US7710850B2 - Method and apparatus for reproducing data of super resolution information storage medium - Google Patents
Method and apparatus for reproducing data of super resolution information storage medium Download PDFInfo
- Publication number
- US7710850B2 US7710850B2 US11/168,336 US16833605A US7710850B2 US 7710850 B2 US7710850 B2 US 7710850B2 US 16833605 A US16833605 A US 16833605A US 7710850 B2 US7710850 B2 US 7710850B2
- Authority
- US
- United States
- Prior art keywords
- reproduction signal
- super resolution
- data reproducing
- data
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000004304 visual acuity Effects 0.000 claims abstract description 31
- 230000001678 irradiating effect Effects 0.000 claims abstract description 25
- 230000002093 peripheral effect Effects 0.000 claims abstract description 15
- 230000002123 temporal effect Effects 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims description 47
- 230000004075 alteration Effects 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 40
- 239000000463 material Substances 0.000 description 22
- 230000008859 change Effects 0.000 description 16
- 238000001514 detection method Methods 0.000 description 13
- 229910052714 tellurium Inorganic materials 0.000 description 11
- 239000000758 substrate Substances 0.000 description 7
- 239000011669 selenium Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012782 phase change material Substances 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- AINNHYSCPOKHAO-UHFFFAOYSA-N aluminum;selenium Chemical compound [Se]=[Al] AINNHYSCPOKHAO-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- QNWMNMIVDYETIG-UHFFFAOYSA-N gallium(ii) selenide Chemical compound [Se]=[Ga] QNWMNMIVDYETIG-UHFFFAOYSA-N 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- VDDXNVZUVZULMR-UHFFFAOYSA-N germanium tellurium Chemical compound [Ge].[Te] VDDXNVZUVZULMR-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- OTYNBGDFCPCPOU-UHFFFAOYSA-N phosphane sulfane Chemical compound S.P[H] OTYNBGDFCPCPOU-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- NMHFBDQVKIZULJ-UHFFFAOYSA-N selanylideneindium Chemical compound [In]=[Se] NMHFBDQVKIZULJ-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910000763 AgInSbTe Inorganic materials 0.000 description 1
- 229910002699 Ag–S Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000618 GeSbTe Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910008772 Sn—Se Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010421 TiNx Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- 229910008938 W—Si Inorganic materials 0.000 description 1
- 229910008328 ZrNx Inorganic materials 0.000 description 1
- GQCYCMFGFVGYJT-UHFFFAOYSA-N [AlH3].[S] Chemical compound [AlH3].[S] GQCYCMFGFVGYJT-UHFFFAOYSA-N 0.000 description 1
- QLNFINLXAKOTJB-UHFFFAOYSA-N [As].[Se] Chemical compound [As].[Se] QLNFINLXAKOTJB-UHFFFAOYSA-N 0.000 description 1
- HTRSGQGJZWBDSW-UHFFFAOYSA-N [Ge].[Se] Chemical compound [Ge].[Se] HTRSGQGJZWBDSW-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- OXYOQBAZFDHPBM-UHFFFAOYSA-N [P].[Se] Chemical compound [P].[Se] OXYOQBAZFDHPBM-UHFFFAOYSA-N 0.000 description 1
- LAISNASYKAIAIK-UHFFFAOYSA-N [S].[As] Chemical compound [S].[As] LAISNASYKAIAIK-UHFFFAOYSA-N 0.000 description 1
- GSUVLAOQQLOGOJ-UHFFFAOYSA-N [S].[Ge] Chemical compound [S].[Ge] GSUVLAOQQLOGOJ-UHFFFAOYSA-N 0.000 description 1
- ZQRRBZZVXPVWRB-UHFFFAOYSA-N [S].[Se] Chemical compound [S].[Se] ZQRRBZZVXPVWRB-UHFFFAOYSA-N 0.000 description 1
- AFYNYVFJTDCVBJ-UHFFFAOYSA-N [Si].[S] Chemical compound [Si].[S] AFYNYVFJTDCVBJ-UHFFFAOYSA-N 0.000 description 1
- OHKMFOAYJDGMHW-UHFFFAOYSA-N [Si].[Se] Chemical compound [Si].[Se] OHKMFOAYJDGMHW-UHFFFAOYSA-N 0.000 description 1
- NUFNQYOELLVIPL-UHFFFAOYSA-N acifluorfen Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(OC=2C(=CC(=CC=2)C(F)(F)F)Cl)=C1 NUFNQYOELLVIPL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- BIXHRBFZLLFBFL-UHFFFAOYSA-N germanium nitride Chemical compound N#[Ge]N([Ge]#N)[Ge]#N BIXHRBFZLLFBFL-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002365 multiple layer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- OQRNKLRIQBVZHK-UHFFFAOYSA-N selanylideneantimony Chemical compound [Sb]=[Se] OQRNKLRIQBVZHK-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- KRRRBSZQCHDZMP-UHFFFAOYSA-N selanylidenesilver Chemical compound [Ag]=[Se] KRRRBSZQCHDZMP-UHFFFAOYSA-N 0.000 description 1
- MFIWAIVSOUGHLI-UHFFFAOYSA-N selenium;tin Chemical compound [Sn]=[Se] MFIWAIVSOUGHLI-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 1
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 1
- PGWMQVQLSMAHHO-UHFFFAOYSA-N sulfanylidenesilver Chemical compound [Ag]=S PGWMQVQLSMAHHO-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- DDJAGKOCVFYQOV-UHFFFAOYSA-N tellanylideneantimony Chemical compound [Te]=[Sb] DDJAGKOCVFYQOV-UHFFFAOYSA-N 0.000 description 1
- DZXKSFDSPBRJPS-UHFFFAOYSA-N tin(2+);sulfide Chemical compound [S-2].[Sn+2] DZXKSFDSPBRJPS-UHFFFAOYSA-N 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- UAQYANPRBLICHN-UHFFFAOYSA-N zinc dioxosilane sulfide Chemical compound [Si](=O)=O.[S-2].[Zn+2] UAQYANPRBLICHN-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/005—Reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1353—Diffractive elements, e.g. holograms or gratings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24065—Layers assisting in recording or reproduction below the optical diffraction limit, e.g. non-linear optical layers or structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
Definitions
- An aspect of the present invention relates to a method and apparatus of reproducing data recorded on a super-resolution information storage medium, and more particularly, to a method and apparatus of reproducing data recorded on a super-resolution information storage medium which can improve characteristics of a reproduced signal by removing inter-symbolic interference (ISI) from the super-resolution information storage medium.
- ISI inter-symbolic interference
- An optical recording medium is used as an information storage medium of an optical pickup device for recording and/or reproducing information in a non-contact type.
- information recording media having greater recording density are highly in demanded. Accordingly, development of optical recording media capable of reproducing recording marks having a spot diameter less than a laser beam spot using a super resolution phenomenon is under way.
- a recording mark exceeding such a resolving power limit may be reproduced, which is referred to as a super resolution phenomenon.
- a super resolution phenomenon enables reproduction of a recording mark exceeding a resolving power limit, a super resolution information storage medium can markedly realize demands for high density and large storage capacity.
- super-resolution information storage media satisfy basic recording and reproducing features as storage media.
- super resolution information storage media utilize recording beams and reproduction beams having relatively high power compared to conventional information storage media.
- super resolution information storage media have major issues with reproduction signal characteristics, such as carrier-to-noise ratio (CNR), jitter or RF signal, and with the realization of stable reproduction signals.
- CNR carrier-to-noise ratio
- jitter jitter
- RF signal carrier-to-noise ratio
- marks 110 are recorded on a track 100 of a super resolution information storage medium, and a change in the temperature distribution or optical property occurs within a beam spot 120 landing on a super resolution layer due to a difference in local light intensity.
- marks 110 beyond a resolving power limit may also be reproduced.
- a change in the temperature distribution or optical characteristic occurs at a partial region of the beam spot 120 , and no changes occur at a peripheral area 140 of the partial region.
- the partial region where such a change occurs which will be referred to as a super resolution area 130 hereinafter, may be a central portion, as shown in FIG. 1 .
- Such areas where a change in optical characteristics occurs may be consecutive or alternate.
- FIG. 2A illustrates a recording pattern of marks recorded on an information storage medium
- FIG. 2B illustrates an RF signal corresponding to reproduced marks of the recording pattern shown in FIG. 2A
- the recording pattern is based on a combination of a mark of approximately 75 nm, which is smaller than a resolving power, a mark of approximately 300 nm, which is greater than the resolving power, and a space between the two marks.
- a method and apparatus for accurately reproducing recorded data preventing Inter Symbolic Interference (ISI) by removing reproduction signals from a peripheral area of a super resolution area where a change in the temperature distribution or optical characteristics occurs when a reproduction beam is radiated onto a super resolution information storage medium is provided.
- a method of reproducing data recorded in a super resolution information storage medium in marks having magnitudes less than a resolving power of an incident light beam including irradiating a first beam having a resolving power causing a super resolution phenomenon and a second beam having a resolving power not causing a super resolution phenomenon on the information storage medium; detecting a first reproduction signal based on the first beam and a second reproduction signal based on the second beam; and compensating for and calculating a temporal delay between the first reproduction signal and the second reproduction signal.
- the calculating operation may include obtaining a differential signal between the first reproduction signal and the second reproduction signal.
- the first beam and the second beam may be irradiated at places on the same track with a time delay.
- the irradiating operation may include splitting a beam emitted from a single light source into the first beam and the second beam using a diffraction element.
- a +k th -order diffracted beam among a plurality of diffracted beams produced by the diffraction element may be used as the first beam
- a ⁇ k th -order diffracted beam may be used as the second beam.
- the ⁇ k th -order diffracted beam among the plurality of diffracted beams produced by the diffraction element may be used as the first beam
- the +k th -order diffracted beam may be used as the second beam.
- the diffraction element may be a blaze-type grating element.
- the irradiating operation may include emitting the first beam and the second beam from independent light sources including a first light source and a second light source, respectively.
- a method of reproducing data recorded in a super resolution information storage medium in the form of marks having magnitudes less than a resolving power of an incident light beam including: irradiating a first beam of super resolution power into the information storage medium; irradiating a plurality of second beams of non-super resolution power into a place on the information storage medium that is irradiated by the first beam, with a predetermined temporal delay; and detecting a final reproduction signal based on a first reproduction signal for the first beam and a second reproduction signal for the second beam.
- the detecting operation may include obtaining a differential signal between the first reproduction signal and the second reproduction signal.
- the detecting operation may further include compensating for the predetermined time delay between the first reproduction signal and the second reproduction signal.
- the detecting operation may further include compensating for the predetermined time delay so that jitter or bER of the final reproduction signal can be minimized.
- the detecting operation may further include compensating for the predetermined time delay using a difference between the time required to reproduce pre-pits or identification information, which is not used as user data, using the first beam, and the time required to reproduce the pre-pits or identification information using the second beam.
- the detecting operation may further include compensating for the predetermined time delay using a wobble signal.
- an apparatus for reproducing data recorded in a super resolution information storage medium in the form of marks having magnitudes less than a resolving power of an incident light beam including an optical pickup irradiating a first beam having a resolving power causing a super resolution phenomenon and a second beam having a resolving power not causing a super resolution phenomenon on the information storage medium; a signal processor detecting a first reproduction signal for the first beam and a second reproduction signal for the second beam, compensating for a temporal delay between the first and second reproduction signals, and operating the first reproduction signal and the second reproduction signal; and a controller controlling the optical pickup using a signal received from the signal processor.
- an apparatus reproducing data recorded in a super resolution information storage medium in the form of marks having magnitudes less than a resolving power of an incident light beam
- the apparatus including an optical pickup irradiating a first beam of super resolution power into the information storage medium and a plurality of second beams not having a super resolution power into the area on the information storage medium irradiated by the first beam; a signal processor detecting a final reproduction signal based on a first reproduction signal for the first beam and a second reproduction signal for the second beam; and a controller controlling the optical pickup using a signal received from the signal processor.
- FIG. 1 illustrates an area where a super resolution phenomenon occurs at a reproduction beam spot radiated onto a super resolution information storage medium
- FIG. 2A illustrates a recording pattern in which marks having magnitudes less than a resolving power of a reproduction beam of super resolution power and marks having magnitudes greater than the resolving power are recorded;
- FIG. 2B illustrates an RF signal obtained by reproducing information recorded in the recording pattern of FIG. 2A using the reproduction beam of super resolution power
- FIG. 3 is a cross-sectional view schematically showing an example of a super resolution information storage medium to which a reproducing method according to an aspect of the present invention is applied;
- FIG. 4 illustrates a super resolution power beam and a non-super resolution power beam radiated onto an information storage medium in a data reproducing method according to an embodiment of the present invention
- FIGS. 5A and 5B are enlarged views of beam regions of the super resolution power beam and the non-super resolution power beam radiated onto an information storage medium in the data reproducing method according to an embodiment of the present invention
- FIG. 6A illustrates a reproduction signal obtained by irradiating a super resolution power beam into marks recorded in the recording pattern shown in FIG. 2A by the data reproducing method according to an aspect of the present invention
- FIG. 6B illustrates a reproduction signal obtained by irradiating a non-super resolution power beam into marks recorded in the recording pattern shown in FIG. 2B by the data reproducing method according to an aspect of the present invention
- FIG. 6C illustrates a differential signal between the reproduction signals shown in FIGS. 6A and 6B ;
- FIG. 7A illustrates a reproduction signal obtained by irradiating a super resolution power beam into a random mark recorded by the data reproducing method according to an aspect of the present invention
- FIG. 7B illustrates a reproduction signal obtained by irradiating a non-super resolution power beam into a random mark recorded by the data reproducing method according to an aspect of the present invention
- FIG. 7C illustrates a differential signal between the reproduction signals shown in FIGS. 7A and 7B ;
- FIG. 8 illustrates an eye pattern obtained from the differential signal shown in FIG. 7C ;
- FIG. 9A schematically illustrates a data reproducing apparatus for a super resolution information storage medium, according to an embodiment of the present invention.
- FIG. 9B illustrates a blazer type grating element according to an embodiment of the present invention.
- FIG. 10 schematically illustrates a modification of the data reproducing apparatus of FIG. 9A ;
- FIG. 11 is a flowchart illustrating a data reproducing method according to an embodiment of the present invention.
- FIG. 12 is a graph illustrating results obtained by simulating jitter of a signal after a subtraction according to delay time
- FIG. 13 illustrates a calculation of a first delay time used in the reproducing method of FIG. 11 ;
- FIG. 14 illustrates a modification of the recording/reproduction signal processor of the data reproducing apparatus of FIG. 9A or 10 , the modified signal performing compensation using a jitter value
- FIG. 15 is a flowchart illustrating a method of compensating for the time delay between a first beam and a second beam using a jitter value, according to an embodiment of the present invention
- FIG. 16 illustrates a super resolution information storage medium having tracks, in predetermined areas of which pre-pits are produced.
- FIG. 17 is a flowchart illustrating a method of compensating for the time delay between the first and second beams using pre-pits or discrimination information, according to another embodiment of the present invention.
- the data reproducing method is applied to a super resolution information storage medium configured to reproduce information recorded in a recording mark having a magnitude beyond a limit of a resolving power.
- a super resolution information storage medium includes a substrate 310 , and a first dielectric layer 320 , a recording layer 330 , a second dielectric layer 340 , a super resolution reproduction layer 350 , a third dielectric layer 360 and a cover layer 370 sequentially formed on the substrate 310 .
- beams used in recording/reproducing information are focused on an objective lens (OL) and incident upon the super resolution information storage medium via the cover layer 370 .
- OL objective lens
- the substrate 310 is preferably made of at least one material selected from the group consisting of polycarbonate, polymethylmethacrylate (PMMA), amorphous polyolefin (APO) and glass, and preferably, but not necessarily, has a reflective film for reflecting an incident beam coated on one surface of the substrate 310 , that is, a surface facing the first dielectric layer 320 .
- PMMA polymethylmethacrylate
- APO amorphous polyolefin
- the first through third dielectric layers 320 , 340 , and 360 control optical and/or thermal characteristics of the super resolution information storage medium.
- the cover layer 370 covers layers formed on the substrate 310 , including the recording layer 330 and the super resolution reproduction layer 350 .
- the first through third dielectric layers 320 , 340 , and 360 and the cover layer 370 are not essential constituents of the super resolution information storage medium. Of course, information can be reproduced even if these layers are not formed in the super resolution information storage medium.
- the first through third dielectric layers 320 , 340 , and 360 are preferably, but not necessarily, made of at least one material selected from the group consisting of oxides, nitrides, carbides, sulfides, and fluorides.
- the first through third dielectric layers 320 , 340 , and 360 are preferably, but not necessarily, at least one material selected from the group consisting of silicon oxide (SiOX), magnesium oxide (MgO x ), aluminum oxide (AlO x ), titanium oxide (TiO x ), vanadium oxide (VO x ), chromium oxide (CrO x ), nickel oxide (NiOx), zirconium oxide (ZrO x ), germanium oxide (GeO x ), zinc oxide (ZnO x ), silicon nitride (SiNX), aluminum nitride (AlNx), titanium nitride (TiN x ), zirconium nitride (ZrN)
- the recording layer 330 has such a structure that a recording mark (m) recorded by an incident beam with a predetermined recording power level has a rectangular cross section or a cross section which is substantially the same as a rectangular shape.
- the recording mark (m) includes a mark having a magnitude no greater than the resolving power of an optical pickup used for reproduction.
- a chemical reaction temperature Tw of the recording layer 330 is higher than a temperature Tr of the super resolution reproduction layer 350 at which the super resolution phenomenon occurs.
- the recording layer 330 necessarily has a single-layered structure having a mixture of two or more materials (e.g., materials A and B shown in FIG. 3 ) having different physical properties and chemically reacting with each other at a predetermined temperature.
- the recording layer 330 exists in the form of a film having the materials A and B mixed therein before data recording, that is, before a chemical reaction between the materials A and B.
- a recording beam having a predetermined power level is irradiated into the recording layer 330 , the chemical reaction between the materials A and B occurs at a beam-spot-landed region of the recording layer 330 , and the state of the recording layer changes from the mixture of the materials A and B into a compound A+B having a different physical property from the mixture of the materials A and B.
- the compound A+B produces the recording mark (m), which has different reflectivity from a recording mark in another region.
- Examples of the material A include tungsten (W), and examples of the material B include silicon (Si), based on the facts that, in the case of employing Ge—Sb—Te as materials of a super resolution reproduction layer, a super resolution phenomenon occurs at approximately 350° C. during reproduction, and recording must be performed at the reproduction temperature.
- a W—Si alloy has a reaction temperature of approximately 600° C., it is not affected by reproduction power.
- the recording layer 330 is preferably, but not necessarily, formed by mixing the two materials such that the ratio of the number of W atoms to the number of Si atoms is 1 to 2.
- a WSi 2 compound is produced by a chemical reaction occurring at a predetermined region of the recording layer 330 on which a beam of recording power irradiates.
- the above-noted ratio of the numbers of W and Si atoms, that is, 1:2, is provided for illustration only and the ratio is not limited thereto.
- W and Si have been described as materials of the recording layer, these two materials are provided for illustration only and any two or more materials can be selected from the group consisting of materials capable of chemically reacting at a temperature higher than the reproduction temperature within a range in which recording using a laser beam can be performed.
- the recording layer may include at least two materials selected from the group consisting of vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), germanium (Ge), selenium (Se), niobium (Nb), molybdenum (Mo), silver (Ag), tin (Sn), antimony (Sb), tellurium (Te), titanium (Ti), zirconium (Zr) and lanthane-based elements.
- the super resolution reproduction layer 350 is a layer made of a phase change material which experiences a change in the temperature distribution or optical characteristics at some regions of the incident beam spot.
- the super resolution reproduction layer 350 is preferably, but not necessarily, formed of a calcogenide phase change material containing at least one selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te).
- the super resolution reproduction layer 350 contains at least one selected from the group consisting of selenium-sulfur (Se—S), selenium-tellurium (Se—Te), sulfur-tellurium (S—Te), phosphorus-sulfur (P—S), phosphorus-tellurium (P—Te), phosphorus-selenium (P—Se), arsenic-sulfur (As—S), arsenic-selenium (As—Se), arsenic-tellurium (As—Te), antimony-sulfur (Sb—S), antimony-selenium (Sb—Se), antimony-tellurium (Sb—Te), silicon-sulfur (Si—S), silicon-selenium (Si—Se), silicon-tellurium (Si—Te), germanium-sulfur (Ge—S), germanium-selenium (Ge—Se), germanium-tellurium (Ge—Te), german
- the super resolution reproduction layer 350 is made of a phase change material based on germanium-antimony-tellurium (Ge—Sb—Te) or silver-indium-antimony-tellurium (Ag—In—Sb—Te).
- the super resolution reproduction layer 350 creates a super resolution area at which a change in the temperature distribution or optical characteristics occurs at some regions of a beam spot due to a phase change at a predetermined temperature, thereby allowing the retrieval of information recorded in the form of a recording mark (m) having a magnitude of less than a resolving power.
- the super resolution area at which a change in the temperature distribution or optical characteristics occurs by a reproduction beam is created at some regions of the reproduction beam spot, which may exist at the central portion of the beam spot.
- the above-described information storage medium has been provided only for illustration of a super resolution phenomenon. Rather, according to the reproducing method of an aspect of the present invention, any type of an information storage medium that experiences super resolution phenomenon can be adopted.
- a first beam B 1 having relatively high power and a second beam B 2 having relatively low power are irradiated into the information storage medium, as shown in FIG. 4 .
- Recording marks (m) are recorded along a track (T) of the information storage medium, and the first beam B 1 and the second beam B 2 are irradiated into different locations of the same track.
- the first beam B 1 and the second beam B 2 may be produced by splitting a beam emitted from a single light source using a beam splitter or produced by two light sources for emitting beams of different power levels.
- the beam splitter may be a grating element or a diffraction element such as a hologram.
- the first beam B 1 has reproduction power in which a super resolution phenomenon occurs, which is called super resolution power, while the second beam B 2 has reproduction power in which a super resolution phenomenon does not occur, which is called non-super resolution power.
- the first beam B 1 and the second beam B 2 are simultaneously irradiated.
- the resolving power of the first beam B 1 is ⁇ /(4*NA1).
- the wavelength of the second beam B 2 is the same as that of the first beam B 1 , namely, ⁇ , and the numerical aperture thereof is NA2, the resolving power of the second beam B 2 is ⁇ /(4*NA2).
- the numerical aperture of a beam is defined as a value obtained by dividing the radius of the beam by a focal distance of an objective lens.
- FIG. 6A illustrates a first reproduction signal obtained by irradiating a super resolution power beam into marks recorded in the recording pattern shown in FIG. 2A by the data reproducing method according to an aspect of the present invention.
- FIG. 6B illustrates a second reproduction signal obtained by irradiating a non-super resolution power beam into the marks recorded in the recording pattern shown in FIG. 2A by the data reproducing method according to an aspect of the present invention.
- FIG. 6C illustrates a differential signal between the first reproduction signal and the second reproduction signal.
- the first reproduction signal of FIG. 6A into which the marks recorded in the pattern of FIG. 2A are reproduced, has the super resolution phenomenon.
- the second reproduction signal of FIG. 6B into which the marks recorded in the pattern of FIG. 2A are reproduced, has no super resolution phenomenon.
- a temporal delay of the first reproduction signal and the second reproduction signal is compensated for and operated by a differential signal, thereby obtaining the differential signal between the first reproduction signal and the second reproduction signal shown in FIG. 6C . Consequently, signal components reflected from the peripheral area of the beam spot are excluded from the differential signal, and only signal components from the super resolution area remain in the differential signal, thereby overcoming the problem of ISI caused by the peripheral area.
- 75 nm marks having magnitudes less than a resolving power and spaces therebetween are accurately reproduced at portions A, B, C, D, E, and F, and signal levels of portions A, B, C, D, E, and F are uniform irrespective of the numbers of marks and spaces.
- the differential signal between the first reproduction signal and the second reproduction signal is used in the illustrative embodiment, a variety of operation techniques can be used.
- FIGS. 7A , 7 B and 7 C illustrate results of reproduction of data recorded in a random recording pattern by the reproducing method according to an aspect of the present invention.
- FIG. 7A illustrates a first reproduction signal obtained by reproducing randomly recorded marks using a first power beam according to the data reproducing method of an aspect of the present invention
- FIG. 7B illustrates a second reproduction signal obtained by reproducing the randomly recorded marks using a second power beam according to the data reproducing method of an aspect of the present invention
- FIG. 7C illustrates a differential signal between the first and second reproduction signals shown in FIGS. 7A and 7B . Because levels of the first and second reproduction signals of FIGS.
- the differential signal of FIG. 7C has a constant level, so if the differential signal is sliced at a predetermined level, a recording mark can be properly reproduced.
- FIG. 8 illustrates an eye pattern obtained from the differential signal shown in FIG. 7C , showing good jitter characteristics of a reproduction signal. That is to say, the data reproducing method according to an aspect of the present invention can be effectively applied to the data recorded in a random recording pattern in a super resolution information storage medium.
- a super resolution power beam and a non-super resolution power beam are irradiated with a predetermined temporal delay, and the temporal delay between a first reproduction signal based on the super resolution power beam and a second reproduction signal based on the non-super resolution power beam is compensated for and operated using the optimal operation technique.
- ISI arising from a peripheral area of a super resolution area in a reproduction beam spot can be solved, thereby improving reproduction signal characteristics in a simple manner.
- FIG. 9A schematically illustrates a data reproducing apparatus 900 , which can perform a data reproducing method according to an aspect of the present invention.
- the data reproducing apparatus 900 includes an optical pickup 910 , a recording/reproduction signal processor 920 , and a controller 930 .
- the optical pickup 910 includes a light source 911 for emitting beams, a diffraction element 912 for diffracting the beams emitted from the light source 911 , a collimating lens 913 for collimating the beams having passed through the diffraction element 912 , a beam splitter 914 for converting a traveling path of an incident beam, and an objective lens 915 for focusing the beam having passed through the beam splitter 914 onto the information storage medium 300 .
- the beam emitted from the light source 911 is split into a first beam and a second beam by the diffraction element 912 .
- the power of the first beam and the power of the second beam can be adjusted by varying a diffraction pattern of the diffraction element 912 .
- the diffraction element 912 may be a grating element or a hologram.
- the first beam and the second beam reflected from the information storage medium 300 are reflected by the beam splitter 914 and received in a photodetector 916 .
- the first beam and the second beam received in the photodetector 916 are converted into electrical signals and output as reproduction signals by the recording/reproduction signal processor 920 .
- the recording/reproduction signal processor 920 allows an amplifier 921 to amplify the first beam signal photoelectrically converted by the photodetector 916 and allows a compensator 922 to compensate for a temporal delay for the second beam signal photoelectrically converted by the photodetector 916 .
- the reproduction signal of the first beam and the reproduction signal of the second beam are converted by an operation unit 923 to then be output as a radio frequency (RF) signal through a channel 1 (Ch 1 ) and a push-pull signal through a channel 2 (Ch 2 ).
- RF radio frequency
- the controller 930 controls the optical pickup 910 to emit either a super resolution power beam or a non-super resolution power beam according to material characteristics of the information storage medium 300 .
- the controller 930 implements focusing servo and tracking servo using the RF signal and the push-pull signal.
- the diffraction element 912 will now be described in greater detail.
- the first beam having super resolution power and the second beam having non-super resolution power must satisfy aberration amount conditions in addition to power conditions.
- the aberration amounts of the first and second beams are to be substantially identical.
- the shape of a spot formed on an information storage medium by the first beam is different from that of a spot formed on an information storage medium by the second beam.
- the different spot shapes formed by the first and second beams make it difficult, yet not impossible, to achieve aspects of the present invention.
- a blaze-type grating element is used in the diffraction element 912 in an embodiment of the present invention.
- FIG. 9B illustrates the blaze-type grating element 912 according to an embodiment of the present invention.
- a beam 951 emitted from the light source 911 is incident upon the blaze-type grating element 912 of FIG. 9B , a plurality of diffracted beams, namely, a 0 th -order diffracted beam 952 , a +1 st -order diffracted beam 953 , a ⁇ 1 st -order diffracted beam 954 , and ⁇ 2 nd -order through ⁇ Nth-order diffracted beams (not shown), are emitted from the blaze-type grating element 912 .
- N denotes an infinite integer in theory.
- the aberration amounts of the +1 st -order diffracted beam 953 and the ⁇ 1 st -order diffracted beam 954 are almost identical.
- the blaze-type grating element 912 may be easily implemented by one of ordinary skill in the art to which the present invention pertains so that the +1 st -order diffracted beam 953 has high power and the ⁇ 1 st -order diffracted beam 954 has relatively lower power than the +1 st -order diffracted beam 953 or so that the +1 st -order diffracted beam 953 has low power and the ⁇ 1 st -order diffracted beam 954 has relatively higher power than the +1 st -order diffracted beam 953 . Meanwhile, the power of the 0 th -order diffracted beam 952 is too weak and therefore negligible.
- the data reproducing apparatus 900 shown in FIG. 9A includes a diffraction element to produce a first beam and a second beam, it may include independent light sources, that is, a first light source 941 a for emitting a super resolution power beam, i.e., the first beam, and a second light source 941 b for emitting a non-super resolution power beam, i.e., the second beam, as shown in FIG. 10 .
- the first light source 941 a and the second light source 941 b are packaged into an optical module.
- the first light source and the second light source may be independently provided and arranged at different locations. When the first light source and the second light source are independently provided in such a manner, it is not necessary to separately provide a diffraction element for producing the first and second beams.
- FIG. 10 the same functional elements are denoted by the same reference numerals as those shown in FIG. 9 , and a detailed explanation will not be given.
- a photodetector 942 includes a first light detector 942 a for receiving the first beam emitted from the first light source 941 a and reflected from the information storage medium 300 , and a second light detector 942 b for receiving the second beam emitted from the second light source 941 b and reflected from the information storage medium 300 .
- a temporal delay between a first reproduction signal based on the first beam and a second reproduction signal based on the second beam is compensated using the compensator 922 and converted by the operating unit 923 , thereby yielding an RF signal having excellent signal characteristics without ISI.
- first light source and the second light source when the first light source and the second light source are independently provided, either the first light source or the second light source can be advantageously utilized as a light source for data recording. Further, the first light source and the second light source can be configured such that an optical pickup can be compatibly used for information storage media having different formats.
- a plurality of beams having non-super resolution power can be produced by a diffraction element or a plurality of light sources, and the plurality of beams having non-super resolution power together with a beam having super resolution power are radiated onto a super resolution information storage medium to reproduce data therefrom.
- a final reproduction signal can be obtained using reproduction signals obtained from all of the beams having non-super resolution power, as shown in Equation 1:
- Final RF signal RF 1 ⁇ ( g 1 RF 2 +g 2 RF 3 + . . . +g n-1 RF N ) (1)
- RF 1 denotes a reproduction signal obtained from a beam having super resolution power
- RF 2 through RF N denote reproduction signals obtained from (N ⁇ 1) beams
- g 1 through g N-1 are predetermined coefficients.
- the reproduction signals RF 2 through RF N have time delays from RF 1 .
- the final RF signal shown in Equation 1 can be obtained by one of ordinary skill in the art to which the present invention pertains.
- FIG. 11 is a flowchart illustrating a data reproducing method performed by the data reproducing apparatus 900 of FIG. 9A or 10 .
- the optical pickup 910 or 940 radiates the first beam having super resolution power onto the information storage medium 300 , in operation 1100 .
- the optical pickup 910 or 940 radiates the second beam having non-super resolution power onto the area on the information storage medium 300 that is irradiated by the first beam, with a predetermined time delay.
- the radiation of the second beam with the predetermined time delay does not mean that the optical pickup 910 intentionally delays the radiation of the second beam but means that a time delay is naturally generated by the first beam first passing along a track and the second beam passing along the same track after the first beam.
- the recording/reproduction signal processor 920 compensates for a time delay between the first reproduction signal for the first beam radiated onto the information storage medium 300 and reflected thereby and the second reproduction signal for the second beam radiated onto the information storage medium 300 and process an operation, such as, a subtraction of the second reproduction signal from the first reproduction signal to output a final reproduction signal.
- the characteristics of a signal resulting from the subtraction are degraded if not accurately considering the time delay between the first and second reproduction signals. More specifically, the first reproduction signal is obtained from spot 1 , which enables super resolution reproduction with high power, and the second reproduction signal is obtained from spot 2 , which enables general reproduction with low power. Then, subtraction is performed by the amplifier 921 of FIG. 9A or 10 giving an appropriate gain to the second reproduction signal. At this time, the delay unit 922 controls a time delay between the first and second reproduction signals caused by a spatial distance between the two spots 1 and 2 .
- the time delay between the first and second reproduction signals is not accurate, a signal resulting from the subtraction has poor characteristics.
- the time delay can be obtained from the spatial distance between the spots 1 and 2 , but various external disturbances may occur during disc reproduction. For example, if a rotational speed of a spindle motor slightly changes or either a radial or tangential tilt occurs, the spatial distance between spots on an actual disc may change. If the change of the spatial distance between spots is not adequately adjusted, a final reproduction signal has a poor quality.
- FIG. 12 is a graph illustrating results obtained by simulating jitter of a signal subjected to a subtraction according to delay time.
- a linear speed of a spot was 5 m/s.
- a margin of ⁇ 0.04T was obtained. Because the margin of ⁇ 0.04T corresponds to ⁇ 0.03 nsec, the delay time margin of ⁇ 0.04T is vary narrow, and accordingly, a unit capable of accurately controlling the delay time is needed.
- the time delay between the first and second reproduction signals can be accurately controlled using the following methods: first, using jitter or bER; second, using pre-pits or predetermined discrimination information; and third, using a wobble signal.
- second, using pre-pits or predetermined discrimination information and third, using a wobble signal.
- inconsecutive points of the wobble signal can be used.
- jitter or bER of a final reproduction signal obtained based on the first and second reproduction signals is monitored, and the time delay between the first and second reproduction signals is compensated for so that the monitored jitter or bER is minimized.
- FIG. 14 illustrates a signal processor 1420 , which is a modification of the recording/reproduction signal processor 920 of the data reproducing apparatus 900 of FIG. 9A or 10 , the signal processor 1420 performing a compensation using the jitter of the final reproduction signal.
- a signal processor 1420 which is a modification of the recording/reproduction signal processor 920 of the data reproducing apparatus 900 of FIG. 9A or 10 , the signal processor 1420 performing a compensation using the jitter of the final reproduction signal.
- light of the first beam reflected from the information storage medium 300 is detected by a first light detector 942 a
- light of a second beam reflected from the information storage medium 300 is detected by a second light detector 942 b.
- a delay unit 1421 of the signal processor 1420 receives the light output by the first light detector 942 a , delays the received light for a first delay time to compensate a time delay between spot 1 from the first light detector 942 a and spot 2 from the second light detector 942 b , and provides the delayed light to an operation unit 1423 .
- An amplifier 1422 of the signal processor 1420 receives the light output by the second light detector 942 b , amplifies the received light, and provides the amplified light to the operation unit 1423 .
- the operation unit 1423 subtracts the second reproduction signal from the first reproduction signal.
- the first delay time (t) is obtained by dividing a distance (d) between the first spot B 1 , formed by the first beam, and the second spot B 2 , formed by the second beam by a linear speed (v) of the first spot as shown in FIG. 13 .
- the delay unit 1421 can primarily compensate for the time delay between the first spot and the second spot by delaying the first reproduction signal for the first delay time.
- the delay unit 1421 secondarily compensates for the time delay between the first and second spots using a jitter value.
- a jitter compensation unit 1424 monitors the jitter or bER of a final reproduction signal output from the operation unit 1423 , calculates a compensation value that minimizes the jitter or bER, obtains a second delay time by adding or subtracting the compensation value from the first delay time, and provides the second delay time to the delay unit 1421 . Then, the delay unit 1421 delays the first reproduction signal for the second delay time, Accurately adjusting the time delay between the first and second spots.
- FIG. 15 is a flowchart illustrating a method of compensating for the time delay between the first and second beams using a jitter value, according to an embodiment of the present invention.
- the first delay time is calculated from a distance between centers of the first and second spots and a linear speed of the spots.
- a reproduction signal is obtained by delaying a detection signal of spot 1 for the first delay time and performing an operation of the delayed detection signal and a detection signal of spot 2 .
- the jitter or bER of the reproduction signal is obtained, and a second delay time capable of minimizing the jitter or bER of the reproduction signal is calculated.
- a reproduction signal is obtained by delaying the detection signal of spot 2 for the second delay time and performing an operation of the delayed detection signal and a detection signal of spot 1 .
- the predetermined discrimination information denotes additional information recorded periodically to easily distinguish additional data from user data.
- FIG. 16 illustrates a super resolution information storage medium having tracks, in predetermined areas of which pre-pits are produced.
- An optical recording medium such as a DVD-RAM, includes a header area in which header information is stored and a user data area in which user data is recorded.
- each sector stores 128-byte header information, which is recorded as pre-pits when a disc substrate is manufactured.
- a pickup can recognize a sector number, a sector type, a land track/groove track, etc. from the header information recorded in the header area comprised of pre-pits. Also, the pickup can perform servo control using the header information.
- a header area in which uneven pre-pits are formed is disposed in a predetermined area of each sector.
- a pickup included in a recording/reproduction apparatus can easily access a desired location on a disc using information recorded in the header area.
- land tracks and groove tracks which correspond to a user data area where user data is recorded, are formed on a super resolution information storage medium to which an aspect of the present invention is applied.
- Header areas 1600 where header information is recorded as pre-pits, are also formed on the super information storage medium.
- a header area formed of pre-pits may be formed on a predetermined area of even the super resolution information storage medium as shown in FIG. 16 .
- FIG. 17 is a flowchart illustrating a method of compensating for the time delay between the first and second beams using pre-pits or discrimination information, according to another embodiment of the present invention.
- the first delay time is calculated from the distance between the centers of the first and second spots and a linear speed of spots.
- a reproduction signal is obtained by delaying a detection signal of spot 1 for the first delay time and performing an operation of the delayed detection signal and a detection signal of spot 2 .
- a time delay between the first and second beams is compensated for using a difference between the time required to reproduce pre-pits or discrimination information using the first beam and the time required to reproduce the pre-pits or discrimination information using the second beam.
- a reproduction signal is obtained by delaying the detection signal of spot 1 for the time corresponding to the compensated time delay and performing an operation of the delayed detection signal and a detection signal of spot 2 .
- a time from when the pre-pits or identification information is reproduced by a preceding beam and when the pre-pits or identification information is reproduced by a following beam can be used as a delay time.
- the data reproducing apparatus of a super resolution information storage medium enables improvement of reproduction signal characteristics by simply processing a signal without requiring significant changes to existing reproducing apparatuses.
- Use of the data reproducing method and apparatus according to an aspect of the present invention improves data reproduction performance of a super resolution information storage medium, thereby achieving practical use of high-quality, high-density, high-capacity information storage media.
- the super resolution information storage medium to which the reproducing method according to an aspect of the present invention has been described as having a multiple-layer structure of five or seven layers formed on a substrate and that a super resolution layer is made of a specific material, the described embodiments are to be considered in all respects only as illustration. Rather, the aspects of the present invention may be applied to various types of information storage media undergoing a super resolution phenomenon.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
Description
Final RF signal=RF 1−(g 1 RF 2 +g 2 RF 3 + . . . +g n-1 RF N) (1)
wherein RF1 denotes a reproduction signal obtained from a beam having super resolution power, RF2 through RFN denote reproduction signals obtained from (N−1) beams, and g1 through gN-1 are predetermined coefficients. The reproduction signals RF2 through RFN have time delays from RF1. The final RF signal shown in
Claims (36)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20040050787 | 2004-06-30 | ||
KR10-2004-0050787 | 2004-06-30 | ||
KR2004-50787 | 2004-06-30 | ||
KR2005-17249 | 2005-03-02 | ||
KR1020050017249A KR101044942B1 (en) | 2004-06-30 | 2005-03-02 | Method and apparatus for reproducing super resolution information storage media |
KR10-2005-0017249 | 2005-03-02 | ||
KR1020050017576A KR101108680B1 (en) | 2004-06-30 | 2005-03-03 | Method and apparatus for reproducing super resolution information storage medium |
KR2005-17576 | 2005-03-03 | ||
KR10-2005-0017576 | 2005-03-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/540,404 Continuation US8583977B2 (en) | 2004-12-24 | 2012-07-02 | Method and system for reliable data transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060002281A1 US20060002281A1 (en) | 2006-01-05 |
US7710850B2 true US7710850B2 (en) | 2010-05-04 |
Family
ID=35513772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/168,336 Expired - Fee Related US7710850B2 (en) | 2004-06-30 | 2005-06-29 | Method and apparatus for reproducing data of super resolution information storage medium |
Country Status (3)
Country | Link |
---|---|
US (1) | US7710850B2 (en) |
EP (1) | EP1774521B1 (en) |
WO (1) | WO2006004338A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4499065B2 (en) * | 2006-05-24 | 2010-07-07 | 株式会社日立製作所 | Information reproducing apparatus and information reproducing method |
JP4580380B2 (en) * | 2006-12-28 | 2010-11-10 | 株式会社日立製作所 | Optical disk device |
JP4720778B2 (en) * | 2007-04-25 | 2011-07-13 | 株式会社日立製作所 | Evaluation method of information recording medium |
EP2569769B1 (en) | 2010-05-11 | 2014-04-16 | Thomson Licensing | Method applying a pulsed laser beam for reading of an optical disc and respective apparatus |
EP2569770B1 (en) | 2010-05-11 | 2014-03-19 | Thomson Licensing | Apparatus comprising a pickup providing multiple beams |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888759A (en) * | 1982-09-09 | 1989-12-19 | Burroughs Corporation | Laser optical memory system having beam combining and separating apparatus for combining and separating reading and writing laser beams |
JPH06251396A (en) | 1993-02-25 | 1994-09-09 | Nec Corp | Optical head device |
US5410531A (en) | 1991-03-28 | 1995-04-25 | Sanyo Electric Co., Ltd. | Noise reduction in a multiplex recorded optical information system |
WO1995026548A1 (en) | 1994-03-25 | 1995-10-05 | Hitachi, Ltd. | High density information recording and reproducing method |
US5530685A (en) * | 1993-11-05 | 1996-06-25 | Sharp Kabushiki Kaisha | Magneto-optical recording apparatus having paired devices for applying external magnetic fields |
US5615180A (en) * | 1993-02-22 | 1997-03-25 | Sharp Kabushiki Kaisha | Magneto-optical recording medium and magneto-optical recording apparatus capable of performing a light-modulation overwriting operation |
JPH09120564A (en) | 1995-10-23 | 1997-05-06 | Hitachi Ltd | Optical disk drive |
US5701286A (en) * | 1996-04-04 | 1997-12-23 | Nec Corporation | Super-resolution optical head device which produces side spots without side lobes |
US5835469A (en) * | 1990-05-25 | 1998-11-10 | Hitachi, Ltd. | High-density information recording/reproducing method |
US5856965A (en) * | 1995-05-08 | 1999-01-05 | Sanyo Electric Co., Ltd. | Optical disc readout apparatus for different types of optical discs |
US6115345A (en) * | 1995-03-27 | 2000-09-05 | Matsushita Electric Industrial Co., Ltd. | Super-resolution optical head apparatus |
US6459669B1 (en) * | 1998-04-10 | 2002-10-01 | Sony Corporation | Information reproducing apparatus and information reproducing method |
US20030039196A1 (en) * | 2001-08-13 | 2003-02-27 | Minebea Co., Ltd. | Information reading and recording apparatus |
US6538968B1 (en) * | 1996-10-08 | 2003-03-25 | Sanyo Electric Co, Ltd. | Information recording/reproducing apparatus |
US6556516B1 (en) * | 1996-08-27 | 2003-04-29 | Hitachi Maxell, Ltd. | Reproducing method and reproducing apparatus for magneto-optical recording medium using different radiation patterns |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6116053A (en) * | 1984-07-03 | 1986-01-24 | Canon Inc | Optical information reproducer |
US7061853B2 (en) * | 2001-12-18 | 2006-06-13 | Discovision Associates | High-density optical pickup for rotating media |
-
2005
- 2005-06-29 US US11/168,336 patent/US7710850B2/en not_active Expired - Fee Related
- 2005-06-29 EP EP05765900A patent/EP1774521B1/en not_active Not-in-force
- 2005-06-29 WO PCT/KR2005/002034 patent/WO2006004338A1/en not_active Application Discontinuation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888759A (en) * | 1982-09-09 | 1989-12-19 | Burroughs Corporation | Laser optical memory system having beam combining and separating apparatus for combining and separating reading and writing laser beams |
US5835469A (en) * | 1990-05-25 | 1998-11-10 | Hitachi, Ltd. | High-density information recording/reproducing method |
US5410531A (en) | 1991-03-28 | 1995-04-25 | Sanyo Electric Co., Ltd. | Noise reduction in a multiplex recorded optical information system |
US5615180A (en) * | 1993-02-22 | 1997-03-25 | Sharp Kabushiki Kaisha | Magneto-optical recording medium and magneto-optical recording apparatus capable of performing a light-modulation overwriting operation |
JPH06251396A (en) | 1993-02-25 | 1994-09-09 | Nec Corp | Optical head device |
US5530685A (en) * | 1993-11-05 | 1996-06-25 | Sharp Kabushiki Kaisha | Magneto-optical recording apparatus having paired devices for applying external magnetic fields |
WO1995026548A1 (en) | 1994-03-25 | 1995-10-05 | Hitachi, Ltd. | High density information recording and reproducing method |
US6115345A (en) * | 1995-03-27 | 2000-09-05 | Matsushita Electric Industrial Co., Ltd. | Super-resolution optical head apparatus |
US5856965A (en) * | 1995-05-08 | 1999-01-05 | Sanyo Electric Co., Ltd. | Optical disc readout apparatus for different types of optical discs |
JPH09120564A (en) | 1995-10-23 | 1997-05-06 | Hitachi Ltd | Optical disk drive |
US5701286A (en) * | 1996-04-04 | 1997-12-23 | Nec Corporation | Super-resolution optical head device which produces side spots without side lobes |
US6556516B1 (en) * | 1996-08-27 | 2003-04-29 | Hitachi Maxell, Ltd. | Reproducing method and reproducing apparatus for magneto-optical recording medium using different radiation patterns |
US6538968B1 (en) * | 1996-10-08 | 2003-03-25 | Sanyo Electric Co, Ltd. | Information recording/reproducing apparatus |
US6459669B1 (en) * | 1998-04-10 | 2002-10-01 | Sony Corporation | Information reproducing apparatus and information reproducing method |
US20030039196A1 (en) * | 2001-08-13 | 2003-02-27 | Minebea Co., Ltd. | Information reading and recording apparatus |
Non-Patent Citations (2)
Title |
---|
Machine Translation of Japanese publication No. 09120564 by Matsumoto Kiyoshi on Oct. 23, 1995. * |
Search Report in International Patent Application No. PCT/KR2005/002034 on Sep. 26, 2005. |
Also Published As
Publication number | Publication date |
---|---|
US20060002281A1 (en) | 2006-01-05 |
WO2006004338A1 (en) | 2006-01-12 |
EP1774521B1 (en) | 2012-12-26 |
EP1774521A4 (en) | 2008-08-06 |
EP1774521A1 (en) | 2007-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5410534A (en) | Optical information recording medium | |
JP4618730B2 (en) | Information reproducing method and information reproducing apparatus | |
US6587420B1 (en) | Recording and reproducing method for optical information recording medium and optical information recording medium | |
US7746757B2 (en) | Optical disc medium and optical disc device | |
US7639593B2 (en) | Multi-layer optical recording medium and method for evaluating optical recording system | |
US7710850B2 (en) | Method and apparatus for reproducing data of super resolution information storage medium | |
EP1755116A2 (en) | Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer | |
JP5314054B2 (en) | Optical storage medium with inverted super-resolution pits and lands | |
EP0899725A1 (en) | Optical information recording medium and its recording and reproducing methods | |
US20090028027A1 (en) | Optical recording medium, method for recording/reproducing information to/from optical recording medium and apparatus for recording/reproducing information | |
KR20110002024A (en) | Optical storage media including multilevel data layers | |
US20060046013A1 (en) | Super-resolution information storage medium and method of and apparatus for recording/reproducing data to/from the same | |
JP4772790B2 (en) | Method and apparatus for reproducing super-resolution information recording medium | |
KR100939850B1 (en) | Optical information recording medium, optical measuring method thereof, and optical information recording / reproducing method | |
JP2006315242A (en) | Phase change type optical information recording medium | |
US7499389B2 (en) | Super resolution information storage medium and method of recording data thereon | |
JP2001052376A (en) | Phase change optical disk | |
JPWO2005015555A1 (en) | Optical information recording medium and manufacturing method thereof | |
EP2425429B1 (en) | Optical storage medium comprising tracks with modified mark dimensions, and respective apparatus for reading of data | |
US8426005B2 (en) | Optical information recording medium | |
KR20060094749A (en) | Method and apparatus for reproducing super resolution information storage medium | |
KR20060099249A (en) | Super resolution recoding media, method and apparatus for reproducing the same | |
KR20060129944A (en) | Super resolution recording media | |
JP2006252675A (en) | Write-once type optical recording medium and its recording and reproducing method and optical recording and reproducing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD.,KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JIN-KYUNG;KIM, JOO-HO;CHUNG, CHONG-SAM;AND OTHERS;REEL/FRAME:016744/0857 Effective date: 20050628 Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JIN-KYUNG;KIM, JOO-HO;CHUNG, CHONG-SAM;AND OTHERS;REEL/FRAME:016744/0857 Effective date: 20050628 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180504 |