US7635639B2 - Method for the interconnection of active and passive components and resulting thin heterogeneous component - Google Patents
Method for the interconnection of active and passive components and resulting thin heterogeneous component Download PDFInfo
- Publication number
- US7635639B2 US7635639B2 US10/562,685 US56268504A US7635639B2 US 7635639 B2 US7635639 B2 US 7635639B2 US 56268504 A US56268504 A US 56268504A US 7635639 B2 US7635639 B2 US 7635639B2
- Authority
- US
- United States
- Prior art keywords
- support
- components
- terminals
- layer
- thinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229920000642 polymer Polymers 0.000 claims abstract description 29
- 239000004020 conductor Substances 0.000 claims abstract description 16
- 238000000151 deposition Methods 0.000 claims abstract description 13
- 238000004381 surface treatment Methods 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 23
- 239000003985 ceramic capacitor Substances 0.000 claims description 18
- 238000005498 polishing Methods 0.000 claims description 8
- 239000002313 adhesive film Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000001465 metallisation Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003292 glue Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 alumina Chemical compound 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 1
- BBKFSSMUWOMYPI-UHFFFAOYSA-N gold palladium Chemical compound [Pd].[Au] BBKFSSMUWOMYPI-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01056—Barium [Ba]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01087—Francium [Fr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19042—Component type being an inductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Definitions
- the present invention relates to a method for the interconnection of active and passive components in two or three dimensions, and to the resulting thin heterogeneous components.
- capacitors deposited on a substrate can have thicknesses comparable to those of thinned active components.
- the drawback of these deposited capacitors derives from their very low permittivity, which ranges from 4 to a few tens, while the permittivities of ceramic capacitors reach several thousand.
- the latter capacitors based on barium titanate are very stable and very reliable. Manufacturers have so far been trying to reduce their thickness, and it has now reached 0.5 to 0.6 mm.
- the present invention makes it possible to overcome the aforementioned drawbacks by providing a method for the interconnection of active and passive components, which is applicable particularly to the interconnection of chip-type active components and ceramic capacitors, making it possible to produce thin heterogeneous components in two or three dimensions.
- the method is based on simultaneously thinning the active and passive components coated in a polymer layer by a surface treatment which is heterogeneous, i.e. applied nonselectively both to the passive and active components and to the polymer layer coating them, the Applicant having shown that surprisingly this method does not significantly affect the performance of the passive components, including ceramic capacitors.
- the invention relates to a method for the interconnection of active and passive components provided with terminals for their interconnection, characterized in that it comprises:
- FIG. 1 represents an embodiment of the method according to the invention
- FIGS. 2A , 2 B and 2 C represent exemplary embodiments of the steps of the method according to FIG. 1 ;
- FIGS. 3A and 3B represent exemplary embodiments of the prior step of thinning on ceramic capacitors
- FIG. 4 represents the diagram of a resistor to which the method according to the invention may be applied
- FIG. 5 represents the method according to the invention applied to interconnection in three dimensions
- FIG. 6 represents a diagram illustrating the steps of the method described in FIG. 5 ;
- FIG. 7 represents a diagram showing a view in section of a thinned 3D heterogeneous component obtained by the method described by FIG. 5 ;
- FIG. 8 represents a diagram illustrating the steps of a thin 3D interconnection method according to the invention in one variant.
- FIG. 1 describes an embodiment of the method according to the invention for interconnecting active and passive components, in particular for the production of very thin heterogeneous components in three dimensions.
- heterogeneous component is intended to mean an electronic component comprising both one or more active and passive component(s) connected together with a view to forming an electronic component in order to fulfill a given electronic function.
- the active component comprises any component commonly referred to as a “chip” and employing semiconductor technology, for example of the diode, transistor or integrated circuit type.
- the term passive component is intended to mean the other components, whether conventional components of the resistor, capacitor or inductor type mounted at the surface, or alternatively electromechanical components etched in silicon and known by the name MEMS (abbreviation for “MicroElectroMechanical Systems”).
- the thickness of the passive components and in particular ceramic capacitors limits the possibility of thinning the heterogeneous components, and in particular three-dimensional heterogeneous components.
- the method according to the invention makes it possible to overcome this drawback.
