US7856055B2 - Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data - Google Patents
Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data Download PDFInfo
- Publication number
- US7856055B2 US7856055B2 US10/474,780 US47478003A US7856055B2 US 7856055 B2 US7856055 B2 US 7856055B2 US 47478003 A US47478003 A US 47478003A US 7856055 B2 US7856055 B2 US 7856055B2
- Authority
- US
- United States
- Prior art keywords
- render
- image data
- image
- motion
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 220
- 230000033001 locomotion Effects 0.000 title claims abstract description 166
- 230000008569 process Effects 0.000 claims abstract description 118
- 230000002123 temporal effect Effects 0.000 claims abstract description 98
- 238000001914 filtration Methods 0.000 claims abstract description 51
- 230000002452 interceptive effect Effects 0.000 claims abstract description 4
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 46
- 238000007781 pre-processing Methods 0.000 claims description 27
- 238000009826 distribution Methods 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 19
- 238000013500 data storage Methods 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000012795 verification Methods 0.000 claims description 17
- 238000012805 post-processing Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000009432 framing Methods 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 230000015556 catabolic process Effects 0.000 claims description 8
- 238000006731 degradation reaction Methods 0.000 claims description 8
- 238000009877 rendering Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 4
- 238000007726 management method Methods 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000036961 partial effect Effects 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims description 2
- 238000003707 image sharpening Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000013441 quality evaluation Methods 0.000 abstract description 7
- 230000009467 reduction Effects 0.000 description 12
- 230000000007 visual effect Effects 0.000 description 12
- 238000005070 sampling Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000003796 beauty Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000003041 laboratory chemical Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- -1 silver halide salts Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0135—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
- H04N7/014—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0112—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/21—Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
Definitions
- the present invention is broadly directed (but not limited) to the field of digitally re-mastering or otherwise modifying motion picture contents and, more specifically, to a system and a method that efficiently computes image data from an entire motion picture in a parallel and pipeline fashion for the purpose of concurrent release with the original format, and to a method that enhances images by improving image resolution and quality for exhibition, typically in an alternative format including large format projection environment.
- the present invention is also applicable to the enhancement of a broad range of image sequences originated from film, video, optical devices, electronic sensors, and so on. It additionally may be employed to improve quality of images for display in their original format.
- a motion picture produced in a 35 mm film format is intended to be exhibited in a conventional format cinema or in other smaller formats like home video and broadcast television.
- the display resolution required to maintain adequate display quality can be calculated based on the screen size, the theatre geometry, audience seating positions as well as the minimum visual acuity that needs to be maintained in order to deliver the required image quality.
- a display resolution of around 2000 pixels across the width of the screen is considered adequate for delivery of satisfactory image quality.
- This resolution requirement is largely supported by the 35 mm film formats as well as by existing film production process chain from original photography, post-production, to film laboratory process.
- a similar display resolution requirement is also recommended for digital cinemas designed to replace conventional film-based cinemas.
- the present invention defines a method of digitally re-mastering a 35 mm motion picture with enhanced image resolution and quality as demanded by the large format cinematic experience.
- the digital re-mastering process of the present invention is primarily (but not exclusively) used for the enhancement of image resolution of a motion image sequence originating with live action film photography. This process can be applied to the enhancement of computer generated animation or cell animation images that have been transferred to film.
- the digital re-mastering process can also be used to enhance the resolution and the quality of moving images captured using an optical imaging device or an electronic sensor device.
- One aspect of the digital re-mastering concept of the present invention is that spatial resolution of each image frame in a live action motion picture sequence can be enhanced through temporal image processing. This is very different from the concept of film restoration in which “cleaning up” noise and “removing” artifacts are primary goals.
- film restoration In which “cleaning up” noise and “removing” artifacts are primary goals.
- Most film restoration methods are designed to compensate for the loss of image quality caused by the deterioration of film conditions and to restore the characteristics of images close to the original form. Since the targeted re-release platform for a film restoration project is usually the same conventional cinema that the film was originally intended to be exhibited, or even smaller exhibition formats like home video and television, enhancing the spatial resolution of original imagery is not a major concern for film restoration.
- the digital re-mastering process of the present invention should also be distinguished from existing methods for re-mastering an animated motion picture for large format releases, such as Disney's Fantasia 2000 and Beauty and Beast large format release production.
- image data was originally created in a digital form and was not corrupted by a film transfer process.
- the spatial resolution of image frames cannot be further enhanced through image processing methods unless those images are re-rendered in more detail.
- the method used in Fantasia 2000 and Beauty and Beauty re-releases cannot enhance the image resolution of live action film photography.
- the most straightforward method of displaying a 35 mm film originated motion picture in a large format cinema is to use a projection lens with a larger magnification to fill the entire screen. This method cannot deliver sufficient visual quality due to the fact that images on a 35 mm release print do not have sufficient spatial resolution.
- a better method is to digitally enlarge each frame of the motion picture using digital spatial interpolation methods and record the enlarged image data onto a large format film, like the 15/70 film format, for projection.
- the existing spatial interpolation methods do not improve spatial resolution and often soften images.
- Certain spatial high-pass filtering methods can be used to improve perceived image sharpness, but those methods also emphasize the noise in the images, like film grain. To reduce image noise, certain low-pass spatial filters can be applied, but those filters inevitably remove image details. Therefore, conventional spatial processing methods cannot satisfy conflicting demands for noise reduction and maintaining image sharpness.
- the image re-mastering method of the present invention provides a solution to achieve both resolution enhancement and noise reduction.
- This method states that image spatial resolution can be enhanced through temporal image processing.
- the process requires that all image details on its original form be preserved.
- the basic elements are film grains. It is well known, as stated by the Sampling Theorem, that all information can be preserved if the spatial sampling grid satisfies the Nyquist sampling frequency, which is twice that of the spatial frequency limit of the image content.
- the Nyquist sampling frequency which is twice that of the spatial frequency limit of the image content.
- Spatial resolution enhancement is more effective when each image frame is first digitally enlarged using spatial interpolation. Spatial interpolation does not improve spatial resolution, but it expands the image frequency spectrum in the frequency domain so that extra room is available for the additional high-frequency details to be added to the images.
- This resolution enhancement concept is shown in FIG. 1 .
- the additional image details can be recovered through a temporal filtering process. In a motion sequence, an object in a scene is captured on a sequence of frames, and each frame contains a similar but not identical version of the object. It is possible that certain image details about the object that are not explicit on the current frame may be captured on its neighboring frames.
- the resulting object on the current frame may exhibit improved details that do not exit in its original form.
- This concept can be realized through a temporal filtering method in which information from a number of frames is analyzed and combined so that additional image details may be recovered for every frame in an motion sequence.
- a variation of the temporal filtering method can also be used to reduce temporally uncorrelated noise, like perceived film graininess in an image sequence.
- a new method for improving image sharpness through the enhancement of MTF measurement is also described.
- the temporal processing methods require computationally expensive motion estimation algorithms.
- One of the challenges is to develop a computing system that implements the present invention in a highly efficient way so that re-mastering a complete motion picture can be achieved in a relatively short period of time.
- the present invention describes a parallel and distributed computing system with an intelligent central control that manages the image render process with maximum efficiency.
- the intelligent central control automates the image data enhancement process using various types of optimization schemes.
- the computing system has a unique architecture that is scalable to any throughput requirement.
- Another challenge of the implementation is to define a process that provides functionality to meet a wide range of requirements from a high-quality motion picture re-mastering production.
- an entire process of re-mastering operations is described that includes various stages and process modules.
- the core part of the process can be implemented in an automated mode, but it also allows maximum flexibility for human user input and interaction.
- a set of original algorithms for the estimation of optimal parameters and for automated quality evaluation based on statistical analysis are described in the present invention, and those algorithms are managed by the intelligent central control to deliver maximum quality results.
- the process and system described in the present invention is designed to meet the most rigorous production demands, including a concurrent release of a re-mastered format of a new motion picture with its original release.
- This application requires the re-mastering process and system to be able to accurately and reliably track the status of every operation in the pipeline as well as the status of data flow of every piece of image data.
- the system configuration described in this invention allows the intelligent central control to track the status of every device throughout the entire process, including facilities remotely located.
- the intelligent central control also provides up-to-date status reports and answers user specified queries. Those features have proved to be extremely important for meeting a rigorous production schedule for a motion picture re-mastering project.
- FIG. 1 depicts the concept of spatial resolution enhancement represented in the frequency domain
- FIG. 2 is a process flow chart describing a digital re-mastering process for motion picture and other moving images
- FIG. 3 depicts the system configuration of the Data Processing stage of the image enhancement system for motion picture re-mastering
- FIG. 4 is a process flow chart of the Pre-processing module
- FIG. 5 is a process flow chart of the Render module
- FIG. 6 describes the algorithm for automatic prediction of render parameters
- FIG. 7 describes the process pipeline of a render client
- FIG. 8 depicts a typical temporal filtering scheme with a temporal window
- FIG. 9 describes three temporal filtering schemes for noise reduction
- FIG. 10 depicts three schemes for render job distribution
- FIG. 11 is a process flow chart of the Verification module
- FIG. 12 is a process flow chart of the Post-processing module.
- FIG. 13 shows an example of the types of production information that are tracked by the Intelligent Controller.
- the present invention describes a process and methods for digitally re-mastering a motion picture or any moving picture sequence from its original format to an alternative format or its original format with enhanced image quality, as well as a system implementation of that process.
- the digital image re-mastering process is depicted in FIG. 2
- the system implementation of the process is depicted in FIG. 3 .
- the digital image re-mastering process consists of four stages: Format Conversion 100 , Data Processing 110 , Image Out 120 and Image Approval 130 .
- the process is controlled by a central control system 140 , and at the heart of the central control is the Intelligent Controller 141 .
- the Intelligent Controller 141 is implemented through a combination of hardware and software, and it controls and monitors every aspect of the process from tracking physical data flow to controlling actual task execution.
- images of a motion picture or any moving images are converted to a digital format that can be handled by the Data Processing 110 stage.
- the majority of motion pictures originate in film (negative film or intermediate film), and need to be converted to digital format through a device called a film scanner (Glenn Kennel, “Digital Film Scanning and Recording: The Technology and Practice”, SMPTE Journal , Vol. 103, No. 3, March 1994).
- a film scanner is a sampling device, and it converts each image sample from film density to binary digits representing red, green and blue (RGB) color components.
- RGB red, green and blue
- each image frame is sampled with a pixel pitch no greater than 6 ⁇ m, and each sample is quantized into RGB channels with 10-bit bit-depth for each channel.
- the scanned data is then packed in a file format called DPX (Digital Moving Picture Exchange) format (SMPTE 268M) or its earlier version named Cineon format.
- DPX Digital Moving Picture Exchange
- SMPTE 268M Digital Moving Picture Exchange
- Cineon format Videoon format
- the digitization process needs to support a sampling rate and a quantization level that preserves all the information of the original images.
- the available digital data can be directly converted from their original format to any other format through a digital conversion process 102 .
- the desirable format is the 10-bit DPX format or Cineon format.
- the format conversion process 102 typically comprises operations such as color space conversion, compression/decompression and bit-packing, as one skilled in the art will readily be able to adapt the process described by the teaching to any data formats.
- the converted image data must be visually inspected as correct through a Data Inspection process 103 so that errors in image data caused by incorrect setting of film scanners and other failures in the conversion process are identified.
- Another function of the Data Inspection 103 is to ensure that the converted image data meets a set of pre-defined quality standards including the preservation of dynamic range and image details. Image data that contains errors or does not meet quality standards is rejected to be re-scanned or re-converted.
- the image data converted at the Format Conversion stage 100 is referred to as Original Image Data.
- the Original Image Data is enhanced both in resolution and visual quality through an image enhancement process
- the image enhancement process comprises four process modules, and they are the Pre-processing module 111 , the Render module 112 , the Verification module 113 and the Post-processing module 114 .
- the Pre-processing module 111 comprises processes that depend on human user's decisions, such as shot separation, re-framing, color correction and scene classification. It also includes a process for identifying and removing artifacts existing in the Original Image Data.
- all operations required for decision making are implemented by a combination of special-purpose software and user workstations that allow user interactions.
- the user's decisions are collected by the Intelligent Controller 141 that then instructs user's workstations to apply corresponding pre-processing operations to the Original Image Data.
- the actual pre-processing operations are implemented in the next Render module as part of render client process pipeline, and those operations are totally controlled by the Intelligent Controller 141 based on user's decisions.
- decisions on color correction and artifact identification are made by image analysis algorithms so that those operations can be implemented in a fully automated mode without need for human intervention.
- the Render module 112 is responsible for the enhancement of image data in both resolution and visual quality.
- the system implementation of the Render module 112 is a combination of hardware and software designed for achieving high throughput and high computational efficiency.
- the Render module mainly performs three types of enhancement operations to the image data: resolution-enhancement, noise reduction and sharpening.
- the Render module also performs additional pre-processing operations including color correction, re-framing and artifact removal.
- the Render system implementation adopts a parallel computing architecture with multiple computing render clients controlled by the Intelligent Controller 141 .
- the Intelligent Controller 141 is responsible for maximizing render efficiency and delivering optimal image quality. It achieves this by using intelligent algorithms to compute the best solutions.
- the operation of the Render module 112 is fully automated.
- the Intelligent Controller determines how image data is distributed among available render clients to achieve maximum efficiency. It also determines the best set of render instructions to be used to achieve optimal render quality.
- the Intelligent Controller constantly monitors the performance of the render operations and modifies its instructions.
- users are permitted to input their preference to the Intelligent Controller to be used for making render decisions and even overwrite decisions made by automated schemes.
- users issue render instructions based on their experience and observation and constantly make changes to the instructions based on statistical performance analysis.
- the quality of the enhanced image data is to be visually verified in the Verification module 113 to ensure they meet pre-defined quality and resolution criteria.
- the Intelligent Controller 141 makes decisions on how to modify render instructions based on some statistical quality indicators calculated in the Render module 112 .
- users make modification decisions with the assistance of those statistical quality indicators.
- image data does not pass the Verification module until it meets the pre-defined quality and resolution criteria.
- image data will be sent to the Post-processing module 114 for fixing before being sent back to the Verification module 113 for final evaluation.
- the Post-processing module 114 performs certain final problem-fixing operations.
- the image data that meets all quality standards is organized before being sent to the Image Out stage 120 .
- image data may need to be converted to the format specified by the film out process 121 or the digital out process 122 .
- the enhanced image data is also written to permanent data storage, such as data tapes or optical discs, for data transfer or backup purposes.
- Image Out 120 is a stage where enhanced image data of a motion picture is recorded onto an alternative film format, or re-formatted for digital display.
- film output 121 film recorders are used to transfer image data onto film, and the recorded film is processed with a standard laboratory process. A print film with correct timing is made using an optical printer.
- digital output 122 image data must be converted to the format suitable for digital display, and the operations involved in the conversion process may require resizing, color space conversion, re-framing and compression. Those skilled in the art will readily be able to convert the data described by the teaching to any output data formats.
- the final stage is Image Approval 130 , and it is performed by human inspection of the motion picture in an intended release format.
- film format the print film is projected in a viewing environment representative to the cinemas where the motion picture is planned for release.
- the approval process can be done in segments or in the entirety of the motion picture. Those image segments that are rejected will be sent to appropriate earlier stages of the process to be re-processed.
- digital display a similar screening process is performed using a representative digital display system. The approved images become the final re-mastered image product.
- the physical facilities needed for each stage of the digital re-mastering process may not need to be located in proximity to each other.
- the facility for each stage is located in a separate geographical location. The exchange of image data and other information between different locations can easily be done by electronic data transmission and through a courier service.
- FIG. 3 depicts the system configuration of the Data Processing stage 110 implemented in a single location. It can be divided into two functional components.
- the first component is the Operation System 150 , which supports all functions in Pre-processing 111 , Verification 113 and Post-processing 114 modules.
- the Operation System 150 consists of a Data File Server 151 , a Central Data Storage 152 with sufficient disk capacity, multiple workstations 153 equipped with special-purpose software tools for user interactive operations, a network switch that provides high-bandwidth connections between the file server and workstations, and a number of tape drives 155 that serve as data input and output devices.
- the second component is the Render System 160 , which supports all operations in the Render module 112 .
- the Render System 160 consists of an Intelligent Controller Server 161 , a Controller Data Storage 162 supporting the server, and multiple render client computing devices 163 configured in clusters. Given the processing time needed for each image frame, the number of render clients allowed for each cluster is limited by the bandwidth of the cluster network switch 165 .
- a backbone network switch 164 provides high-bandwidth connections to all cluster network switches 165 , and the number of clusters supported by the system is limited by the bandwidth of the backbone switch 164 .
- the data transfer between the Operation System 150 and the Render System 160 is through a high bandwidth link between the Data File Server 151 and the Intelligent Controller Server 161 .
- the system described in FIG. 3 has a modular design and is totally scalable to daily throughput requirement from a specific re-mastering project.
- the Intelligent Controller Server also acts as the Data File Server, and the two data storage devices are combined into a central data storage.
- the preferred embodiment of the present invention is the double-server configuration depicted in FIG. 3 .
- the separation of the Operation System 150 from Render System 160 allows user interactive operations to continue when the Intelligent Controller Server 161 needs to be powered down for maintenance or when a system failure occurs to the Render system 160 .
- the maintenance to the Operation System 150 or failure of the Data File Server 151 does not impact the operation of the Render System 160 .
- the Central Data Storage 152 stores all image data required for Pre-processing, Verification and Post-processing.
- the Controller Data Storage 162 stores all information and data tracked by the Intelligent Controller and acts as a production database. It also provides a temporary storage for results from render clients before they are transferred to the Central Data Storage 152 .
- the Intelligent Controller Server 161 and the Controller Data Storage 162 are the fundamental hardware devices for the Intelligent Controller 141 that controls all operations in the Data Processing stage 110 .
- the Intelligent Controller also monitors the process status of the Data Processing stage and collects information data from other stages that may be remotely located. Any device or process that accesses data from the Intelligent Controller 141 is treated as a client of the Intelligent Controller Server. This allows the Intelligent Controller to provide centralized control over the entire re-mastering process, track the status of all operations from every device and track all image data flow.
- the Intelligent Controller 141 performs the following functions:
- the Pre-processing module 111 is designed as a user-interactive process so that users can make creative decisions by pre-viewing image data using specially designed software.
- the Original Image Data especially when scanned from film, is typically in the form of long image sequences with no breaks at scene changes.
- a major task in the Pre-processing module is to separate the data into shots, with each shot representing continuity in certain scene characteristics, such as motion or lighting. Each shot is marked by the start and end frame numbers and is assigned a unique shot number. In one embodiment of the present invention, those shots are further grouped into a smaller number of scenes in such a way that all shots belonging to the same scene share certain common characteristics. Scene grouping makes it possible to process all shots belonging to the same scene with the same set of parameters. The shot separation decisions are effectively made by skilled users, but they can also be made automatically by software through scene analysis.
- re-framing Another key decision users need to make is re-framing. This operation is generally needed for a re-mastering project for the following two reasons: first, scanned data typically includes blank film areas outside the image area that must be cropped for final release; second, a re-mastered motion picture may be released in a different aspect ratio than it was originally intended.
- the re-framing decisions can be effectively made by skilled users. If the re-framing decisions change from frame to frame within a single shot, a Pan & Scan operation is needed as part of the re-framing process.
- Pan & Scan operation is needed as part of the re-framing process.
- FIG. 4 depicts a typical process of the Pre-processing module.
- User's decisions can be made based on direct pre-viewing of Original Image Data, or they can choose to pre-view a proxy version of the Original Image Data in order to reduce the amount of image data and shorten data loading time while increasing the run-time for each loading.
- the proxy version is created through a proxy generation module 200 that includes downsizing, bit-depth reduction and color correction.
- the size of the proxy version must be adequate for users to make Pre-processing decisions while small enough to ensure high efficiency in software pre-viewing.
- a modest data compression is applied to the proxy using standard compression technology to further increase visual pre-viewing efficiency without affecting viewing quality.
- the Pre-processing also includes an artifact identification process 205 in which artifacts caused by dirt, film scratch, film degradation and chemical stain, as well as artifacts introduced in the digital effects stage can be identified and subsequently removed.
- the Intelligent Controller 141 which will apply appropriate image processing software tools to the Original Image Data to separate them into scene content based shot clips to be ready for render operations.
- the image processing tools include shot separation and file renaming 207 , image cropping 208 , color correction 209 , image resizing 210 and artifact removal 211 .
- the proxy version of the Original Image Data is also used for scene classification 206 .
- the purpose of the scene classification process is to group complex scenes into a relatively small number of classes so that images that belong to the same class share certain unique characteristics that makes them different from images of other classes.
- Scene classification makes it possible to apply different image processing methods and/or different render parameters to each class in order to achieve the best results.
- a sample of scene classes includes: fast motion scenes, slow motion scenes, still camera shots, dark scenes, bright scenes, scenes with large portion of sky, face close-up, wide-angle shots, nature scenes, etc.
- human users perform scene classification 206 .
- scene classification is performed by automatic algorithms based on scene analysis.
- Each image is represented by a feature vector that may have a long list of components including color histogram, Gradient histogram, directional edges, motion, etc.
- image are treated as samples in a multiple dimensional feature space.
- Standard statistical clustering method can be used to group samples into preliminary classes.
- the second pass of motion similarity analysis on the thumbnail images may ensure samples with continuous motion remain in the same class.
- a special set of render parameters can be determined for each class through the render parameter prediction 220 described in FIG. 6 .
- Artifact removal 211 is necessary for a re-mastering project that demands high image quality.
- Artifacts resulting from dirt, dust and scratches on film are inevitable. Artifacts from film degradation and laboratory chemical process also occur especially for older film stocks.
- Original Image Data available in original digital form there may exist artifacts from imperfections in the digital-effects process.
- artifacts are removed through an automated process. Special search algorithms are applied to a range of frames including the current frame to identify artifacts with known unique characteristics. Pixels identified as artifacts resulting from dirt and dust display very different intensity values than surrounding normal pixels and these pixels do not have temporal correspondence from neighboring frames. Motion estimates of the surrounding normal pixels are computed.
- artifact removal 210 is performed both in the Pre-processing module 111 and in the Post-processing module 114 , and a majority of artifacts are removed in the Pre-processing module.
- artifact removal is performed only at the Post-processing module. In the latter case, if a shot is rejected during the Approval stage 130 and needs to be sent back to the Render module 112 for re-rendering, then the artifact removal operation must be repeated. This will reduce operational efficiency if manual and semi-automated methods are used.
- FIG. 5 depicts the process flow diagram of the Render module.
- the hardware implementation of the Render module is the Render system 160 that is equipped with multiples of computing clients 163 configured into clusters (as shown in FIG. 3 ).
- Each computing client is a standard computing device.
- each computing client is a Pentium processor computer running on Linux operating system.
- a job can be distributed to a single render client or to a number of render clients.
- Each image enhancement operation provides one or more parameters that can be adjusted to achieve desirable results.
- the collection of all parameters from every enhancement operation forms a render parameter set, which determines the performance and the quality of render results. For image shots with different characteristics, the render parameter set must be adjusted accordingly in order to achieve the best possible visual quality.
- the render parameter set contains parameters crucial for processing on the render clients 223 , and these parameters include those for motion estimation (matching region of support, the number layers in the hierarchical motion model, searching range, thresholds for finding the correct matching, etc.), temporal filtering (temporal window size, filter coefficients, etc.) and sharpening. These parameters can be determined in a number of ways.
- the parameter set is predicted by a skillful user based on visual inspection of every image shot. This approach is only effective if the user's decisions are consistent and reliable.
- the render parameter set is estimated by a prediction algorithm based on image analysis 220 .
- the algorithm for render parameter prediction is depicted in FIG. 6 .
- image analysis is performed on a sample of image frames selected from a shot sequence. These sample frames are called key frames, and they are selected by users at the key frame identification process step 203 in the Pre-processing stage.
- key frames can also be determined by an algorithm 300 that computes the histogram of each frame in the shot and determines the most representative frames based on histogram consistency.
- a series of image analysis operations are applied to the selected key frames.
- those operations are for the purpose of estimation of initial motion estimation settings 301 , including:
- a motion estimation algorithm can be applied to key frames to compute the motion estimates from key frames 306 .
- a variety of motion estimation algorithms are applicable for this application, and those algorithms are described in the following publication: Christoph Stiller and Janusz Konrad, “Estimating Motion in Image Sequences”, IEEE Signal Processing Magazine , Vol 16, No.4, July 1999.
- a pixel-based motion estimation algorithm based on a hierarchical motion model is implemented.
- some key statistical measures regarding image temporal characteristics are calculated 307 , and they include:
- a prediction algorithm 311 predicts render parameters based on FMD, TSNR and Motion.
- the prediction starts with a set of matching threshold values corresponding to a given FMD. That set of those threshold values is weighted down when TSNR is high or when Motion is high, and weighted up when TSNR is low or when Motion is low.
- the operation of the render parameter predictor 220 is controlled by the Intelligent Controller 141 .
- User input can be fed into the parameter predictor 311 to modify predictions according to the preference of the users.
- the predictor 220 also allows users to overwrite its prediction with a preferred set of render parameters.
- a render parameter set is determined for an image shot, it can be submitted to the render queue 221 as a single render job.
- the Intelligent Controller 141 checks the validity of the submission and adds the job to a job queue 221 . It then sends the job submission off to one or more available render clients for processing based a pre-determined job distribution scheme 222 .
- the render clients 223 process the data according to instructions and compute statistical quality indicator 323 . The clients also frequently report back to the Intelligent Controller 141 their current situation and status.
- the Intelligent Controller collects distributed results from corresponding clients and temporarily stores them on the Controller data storage 162 . Then it checks the integrity of the data and the completeness of the job 225 .
- the Intelligent Controller 141 finds certain frames are missing, or certain frames are incomplete, it requests the render client to re-process those frames. If it is satisfied that the job is complete, it performs an evaluation 226 to measure the quality of the rendering. If the required quality is not achieved, the Controller attempts to modify the render parameter set 230 and sends the job back to the job queue. In special cases, it requests that certain temporal filtering options (see FIG. 7 and FIG. 9 ) be specified 231 . For each job re-submission, the version of the job is updated through a version control scheme 232 . If the Intelligent Controller is satisfied with the render results, it sends the image data to the Central Data Storage 152 and sends a verification notice 227 to the Data File Server 151 .
- each render client 223 on image shot data consists of a series of image processing operations as depicted in FIG. 7 .
- the major operations include temporal filtering 322 , resizing 326 and sharpening 327 .
- the render client also computes statistical quality indicators 323 including pixel matching ratio (PMR) and absolute still ratio (ASR). These quality indicators are used to evaluate render quality in the quality evaluation stage 226 in FIG. 5 .
- PMR pixel matching ratio
- ASR absolute still ratio
- a proxy version of the enhanced image shot is created to be used for visual inspection at the Verification module 113 in FIG. 2 .
- Temporal filtering 322 is the most computationally intensive operation currently implemented in the render client processing pipeline. It provides two functions: resolution enhancement 340 and noise reduction 341 .
- the concept of resolution enhancement was developed based on images originating on photographic film, but the methods developed based on the concept are not limited to film-based image applications.
- the resolution enhancement method described in the present invention is applicable to any image sequence captured using some form of optical device, like photo detectors, electronic sensors and computer-generated images that have been transferred to the above media.
- Photographic film contains tiny light sensitive crystals of silver halide salts. When the film is developed these crystals are turned into tiny filaments of metallic silver. In a color film, tiny blobs of dye are formed along with the silver during the development process. The silver is then chemically removed from the film, leaving only this dye image. It is these small specks of dye that form film grain. Film grains vary in size and shape and are randomly distributed. But the randomly distributed film grains actually are the fundamental building blocks that form images on film.
- FIG. 1 illustrates the frequency response of a band-limited image signal sampled at Nyquist frequency F s ⁇ 2F max ; and FIG. 1(B) illustrates the frequency response of the same image signal with additional high-frequency components recovered from resolution enhancement process.
- the image signal is sampled at F s ′>>2F max , and it makes it possible to add high-frequency details recovered from other image frames.
- the spatial resolution of the enhanced image signal now becomes F max ′>F max .
- additional image details are recovered from neighboring frames through temporal filtering.
- temporal filtering the content of an image frame is enhanced by a mathematical algorithm that uses information from neighboring image frames, as depicted in FIG. 8 .
- the number of neighboring frames (including the present frame) used by the temporal filter is referred to as a “temporal window”.
- the size of the temporal window 401 used by the temporal filter 400 in FIG. 8 is 2N+1.
- the method of resolution enhancement 340 described in the present invention consists of three major steps: motion estimation, motion field regulation, and detail recovery.
- a motion estimation algorithm with sufficient accuracy and robustness is the first essential step.
- the existence of random film grains in varying sizes and shapes in photographic images presents challenges to any motion estimation algorithm.
- a motion estimation algorithm must be able to distinguish real image content from random film grain details.
- a range of well-known motion estimation algorithms are qualified for this application, and most of them are described in the following publication: Christoph Stiller and Janusz Konrad, “Estimating Motion in Image Sequences”, IEEE Signal Processing Magazine , Vol 16, No.4, July 1999.
- an algorithm based on a hierarchical motion model is used to achieve both reliability and accuracy.
- every image frame is represented by a multi-level data structure, each representing a specific level of image details.
- Film grain details are mostly represented at the lowest level of the hierarchy.
- Motion estimates calculated at the top levels of the hierarchy represent real image contents.
- the motion estimate of every pixel is computed using a variable-size block matching algorithm for all frames within a temporal window.
- the searching strategy used in block matching varies from an exhaustive search to sub-optimal fast search. In an exhaustive search, all candidates within a predefined searching range will be examined, and the best match is the one that minimizes a prediction error.
- the “best match” criterion is replaced by a “first match” criterion which takes the first candidate with a prediction error below a certain set of threshold criteria as the estimate.
- the “coarse” motion estimate obtained at the top level is computed as the best match among all candidates. This motion estimate is successively refined over subsequent levels of hierarchy.
- This hierarchical search strategy confines the search within a relatively smaller range at each level so that the computational complexity will be significantly reduced.
- Motion field regulation is necessary since motion estimation is an ill-posed problem and multiple solutions exist given a set of searching criteria. Most estimation errors occur in smooth regions of images where the size of potential solution space increases drastically.
- the approach is to constrain the solution space using such constraints as high-frequency features, smoothness and quality measure.
- High-frequency features are “visually significant” image features that can be identified through feature analysis, and they represent significant changes in pixel intensity, pixel color or pixel motion.
- the motion estimates obtained from pixels representing high-frequency features are more reliable and more accurate than those obtained from pixels in smooth region.
- the smoothness constraint states that neighboring pixels in a smooth region are most likely to share similar motion estimates. For high-frequency features, the smoothness should apply in the direction of feature orientation.
- Each motion estimate is assigned a reliability measure indicating the reliability of its estimate.
- the reliability measure of a motion estimate is in inverse proportion to the size of solution space associated with the estimate. For a pixel with a lower reliability measure value, motion field regulation should be considered, and more constraints should be applied
- a group of synthesized frames are constructed by mapping each neighboring frame to the present frame intervals based on the corresponding motion estimates.
- An error map between each synthesized frame and the present frame is calculated.
- their motion estimates are modified until the errors are minimized. Further improvement of estimation accuracy can be achieved using more sophisticated motion models like six-parameter affine models or eight-parameter projective linear models.
- the synthesized frames are re-created based on the modified motion estimates, and they will be used in the detail recovery step.
- a resolution-enhanced image 403 is constructed through adaptive temporal interpolation of synthesized frames within the temporal window 401 .
- An adaptive temporal filter 400 with FIR (finite duration impulse response) structure is applied to each pixel location.
- the filter coefficients are determined based on the motion estimate reliability measure associated with each pixel. If a motion estimate is highly reliable, the filter coefficients are weighted in proportion to the reliability measurements from each frame interval. On the other hand, if a motion estimate is unreliable, the filter coefficients are weighted more heavily on the current frame.
- temporal filtering is based on photographic images, it equally applies to images captured using some form of optical device including photo detectors and electronic sensors as well as computer-generated images that have been transferred to the above media.
- a direct result from resolution enhancement 340 is the reduction of the visual sensation of “boiling” film grain in the enhanced image sequence 403 .
- film grain varies in size and shape and is randomly distributed spatially and temporally. This random pattern creates the “boiling” grain phenomenon when images are viewed in motion. In a large format cinema, audiences are typically seated closer to the screen than they are in a regular cinema so that images cover a much wider portion of their field of view. This results in the “boiling” film grain becoming visibly objectionable and is perceived as undesirable noise.
- the temporal filtering method 400 suppresses “boiling” film grain noise because it improves temporal correlation between neighboring image frames in a sequence. Furthermore, film grain is also reduced as the result of enhanced spatial resolution.
- the single-pass temporal filtering algorithm depicted in FIG. 8 can be implemented in parallel processing mode since each output frame can be computed independently. For a majority of image shots, the single-pass temporal filtering is very effective in noise reduction. However, for very noisy images, or for jobs where noise level is a major concern, other noise reduction algorithms 341 can be applied. In one embodiment of the present invention, noise reduction 341 is achieved with multi-pass temporal filtering following one of the three methods depicted in FIG. 9 .
- the actual temporal filter device 400 is omitted in FIG. 9 for clarity of the description, as one skilled in the art will readily be able to implement those algorithms described by the teaching.
- FIG. 9(A) describes a multi-pass temporal filtering algorithm 410 .
- the multiple-pass algorithm basically repeats the single-pass scheme multiple times. Render parameters prediction described in FIG. 6 is applied before each pass.
- the multi-pass temporal filtering is effective in suppressing noise in very noisy images.
- FIG. 9(B) describes a multi-pass algorithm 411 based on a temporal pyramid.
- the “temporal” sampling is “coarse” in the first pass and every N number of frames within a temporal window is used.
- the temporal sampling rate increases for the next pass until every neighboring frame within the temporal window is used in the final pass.
- Temporal pyramid filtering tends to reduce the computation required for the scheme described in FIG. 9(A) .
- FIG. 9(C) describes a serial temporal filtering algorithm 412 that can be implemented as an iterated process.
- the previously processed frames are used immediately for processing the next frames.
- the algorithms depicted in FIG. 9 generally perform better in noise reduction, but they tend to reduce image details compared with the single-pass algorithm of FIG. 8 .
- Certain criteria can be defined in the temporal filtering options process 231 (as shown in FIG. 5 ) to select the most appropriate options for temporal filtering based on image noise level represented by the TSNR that is calculated at process 308
- FIG. 5 shows that the render quality evaluation process 226 is implemented to evaluate render performance based on statistical quality indicators computed by render clients during temporal filtering 323 .
- the quality evaluation algorithm is based on PMR (pixel matching ratio) and ASR (absolute still ratio).
- PMR and ASR measures the impact of actual temporal filtering operations performed to each image frame, and they are good indicators for render parameter predictions that are out of normal range.
- the PMR and ASR are used to predict render parameter modifications required to achieve better results.
- PMR measures the percentage of pixels that were reliably estimated over a range of frames within the temporal window. In temporal filtering, not every pixel can find correspondence over every frame inside a temporal window. Some pixels can only be tracked over fewer frames, and some pixels are unable to be tracked at all. PMR is a distribution of the percentage of each type of pixels over the range of frames that they can be tracked. A PMR that peaks at the high end (more frames) indicates that the majority of pixels are reliably tracked over the entire temporal window. On the other hand, a PMR that peaks at the low end (fewer frames) indicates that the motion estimation algorithm has trouble in tracking that image.
- a high PMR distribution suggests that the current image frame is relatively clean, but it can also indicate an improper render parameter setting (matching thresholds too higher, MRS too small, for example).
- a low PMR distribution may suggest a very noisy image, but it can also indicate incorrect parameter settings (low matching thresholds, MRS too large, for example).
- ASR measures the distribution of pixels that can easily be tracked over a range of frames without significant searching effort. Those pixels that remains at the same location throughout the entire range of temporal window are called “absolute still pixels”. In another embodiment of the present invention, the absolute still pixels include those with small changes in their positions.
- the peak of ASR is high for images with little motion, and it is low for images with significant amount of motion. However, if ASR is high for images with reasonable amount of motion, then it may indicate improper setting of render parameters (thresholds too high, search range too small, etc.).
- the render quality evaluation process 226 is an automated process. For each class of scenes determined at the scene classification process 206 , a standard profile of PMR distribution is pre-determined which represents average PMR distributions of scenes in the same class. Similarly, a standard profile of ASR is also determined. The evaluation algorithm 226 compares the PMR and ASR of the current job with those standard profiles and determines if temporal rendering applied to the job is within a normal range. If the current job has a very different PMR or ASR distribution compared with standard profiles, then the job is rejected and sent back to the same render clients for re-rendering with a modified set of render parameters.
- the render parameters estimated by the parameter predictor 220 might not be optimal for local variations of image characteristics.
- One example is noise distribution. It is well known that film grain has a non-uniform distribution vs. film density. Film grain is most evident in the midtones of a print, which presents a density range about 0.6 to 0.9. Film grain also tends to increase when camera exposure decreases. Similar non-uniformity exists for images captured using an electronic camera, where noise level tends to be high in darker areas. The non-uniformity of the noise distribution can also be the result of non-linear conversion (logarithmic, gamma, etc.) commonly used in file format conversion.
- a noise equalization algorithm 321 is applied to images to keep noise distribution uniform before temporal filtering.
- the algorithm consists of the following steps.
- the first step is to calculate the noise histogram.
- a full-search motion estimation is performed on a pair of frames selected from key frames using a set of relatively large thresholds.
- block matching errors are calculated for every pixel. For those pixels with a low block match error, calculate the histogram and compare it with a standard histogram.
- the noise histogram is a good representation of the noise and pixel luminance relation.
- the MSE between the noise histogram and a uniformly distributed histogram is calculated.
- the noise distribution of the images are considered non-uniform.
- the lighting compensation algorithm 320 starts with selecting the brightest frame as the reference, and then it tries to find a transform for every frame to match the reference.
- transforms include gamma curves, histogram stretch or other monotonic non-linear transform. The transforms can be found by matching histograms of a frame to that of the brightest frame.
- a temporal filter can be applied to the transforms to ensure temporal consistency. Once the transform for each frame is found, apply it to each frame before temporal filtering, then apply the inverse transform 325 to the enhanced data to retain their original color. This method is suitable for sequences with frequent but relatively small lighting changes.
- lighting change compensation can also be implemented as an adaptive mechanism of temporal filtering 322 .
- the histogram of every frame is compared with every neighboring frame within the temporal window. Then all neighboring frames are compensated against the current frame as the reference in a similar method, as described in the previous paragraph. Since the algorithm always uses the current frame as the reference, no inverse transform is needed for this adaptive lighting compensation algorithm. This method is suitable for scenes that contain infrequent but strong light changes.
- the lighting change compensation 320 should be applied before the noise equalization 321 .
- the transforms of both stages are combined into a single transform so that it can be applied only once.
- Sharpening 327 is the last step of the render client pipeline, and it emphasizes the high frequency components of an image. Since the recovered image details from resolution enhancement are mostly high frequency components, sharpening can significantly improve image quality. Sharpening can also be modeled as a process to recover MTF loss over the process of image formation. MTF represents modulation transfer function, and it is used to analyze the quality of an imaging system. For example, the quality of images resulting on film can be modeled as multiplication of the MTF of individual devices in the process. These devices may include camera optics, negative film, printer film, and printer and scanner optics. Since the majority of these devices has low-pass MTF, the combined MTF of the imaging formation process must have a low-pass MTF. Therefore, a desirable sharpening algorithm should display high-pass MTF characteristics in order to correct the degradation of image quality.
- the term f(x, y) ⁇ LP(f(x, y)) exhibits a high-pass characteristic, and the unsharp mask filter boosts it by multiplying with a sharpen gain g(x, y).
- the boosted high-frequency components are added to the original image f(x,y).
- the filter gain g(x,y) is usually a constant, but it can be made adaptive based on local characteristics. At smooth regions, small filter gain should be selected so that the unwanted characteristics, like film grains, will not be emphasized.
- the range of high-frequency components that are emphasized is limited by the kernel size of the low-pass filter in equation (1).
- the kernel size of the low-pass filter By varying the kernel size of the low-pass filter, different levels of image details, corresponding to different sections in the MTF curve, can be selectively emphasized.
- the present invention generalizes the unsharp mask filter of equation (1) to support multiple levels of details by the following description:
- y ⁇ ( x , y ) f ⁇ ( x , y ) + 1 k ⁇ ⁇ ⁇ k ⁇ g k ⁇ ( x , y ) ⁇ [ f ⁇ ( x , y ) - LP k ⁇ ( f ⁇ ( x , y ) ) ] ⁇ ( 2 )
- the sharpening gain value g k for the kth detail level can be selected to compensate for the MTF degradation at that particular detail level.
- Gaussian low-pass filters are used in equation (2), and up to six levels of kernel sizes are deployed. Those skilled in the art will recognize that the present invention is not limited to Gaussian filter and six levels of details. Other types of low-pass filters and more detail levels are possible following the teaching of the present invention.
- the Render module depicted in FIG. 5 is specially designed for achieving high efficiency for image processing tasks that require temporal operations.
- the Intelligent Controller 141 manages render job distribution and assigns jobs to specific render clients based on a pre-determined load-balancing scheme. If there are multiple available candidates, the Intelligent Controller checks the network traffic load distribution among render client clusters 163 and selects a render client (or render clients) from the cluster (or clusters) with the lowest traffic load. For each job in a queue, it may assign it to a single render client, especially when there are more jobs waiting in the queue than the number of available render clients, or it may assign the job to a multiple of render clients, especially when the job needs to be completed as quickly as possible. In one embodiment of the present invention, the job distribution process 222 follows one of the three schemes depicted in FIG. 10 .
- each shot is always assigned to a render client, and it will be sent to a render client with the shortest waiting time. For instance, if two render clients are available, the job will be assigned to the render client which has fewer frames in waiting to be processed. If both render clients have the same amount of waiting time, the job will be sent to the render client whose cluster has the least amount of load.
- Scheme B 421 a single shot is split into a number of segments, and each segment contains at least a minimal number of frames. Each segment is distributed to a render client following the same “shortest waiting time and least amount of load” criteria. There should be sufficient frame overlapping between segments so that each segment is correctly rendered by temporal filtering. The amount of overlapping frames needed is determined by the temporal window size.
- the Intelligent Controller 141 must always be aware of the current temporal window size used in the temporal filtering and calculates the required overlapping frames.
- each frame is further divided into regions, and each region is distributed to a render client. Due to the nature of motion estimation, sufficient overlapping rows and columns must be allowed for in each region in order to accommodate the search strategy deployed by the motion estimation algorithm.
- Each render client once instructed to run a job, is responsible for pulling all image data it requires from the Central Data Storage 152 , executing required operations on each frame and pushing the enhanced image data to a temporary location at Controller Data Storage.
- the Intelligent Controller For a job that was distributed to multiple render clients, the Intelligent Controller is responsible for assembling 224 rendered segments from render clients into a continuous shot. The Intelligent Controller also checks the integrity 225 of the assembled data for occasional missing frames or incomplete frames in the shot. If missing frames or incomplete frames are discovered, the Intelligent Controller sends a request to the same render clients for re-rendering of those frames. The communication between the Intelligent Controller and render clients is crucial for render efficiency.
- the Intelligent Controller tracks the current state of each render client and constantly monitors for available processors.
- the Intelligent Controller raises an alert for repair. It reroutes the job to other available clients for processing.
- a Diagnostics process ensures that there is no loss of data during the transfer. If the Intelligent Controller server experiences a failure, the state of the system before malfunction is preserved.
- the Intelligent Controller server re-starts by killing all processes that are running on render clients and re-assigns jobs to each render client.
- the Intelligent Controller polls the render clients for their status, finds their current states and resumes the control. This is a more complicated re-start scheme, but no re-rendering of data is required.
- the performance of the render operations is evaluated by evaluating statistical quality indicators, like PMR and ASR, calculated by the render clients.
- PMR statistical quality indicator
- ASR ASR measure
- Human visual inspection is needed to ensure final visual quality, and this process is implemented in the Verification module 113 , as depicted in FIG. 11 .
- a proxy version of the enhanced image data which was generated in the proxy generation process 328 in the render client pipeline ( FIG. 7 ) is used for visual inspection.
- the size of the proxy images should be adequate for users to spot existing render problems while small enough to ensure software viewing efficiency. By viewing the proxy version displayed in real-time with special purpose software, users are able to make decisions on image quality.
- users first check if each job is complete 240 .
- the automated integrity check process 225 at the Render module does not capture all render problems, and those frames missed by the integrity check 225 will be caught at this stage. Those frames found with problems are re-submitted to the original render client for processing.
- users will check the following quality aspects that are of the most concern for users:
- the job will be re-submitted to the Render module with modified render parameters 251 .
- the decision is made by users consulting with measured statistical quality indicators.
- the Intelligent Controller 141 provides users with a graphical display of those statistical measures (PMR, ASR, TSNR, Motion, etc.) on their workstations 153 through special-purpose software. Users make educated decisions about necessary parameter modifications based on the available statistical data.
- an automated algorithm is implemented in the process 251 to compute the necessary modifications to render parameters based on the same set of statistical measures.
- the image shot will be sent back to the Pre-processing module to obtain new re-framing decisions.
- users make correction decisions 252 and send the image data to Post-processing for fixing without a pass stamp 253 .
- Every image shot with acceptable image quality gets a pass stamp 254 from the Intelligent Controller and is also sent to the next Post-processing module for data output.
- image shots that require fixing are sent for artifact removal 265 , or for color correction 266 , or for motion correction 267 .
- the methods for artifact removal and color correction are very similar to processes at the Pre-processing module 111 .
- the fixed shots are sent back to verification 113 to get pass stamps 254 . Any image shot without a pass stamp is not allowed to pass checking point 260 .
- the approved image shots are organized in the same order 261 as in the motion picture and converted to the required output format before being sent to the Image Out stage 120 . All these operations at the Post-processing stages are controlled and tracked by the Intelligent Controller 141 .
- Motion correction 267 is a process specific to large format projection requirement.
- a conventional motion picture is exhibited in a large format cinema where images cover a much larger portion of an audience's field of view, the sensation of motion in the motion picture is also magnified.
- the magnified motion sensation may cause viewing discomfort for some audiences.
- Motion correction is a method to reduce motion-related viewing discomfort by reducing angular movement.
- the motion correction method is to reduce two types of motion problems: motion strobing and extreme camera shaking.
- Motion strobing is the perceived motion discontinuity caused by a fixed projection frame rate.
- the method of reducing motion strobing is to add motion blur to images without increasing the projection frame rate.
- Motion blur can be generated by applying a directional low-pass filter in the direction of motion for moving pixels. The direction of motion can be retrieved from motion estimates already calculated in the temporal filtering process 322 .
- Extreme camera shaking can be reduced by partial camera stabilization.
- the motion of the camera can be calculated by tracking multiple feature points located in the image background. Starting from a large number of features, several thousands for example, the tracking algorithm eliminates most of those features until only the most reliable features are left. Then the process repeats in subsequent frames until the end of the shot. In this way, the most common features are found throughout the entire sequence. For each feature, a motion vector between adjacent frames may be defined. A statistical clustering method is used to group features into regular moving features and irregular moving features. The global camera motion curve is then calculated by averaging all regular moving features. Camera stabilization is achieved by reducing the global motion curve and calculating the entire scene based on tracked features. The amount of motion reduction is the result of the tradeoff between reducing viewing discomfort and maintaining the same motion sensation that filmmakers originally intended.
- the Intelligent Controller 141 provides a function of production management, which is extremely important for the success of a motion picture re-mastering project. Since every device and process that accesses data from the Intelligent Controller 141 is treated as a client, the client-server configuration allows the Intelligent Controller to manage the progress of the entire re-mastering project and to track the status of every operation in every stage of the process.
- the types of information that are tracked by the Intelligent Controller 141 are listed in FIG. 13 .
- Examples of production data that are tracked include:
- the Intelligent Controller provides up-to-date reports regarding the status of the production.
- the formats of the reports are specified by users. Examples of the reports include:
- the Intelligent Controller also allows users to construct their own reports through a query system. Examples of the information that the query system supports include:
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Picture Signal Circuits (AREA)
Abstract
Description
-
- Resource management—Given a project schedule, it automatically calculates the minimum daily throughput requirement and manages available resource to meet that requirement.
- Quality optimization—It automatically determines the optimal set of render parameters for each render job for the best results. It also automates a quality evaluation process using statistical measures to determine if render results are acceptable.
- Computing efficiency optimization—It manages the job queue, schedules and distributes each job to render clients in the most efficient way with available computing resources. It provides automated system-wide caching of intermediate data and process status, based on available storage resource, to minimize time required for necessary re-render jobs.
- Production management—It tracks and updates all information relating to render process and flow of image data from every stage of the process and organizes the data into a database. It produces up-to-date reports on various aspects of the production process and answers user queries through a query builder.
- System administration—It administrates all render clients and monitors their status, and it monitors system performance and diagnoses problems.
- User interactivity—It takes user decisions and allows users to overwrite decisions made by automated schemes. It also makes decisions based on user preference specified by users.
-
- Estimation of granularity of the
image noise distribution 302; - Estimation of matching region of support (MRS) based on the estimated
noise granularity 303; - Estimation of global motion by calculating the average absolute motion between
key frames 304; and - Estimation of searching range based on estimated
global motion 305.
- Estimation of granularity of the
-
- Temporal Signal-to-noise Ratio (TSNR) 308—TSNR measures the level of temporally uncorrelated noise between key frames. TSNR is computed, after motion estimation, by warping one of the key frames to the others based on motion vectors, and then calculating the inverse of MSE (mean square error). TSNR is measured in dB, similar to conventional SNR used for signal analysis. If TSNR is high, then the temporal noise is low, and vice versa.
-
Motion 309—The amount of motion that exists in a shot is measured in two ways. In one embodiment of the present invention, motion is measured by the average absolute magnitude of motion vectors of all pixels that can be reliably tracked between key frames. In another embodiment of the present invention, motion is measured based on the average motion of feature points. Feature points generally provide more reliable motion estimates than average pixels. However, estimating the motion of feature points requires a different algorithm and the process must be implemented separately from pixel-based motion estimation. - Fast Matching Distribution (FMD) 310—FMD is a distribution of percentage of direct pixel match (fast match) between two key frames vs. matching threshold values. The direct match of pixels between two frames occurs when a matching is found within a pre-defined small search region. FMD is an indicator of the performance of a motion estimator. For a given FMD, there is a set of corresponding threshold values that delivers the desirable performance.
y(x, y)=f(x, y)+g(x, y)·[f(x, y)−LP(f(x, y))] (1)
where LP(f(x, y)) is a low-pass filter. The term f(x, y)−LP(f(x, y)) exhibits a high-pass characteristic, and the unsharp mask filter boosts it by multiplying with a sharpen gain g(x, y). The boosted high-frequency components are added to the original image f(x,y). The filter gain g(x,y) is usually a constant, but it can be made adaptive based on local characteristics. At smooth regions, small filter gain should be selected so that the unwanted characteristics, like film grains, will not be emphasized.
-
- verify if the noise level of overall image and in local regions are acceptable 244;
- verify if visual sharpness are appropriate 245;
- verify if sufficient image details are preserved and enhanced 246;
- verify if the re-framing decisions are correct 247;
- verify if further color correction is needed 248;
- verify if there exist artifacts that need to be removed 249;
- verify if the motion exists in the shot may cause
viewing discomfort 250.
-
- Status of Original Image Data;
- A scene/shot list and future modifications;
- Pre-processing decisions for each shot;
- Status of every shot in the different stages of the process;
- Operations applied to each shot in every stage of the process;
- Parameters used for render operations for each shot;
- Version status of each shot;
- Verification decisions of each shot;
- Status of image out process for each shot;
- User preference and user decisions related to each shot;
- User notes related to the processing of each shot; and
- Approval decisions for each shot, etc.
-
- Percentage of film scanned and received;
- How many shots have been processed;
- Project completion date estimation based on current throughput;
- Percentage of shots have been approved;
- List of shots that were rendered with a particular set of parameters;
- How many versions are there for each shot;
- Daily, weekly, monthly throughput report; and
- System utilization report, etc.
-
- Shot numbers;
- Shot length;
- Shot versions;
- Render parameters;
- Verification status; and
- Approval status, etc.
Claims (47)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/474,780 US7856055B2 (en) | 2002-03-13 | 2003-03-13 | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36502102P | 2002-03-13 | 2002-03-13 | |
PCT/IB2003/000919 WO2003077549A1 (en) | 2002-03-13 | 2003-03-13 | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
US10/474,780 US7856055B2 (en) | 2002-03-13 | 2003-03-13 | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040130680A1 US20040130680A1 (en) | 2004-07-08 |
US7856055B2 true US7856055B2 (en) | 2010-12-21 |
Family
ID=27805310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/474,780 Active 2026-12-26 US7856055B2 (en) | 2002-03-13 | 2003-03-13 | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
Country Status (7)
Country | Link |
---|---|
US (1) | US7856055B2 (en) |
EP (1) | EP1483909B1 (en) |
CN (1) | CN1650622B (en) |
AU (1) | AU2003209553A1 (en) |
CA (1) | CA2478671C (en) |
DE (1) | DE60332328D1 (en) |
WO (1) | WO2003077549A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070230571A1 (en) * | 2006-03-31 | 2007-10-04 | Tomoya Kodama | Image encoding apparatus and image decoding apparatus |
US20070269125A1 (en) * | 2004-11-17 | 2007-11-22 | Joan Llach | Bit-Accurate Film Grain Simulation Method Based On Pre-Computed Transformed Coefficients |
US20080152250A1 (en) * | 2004-11-23 | 2008-06-26 | Cristina Gomila | Low-Complexity Film Grain Simulation Technique |
US20080309756A1 (en) * | 2005-11-23 | 2008-12-18 | Koninklijke Philips Electronics, N.V. | Rendering Views for a Multi-View Display Device |
US20090041132A1 (en) * | 2006-03-14 | 2009-02-12 | Canon Kabushiki Kaisha | Method and device for adapting a temporal frequency of a sequence of video images |
US20090129694A1 (en) * | 2007-11-15 | 2009-05-21 | Avisonic Technology Corp. | Method and apparatus thereof for enhancing digital image |
US20100053426A1 (en) * | 2008-08-29 | 2010-03-04 | Norihiko Kawada | Video conversion device, video conversion method, and program |
US20100208996A1 (en) * | 2007-10-05 | 2010-08-19 | Tufts University | Devices and methods for restoring low-resolution text images |
US20100225772A1 (en) * | 2007-02-07 | 2010-09-09 | Sony Corporation | Image processing device, image picking-up device, image processing method, and program |
US20110022418A1 (en) * | 2007-12-28 | 2011-01-27 | Haiyan He | Arrangement And Approach For Motion-Based Image Data Processing |
US20110103465A1 (en) * | 2009-10-30 | 2011-05-05 | Kuo-Lung Chang | Encoding method of screen frame and electronic device applying the same |
US20120093214A1 (en) * | 2010-10-19 | 2012-04-19 | Julian Michael Urbach | Composite video streaming using stateless compression |
US8249299B1 (en) * | 2009-08-17 | 2012-08-21 | Adobe Systems Incorporated | Systems and methods of tracking objects in video |
US20120262549A1 (en) * | 2011-04-15 | 2012-10-18 | Tektronix, Inc. | Full Reference System For Predicting Subjective Quality Of Three-Dimensional Video |
US8411931B2 (en) | 2006-06-23 | 2013-04-02 | Imax Corporation | Methods and systems for converting 2D motion pictures for stereoscopic 3D exhibition |
US8447124B2 (en) | 2004-11-12 | 2013-05-21 | Thomson Licensing | Film grain simulation for normal play and trick mode play for video playback systems |
US8447127B2 (en) | 2004-10-18 | 2013-05-21 | Thomson Licensing | Film grain simulation method |
US8483288B2 (en) | 2004-11-22 | 2013-07-09 | Thomson Licensing | Methods, apparatus and system for film grain cache splitting for film grain simulation |
US20130257851A1 (en) * | 2012-04-01 | 2013-10-03 | Chao-Hua Lee | Pipeline web-based process for 3d animation |
US8842730B2 (en) | 2006-01-27 | 2014-09-23 | Imax Corporation | Methods and systems for digitally re-mastering of 2D and 3D motion pictures for exhibition with enhanced visual quality |
US20140294081A1 (en) * | 2002-05-29 | 2014-10-02 | Video 264 Innovations, Llc | Video Signal Predictive Interpolation |
US8988578B2 (en) | 2012-02-03 | 2015-03-24 | Honeywell International Inc. | Mobile computing device with improved image preview functionality |
US9117261B2 (en) | 2004-11-16 | 2015-08-25 | Thomson Licensing | Film grain SEI message insertion for bit-accurate simulation in a video system |
US9177364B2 (en) | 2004-11-16 | 2015-11-03 | Thomson Licensing | Film grain simulation method based on pre-computed transform coefficients |
US20160011828A1 (en) * | 2014-07-11 | 2016-01-14 | Canon Kabushiki Kaisha | Server, job management system, job management method, and storage medium |
US9407876B1 (en) * | 2010-09-14 | 2016-08-02 | Pixia Corp. | Method and system for encoding and decoding multiple wide-area surveillance area-of-interest video codestreams |
US9599757B2 (en) | 2014-10-10 | 2017-03-21 | Microsoft Technology Licensing, Llc | Increased accuracy corner cube arrays for high resolution retro-reflective imaging applications |
US9641818B1 (en) | 2016-04-01 | 2017-05-02 | Adobe Systems Incorporated | Kinetic object removal from camera preview image |
US9697595B2 (en) | 2014-11-26 | 2017-07-04 | Adobe Systems Incorporated | Content aware fill based on similar images |
US10715834B2 (en) | 2007-05-10 | 2020-07-14 | Interdigital Vc Holdings, Inc. | Film grain simulation based on pre-computed transform coefficients |
US11270415B2 (en) | 2019-08-22 | 2022-03-08 | Adobe Inc. | Image inpainting with geometric and photometric transformations |
US11330145B1 (en) | 2021-06-10 | 2022-05-10 | Bank Of America Corporation | Image processing edge device for document noise removal |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031383B2 (en) | 2001-05-04 | 2015-05-12 | Legend3D, Inc. | Motion picture project management system |
US9286941B2 (en) | 2001-05-04 | 2016-03-15 | Legend3D, Inc. | Image sequence enhancement and motion picture project management system |
CA2478671C (en) | 2002-03-13 | 2011-09-13 | Imax Corporation | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
WO2004088990A2 (en) * | 2003-04-04 | 2004-10-14 | Bbc Technology Holdings Limited | Media storage control |
US7555165B2 (en) * | 2003-11-13 | 2009-06-30 | Eastman Kodak Company | Method for semantic scene classification using camera metadata and content-based cues |
US7986328B2 (en) * | 2004-02-26 | 2011-07-26 | Hewlett-Packard Development Company, L.P. | Graphics optimization system and method |
EP1779649A2 (en) * | 2004-07-30 | 2007-05-02 | Pacific Title & Arts Studio, Inc. | Method for conversion and reproduction of film images through a digital process |
CA2595568C (en) * | 2005-01-27 | 2013-11-12 | Thomson Licensing | Edge based cmy automatic picture registration |
US7924922B2 (en) * | 2005-03-07 | 2011-04-12 | Hewlett-Packard Development Company, L.P. | Color registration in a digital video |
KR20080021646A (en) * | 2005-05-09 | 2008-03-07 | 록히드 마틴 코포레이션 | Continuous extended range image processing |
JP4712631B2 (en) * | 2005-07-28 | 2011-06-29 | 京セラ株式会社 | Imaging device |
KR100594995B1 (en) * | 2006-03-17 | 2006-07-03 | (주)동영아이텍 | Multimedia File Creation System for Digital Cinema Advertising |
JP4709043B2 (en) * | 2006-03-27 | 2011-06-22 | 富士フイルム株式会社 | Data display apparatus and method, and program |
US8281281B1 (en) * | 2006-06-07 | 2012-10-02 | Pixar | Setting level of detail transition points |
US8081224B2 (en) * | 2008-05-07 | 2011-12-20 | Aptina Imaging Corporation | Method and apparatus for image stabilization using multiple image captures |
US8508662B1 (en) * | 2008-06-19 | 2013-08-13 | Marvell International Ltd. | Post de-interlacer motion adaptive filter for smoother moving edges |
US20100026897A1 (en) | 2008-07-30 | 2010-02-04 | Cinnafilm, Inc. | Method, Apparatus, and Computer Software for Modifying Moving Images Via Motion Compensation Vectors, Degrain/Denoise, and Superresolution |
BRPI0918044A2 (en) * | 2008-09-18 | 2015-12-01 | Thomson Licensing | methods and apparatus for video image removal |
US8140708B2 (en) * | 2008-11-17 | 2012-03-20 | Xrfiles, Inc. | System and method for the serving of extended bit depth high resolution images |
US8406518B2 (en) | 2009-01-20 | 2013-03-26 | Pixar | Smoothed local histogram filters for computer graphics |
CN102450010A (en) | 2009-04-20 | 2012-05-09 | 杜比实验室特许公司 | Directed interpolation and data post-processing |
KR20110042980A (en) * | 2009-10-20 | 2011-04-27 | 삼성전자주식회사 | Display apparatus for improving image quality through iterative processing and image processing method applied thereto |
US9288476B2 (en) | 2011-02-17 | 2016-03-15 | Legend3D, Inc. | System and method for real-time depth modification of stereo images of a virtual reality environment |
US9282321B2 (en) | 2011-02-17 | 2016-03-08 | Legend3D, Inc. | 3D model multi-reviewer system |
US9113130B2 (en) | 2012-02-06 | 2015-08-18 | Legend3D, Inc. | Multi-stage production pipeline system |
WO2013120115A2 (en) * | 2012-02-06 | 2013-08-15 | Legend3D, Inc. | Motion picture project management system |
US9232175B2 (en) | 2012-03-01 | 2016-01-05 | Sony Corporation | Generating multiple shots in storyboarding |
BR112015031918A2 (en) | 2013-06-25 | 2017-07-25 | Numeri Ltd | increased spatiotemporal resolution of multiple video levels |
GB201314068D0 (en) * | 2013-08-06 | 2013-09-18 | Microsoft Corp | Encoding Video Captured in low light |
US11451798B2 (en) * | 2015-01-05 | 2022-09-20 | Arris Enterprises Llc | Method of encoding video with film grain |
IL301720B2 (en) | 2016-02-24 | 2024-11-01 | Magic Leap Inc | Polarizing beam splitter with low light leakage |
JP6978423B2 (en) | 2016-03-01 | 2021-12-08 | マジック リープ, インコーポレイテッドMagic Leap, Inc. | Reflection switching device for inputting different wavelengths of light into a waveguide |
CA3016032C (en) | 2016-03-04 | 2024-05-21 | Magic Leap, Inc. | Current drain reduction in ar/vr display systems |
IL311155A (en) | 2016-03-25 | 2024-04-01 | Magic Leap Inc | Virtual and augmented reality systems and methods |
IL299710A (en) | 2016-06-03 | 2023-03-01 | Magic Leap Inc | Augmented reality identity verification |
JP7011608B2 (en) | 2016-06-30 | 2022-01-26 | マジック リープ, インコーポレイテッド | Posture estimation in 3D space |
WO2018013199A1 (en) | 2016-07-14 | 2018-01-18 | Magic Leap, Inc. | Iris boundary estimation using cornea curvature |
WO2018013200A1 (en) | 2016-07-14 | 2018-01-18 | Magic Leap, Inc. | Deep neural network for iris identification |
CN109923500B (en) | 2016-08-22 | 2022-01-04 | 奇跃公司 | Augmented reality display device with deep learning sensor |
RU2016138608A (en) | 2016-09-29 | 2018-03-30 | Мэджик Лип, Инк. | NEURAL NETWORK FOR SEGMENTING THE EYE IMAGE AND ASSESSING THE QUALITY OF THE IMAGE |
IL293688B2 (en) | 2016-10-04 | 2024-02-01 | Magic Leap Inc | Efficient data layouts for convolutional neural networks |
US10943188B2 (en) * | 2016-11-09 | 2021-03-09 | Universal City Studios Llc | Virtual queuing techniques |
AU2017361061B2 (en) | 2016-11-15 | 2022-02-03 | Magic Leap, Inc. | Deep learning system for cuboid detection |
WO2018106542A1 (en) | 2016-12-05 | 2018-06-14 | Magic Leap, Inc. | Virtual user input controls in a mixed reality environment |
CN110178374B (en) | 2017-01-18 | 2023-10-10 | 杜比实验室特许公司 | Segment-based shaping for encoding high dynamic range video |
WO2018136432A1 (en) * | 2017-01-18 | 2018-07-26 | Dolby Laboratories Licensing Corporation | Segment-based reshaping for coding high dynamic range video |
JP6628908B2 (en) * | 2017-02-17 | 2020-01-15 | 富士フイルム株式会社 | Image processing apparatus, image processing method, and camera system |
JP6592622B2 (en) * | 2017-02-17 | 2019-10-16 | 富士フイルム株式会社 | Image processing apparatus, image processing method, and camera system |
JP6929953B2 (en) | 2017-03-17 | 2021-09-01 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Room layout estimation method and technique |
IL293424A (en) | 2017-07-26 | 2022-07-01 | Magic Leap Inc | Neural network training with displays of user interface devices |
EP3685313A4 (en) | 2017-09-20 | 2021-06-09 | Magic Leap, Inc. | Personalized neural network for eye tracking |
US11537895B2 (en) | 2017-10-26 | 2022-12-27 | Magic Leap, Inc. | Gradient normalization systems and methods for adaptive loss balancing in deep multitask networks |
EP3743882B1 (en) * | 2018-01-23 | 2024-01-10 | Imax Corporation | Enhancing image data with appearance controls |
US11966055B2 (en) | 2018-07-19 | 2024-04-23 | Magic Leap, Inc. | Content interaction driven by eye metrics |
CN112749448B (en) * | 2019-10-31 | 2022-02-08 | 北京国联视讯信息技术股份有限公司 | Space measurement system and method based on parameter big data identification |
Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925294A (en) | 1986-12-17 | 1990-05-15 | Geshwind David M | Method to convert two dimensional motion pictures for three-dimensional systems |
WO1993007585A1 (en) | 1991-10-04 | 1993-04-15 | David Sarnoff Research Center, Inc. | Method for determining sensor motion and scene structure and image processing system therefor |
WO1993023823A1 (en) | 1992-05-15 | 1993-11-25 | David Sarnoff Research Center, Inc. | Method for fusing images and apparatus therefor |
JPH06102484A (en) | 1992-09-18 | 1994-04-15 | Matsushita Electric Ind Co Ltd | Meothod and device for displaying image using spatial optical modulation element |
WO1994010675A1 (en) | 1992-11-04 | 1994-05-11 | Rank Brimar Limited | Display system |
US5379369A (en) | 1991-03-04 | 1995-01-03 | Sharp Kabushiki Kaisha | Apparatus for generating stereoscopic image and method therefor |
EP0665697A2 (en) | 1994-02-01 | 1995-08-02 | SANYO ELECTRIC Co., Ltd. | Method of converting two-dimensional images into three-dimensional images |
US5510832A (en) | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
WO1996015508A1 (en) | 1994-11-14 | 1996-05-23 | David Sarnoff Research Center, Inc. | Mosaic based image processing system and method for processing images |
EP0735512A2 (en) | 1995-03-29 | 1996-10-02 | SANYO ELECTRIC Co., Ltd. | Methods for creating an image for a three-dimensional display, for calculating depth information, and for image processing using the depth information |
US5589852A (en) | 1989-02-27 | 1996-12-31 | Texas Instruments Incorporated | Apparatus and method for image projection with pixel intensity control |
WO1997001135A2 (en) | 1995-06-22 | 1997-01-09 | Sarnoff Corporation | Method and system for image combination using a parallax-based technique |
US5600731A (en) | 1991-05-09 | 1997-02-04 | Eastman Kodak Company | Method for temporally adaptive filtering of frames of a noisy image sequence using motion estimation |
US5629988A (en) | 1993-06-04 | 1997-05-13 | David Sarnoff Research Center, Inc. | System and method for electronic image stabilization |
WO1997024000A1 (en) | 1995-12-22 | 1997-07-03 | Xenotech Research Pty. Ltd. | Image conversion and encoding techniques |
WO1997037323A1 (en) | 1996-03-29 | 1997-10-09 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two image sequences |
US5682437A (en) | 1994-09-22 | 1997-10-28 | Sanyo Electric Co., Ltd. | Method of converting two-dimensional images into three-dimensional images |
WO1998002844A1 (en) | 1996-07-17 | 1998-01-22 | Sarnoff Corporation | Method and apparatus for mosaic image construction |
US5719966A (en) | 1996-03-29 | 1998-02-17 | David Sarnoff Research Center, Inc. | Apparatus for assessing the visiblity of differences between two image sequences |
US5738430A (en) | 1996-03-29 | 1998-04-14 | David Sarnoff Research Center, Inc. | Method and apparatus for predicting retinal illuminance |
US5739844A (en) | 1994-02-04 | 1998-04-14 | Sanyo Electric Co. Ltd. | Method of converting two-dimensional image into three-dimensional image |
US5748199A (en) | 1995-12-20 | 1998-05-05 | Synthonics Incorporated | Method and apparatus for converting a two dimensional motion picture into a three dimensional motion picture |
WO1998021690A1 (en) | 1996-11-13 | 1998-05-22 | Sarnoff Corporation | Multi-view image registration with application to mosaicing and lens distortion correction |
US5790686A (en) * | 1995-09-19 | 1998-08-04 | University Of Maryland At College Park | DCT-based motion estimation method |
US5835627A (en) * | 1995-05-15 | 1998-11-10 | Higgins; Eric W. | System and method for automatically optimizing image quality and processing time |
WO1998052356A1 (en) | 1997-05-16 | 1998-11-19 | The Trustees Of Columbia University In The City Of New York | Methods and architecture for indexing and editing compressed video over the world wide web |
WO1999012127A1 (en) | 1997-09-02 | 1999-03-11 | Dynamic Digital Depth Research Pty Ltd | Image processing method and apparatus |
US5909516A (en) | 1996-03-29 | 1999-06-01 | Sarnoff Corporation | Method and apparatus for decomposing an image stream into units of local contrast |
US5946041A (en) | 1996-01-31 | 1999-08-31 | Fujitsu Limited | Apparatus and method of tracking an image-feature using a block matching algorithm |
US5974159A (en) | 1996-03-29 | 1999-10-26 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two image sequences |
US5978029A (en) * | 1997-10-10 | 1999-11-02 | International Business Machines Corporation | Real-time encoding of video sequence employing two encoders and statistical analysis |
US5999220A (en) | 1997-04-07 | 1999-12-07 | Washino; Kinya | Multi-format audio/video production system with frame-rate conversion |
US6031564A (en) | 1997-07-07 | 2000-02-29 | Reveo, Inc. | Method and apparatus for monoscopic to stereoscopic image conversion |
WO2000013423A1 (en) | 1998-08-28 | 2000-03-09 | Sarnoff Corporation | Method and apparatus for synthesizing high-resolution imagery using one high-resolution camera and a lower resolution camera |
US6061477A (en) | 1996-04-18 | 2000-05-09 | Sarnoff Corporation | Quality image warper |
US6067125A (en) * | 1997-05-15 | 2000-05-23 | Minerva Systems | Structure and method for film grain noise reduction |
US6072907A (en) | 1997-05-28 | 2000-06-06 | Xerox Corporation | Method and apparatus for enhancing and thresholding images |
US6075884A (en) | 1996-03-29 | 2000-06-13 | Sarnoff Corporation | Method and apparatus for training a neural network to learn and use fidelity metric as a control mechanism |
US6108005A (en) | 1996-08-30 | 2000-08-22 | Space Corporation | Method for producing a synthesized stereoscopic image |
US6130717A (en) * | 1990-10-15 | 2000-10-10 | Canon Kabushiki Kaisha | Image pickup apparatus with a lens unit attachment/detachment indication |
US6130660A (en) | 1993-10-01 | 2000-10-10 | Maxvision Corporation | System and method for synthesizing high resolution video |
US6137904A (en) | 1997-04-04 | 2000-10-24 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two signal sequences |
US6141459A (en) | 1997-09-24 | 2000-10-31 | Sarnoff Corporation | Method and apparatus for processing image pyramid borders |
CA2279797A1 (en) | 1999-08-06 | 2001-02-06 | Demin Wang | A method for temporal interpolation of an image sequence using object-based image analysis |
US6191809B1 (en) | 1998-01-15 | 2001-02-20 | Vista Medical Technologies, Inc. | Method and apparatus for aligning stereo images |
US6208348B1 (en) | 1998-05-27 | 2001-03-27 | In-Three, Inc. | System and method for dimensionalization processing of images in consideration of a pedetermined image projection format |
US6219462B1 (en) | 1997-05-09 | 2001-04-17 | Sarnoff Corporation | Method and apparatus for performing global image alignment using any local match measure |
WO2001028238A2 (en) | 1999-10-08 | 2001-04-19 | Sarnoff Corporation | Method and apparatus for enhancing and indexing video and audio signals |
US6266092B1 (en) | 1998-05-12 | 2001-07-24 | Genesis Microchip Inc. | Method and apparatus for video line multiplication with enhanced sharpness |
US6269175B1 (en) | 1998-08-28 | 2001-07-31 | Sarnoff Corporation | Method and apparatus for enhancing regions of aligned images using flow estimation |
US6298090B1 (en) * | 1998-06-04 | 2001-10-02 | U.S. Philips Corporation | System for detecting redundant images in a video sequence by comparing two predetermined threshold values |
US20010031003A1 (en) | 1999-12-20 | 2001-10-18 | Sawhney Harpreet Singh | Tweening-based codec for scaleable encoders and decoders with varying motion computation capability |
WO2002003687A2 (en) | 2000-07-03 | 2002-01-10 | Imax Corporation | Equipment and techniques for increasing the dynamic range of a projection system |
WO2002012143A1 (en) | 2000-08-04 | 2002-02-14 | E. I. F. S. Holdings Limited | Composite light weight building panel and core material therefor |
US6351545B1 (en) | 1999-12-14 | 2002-02-26 | Dynapel Systems, Inc. | Motion picture enhancing system |
US20020035432A1 (en) * | 2000-06-08 | 2002-03-21 | Boguslaw Kubica | Method and system for spatially indexing land |
WO2002045003A1 (en) | 2000-12-01 | 2002-06-06 | Imax Corporation | Techniques and systems for developing high-resolution imagery |
US20020149696A1 (en) | 2001-02-23 | 2002-10-17 | Eastman Kodak Company | Method for presenting improved motion image sequences |
US6487304B1 (en) | 1999-06-16 | 2002-11-26 | Microsoft Corporation | Multi-view approach to motion and stereo |
US20030016750A1 (en) | 2001-02-23 | 2003-01-23 | Eastman Kodak Company | Frame-interpolated variable-rate motion imaging system |
US6515659B1 (en) | 1998-05-27 | 2003-02-04 | In-Three, Inc. | Method and system for creating realistic smooth three-dimensional depth contours from two-dimensional images |
US6522787B1 (en) | 1995-07-10 | 2003-02-18 | Sarnoff Corporation | Method and system for rendering and combining images to form a synthesized view of a scene containing image information from a second image |
US6560281B1 (en) * | 1998-02-24 | 2003-05-06 | Xerox Corporation | Method and apparatus for generating a condensed version of a video sequence including desired affordances |
US6573912B1 (en) | 2000-11-07 | 2003-06-03 | Zaxel Systems, Inc. | Internet system for virtual telepresence |
US6590573B1 (en) | 1983-05-09 | 2003-07-08 | David Michael Geshwind | Interactive computer system for creating three-dimensional image information and for converting two-dimensional image information for three-dimensional display systems |
WO2003077549A1 (en) | 2002-03-13 | 2003-09-18 | Imax Corporation | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
US6728317B1 (en) * | 1996-01-30 | 2004-04-27 | Dolby Laboratories Licensing Corporation | Moving image compression quality enhancement using displacement filters with negative lobes |
US20040202445A1 (en) | 2003-03-20 | 2004-10-14 | Pixar | Component color flat panel digital film recorder and method |
US6806898B1 (en) | 2000-03-20 | 2004-10-19 | Microsoft Corp. | System and method for automatically adjusting gaze and head orientation for video conferencing |
US6856314B2 (en) | 2002-04-18 | 2005-02-15 | Stmicroelectronics, Inc. | Method and system for 3D reconstruction of multiple views with altering search path and occlusion modeling |
US20050226529A1 (en) | 2004-02-19 | 2005-10-13 | Sony Corporation | Signal processing apparatus and method, and command-sequence data structure |
US20050254011A1 (en) | 2004-05-17 | 2005-11-17 | Weisgerber Robert C | Method for exhibiting motion picture films at a higher frame rate than that in which they were originally produced |
US6968006B1 (en) * | 2001-06-05 | 2005-11-22 | At&T Corp. | Method of content adaptive video decoding |
US6992700B1 (en) * | 1998-09-08 | 2006-01-31 | Ricoh Company, Ltd. | Apparatus for correction based upon detecting a camera shaking |
US7006157B2 (en) | 2002-02-19 | 2006-02-28 | Samsung Electronics Co., Ltd. | Apparatus and method for converting frame rate |
US7079697B2 (en) * | 2001-03-19 | 2006-07-18 | Texas Instruments Incorporated | Image compression with transform coefficient analysis |
US7227125B2 (en) | 2005-06-29 | 2007-06-05 | Mitsumi Electric Co., Ltd. | Encoder device |
US7227896B2 (en) * | 2001-10-04 | 2007-06-05 | Sharp Laboratories Of America, Inc. | Method and apparatus for global motion estimation |
WO2007085950A2 (en) | 2006-01-27 | 2007-08-02 | Imax Corporation | Methods and systems for digitally re-mastering of 2d and 3d motion pictures for exhibition with enhanced visual quality |
WO2007148219A2 (en) | 2006-06-23 | 2007-12-27 | Imax Corporation | Methods and systems for converting 2d motion pictures for stereoscopic 3d exhibition |
-
2003
- 2003-03-13 CA CA2478671A patent/CA2478671C/en not_active Expired - Lifetime
- 2003-03-13 EP EP03743959A patent/EP1483909B1/en not_active Expired - Lifetime
- 2003-03-13 CN CN03810057.6A patent/CN1650622B/en not_active Expired - Lifetime
- 2003-03-13 WO PCT/IB2003/000919 patent/WO2003077549A1/en not_active Application Discontinuation
- 2003-03-13 DE DE60332328T patent/DE60332328D1/en not_active Expired - Lifetime
- 2003-03-13 AU AU2003209553A patent/AU2003209553A1/en not_active Abandoned
- 2003-03-13 US US10/474,780 patent/US7856055B2/en active Active
Patent Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6590573B1 (en) | 1983-05-09 | 2003-07-08 | David Michael Geshwind | Interactive computer system for creating three-dimensional image information and for converting two-dimensional image information for three-dimensional display systems |
US4925294A (en) | 1986-12-17 | 1990-05-15 | Geshwind David M | Method to convert two dimensional motion pictures for three-dimensional systems |
US5589852A (en) | 1989-02-27 | 1996-12-31 | Texas Instruments Incorporated | Apparatus and method for image projection with pixel intensity control |
US6130717A (en) * | 1990-10-15 | 2000-10-10 | Canon Kabushiki Kaisha | Image pickup apparatus with a lens unit attachment/detachment indication |
US5379369A (en) | 1991-03-04 | 1995-01-03 | Sharp Kabushiki Kaisha | Apparatus for generating stereoscopic image and method therefor |
US5600731A (en) | 1991-05-09 | 1997-02-04 | Eastman Kodak Company | Method for temporally adaptive filtering of frames of a noisy image sequence using motion estimation |
WO1993007585A1 (en) | 1991-10-04 | 1993-04-15 | David Sarnoff Research Center, Inc. | Method for determining sensor motion and scene structure and image processing system therefor |
US5259040A (en) | 1991-10-04 | 1993-11-02 | David Sarnoff Research Center, Inc. | Method for determining sensor motion and scene structure and image processing system therefor |
US5325449A (en) | 1992-05-15 | 1994-06-28 | David Sarnoff Research Center, Inc. | Method for fusing images and apparatus therefor |
US5488674A (en) | 1992-05-15 | 1996-01-30 | David Sarnoff Research Center, Inc. | Method for fusing images and apparatus therefor |
WO1993023823A1 (en) | 1992-05-15 | 1993-11-25 | David Sarnoff Research Center, Inc. | Method for fusing images and apparatus therefor |
JPH06102484A (en) | 1992-09-18 | 1994-04-15 | Matsushita Electric Ind Co Ltd | Meothod and device for displaying image using spatial optical modulation element |
WO1994010675A1 (en) | 1992-11-04 | 1994-05-11 | Rank Brimar Limited | Display system |
US5629988A (en) | 1993-06-04 | 1997-05-13 | David Sarnoff Research Center, Inc. | System and method for electronic image stabilization |
US6130660A (en) | 1993-10-01 | 2000-10-10 | Maxvision Corporation | System and method for synthesizing high resolution video |
US5510832A (en) | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
EP0665697A2 (en) | 1994-02-01 | 1995-08-02 | SANYO ELECTRIC Co., Ltd. | Method of converting two-dimensional images into three-dimensional images |
US5739844A (en) | 1994-02-04 | 1998-04-14 | Sanyo Electric Co. Ltd. | Method of converting two-dimensional image into three-dimensional image |
US5682437A (en) | 1994-09-22 | 1997-10-28 | Sanyo Electric Co., Ltd. | Method of converting two-dimensional images into three-dimensional images |
US5649032A (en) | 1994-11-14 | 1997-07-15 | David Sarnoff Research Center, Inc. | System for automatically aligning images to form a mosaic image |
WO1996015508A1 (en) | 1994-11-14 | 1996-05-23 | David Sarnoff Research Center, Inc. | Mosaic based image processing system and method for processing images |
EP0735512A2 (en) | 1995-03-29 | 1996-10-02 | SANYO ELECTRIC Co., Ltd. | Methods for creating an image for a three-dimensional display, for calculating depth information, and for image processing using the depth information |
US5835627A (en) * | 1995-05-15 | 1998-11-10 | Higgins; Eric W. | System and method for automatically optimizing image quality and processing time |
US5963664A (en) | 1995-06-22 | 1999-10-05 | Sarnoff Corporation | Method and system for image combination using a parallax-based technique |
WO1997001135A2 (en) | 1995-06-22 | 1997-01-09 | Sarnoff Corporation | Method and system for image combination using a parallax-based technique |
US6522787B1 (en) | 1995-07-10 | 2003-02-18 | Sarnoff Corporation | Method and system for rendering and combining images to form a synthesized view of a scene containing image information from a second image |
US5790686A (en) * | 1995-09-19 | 1998-08-04 | University Of Maryland At College Park | DCT-based motion estimation method |
US5748199A (en) | 1995-12-20 | 1998-05-05 | Synthonics Incorporated | Method and apparatus for converting a two dimensional motion picture into a three dimensional motion picture |
US6477267B1 (en) | 1995-12-22 | 2002-11-05 | Dynamic Digital Depth Research Pty Ltd. | Image conversion and encoding techniques |
WO1997024000A1 (en) | 1995-12-22 | 1997-07-03 | Xenotech Research Pty. Ltd. | Image conversion and encoding techniques |
US6728317B1 (en) * | 1996-01-30 | 2004-04-27 | Dolby Laboratories Licensing Corporation | Moving image compression quality enhancement using displacement filters with negative lobes |
US5946041A (en) | 1996-01-31 | 1999-08-31 | Fujitsu Limited | Apparatus and method of tracking an image-feature using a block matching algorithm |
US5738430A (en) | 1996-03-29 | 1998-04-14 | David Sarnoff Research Center, Inc. | Method and apparatus for predicting retinal illuminance |
US5909516A (en) | 1996-03-29 | 1999-06-01 | Sarnoff Corporation | Method and apparatus for decomposing an image stream into units of local contrast |
WO1997037323A1 (en) | 1996-03-29 | 1997-10-09 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two image sequences |
US5974159A (en) | 1996-03-29 | 1999-10-26 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two image sequences |
US5694491A (en) | 1996-03-29 | 1997-12-02 | David Sarnoff Research Center, Inc. | Methods and apparatus for assessing the visibility of differences between two image sequences |
US5719966A (en) | 1996-03-29 | 1998-02-17 | David Sarnoff Research Center, Inc. | Apparatus for assessing the visiblity of differences between two image sequences |
US6075884A (en) | 1996-03-29 | 2000-06-13 | Sarnoff Corporation | Method and apparatus for training a neural network to learn and use fidelity metric as a control mechanism |
US6061477A (en) | 1996-04-18 | 2000-05-09 | Sarnoff Corporation | Quality image warper |
WO1998002844A1 (en) | 1996-07-17 | 1998-01-22 | Sarnoff Corporation | Method and apparatus for mosaic image construction |
US6108005A (en) | 1996-08-30 | 2000-08-22 | Space Corporation | Method for producing a synthesized stereoscopic image |
WO1998021690A1 (en) | 1996-11-13 | 1998-05-22 | Sarnoff Corporation | Multi-view image registration with application to mosaicing and lens distortion correction |
US6137904A (en) | 1997-04-04 | 2000-10-24 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two signal sequences |
US5999220A (en) | 1997-04-07 | 1999-12-07 | Washino; Kinya | Multi-format audio/video production system with frame-rate conversion |
US6219462B1 (en) | 1997-05-09 | 2001-04-17 | Sarnoff Corporation | Method and apparatus for performing global image alignment using any local match measure |
US6067125A (en) * | 1997-05-15 | 2000-05-23 | Minerva Systems | Structure and method for film grain noise reduction |
WO1998052356A1 (en) | 1997-05-16 | 1998-11-19 | The Trustees Of Columbia University In The City Of New York | Methods and architecture for indexing and editing compressed video over the world wide web |
US6072907A (en) | 1997-05-28 | 2000-06-06 | Xerox Corporation | Method and apparatus for enhancing and thresholding images |
US6215516B1 (en) | 1997-07-07 | 2001-04-10 | Reveo, Inc. | Method and apparatus for monoscopic to stereoscopic image conversion |
US6031564A (en) | 1997-07-07 | 2000-02-29 | Reveo, Inc. | Method and apparatus for monoscopic to stereoscopic image conversion |
WO1999012127A1 (en) | 1997-09-02 | 1999-03-11 | Dynamic Digital Depth Research Pty Ltd | Image processing method and apparatus |
US6496598B1 (en) | 1997-09-02 | 2002-12-17 | Dynamic Digital Depth Research Pty. Ltd. | Image processing method and apparatus |
US6141459A (en) | 1997-09-24 | 2000-10-31 | Sarnoff Corporation | Method and apparatus for processing image pyramid borders |
US5978029A (en) * | 1997-10-10 | 1999-11-02 | International Business Machines Corporation | Real-time encoding of video sequence employing two encoders and statistical analysis |
US6191809B1 (en) | 1998-01-15 | 2001-02-20 | Vista Medical Technologies, Inc. | Method and apparatus for aligning stereo images |
US6560281B1 (en) * | 1998-02-24 | 2003-05-06 | Xerox Corporation | Method and apparatus for generating a condensed version of a video sequence including desired affordances |
US6266092B1 (en) | 1998-05-12 | 2001-07-24 | Genesis Microchip Inc. | Method and apparatus for video line multiplication with enhanced sharpness |
US6208348B1 (en) | 1998-05-27 | 2001-03-27 | In-Three, Inc. | System and method for dimensionalization processing of images in consideration of a pedetermined image projection format |
US6686926B1 (en) | 1998-05-27 | 2004-02-03 | In-Three, Inc. | Image processing system and method for converting two-dimensional images into three-dimensional images |
US6515659B1 (en) | 1998-05-27 | 2003-02-04 | In-Three, Inc. | Method and system for creating realistic smooth three-dimensional depth contours from two-dimensional images |
US6298090B1 (en) * | 1998-06-04 | 2001-10-02 | U.S. Philips Corporation | System for detecting redundant images in a video sequence by comparing two predetermined threshold values |
US6269175B1 (en) | 1998-08-28 | 2001-07-31 | Sarnoff Corporation | Method and apparatus for enhancing regions of aligned images using flow estimation |
WO2000013423A1 (en) | 1998-08-28 | 2000-03-09 | Sarnoff Corporation | Method and apparatus for synthesizing high-resolution imagery using one high-resolution camera and a lower resolution camera |
US6992700B1 (en) * | 1998-09-08 | 2006-01-31 | Ricoh Company, Ltd. | Apparatus for correction based upon detecting a camera shaking |
US6487304B1 (en) | 1999-06-16 | 2002-11-26 | Microsoft Corporation | Multi-view approach to motion and stereo |
US6625333B1 (en) | 1999-08-06 | 2003-09-23 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through Communications Research Centre | Method for temporal interpolation of an image sequence using object-based image analysis |
CA2279797A1 (en) | 1999-08-06 | 2001-02-06 | Demin Wang | A method for temporal interpolation of an image sequence using object-based image analysis |
WO2001028238A2 (en) | 1999-10-08 | 2001-04-19 | Sarnoff Corporation | Method and apparatus for enhancing and indexing video and audio signals |
US6351545B1 (en) | 1999-12-14 | 2002-02-26 | Dynapel Systems, Inc. | Motion picture enhancing system |
US20010031003A1 (en) | 1999-12-20 | 2001-10-18 | Sawhney Harpreet Singh | Tweening-based codec for scaleable encoders and decoders with varying motion computation capability |
US6806898B1 (en) | 2000-03-20 | 2004-10-19 | Microsoft Corp. | System and method for automatically adjusting gaze and head orientation for video conferencing |
US20020035432A1 (en) * | 2000-06-08 | 2002-03-21 | Boguslaw Kubica | Method and system for spatially indexing land |
WO2002003687A2 (en) | 2000-07-03 | 2002-01-10 | Imax Corporation | Equipment and techniques for increasing the dynamic range of a projection system |
WO2002012143A1 (en) | 2000-08-04 | 2002-02-14 | E. I. F. S. Holdings Limited | Composite light weight building panel and core material therefor |
US6573912B1 (en) | 2000-11-07 | 2003-06-03 | Zaxel Systems, Inc. | Internet system for virtual telepresence |
WO2002045003A1 (en) | 2000-12-01 | 2002-06-06 | Imax Corporation | Techniques and systems for developing high-resolution imagery |
US7260274B2 (en) | 2000-12-01 | 2007-08-21 | Imax Corporation | Techniques and systems for developing high-resolution imagery |
US20030016750A1 (en) | 2001-02-23 | 2003-01-23 | Eastman Kodak Company | Frame-interpolated variable-rate motion imaging system |
US20020149696A1 (en) | 2001-02-23 | 2002-10-17 | Eastman Kodak Company | Method for presenting improved motion image sequences |
US7079697B2 (en) * | 2001-03-19 | 2006-07-18 | Texas Instruments Incorporated | Image compression with transform coefficient analysis |
US6968006B1 (en) * | 2001-06-05 | 2005-11-22 | At&T Corp. | Method of content adaptive video decoding |
US7227896B2 (en) * | 2001-10-04 | 2007-06-05 | Sharp Laboratories Of America, Inc. | Method and apparatus for global motion estimation |
US7006157B2 (en) | 2002-02-19 | 2006-02-28 | Samsung Electronics Co., Ltd. | Apparatus and method for converting frame rate |
WO2003077549A1 (en) | 2002-03-13 | 2003-09-18 | Imax Corporation | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
US20040130680A1 (en) | 2002-03-13 | 2004-07-08 | Samuel Zhou | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data |
US6856314B2 (en) | 2002-04-18 | 2005-02-15 | Stmicroelectronics, Inc. | Method and system for 3D reconstruction of multiple views with altering search path and occlusion modeling |
US20040202445A1 (en) | 2003-03-20 | 2004-10-14 | Pixar | Component color flat panel digital film recorder and method |
US20050226529A1 (en) | 2004-02-19 | 2005-10-13 | Sony Corporation | Signal processing apparatus and method, and command-sequence data structure |
US20050254011A1 (en) | 2004-05-17 | 2005-11-17 | Weisgerber Robert C | Method for exhibiting motion picture films at a higher frame rate than that in which they were originally produced |
US7227125B2 (en) | 2005-06-29 | 2007-06-05 | Mitsumi Electric Co., Ltd. | Encoder device |
WO2007085950A2 (en) | 2006-01-27 | 2007-08-02 | Imax Corporation | Methods and systems for digitally re-mastering of 2d and 3d motion pictures for exhibition with enhanced visual quality |
WO2007148219A2 (en) | 2006-06-23 | 2007-12-27 | Imax Corporation | Methods and systems for converting 2d motion pictures for stereoscopic 3d exhibition |
EP2033164A2 (en) | 2006-06-23 | 2009-03-11 | Imax Corporation | Methods and systems for converting 2d motion pictures for stereoscopic 3d exhibition |
Non-Patent Citations (53)
Title |
---|
Baker, et al., "A Layered Approach to Stereo Reconstruction," Proceedings of Computer Vision and Pattern Recognition Conference, Jun. 1998, pp. 434-441. |
Baroncini, et al. "The Image Resolution of 35mm Cinema Film in Theatrical Presentation," SMPTE Imaging Journal, vol. 113, No. 2&3, Feb./Mar. 2004, pp. 60-66. |
Borcsok, et al. "Generation of 3D Image Sequences from Mixed 2D and 3D Image Sources," SCI 2001, The 5th Multi-Conference on Systematics, Cybernetics and Informatics, Jul. 22-25, Florida, USA, 2001. |
Burt, et al., "The Laplacian Pyramid as a Compact Image Code," IEEE Transactions on Communications, vol. 31 (4), pp. 532-540 (1983). |
Christoph Stiller and Janusz Konrad, "Estimating Motion in Image Sequences," IEEE Signal Processing Magazine, pp. 70-91 (1999). |
Debevec, et al., "Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image- based Approach," Proceedings of SIGGRAPH '96, New Orleans, Louisiana, Aug. 4-9, 1996, pp. 11-20. |
Dunkley, "A New 3-D from 2-D Virtual Display Process," Proceedings of SPIE, vol. 1915, Stereo Displays and Applications IV, San Jose, Feb. 1, 1993, San Jose, CA, pp. 132-140. |
Ernst, E., "Motion Compensated Interpolation for Advanced Standards Conversion and Noise Reduction," Signal Processing of HDTV, III, pp. 319-328 (Sep. 4, 1991). |
Feldman, et al., "Interactive 2D to 3D stereoscopic image synthesis," Proceedings of SPIE vol. 5664 Stereoscopic Displays and Virtual Reality Systems XII, San Jose, CA, Jan. 17-19, 2005. |
Garcia, "Approaches to Stereoscopic Video Based on Spatio-Temporal Interpolation," Proceedings of SPIE, vol. 2653, Stereoscopic Displays and Virtual Reality Systems III, Jan.30-Feb. 1, 1996, San Jose, CA, pp. 85-95. |
Glenn Kennel, "Digital Film Scanning and Recording: The Technology and Practice," SMPTE Journal, pp. 174-181(1994). |
Hanna, "Direct multi-resolution estimation of ego-motion and structure from motion". In Proceedings IEEE Workshop on Visual Motion, Nassau Inn, Princeton, New Jersey, Oct. 7-9, 1991, pp. 156-162. |
Hanna, et al., "Combining stereo and motion analysis for direct estimation of scene structure". In Proceedings IEEE International Conference on Computer Vision, Berlin, Germany, pp. 357-365, May 11-14, 1993. |
Harman, "An Architecture for Digital 3D Broadcasting," Proceedings of SPIE, vol. 3639, Stereoscopic Displays and Virtual Reality Systems VI, Jan. 25-28, 1999, San Jose, CA, pp. 254-259. |
Harman, "Home Based 3D Entertainment-An Overview," Proceedings of IEEE International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, Cananda, pp. 1-4. |
Harman, et al., "Rapid 2D-to-3D Conversion," Proceedings of SPIE, vol. 4660, Stereoscopic Displays and Virtual Reality Systems IX, Jan. 21-24, 2002, San Jose, CA, pp. 78-86. |
Healey, et al., "Global Color Constancy: Recognition of objects by use of illumination invariant properties of color distributions," Journal of the Optical Society of America A, 11(11):3003-3010, Nov. 1994. |
Hoberman, "Depth Painting: the Interactive Transformation of Existing Images into Steroscopic 3D," Proceedings of SPIE, vol. 2177, Stereoscopic Displays and Virtual Reality Systems, Feb. 8-10, 1994, San Jose, CA, pp. 78-85. |
Hodges, "Tutorial: Time-Multiplexed Stereoscopic Computer Graphics," IEEE Computer Graphics and Applications, Mar. 1992, pp. 20-20. |
Horry, et al. "Tour Into the Picture: Using a Spidery Mesh Interface to Make Animation from a Single Image," Proceedings of Siggraph '97, Aug. 3-8, 1997, LA, CA, pp. 225-232. |
International Preliminary Examination Report for PCT/IB2003/00919, dated Mar. 24, 2004. |
International Preliminary Examination report for PCT/IB2007/000188, Jul. 29, 2008. |
International Preliminary Examination report for PCT/IB2007/001726, dated Jan. 6, 2009. |
International Preliminary Examination report for PCT/US2001/44995, dated Aug. 4, 2002. |
International Search Report for PCT/IB2003/00919, dated Dec. 8, 2003. |
International Search Report for PCT/IB2007/000188, dated Jun. 26, 2007. |
International Search Report for PCT/IB2007/001726, dated Feb. 12, 2008. |
International Search Report for PCT/US2001/44995, dated Apr. 4, 2002. |
Kennel, "Digital Film Scanning and Recording: The Technology and Practice," SMPTE Journal, pp. 174-181 (1994). |
Kim, et al., "Stereoscopic Conversion of Monoscopic Video by the Transformation of Vertical-to-horizontal Disparity," Proceedings of SPIE, vol. 3295, Stereo Displays and Virtual Reality Systems V, San Jose, CA, Jan. 26-29, 1998, pp. 65-75. |
Kim, et al., "Synthesis of a High-resolution 3D-stereoscopic Image Pair from a High Resolution Monoscopic Image and a Low-resolution Depth Map," Proceedings of SPIE, vol. 3295, Stereo Displays and Virtual Reality Systems V, San Jose, CA, Jan. 26-29, 1998, pp. 76-86. |
Kumar, et al., "3D Manipulation of Motion Imagery," Image Processing, 2000. Proceedings. 2000 International Conference on Sep. 10-13, 2000, Piscataway, NJ, USA, IEEE, pp. 17-20, Sarnoff Corporation. |
Kumar, et al., "Direct multi-resolution estimation of ego-motion and structure from motion". In Proceedings IEEE Workshop on Visual Motion, Nassau Inn, Princeton, New Jersey, Oct. 7-9, 1991, pp. 156-162. |
Kumar, et al., "Representation of scenes from collection of images," In Proc. IEEE Wkshp. on Representation of Visual Scenes, Cambridge, MA 1995. |
Levinson, et al., "Development of an Autostereoscopic Monitor and 2D to 3D Conversion for Medical and Surgical Uses; Requirements, Clinical Trials and Degree of Acceptance," Proceedings of SPIE, vol. 3639, Stereoscopic Displays and Virtual Reality Systems VI, Jan. 25-28, 1999, San Jose, CA, pp. 36-43. |
Matsumoto, et al., "Conversion System of Monocular Image Sequence to Stereo using Motion Parallax," Proceedings of SPIE, vol. 3012, Stereo Displays and Virtual Reality Systems IV, San Jose, Feb. 11-14, 1997, pp. 108-115. |
McAllister, "Stereo Pairs from Linear Morphing," Proceedings of SPIE, vol. 3295, Stereoscopic Displays and Virtual Reality Systems V, Jan. 26-29, 1998, San Jose, CA, pp. 46-52. |
Morton, et al., "Assessing the Quality of Motion Picture Systems from Scene-to-Digital Data," SMPTE Journal, vol. 111, No. 2, Feb./Mar. 2002, pp. 85-96. |
Murata, et al., "A Real-Time 2-D to 3-D Image Conversion Technique Using Computed Image Depth," SID Symposium Digest of Technical Papers, May 1998-vol. 29, Issue 1, pp. 919-923. |
Okino, et al., "New Television with 2D/3D image conversion technolgies," Proceedings of SPIE, vol. 2653, Stereoscopic Displays and Virtual Reality Systems III, Jan. 30-Feb. 1, 1996, San Jose, CA, pp. 96-105. |
Panabaker, et al. "IMAX HD-A High Definition Motion Picture System," 135th SMPTE Technical Conference, Oct. 29-Nov. 2, 1993, Los Angeles, CA. |
R. Kumar, et al., "Direct recovery of shape from multiple views: A parallax based approach". In International Conference on Pattern Recognition, pp. 685-688 (1994). |
Rotem, et al., "Automatic video-to-stereoscopic-video conversion," Proceedings of SPIE vol. 5664 Stereoscopic Displays and Virtual Reality Systems XII, San Jose, CA, Jan. 17-19, 2005. |
Sawhney, "3D Geometry from Planar Parallax," In Proc. IEEE Computer Vision and Pattern Recognition Conference, Seattle, WA, Jun. 21-23, 1994. |
Sawhney, "Hybrid Stereo Camera: An IBR Approach for Synthesis of Very High Resolution Stereoscopic Image Sequences," Computer Graphics. Siggraph 2001. Conference Proceedings, Los Angeles, CA, Aug. 12-17, 2001, pp. 451-460. |
Scharstein, "stereo vision for view synthesis," IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'96), pp. 852-858, San Francisco, CA, Jun. 1996. |
Shao, et al., "Automatic 2D to 3D Footage Conversion for 3D Glasses-free Display Systems," ICCV 2003 demonstrations, Oct. 13-16, 2003. |
Slater, et al., "The Illumination-Invariant Recognition of 3-D Objects Using Local Color Invariants," IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(2):206-210, Feb. 1996. |
Stiller, et al., "Estimating Motion in Image Sequences," IEEE Signal Processing Magazine, Jul. 1999, pp. 70-91. |
Supplementary European Search Report for Application No. 01989802.2, dated Mar. 23, 2009. |
Szeliski, "Scene Reconstruction from Multiple Cameras," Proceedings of IEEE International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, Canada, pp. 13-16. |
Tam, et al., "Stereoscopic Image Rendering Based on Depth Maps Created from Blur and Edge Information," Proceedings of SPIE vol. 5664 Stereoscopic Displays and Virtual Reality Systems XII, San Jose, CA, Jan. 17-19, 2005. |
Valencia, et al., "Synthesizing stereo 3D views from focus cues in monoscopic 2D images," Proceedings of SPIE, vol. 5006, Stereoscopic Displays and Virtual Reality Systems X, Jan. 21-23, 2003, Santa Clara, CA. |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140294081A1 (en) * | 2002-05-29 | 2014-10-02 | Video 264 Innovations, Llc | Video Signal Predictive Interpolation |
US8447127B2 (en) | 2004-10-18 | 2013-05-21 | Thomson Licensing | Film grain simulation method |
US8447124B2 (en) | 2004-11-12 | 2013-05-21 | Thomson Licensing | Film grain simulation for normal play and trick mode play for video playback systems |
US9117261B2 (en) | 2004-11-16 | 2015-08-25 | Thomson Licensing | Film grain SEI message insertion for bit-accurate simulation in a video system |
US9177364B2 (en) | 2004-11-16 | 2015-11-03 | Thomson Licensing | Film grain simulation method based on pre-computed transform coefficients |
US20070269125A1 (en) * | 2004-11-17 | 2007-11-22 | Joan Llach | Bit-Accurate Film Grain Simulation Method Based On Pre-Computed Transformed Coefficients |
US9098916B2 (en) | 2004-11-17 | 2015-08-04 | Thomson Licensing | Bit-accurate film grain simulation method based on pre-computed transformed coefficients |
US8483288B2 (en) | 2004-11-22 | 2013-07-09 | Thomson Licensing | Methods, apparatus and system for film grain cache splitting for film grain simulation |
US8472526B2 (en) * | 2004-11-23 | 2013-06-25 | Thomson Licensing | Low-complexity film grain simulation technique |
US20080152250A1 (en) * | 2004-11-23 | 2008-06-26 | Cristina Gomila | Low-Complexity Film Grain Simulation Technique |
US20080309756A1 (en) * | 2005-11-23 | 2008-12-18 | Koninklijke Philips Electronics, N.V. | Rendering Views for a Multi-View Display Device |
US9036015B2 (en) * | 2005-11-23 | 2015-05-19 | Koninklijke Philips N.V. | Rendering views for a multi-view display device |
US8842730B2 (en) | 2006-01-27 | 2014-09-23 | Imax Corporation | Methods and systems for digitally re-mastering of 2D and 3D motion pictures for exhibition with enhanced visual quality |
US20090041132A1 (en) * | 2006-03-14 | 2009-02-12 | Canon Kabushiki Kaisha | Method and device for adapting a temporal frequency of a sequence of video images |
US20070230571A1 (en) * | 2006-03-31 | 2007-10-04 | Tomoya Kodama | Image encoding apparatus and image decoding apparatus |
US9282313B2 (en) | 2006-06-23 | 2016-03-08 | Imax Corporation | Methods and systems for converting 2D motion pictures for stereoscopic 3D exhibition |
US8411931B2 (en) | 2006-06-23 | 2013-04-02 | Imax Corporation | Methods and systems for converting 2D motion pictures for stereoscopic 3D exhibition |
US8063939B2 (en) * | 2007-02-07 | 2011-11-22 | Sony Corporation | Image processing device, image picking-up device, image processing method, and program |
US20100225772A1 (en) * | 2007-02-07 | 2010-09-09 | Sony Corporation | Image processing device, image picking-up device, image processing method, and program |
US10715834B2 (en) | 2007-05-10 | 2020-07-14 | Interdigital Vc Holdings, Inc. | Film grain simulation based on pre-computed transform coefficients |
US8437551B2 (en) * | 2007-10-05 | 2013-05-07 | Tufts University | Devices and methods for restoring low-resolution text images |
US20100208996A1 (en) * | 2007-10-05 | 2010-08-19 | Tufts University | Devices and methods for restoring low-resolution text images |
US20090129694A1 (en) * | 2007-11-15 | 2009-05-21 | Avisonic Technology Corp. | Method and apparatus thereof for enhancing digital image |
US20110022418A1 (en) * | 2007-12-28 | 2011-01-27 | Haiyan He | Arrangement And Approach For Motion-Based Image Data Processing |
US8908100B2 (en) * | 2007-12-28 | 2014-12-09 | Entropic Communications, Inc. | Arrangement and approach for motion-based image data processing |
US8264533B2 (en) * | 2008-08-29 | 2012-09-11 | Sony Corporation | Video conversion device, video conversion method, and program |
US20100053426A1 (en) * | 2008-08-29 | 2010-03-04 | Norihiko Kawada | Video conversion device, video conversion method, and program |
US8249299B1 (en) * | 2009-08-17 | 2012-08-21 | Adobe Systems Incorporated | Systems and methods of tracking objects in video |
US20120288155A1 (en) * | 2009-08-17 | 2012-11-15 | Adobe Systems Incorporated | Systems and methods of tracking objects in video |
US8620029B2 (en) * | 2009-08-17 | 2013-12-31 | Adobe Systems Incorporated | Systems and methods of tracking objects in video |
US20110103465A1 (en) * | 2009-10-30 | 2011-05-05 | Kuo-Lung Chang | Encoding method of screen frame and electronic device applying the same |
US8477842B2 (en) * | 2009-10-30 | 2013-07-02 | Awind, Inc. | Encoding method of screen frame and electronic device applying the same |
US9407876B1 (en) * | 2010-09-14 | 2016-08-02 | Pixia Corp. | Method and system for encoding and decoding multiple wide-area surveillance area-of-interest video codestreams |
US10681305B2 (en) | 2010-09-14 | 2020-06-09 | Pixia Corp. | Method and system for combining multiple area-of-interest video codestreams into a combined video codestream |
US9621904B2 (en) | 2010-09-14 | 2017-04-11 | Pixia Corp. | Method and system for transmitting multiple wide-area surveillance area-of-interest video codestreams |
US9998749B2 (en) * | 2010-10-19 | 2018-06-12 | Otoy, Inc. | Composite video streaming using stateless compression |
US20120093214A1 (en) * | 2010-10-19 | 2012-04-19 | Julian Michael Urbach | Composite video streaming using stateless compression |
US20120262549A1 (en) * | 2011-04-15 | 2012-10-18 | Tektronix, Inc. | Full Reference System For Predicting Subjective Quality Of Three-Dimensional Video |
US8963998B2 (en) * | 2011-04-15 | 2015-02-24 | Tektronix, Inc. | Full reference system for predicting subjective quality of three-dimensional video |
US8988578B2 (en) | 2012-02-03 | 2015-03-24 | Honeywell International Inc. | Mobile computing device with improved image preview functionality |
US20130257851A1 (en) * | 2012-04-01 | 2013-10-03 | Chao-Hua Lee | Pipeline web-based process for 3d animation |
US20160011828A1 (en) * | 2014-07-11 | 2016-01-14 | Canon Kabushiki Kaisha | Server, job management system, job management method, and storage medium |
US9569150B2 (en) * | 2014-07-11 | 2017-02-14 | Canon Kabushiki Kaisha | Server controlling job management by a plurality of image forming devices |
US9599757B2 (en) | 2014-10-10 | 2017-03-21 | Microsoft Technology Licensing, Llc | Increased accuracy corner cube arrays for high resolution retro-reflective imaging applications |
US10338282B2 (en) | 2014-10-10 | 2019-07-02 | Microsoft Technology Licensing, Llc | Increased accuracy corner cube arrays for high resolution retro-reflective imaging applications |
US9697595B2 (en) | 2014-11-26 | 2017-07-04 | Adobe Systems Incorporated | Content aware fill based on similar images |
US10467739B2 (en) | 2014-11-26 | 2019-11-05 | Adobe Inc. | Content aware fill based on similar images |
US9641818B1 (en) | 2016-04-01 | 2017-05-02 | Adobe Systems Incorporated | Kinetic object removal from camera preview image |
US10264230B2 (en) | 2016-04-01 | 2019-04-16 | Adobe Inc. | Kinetic object removal from camera preview image |
US11270415B2 (en) | 2019-08-22 | 2022-03-08 | Adobe Inc. | Image inpainting with geometric and photometric transformations |
US12249051B2 (en) | 2019-08-22 | 2025-03-11 | Adobe Inc. | Image inpainting with geometric and photometric transformations |
US11330145B1 (en) | 2021-06-10 | 2022-05-10 | Bank Of America Corporation | Image processing edge device for document noise removal |
Also Published As
Publication number | Publication date |
---|---|
WO2003077549A1 (en) | 2003-09-18 |
CA2478671A1 (en) | 2003-09-18 |
US20040130680A1 (en) | 2004-07-08 |
EP1483909B1 (en) | 2010-04-28 |
CN1650622B (en) | 2012-09-05 |
EP1483909A1 (en) | 2004-12-08 |
CA2478671C (en) | 2011-09-13 |
CN1650622A (en) | 2005-08-03 |
AU2003209553A1 (en) | 2003-09-22 |
DE60332328D1 (en) | 2010-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7856055B2 (en) | Systems and methods for digitally re-mastering or otherwise modifying motion pictures or other image sequences data | |
Kokaram | On missing data treatment for degraded video and film archives: a survey and a new Bayesian approach | |
EP1977395B1 (en) | Methods and systems for digitally re-mastering of 2d and 3d motion pictures for exhibition with enhanced visual quality | |
Hanjalic et al. | Image and video databases: restoration, watermarking and retrieval | |
US8254677B2 (en) | Detection apparatus, detection method, and computer program | |
US8977070B2 (en) | Correction of blotches in component images | |
CN111193923A (en) | Video quality assessment method, device, electronic device and computer storage medium | |
JP2007506333A (en) | Motion vector field retiming | |
TW200535724A (en) | Robust camera pan vector estimation using iterative center of mass | |
US20120169890A1 (en) | Motion estimation in imaging systems | |
US7366361B2 (en) | Video registration based on local prediction errors | |
Gangal et al. | An improved motion-compensated restoration method for damaged color motion picture films | |
Mangiat et al. | Inexpensive high dynamic range video for large scale security and surveillance | |
WO2023045627A1 (en) | Image super-resolution method, apparatus and device, and storage medium | |
KR100828194B1 (en) | Apparatus and method for determining boundary blur of digital image and image processing system using same | |
Gunawan et al. | Evaluation of High Dynamic Range Reduced-Reference Image Quality Assessment based on Spatial Features | |
WO2003092306A1 (en) | Apparatus, method and program for measuring blur in digital image without using reference image | |
CN114494044A (en) | Attention mechanism-based image enhancement method and system and related equipment | |
JP4709649B2 (en) | Reduction of resolution difference of separated colors | |
Roscoe | Enhancement of digitised analogue video recordings using multiple image processing algorithms | |
Wang et al. | Archive film defect detection based on a hidden Markov model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMAX CORPORATION, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, SAMUEL;YE, PING;JUDKINS, PAUL;REEL/FRAME:015053/0748;SIGNING DATES FROM 20030403 TO 20030404 Owner name: IMAX CORPORATION, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, SAMUEL;YE, PING;JUDKINS, PAUL;SIGNING DATES FROM 20030403 TO 20030404;REEL/FRAME:015053/0748 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CARO Free format text: SECURITY AGREEMENT;ASSIGNOR:IMAX CORPORATION;REEL/FRAME:032134/0616 Effective date: 20091116 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:IMAX CORPORATION;REEL/FRAME:059771/0488 Effective date: 20220428 |