US7030625B1 (en) | Method and apparatus for performing a minimum connection multiport through-reflect-line calibration and measurement | |
US7868624B2 (en) | Method and system for correcting the feedback from electrical measurement converters to a device under test | |
US11226371B2 (en) | System and method of production testing of impedance of radio frequency circuit incorporated on printed circuit board | |
US7359814B1 (en) | Multi-port analysis apparatus and method and calibration method thereof | |
US6853176B2 (en) | Power measurement apparatus and method therefor | |
US6803776B2 (en) | Current-comparator-based four-terminal resistance bridge for power frequencies | |
GB2409049A (en) | Measuring complex reflection coefficient of an RF source | |
Wong | Complete power sensor calibration using a VNA | |
US3278840A (en) | Radio-frequency bridge having a delta input matching circuit | |
US20250052846A1 (en) | Test and/or measurement system and method for calibrating a test and/or measurement system | |
RU2039363C1 (en) | Method of and device for inherent noise measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROHDE & SCHWARZ GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REICHEL, THOMAS;REEL/FRAME:019717/0113 Effective date: 20070723 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |