US7710085B2 - Energy transfer element and converter including the same - Google Patents
Energy transfer element and converter including the same Download PDFInfo
- Publication number
- US7710085B2 US7710085B2 US11/985,159 US98515907A US7710085B2 US 7710085 B2 US7710085 B2 US 7710085B2 US 98515907 A US98515907 A US 98515907A US 7710085 B2 US7710085 B2 US 7710085B2
- Authority
- US
- United States
- Prior art keywords
- winding
- unit
- transfer element
- energy transfer
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004804 winding Methods 0.000 claims abstract description 278
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 238000010586 diagram Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
Definitions
- the present invention relates to an energy transfer element. More particularly, the present invention relates to an energy transfer element for minimizing a number of shields.
- a converter is a device for converting a DC voltage into at least one DC voltage.
- the converter uses an energy transfer element and particularly uses a transformer as the energy transfer element.
- Parasitic capacitances may exist between a primary coil and a secondary coil of the transformer, which may generate a displacement current when the converter is operated.
- the displacement current generates electromagnetic interference (EMI).
- EMI electromagnetic interference
- a shield such as a conductive shield or a winding shield, is inserted between the primary winding and the secondary winding of the transformer to thus reduce EMI.
- the window size (indicating the part to which the winding is substantially wound) of the core of the transformer is reduced in the case of inserting a plurality of shields so as to reduce the EMI.
- embodiments of the present invention include an energy transfer element for reducing the number of shields, and a converter including the same.
- Embodiments include an energy transfer element with great efficiency and a converter including the same.
- An energy transfer element can include a first winding, a second winding and a third winding.
- the first winding is coupled to the input circuit and is wound as a first unit and a second unit.
- the second winding is coupled to the output circuit and is wound between the first unit of the first winding and the second unit of the first winding.
- the third winding is provided between the first unit of the first winding and the second winding and is coupled to a bias voltage supply circuit for supplying a bias voltage used for the input circuit.
- a winding width of the third winding is greater than a winding width of the first unit of the first winding and a winding width of the second winding.
- the third winding can have a plurality of windings. One of the two terminals of the third winding can be coupled to a ground of the input circuit.
- the energy transfer element can further include a fourth winding wound between the second unit of the first winding and the second winding.
- a first end of the fourth winding can be coupled to the input circuit, and a second end of the fourth winding is opened.
- a first end of the fourth winding can be coupled to a ground of the input circuit, and a second end of the fourth winding can be opened.
- the energy transfer element can further include a conductive shield provided between the second unit of the first winding and the second winding.
- the energy transfer element can further include a bobbin on which the first to third windings are wound, and the windings are wound on the bobbin in the order of the second unit the first winding of, the second winding, the third winding, and the first unit of the first winding.
- a converter can include an input circuit, an output circuit, an energy transfer element and a bias voltage supply circuit.
- the input circuit supplies energy.
- the output circuit outputs predetermined energy corresponding to the energy supplied by the input circuit.
- the energy transfer element is coupled between the input circuit and the output circuit and transmits energy of the input circuit to the output circuit with a predetermined ratio.
- the bias voltage supply circuit generates a bias voltage of an integrated circuit (IC) used for the input circuit.
- the energy transfer element can include a first winding, a second winding and a third winding.
- the first winding is coupled to the input circuit and has a first unit and a second unit.
- the second winding is coupled to the output circuit and is wound between the first unit of the first winding and the second unit of the first winding.
- the third winding is wound between the first unit of the first winding and the second winding and is coupled to the bias voltage supply circuit, and is used for supplying the bias voltage and reduces a displacement current generated between the first unit of the first
- a winding width of the third winding can be greater than a winding width of the first of the first winding and a winding width of the second winding.
- the third winding can has a plurality of windings.
- the energy transfer element can further include a bobbin on which the first to third windings are wound, and the windings are wound on the bobbin in the order of the second unit of the first winding, the second winding, the third winding, and the first unit of the first winding.
- the energy transfer element can further include a fourth winding, wound between the second unit of the first winding and the second winding, for blocking the displacement current generated between the second unit of the first winding and the second winding.
- the energy transfer element can further include a conductive shield, being provided between the second unit of the first winding and the second winding, for blocking the displacement current generated between the second unit of the first winding and the second winding.
- FIG. 1 shows a schematic diagram of a flyback converter.
- FIG. 2 shows a schematic diagram of a transformer.
- FIG. 3 shows a cross-sectional view of a transformer.
- FIG. 4 shows a cross-sectional view of a transformer.
- FIG. 5 shows a schematic diagram of a transformer.
- FIG. 6 shows a cross-sectional view of a transformer.
- EMI generated by the operation of a converter is typically generated by a displacement current flowing between an input winding and an output winding of an energy transfer element, which will not be described since it is well known to a person skilled in the art.
- a transformer may be referred to as an energy transfer element.
- Embodiments will be described in the context of a flyback converter. However, embodiments can also operate in the context of forward converters.
- the input winding and the output winding of the energy transfer element will be referred to as a primary winding and a secondary winding, and an input circuit and an output circuit coupled to the input winding and the output winding of the energy transfer element will be mentioned as a primary circuit and a secondary circuit.
- an element when it is described that an element is “coupled” to another element, the element may be “directly coupled” to the other element or “electrically coupled” or “magnetically coupled” to the other element through a third element.
- FIG. 1 illustrates a schematic diagram of a flyback converter, which can include a primary circuit 100 , a transformer 200 , a secondary circuit 300 , and a bias voltage supply circuit 400 .
- the primary circuit 100 may include a bridge diode BD for rectifying an AC input, a capacitor Cin for smoothing the rectified voltage, a switch SW, and a switching controller 110 for controlling a turn-on/turn-off operation of the switch SW.
- the switching controller 110 may receive a sensing voltage Vsense that corresponds to the current flowing through the switch SW and a feedback voltage Vfb that corresponds to an output voltage Vout of the secondary circuit 300 .
- the switching controller 110 can be generally realized by a single IC or as an assembly of its components, e.g. on a motherboard.
- the primary circuit 100 may control the duty, i.e. the frequency and duration of the switching times of the switch SW.
- a bias voltage Vcc used for operating the switching controller 110 , can be provided through the bias voltage supply circuit 400 .
- the secondary circuit 300 may include a diode D 1 having an anode connected to a third terminal N 3 of the transformer 200 and a capacitor C 1 connected between a cathode of the diode D 1 and a secondary ground 20 .
- the voltage at the capacitor C 1 is essentially an output voltage Vout of the converter.
- the transformer 200 can be coupled between the primary circuit 100 and the secondary circuit 300 to transmit the energy provided by the primary circuit to the secondary circuit.
- the transformer 200 may include a first terminal N 1 for receiving an input voltage Vin, a second terminal N 2 , connected to the switch SW, the third terminal N 3 , connected to the diode D 1 , a fourth terminal N 4 , connected to the secondary ground 20 , and a fifth terminal N 5 , connected to the bias voltage supply circuit 400 .
- the bias voltage supply circuit 400 may include a diode D 2 having an anode connected to the fifth terminal N 5 of the transformer 200 and a capacitor C 2 connected between the cathode of the diode D 2 and the primary ground 10 .
- the bias voltage supply circuit 400 may supply a bias voltage Vcc for operating the IC of the switching controller 110 in some embodiments.
- transformer 200 reduces the number of shields and have an efficient structure, which will now be described with reference to FIGS. 2 to 6 .
- FIG. 2 illustrates a schematic diagram of the transformer 200 .
- the transformer 200 may include primary windings 210 A and 210 B, a shield winding 220 , a secondary winding 230 , and a bias winding 240 .
- Element 250 illustrates a coupling between the windings through their cores.
- FIG. 3 shows a cross-sectional view of the transformer 200 .
- the transformer 200 may further include a bobbin 270 , used for winding the winding, and an insulation tape 260 between the respective windings.
- the primary winding may include two units 210 A and 210 B, and can have an interleaved structure in which residual windings are positioned between the first unit 210 A of the primary winding and the second unit 210 B of the primary winding.
- the first unit 210 A of the primary winding can be connected to the first terminal N 1 of the transformer 200
- the second unit 210 B of the primary winding can be connected to the second terminal N 2 of the transformer 200 .
- the second unit 210 B of the primary winding may be wound on the bottom of the bobbin 270
- the first unit 210 A of the primary winding may be wound on the top of the bobbin 270 .
- the second unit 210 B of the primary winding and the first unit 210 A of the primary winding can be connected with each other.
- the units of the primary winding, 210 A and 210 B can have an interleaved structure.
- a leakage inductance can be reduced compared to the primary winding with a single unit, thus improving the converter's efficiency.
- the shield winding 220 can be disposed between the second unit 210 B of primary winding and the secondary winding 230 and is provided near the second unit 210 B of the primary winding.
- a first end of the shield winding 220 can be connected to the first terminal N 1 of the transformer, or the primary ground 10 , and the second end of the shield winding 220 may be open.
- the winding width L 1 of the shield winding 220 can be greater than the winding width L 2 of the primary winding units 210 A, 210 B and the winding width L 3 of the secondary winding 230 .
- FIG 3 illustrates an embodiment in which the shield winding 220 is wound in one layer, a winding width of the shield winding 220 being greater than the winding widths of the primary winding units 210 A and 210 B and the winding width of the secondary winding 230 so that the winding width of the shield winding 220 is configured to prevent a displacement current flowing between the primary winding and the secondary winding.
- the blocking of the displacement current by the shield winding 220 flowing between the second unit of the primary winding 210 B and the secondary winding 230 , reduces the EMI.
- the secondary winding 230 can be connected between the third terminal N 3 of the transformer and the fourth terminal N 4 of the transformer.
- the polarities of the various windings are indicated by the dots in FIG. 2 .
- the flyback converter can have a “dot polarity” of the secondary winding 230 that is opposite to that of the primary winding units 210 A and 210 B.
- the dot polarity of the secondary winding 230 can be different e.g. in embodiments which utilize a forward converter.
- their dot polarity can also be different in embodiments utilizing a forward converter.
- the bias winding 240 can be disposed between the first primary winding unit 210 A and the secondary winding 230 . Its first end may be connected to the fifth terminal N 5 of the transformer, and its second end may be connected to the primary ground 10 .
- energy of the primary winding is transmitted to the bias winding 240 , and a bias voltage Vcc is generated for the bias voltage supply circuit 400 connected to the bias winding 240 .
- the bias winding 240 can be used to supply the bias voltage Vcc.
- FIG. 3 illustrates that the bias winding 240 can be wound in a single layer, albeit with a plurality of windings (four windings in FIG. 3 ) in parallel. That is, the bias winding 240 can have a layer in which a plurality of windings are wound in parallel, and the respective windings are connected between the fifth terminal N 5 of the transformer and the primary ground 10 .
- the bias winding 240 can separate the first unit 210 A of the primary winding and the secondary winding 230 to block the displacement current: the bias winding 240 can function as a shield.
- the displacement current generated by the parasitic capacitance between the bias winding 240 and the primary winding units 210 A, 210 B may return to the source (an AC input) since the second end of the bias winding 240 is connected to the primary ground 10 , thereby reducing the generation of EMI.
- the bias winding 240 can be used to supply the bias voltage Vcc.
- the bias winding 240 can concurrently function as a shield.
- the bias winding 240 is wound in a single layer, its winding width being greater than the winding widths of the primary winding units 210 A, 210 B and the winding width of the secondary winding 230 , so that the bias winding 240 may function as a shield.
- the number of shields can be reduced since the bias winding 240 of the transformer 210 can supply the bias voltage Vcc and function as a shield.
- the shield winding 220 can be used to block the displacement current flowing between the second primary unit 210 B and the secondary winding 230 .
- FIG. 4 illustrates that the shield winding 220 can be substituted with a conductive shield 220 ′.
- FIG. 4 shows a cross-sectional view of an embodiment of a transformer 200 ′.
- the transformer 200 ′ in FIG. 4 corresponds to the transformer 200 in FIG. 3 except the substitution of the shield winding 220 in FIG. 3 for a conductive shield 220 ′.
- the conductive shield 220 ′ can be realized with a conductive material such as a foil.
- One of the functions of the conductive shield 220 ′ corresponds to that of the shield winding 220 .
- the reason for improving the EMI reduction through the conductive shield 220 ′ is known to a person of an ordinary skill in the art, and no detailed corresponding description will be provided.
- FIG. 5 shows a schematic diagram of another embodiment of a transformer 200 ′′
- FIG. 6 shows a corresponding cross-sectional view of the transformer 200 ′′.
- the transformer 200 ′′ may correspond to the transformer of the embodiment of FIGS. 2-4 , with the addition of a secondary winding 230 ′.
- the secondary winding 230 ′ may be provided between the bias winding 240 and the secondary winding 230 and can have terminals N 3 ′ and N 4 ′.
- a secondary circuit may be additionally connected to the terminals N 3 ′ and N 4 ′ of the secondary winding 230 ′ to generate an additional output voltage Vout.
- FIG. 1 shows the case of a single output voltage Vout.
- the converter can generate a plurality of output voltages Vout by using a plurality of secondary windings, which can be realized by e.g. adding the secondary winding 230 ′ as shown in FIG. 5 and FIG. 6 .
- the primary winding of the transformer 200 ′′ can have an interleaved structure, and a shield winding 220 disposed between the second primary winding unit 210 B and the secondary winding 230 .
- the shield winding 220 of the transformer 200 ′′ can be substituted with a conductive shield as shown in FIG. 4 .
- the bias winding 240 of the transformer 200 ′′ can be used to supply the bias voltage Vcc and it can also function as a shield in a like manner of the first exemplary embodiment.
- the number of shields can be reduced by using the bias winding as a shield.
- the primary winding can be realized as an interleaved structure to reduce the leakage inductance and thereby improve the energy transfer efficiency between the primary winding and the secondary winding.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2007-0033561 | 2007-04-05 | ||
KR100-2007-0033561 | 2007-04-05 | ||
KR1020070033561A KR101279071B1 (en) | 2007-04-05 | 2007-04-05 | Energy transfer element and converter including thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080247206A1 US20080247206A1 (en) | 2008-10-09 |
US7710085B2 true US7710085B2 (en) | 2010-05-04 |
Family
ID=39876901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/985,159 Active 2028-10-15 US7710085B2 (en) | 2007-04-05 | 2007-11-14 | Energy transfer element and converter including the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US7710085B2 (en) |
KR (1) | KR101279071B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110298433A1 (en) * | 2010-06-04 | 2011-12-08 | Apple Inc. | Switching power supply inductor arrangement |
US20120092903A1 (en) * | 2010-10-19 | 2012-04-19 | Power Integrations, Inc. | Power transfer between independent power ports utilizing a single transformer |
US20130314071A1 (en) * | 2012-05-24 | 2013-11-28 | Agilent Technologies, Inc. | Transformer correction circuit and technique for reducing cross-talk current |
US10601330B1 (en) | 2017-09-06 | 2020-03-24 | Apple Inc. | Tertiary winding for coupled inductor structures |
US11605497B2 (en) * | 2020-07-31 | 2023-03-14 | Silanna Asia Pte Ltd | Transformer with interleaved shielding windings |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20100144A0 (en) * | 2010-04-09 | 2010-04-09 | Salcomp Oyj | Arrangement and method for reducing capacitive current |
JP5719448B2 (en) * | 2010-11-09 | 2015-05-20 | ウン パク,チャン | Magnetic energy transfer element for canceling electrical noise and power supply device |
CN102231318A (en) * | 2011-04-11 | 2011-11-02 | 上海新进半导体制造有限公司 | Method and transformer for reducing common-mode interference in sandwich winding transformer |
US9576725B2 (en) * | 2012-12-28 | 2017-02-21 | General Electric Company | Method for reducing interwinding capacitance current in an isolation transformer |
US9425684B2 (en) * | 2013-02-22 | 2016-08-23 | Marvell World Trade Ltd. | Reduced noise power converter using novel shield |
CN103474210A (en) * | 2013-08-27 | 2013-12-25 | 崧顺电子(深圳)有限公司 | Transformer resistant to common code interference |
KR101665582B1 (en) * | 2015-03-03 | 2016-10-12 | 경상대학교산학협력단 | Transformer and converter including the same |
KR102324809B1 (en) * | 2020-05-18 | 2021-11-11 | 주식회사 파워넷 | Zero leakage Power supply |
KR102324808B1 (en) * | 2020-05-18 | 2021-11-11 | 주식회사 파워넷 | Transformer for zero leakage power supply |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2553324A (en) | 1949-07-27 | 1951-05-15 | Gen Electric | Wide band audio and video transformer |
USRE31840E (en) * | 1978-02-06 | 1985-02-26 | General Electric Co. | Transformer for use in a static inverter |
US4876638A (en) * | 1988-02-10 | 1989-10-24 | Electronic Research Group, Inc. | Low-noise switching power supply having variable reluctance transformer |
US6549431B2 (en) | 2001-03-08 | 2003-04-15 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components |
US6977803B2 (en) | 2003-04-01 | 2005-12-20 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical displacement current flow between input and output windings of an energy transfer element |
US7373714B2 (en) * | 2004-11-16 | 2008-05-20 | Power Integrations, Inc. | Method and article of manufacture for designing a transformer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002164227A (en) | 2000-11-28 | 2002-06-07 | Sanritsutsu:Kk | Transformer |
KR20050117091A (en) * | 2004-06-09 | 2005-12-14 | 주식회사 넥스텔 | Emi shielding apparatus for charger and adaptor of mobile phone |
-
2007
- 2007-04-05 KR KR1020070033561A patent/KR101279071B1/en active Active
- 2007-11-14 US US11/985,159 patent/US7710085B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2553324A (en) | 1949-07-27 | 1951-05-15 | Gen Electric | Wide band audio and video transformer |
USRE31840E (en) * | 1978-02-06 | 1985-02-26 | General Electric Co. | Transformer for use in a static inverter |
US4876638A (en) * | 1988-02-10 | 1989-10-24 | Electronic Research Group, Inc. | Low-noise switching power supply having variable reluctance transformer |
US6549431B2 (en) | 2001-03-08 | 2003-04-15 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components |
US6977803B2 (en) | 2003-04-01 | 2005-12-20 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical displacement current flow between input and output windings of an energy transfer element |
US6982621B2 (en) | 2003-04-01 | 2006-01-03 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical displacement current flow between input and output windings of an energy transfer element |
US7123121B2 (en) | 2003-04-01 | 2006-10-17 | Power Integrations, Inc. | Method and apparatus for substantially reducing electrical displacement current flow between input and output windings of an energy transfer element |
US7373714B2 (en) * | 2004-11-16 | 2008-05-20 | Power Integrations, Inc. | Method and article of manufacture for designing a transformer |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110298433A1 (en) * | 2010-06-04 | 2011-12-08 | Apple Inc. | Switching power supply inductor arrangement |
US8860390B2 (en) * | 2010-06-04 | 2014-10-14 | Apple Inc. | Switching power supply opposite polarity inductor arrangement |
US20120092903A1 (en) * | 2010-10-19 | 2012-04-19 | Power Integrations, Inc. | Power transfer between independent power ports utilizing a single transformer |
US8466662B2 (en) * | 2010-10-19 | 2013-06-18 | Power Integrations, Inc. | Power transfer between independent power ports utilizing a single transformer |
US20130314071A1 (en) * | 2012-05-24 | 2013-11-28 | Agilent Technologies, Inc. | Transformer correction circuit and technique for reducing cross-talk current |
US8791687B2 (en) * | 2012-05-24 | 2014-07-29 | Agilent Technologies, Inc. | Transformer correction circuit and technique for reducing cross-talk current |
US10601330B1 (en) | 2017-09-06 | 2020-03-24 | Apple Inc. | Tertiary winding for coupled inductor structures |
US11605497B2 (en) * | 2020-07-31 | 2023-03-14 | Silanna Asia Pte Ltd | Transformer with interleaved shielding windings |
Also Published As
Publication number | Publication date |
---|---|
US20080247206A1 (en) | 2008-10-09 |
KR101279071B1 (en) | 2013-06-26 |
KR20080090601A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7710085B2 (en) | Energy transfer element and converter including the same | |
US8743565B2 (en) | High power converter architecture | |
US9287792B2 (en) | Control method to reduce switching loss on MOSFET | |
US9019724B2 (en) | High power converter architecture | |
US6714428B2 (en) | Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier | |
US7679937B2 (en) | Flyback converter providing simplified control of rectifier MOSFETS when utilizing both stacked secondary windings and synchronous rectification | |
Kim et al. | High-efficiency LLC resonant converter with high voltage gain using an auxiliary LC resonant circuit | |
CN101299575B (en) | Power supply equipment having multi outputs | |
JP3861871B2 (en) | Switching power supply | |
Lee et al. | Resonant Capacitor O n/O ff Control of Half-Bridge LLC Converter for High-Efficiency Server Power Supply | |
JP4819902B2 (en) | DC / DC power converter | |
JP3656865B2 (en) | converter | |
CN101682264B (en) | Multi-output synchronous flyback converter | |
US7145784B2 (en) | DC power source apparatus | |
CN111492568B (en) | Interleaved LLC Resonant Converter | |
US10236720B2 (en) | Wireless power transfer system and driving method thereof | |
CN101156305A (en) | Method for operating switched-mode power supply components with primary-side leakage energy feedback | |
US20090244943A1 (en) | Power Converter | |
US20110199802A1 (en) | Single ended power converters operating over 50% duty cycle | |
KR101318425B1 (en) | Energy transfer element and converter including thereof | |
JP6393962B2 (en) | Switching power supply | |
CN117639524A (en) | Isolated power converter with supply voltage circuit | |
US20140268910A1 (en) | Coupled inductor dc step down converter | |
US9853534B2 (en) | Converter circuit arrangement and conversion method | |
US20230207188A1 (en) | Differential transformer based voltage converter and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FAIRCHILD KOREA SEMICONDUCTOR, LTD., KOREA, DEMOCR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, YOUNG-BAE;KIM, JIN-TAE;KOO, GWAN-BON;REEL/FRAME:023093/0010 Effective date: 20080117 Owner name: FAIRCHILD KOREA SEMICONDUCTOR, LTD.,KOREA, DEMOCRA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, YOUNG-BAE;KIM, JIN-TAE;KOO, GWAN-BON;REEL/FRAME:023093/0010 Effective date: 20080117 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD KOREA SEMICONDUCTOR, LTD.;REEL/FRAME:044361/0205 Effective date: 20171102 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541 Effective date: 20170504 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541 Effective date: 20170504 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459 Effective date: 20230622 Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459 Effective date: 20230622 |