- the method described in the example of FIG. 1 comprises in particular initially thinning the passive components (step 10 , optional), positioning and fixing at least one active component and one passive component on a flat support (step 11 ), depositing a polymer layer on all of the support and the components (step 12 ), rectifying the layer (step 13 , optional) allowing the surface of the layer to be rendered substantially plane and parallel to the support, removing the support (step 14 ), redistributing the terminals between the components and/or toward the periphery by means of metal conductors (step 15 ), making it possible to obtain a reconstituted heterogeneous structure, thinning said structure by heterogeneous surface treatment consisting in nonselective polishing of the polymer layer and at least one passive component (step 16 ).
- the first step of the method according to the invention consists in the components, which are provided with terminals for their interconnection and intended to be connected together, being positioned and fixed on a flat support.
- FIGS. 2A and 2B illustrate steps of the method described in FIG. 1 according to an exemplary embodiment.
- an active component referenced 21 of a first passive component, for example a conducting wire 20
- a second passive component referenced 22 in this example a ceramic capacitor
- FIG. 2C describes the connection of an active component and a passive component of the MEMS type denoted by 27 .
- These components are positioned and fixed on a support 23 .
- the terminals of the components, respectively referenced 211 for the active component and 221 for the ceramic capacitor, are in contact with the support.
- a large number of components arranged in the form of substantially identical patterns may be positioned and fixed on the support 23 .
- the method is then applied collectively to all of the support, and the reconstituted structure (or reconstituted “wafer”) obtained at the end of the method will be cut in order to obtain a corresponding number of individual heterogeneous components.
- the support 23 is advantageously an adhesive film which can be taken off without any particular treatment, for example a polyvinyl chloride film of the type used in the fabrication of silicon “wafers” and commonly referred to as a drum skin.
- the positioning of the components which is very precise, is carried out for example using optical control by a camera with reference points as markers.
- Using an adhesive film as a support makes it possible to avoid bonding the components with glue, which is more complicated to do because the drop of glue must be extremely well calibrated and thin so as not to touch the points, and is more limited in terms of application possibilities because the points must necessarily lie at the periphery of the component.
- An adhesive film can furthermore be removed by peeling without any particular treatment, while fixing the support by bonding requires a heat treatment in order to polymerize the glue and a chemical treatment with acid in order to remove it.
- the ceramic capacitor 22 has undergone a prior thinning step described by means of FIG. 3A .
- This step which is optional, makes it possible to thin the ceramic capacitor on two opposing faces and thus further reduce its thickness.
- the ceramic capacitor ( 30 ) comprises in the conventional way a zone of even and odd interdigitated plane electrodes, respectively referenced 31 and 32 , two ceramic filling zones 33 and 34 lying on either side of the electrode zone, which are not electrically functional, and two end terminals referenced 35 (generally of silver-palladium or nickel-gold) to which, for example, the even electrodes 31 and odd electrodes 32 are respectively connected.
- the ceramic capacitor is thinned on one of its faces, for example by polishing.
- the capacitor is thinned on a face parallel to the electrodes.
- the capacitor is bonded onto a support 36 by means of an adhesive material which can be easily taken off, for example wax 37 or a bonding film as described above.
- the polishing may take place in the zones 33 and 34 which are not electrically functional.
- FIG. 3A shows the capacitor thinned in the ceramic zone 33 on the section plane referenced C. If this is necessary, however, the Applicant has shown that it is possible to thin in the electrode zone. Naturally, the capacitive value will decrease as the electrode levels are reduced.
- FIG. 3B illustrates the case of initially thinning a ceramic capacitor with an attached electrode.
- ceramic capacitors may have end terminals 35 of a material incompatible with the metallization which will be applied during the step of redistributing the terminals (step 15 described below) and which is fixed by chip terminal metallization technology. It may thus be necessary to process the thinned capacitors with non-oxidizable metals or alloys (for example gold or gold-palladium).
- electrodes 39 in the form of a strip or wire are bonded to the end terminals 35 by means of conductive adhesive (for example containing silver) or by brazing. After thinning (cut C), the non-oxidizable electrodes 39 have sections 391 which can fulfill the function of terminals 221 of the passive component ( FIG. 2A ).
- the capacitor may be thinned on one of its faces perpendicular to the plane of the electrode, which reduces the capacitive value but makes it possible to maintain the positioning symmetry of the electrodes with respect to the faces that are parallel to them.
- the external metallizations 35 of the electrodes are extended on the four adjacent faces, and the capacitor may be bonded onto the adhesive support 23 via the ends of the metallizations 35 with the electrodes parallel or perpendicular to the plane of the support.
- FIG. 4 represents the diagram of a commercial passive component of the resistor type, to which the invention may be applied.
- the resistor 40 comprises an inert substrate 41 , for example of alumina, the thickness of which is of the order of one millimeter, a resistive layer 42 (of the order of 1 micron) and conductive terminals 43 generally formed by layers of conductive material which enclose the side faces of the component, on either side of the active layer.
- the active layer 42 which is very thin, is positioned in proximity to one face for this type of component. The prior thinning of the component is possible on the face opposite that bearing the active layer.
- the active component is subsequently positioned and fixed on the substrate with the face bearing the active layer pointing toward the substrate. During the interconnection method according to the invention, the component is positioned on the support 23 ( FIG.
- step 16 of the method, described below can take place in the inert layer.
- the zones 431 of the terminals 43 in contact with the support 23 form the terminals 221 of the component ( FIG. 2A ).
- the invention likewise applies to a component of the inductor type, the active layer then being an inductive layer.
- the next step, referenced 12 consists in depositing a polymer layer (referenced 24 in FIGS. 2A , 2 B), for example epoxy resin, on all of the components and the support.
- a polymer layer referenced 24 in FIGS. 2A , 2 B
- epoxy resin for example epoxy resin
- the rectification of the polymer layer is an optional step of the interconnection method according to the invention, which is particularly beneficial in the event that the method is applied collectively to a reconstituted wafer. This is so because it makes it possible to render the surface of the layer substantially plane and parallel to the support 23 , and to give the structure a calibrated thickness (typically 0.8 nm) compatible with the machines conventionally used for the subsequent step of redistributing the terminals on silicon wafers.
- the rectification, indicated by A in FIG. 2A consists in lapping optionally followed by polishing.
- the Applicant has shown that, if the thickness of the components so requires, in particular passive components, it is possible to carry out heterogeneous i.e. nonselective thinning which leads to a cut in the thickness of the structure through the various materials formed by the diversity of the components and the layer.
- the support 23 (step 14 ) is subsequently removed in order to redistribute the terminals (step 15 ).
- the support being formed by an adhesive film, the removal is carried out simply by peeling the film.
- the redistribution of the terminals is intended to connect together the components of the same pattern and/or make connections toward the periphery of the pattern with a view to subsequent three-dimensional interconnection.
- FIG. 2B illustrates an advantageous embodiment of this step.
- the support 23 being removed, a layer 25 of an insulation material of the photo-etchable polymer type or an etchable resist, on which a polymer layer of the photoresist ⁇ type is deposited, is deposited on all of the surface.
- the pattern corresponding to the layout of the terminals 221 is etched into the polymer layer by exposure through a mask.
- a metal layer is subsequently deposited, and then the metal layer is likewise etched by a similar technique according to a predetermined pattern of connections in order to form the metal conductors 26 which connect the component toward another component and/or toward the periphery.
- several metal layers may be deposited on one another.
- the choice of the metal must be compatible with the material from which the terminals 221 of the passive and active components are formed.
- the metal is an alloy of the conventionally used trilayer type having layers of titanium-tungsten, nickel and gold.
- a reconstituted heterogeneous structure is obtained at the end of this step.
- the next step, referenced 16 then consists in thinning this structure by heterogeneous surface treatment, that is to say plane nonselective cutting in the thickness of the structure through the various materials formed by the diversity of the components and the layer.
- the cut denoted B in FIG. 2B is thus made through the polymer forming the layer 24 , the material forming the passive component, for example ceramic for a capacitor as described in FIG. 2B , or alumina in the case of a resistor, and optionally the silicon forming the support of the active component.
- the cut is made by lapping followed by nonselective polishing of the surface of the structure.
- the lapping and polishing are advantageously carried out by mechanical abrasion, a method which is widely used in the field of semiconductors and inexpensive.
- a thin heterogeneous structure is then obtained, which can be cut (step 17 ) in order to form ultrathin heterogeneous elementary components.
- the components thus obtained are two-dimensional. They may be used per se in order to produce two-dimensional micropackages or, as described below, for stacking in three dimensions.
- MEMS constitute another particularly advantageous case of a passive component to which the interconnection method according to the invention may be applied.
- MEMS are electromechanical components etched in silicon and having functions of the sensor type, actuator type, switch type etc. Being very sensitive to humidity and external stresses, they are necessarily arranged in a cavity protected by a cover, for example of plastic.
- FIG. 2C illustrates the interconnection of a MEMS 27 and a chip 21 with the method according to the invention.
- the MEMS 27 comprises, protected by a cover 270 , a sensitive part 271 etched in a substrate 272 generally of silicon.
- the substrate is positioned and bonded on the support 23 (not shown in FIG. 2C ).
- the sensitive part is located on the substrate 272 on the opposite face from that in contact with the support, so that it does not need to receive adhesive or resin and remains unstressed.
- a substrate 273 made of alumina or of a printed circuit, that is to say one comprising an insulating film with a layer of copper coated with nickel and gold, etched on each of the 2 faces makes it possible to interface the chip and its substrate with the support 23 and to connect the sensitive part of the MEMS to the conductors of the heterogeneous component.
- the interface 273 has two faces equipped with metal contacts 275 and 276 respectively on the face next to the support 23 , on which the interface is bonded, and on the opposite face, the contacts being connected together.
- the contacts 276 are connected to metal terminals 274 of the substrate 272 , which is in contact with the sensitive surface 271 , by connecting wires 277 .
- the cover 270 which may consist of an organic (epoxy resin) or inorganic material (silicon, glass, ceramic such as alumina, metal or metal alloys) is “bonded” onto the interface 273 . Care is taken for the thickness of the cover to be sufficient so that it can still maintain its integrity and form a protective cavity for the MEMS after the final thinning.
- the support is then removed in order to redistribute the terminals.
- the terminals are redistributed according to the method described above.
- the perimeter of the cover is not generally connected to anything.
- metallization 278 metallize its perimeter (metallization 278 ) if it is an insulator, or do nothing if it is conductive; the perimeter 278 will then be connected to terminals 279 of the interface 273 .
- Two metallization layers 261 and 262 are thus provided in the example of FIG. 2C , deposited on two layers of insulating material 251 , 252 which make it possible to ground the cover via its perimeter 278 .
- the thinning (cut B) is carried out in the thickness of the cover.
- the interconnection method as described above is applied to the production of three-dimensional thinned heterogeneous components.
- the method carried out in order to produce 3D components adopts the steps of the method described in French Patent Application No. 90 154 73 filed on Dec. 11, 1990 in the name of the Applicant.
- the steps are summarized in FIG. 5
- FIG. 6 illustrates the various steps according to one example.
- the production ( 50 ) of the thinned heterogeneous elementary components (denoted 60 in FIG. 6 ) is carried out by the interconnection method according to the invention as described above and illustrated in FIG. 1 .
- FIG. 2B A view in section of an example of a thinned heterogeneous elementary component thus produced is shown in FIG. 2B .
- the elementary components have, in particular, connections 601 ( FIG. 6 ) oriented toward the periphery of the component.
- the components are then stacked and bonded (step 51 ) on a substrate 61 .
- the components 60 are either identical components or components having different electrical functions.
- the substrate 61 is, for example, an adhesive film of the type described above.
- the first component 62 bonded onto the substrate is advantageously an interconnection component, for example a printed circuit substrate, for subsequent connection of the 3D components and comprising terminals 621 positioned on the face next to the substrate which are connected to terminals 622 positioned on the opposite face.
- the elementary components 60 are therefore stacked on this first interconnection component and bonded, for example by means of an epoxy adhesive 63 .
- the assembly formed by the stack of elementary components 60 and the interconnection component 62 is coated (step 52 , FIG. 5 ) with a polymer material 64 (for example an epoxy resin) in order to form a block of parallelepipedal shape.
- a polymer material 64 for example an epoxy resin
- the faces of this block are then metallized in order to form the connections (step 54 ).
- the method employed is advantageously a collective method.
- On a single substrate 61 the individual heterogeneous components are stacked and bonded on one another as described above.
- the coating material is applied on all of the support, then the structure obtained is cut (step 53 ) so as to expose the sections of all the conductors ( 601 , 622 ) arriving at the periphery for each of the levels consisting of the elementary components 60 and the interconnection component 62 .
- the faces of this block are subsequently metallized on 4 or 5 faces (step 54 ), short-circuiting all the conductors that reach the periphery of each level.
- An etching step for example with a laser, then makes it possible to isolate groups of said conductors in order to form the electrical interconnection layout (step 55 ).
- FIG. 7 illustrates a view in section of an exemplary embodiment of a three-dimensional thinned heterogeneous component obtained by the method as described in FIG. 5 .
- the thinned three-dimensional heterogeneous component comprises the interconnection component 62 with the terminals 621 for connection to the substrate onto which it will be transferred in order to be interconnected with others, and, stacked on it, the thinned heterogeneous elementary components 60 between which layers of glue 63 are arranged.
- the metallization layer 71 short-circuiting the conductors that reach the periphery of each level is deposited on the 4 or 5 faces of the three-dimensional component, making it possible to form an interconnection network between all the various levels after etching. Shown in the example illustrated in FIG. 7 are active 21 and passive 20 , 22 components of the capacitor type and connecting wires 20 , respectively.
- connecting wires 20 is that the various levels can be interconnected using a conductive layer 63 , such an anisotropic adhesive of the ACF (anisotropic conductive film) type, either in liquid form or in film form, which is conductive in the direction in which pressure is applied.
- a conductive layer 63 such an anisotropic adhesive of the ACF (anisotropic conductive film) type, either in liquid form or in film form, which is conductive in the direction in which pressure is applied.
- FIG. 8 illustrates by a diagram another exemplary embodiment of the interconnection method according to the invention for the production of thinned three-dimensional components.
- the method substantially adopts the steps of the method described in FIG. 1 .
- a plurality of active components are stacked on one another before depositing the polymer layer (step 12 , FIG. 1 ).
- This embodiment of the method according to the invention is particularly beneficial in the event that the active components have thicknesses small enough to be able to be stacked with a total stack height remaining less than the height of the passive component.
- the active components will thus not be touched during the step of heterogeneously thinning the structure, although nonselective surface treatment of the polymer layer and the passive components will be carried out making it possible to reduce the thickness of the heterogeneous component thus formed.
- the method described here comprises the positioning and fixing of at least one passive component 80 and at least a first active component 81 on a support, the terminals of the components (respectively 801 , 811 ) being in contact with the support.
- This step similar to one described in FIG. 2A , is not represented in FIG. 8 .
- the flat support is, for example, an adhesive film as described above.
- the method furthermore comprises the stacking and bonding of a second active component 82 on the first active component 81 , the terminals 821 of the second component being on the opposite face from that in contact with the first component.
- One or more other active components 83 may optionally also be stacked on the second component, the terminals 831 of each further active component being on the opposite face from that in contact with of the lower component.
- the number of active components which can be stacked depends on their thickness with respect to that of the passive component 80 .
- the active components are connected in the following way.
- one or more terminal adapters 84 are positioned and fixed on the flat support (not shown) in the same way as the passive component 80 and the first active component 81 .
- the adapters may be of the same type as those described above ( FIG. 2C ).
- Each adapter has two faces with metal contacts connected together, respectively denoted 841 on the face in contact with the support and 842 on the other face on the opposite side.
- the adapters 84 may be formed by a metal grid.
- the metal grid coated in a resin consists, for example, of a ferro-nickel alloy or copper. It is coated with nickel and gold so as to be able to receive the wiring.
- the method comprises the formation of connections by means of wires 822 between the terminals 821 of the second component 82 and the contacts 842 of the adapter and, if appropriate, the formation of connections by connecting wires 832 between the terminals of each further component 83 and the contacts 842 of the adapter or the terminals of the lower component, here the terminals 821 of the second component 82 .
- the subsequent steps of the method are similar to those described in the example of FIG.
- the passive components may undergo a prior thinning step.
- the method may furthermore be applied collectively by fixing a large number of components arranged in the form of identical patterns on the same support.
- the reconstituted structure obtained at the end of the method will then be cut in order to obtain a corresponding number of individual heterogeneous components.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Micromachines (AREA)
- Semiconductor Integrated Circuits (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0307977A FR2857157B1 (fr) | 2003-07-01 | 2003-07-01 | Procede d'interconnexion de composants actif et passif et composant heterogene a faible epaisseur en resultant |
FR0307977 | 2003-07-01 | ||
PCT/EP2004/051314 WO2005004237A1 (fr) | 2003-07-01 | 2004-06-30 | Procede d'interconnexion de composants actif et passif et composant heterogene a faible epaisseur en resultant |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070117369A1 US20070117369A1 (en) | 2007-05-24 |
US7635639B2 true US7635639B2 (en) | 2009-12-22 |
Family
ID=33522652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/562,685 Expired - Lifetime US7635639B2 (en) | 2003-07-01 | 2004-06-30 | Method for the interconnection of active and passive components and resulting thin heterogeneous component |
Country Status (4)
Country | Link |
---|---|
US (1) | US7635639B2 (fr) |
EP (1) | EP1642336A1 (fr) |
FR (1) | FR2857157B1 (fr) |
WO (1) | WO2005004237A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014439A1 (en) * | 2006-03-25 | 2008-01-17 | Igor Bol | Process for manufacture of thin wafer |
US20090260228A1 (en) * | 2007-10-26 | 2009-10-22 | 3D Plus | Process for the vertical interconnection of 3d electronic modules by vias |
US8159076B2 (en) | 2007-06-07 | 2012-04-17 | Commissariat A L'energie Atomique | Method of producing a via in a reconstituted substrate |
US8359740B2 (en) | 2008-12-19 | 2013-01-29 | 3D Plus | Process for the wafer-scale fabrication of electronic modules for surface mounting |
US8546190B2 (en) | 2009-03-10 | 2013-10-01 | 3D Plus | Method for positioning chips during the production of a reconstituted wafer |
US9496241B2 (en) | 2012-06-15 | 2016-11-15 | Medtronic, Inc. | Integrated circuit packaging for implantable medical devices |
US11213690B2 (en) | 2012-06-15 | 2022-01-04 | Medtronic, Inc. | Wafer level packages of high voltage units for implantable medical devices |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2884049B1 (fr) * | 2005-04-01 | 2007-06-22 | 3D Plus Sa Sa | Module electronique de faible epaisseur comprenant un empilement de boitiers electroniques a billes de connexion |
FR2894070B1 (fr) * | 2005-11-30 | 2008-04-11 | 3D Plus Sa Sa | Module electronique 3d |
FR2895568B1 (fr) * | 2005-12-23 | 2008-02-08 | 3D Plus Sa Sa | Procede de fabrication collective de modules electroniques 3d |
AT503191B1 (de) | 2006-02-02 | 2008-07-15 | Austria Tech & System Tech | Leiterplattenelement mit wenigstens einem eingebetteten bauelement sowie verfahren zum einbetten zumindest eines bauelements in einem leiterplattenelement |
FR2905198B1 (fr) * | 2006-08-22 | 2008-10-17 | 3D Plus Sa Sa | Procede de fabrication collective de modules electroniques 3d |
FR2911995B1 (fr) * | 2007-01-30 | 2009-03-06 | 3D Plus Sa Sa | Procede d'interconnexion de tranches electroniques |
FR2917234B1 (fr) | 2007-06-07 | 2009-11-06 | Commissariat Energie Atomique | Dispositif multi composants integres dans une matrice semi-conductrice. |
FR2934082B1 (fr) * | 2008-07-21 | 2011-05-27 | Commissariat Energie Atomique | Dispositif multi composants integres dans une matrice |
FR2947948B1 (fr) | 2009-07-09 | 2012-03-09 | Commissariat Energie Atomique | Plaquette poignee presentant des fenetres de visualisation |
FR2985367A1 (fr) | 2011-12-29 | 2013-07-05 | 3D Plus | Procede de fabrication collective de modules electroniques 3d ne comportant que des pcbs valides |
FR3048123B1 (fr) | 2016-02-19 | 2018-11-16 | 3D Plus | Procede d'interconnexion chip on chip miniaturisee d'un module electronique 3d |
FR3053158B1 (fr) | 2016-06-22 | 2018-11-16 | 3D Plus | Procede de fabrication collective de modules electroniques 3d configures pour fonctionner a plus d'1 ghz |
JP7611683B2 (ja) | 2020-12-07 | 2025-01-10 | 太陽誘電株式会社 | セラミック電子部品、実装基板およびセラミック電子部品の製造方法 |
CN112928077A (zh) * | 2021-01-20 | 2021-06-08 | 上海先方半导体有限公司 | 一种多芯片异质集成封装单元及其制造方法、堆叠结构 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3235939A (en) | 1962-09-06 | 1966-02-22 | Aerovox Corp | Process for manufacturing multilayer ceramic capacitors |
US4755910A (en) | 1985-12-17 | 1988-07-05 | Cimsa Sintra | Housing for encapsulating an electronic circuit |
US5324687A (en) | 1992-10-16 | 1994-06-28 | General Electric Company | Method for thinning of integrated circuit chips for lightweight packaged electronic systems |
US5323533A (en) | 1991-03-26 | 1994-06-28 | Thomson-Csf | Method of producing coaxial connections for an electronic component, and component package |
EP0611129A2 (fr) | 1993-02-08 | 1994-08-17 | General Electric Company | Substrat intégré pour modules à circuits intégrés |
US5400218A (en) | 1992-03-10 | 1995-03-21 | Thomson-Csf | Device for the 3D encapsulation of semiconductor chips |
US5526230A (en) | 1992-10-13 | 1996-06-11 | Thomson-Csf | 3D interconnection process for electronic component packages and resulting 3D components |
US5637536A (en) | 1993-08-13 | 1997-06-10 | Thomson-Csf | Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom |
US5640760A (en) | 1994-05-10 | 1997-06-24 | Thomson-Csf | Method for the 3D interconnection of packages of electronic components using printed circuit boards |
US5847448A (en) | 1990-12-11 | 1998-12-08 | Thomson-Csf | Method and device for interconnecting integrated circuits in three dimensions |
US5885850A (en) | 1992-03-13 | 1999-03-23 | Thomson-Csf | Method for the 3D interconnection of packages of electronic components, and device obtained by this method |
EP1137066A2 (fr) | 2000-03-24 | 2001-09-26 | Shinko Electric Industries Co. Ltd. | Dispositif semi-conducteur et méthode de fabrication associée |
US6307261B1 (en) | 1992-05-27 | 2001-10-23 | Thomson Csf | Method for the manufacturing of a semiconductor device which comprises at least one chip and corresponding device |
WO2002015266A2 (fr) | 2000-08-16 | 2002-02-21 | Intel Corporation | Couche formee directement sur un boitier a puce encapsule |
FR2818804A1 (fr) | 2000-12-21 | 2002-06-28 | Thomson Csf | Procede de realisation d'un module multi-composants enterres et module obtenu par ce procede |
US6441495B1 (en) * | 1997-10-06 | 2002-08-27 | Rohm Co., Ltd. | Semiconductor device of stacked chips |
US20020151103A1 (en) * | 2001-04-06 | 2002-10-17 | Shigeru Nakamura | Semiconductor device and method of manufacturing the same |
US20020175400A1 (en) | 2001-05-26 | 2002-11-28 | Gerber Mark A. | Semiconductor device and method of formation |
US20030045030A1 (en) | 2001-08-31 | 2003-03-06 | Hitachi, Ltd. | Method of manufacturing a semiconductor device |
US20030222335A1 (en) * | 2002-05-30 | 2003-12-04 | Matsushita Electric Industrial Co., Ltd. | Circuit component, circuit component package,, circuit component built-in module, circuit component package production and circuit component built-in module production |
US6716672B2 (en) | 2000-02-11 | 2004-04-06 | 3D Plus | Three dimensional interconnection method and electronic device obtained by same |
US6809367B2 (en) | 1999-12-15 | 2004-10-26 | 3D Plus | Device for interconnecting, in three dimensions, electronic components |
US7134198B2 (en) * | 2000-03-17 | 2006-11-14 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing electric element built-in module with sealed electric element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6066513A (en) * | 1998-10-02 | 2000-05-23 | International Business Machines Corporation | Process for precise multichip integration and product thereof |
US6110806A (en) * | 1999-03-26 | 2000-08-29 | International Business Machines Corporation | Process for precision alignment of chips for mounting on a substrate |
-
2003
- 2003-07-01 FR FR0307977A patent/FR2857157B1/fr not_active Expired - Lifetime
-
2004
- 2004-06-30 EP EP04766105A patent/EP1642336A1/fr not_active Withdrawn
- 2004-06-30 WO PCT/EP2004/051314 patent/WO2005004237A1/fr active Application Filing
- 2004-06-30 US US10/562,685 patent/US7635639B2/en not_active Expired - Lifetime
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3235939A (en) | 1962-09-06 | 1966-02-22 | Aerovox Corp | Process for manufacturing multilayer ceramic capacitors |
US4755910A (en) | 1985-12-17 | 1988-07-05 | Cimsa Sintra | Housing for encapsulating an electronic circuit |
US5847448A (en) | 1990-12-11 | 1998-12-08 | Thomson-Csf | Method and device for interconnecting integrated circuits in three dimensions |
US5323533A (en) | 1991-03-26 | 1994-06-28 | Thomson-Csf | Method of producing coaxial connections for an electronic component, and component package |
US5400218A (en) | 1992-03-10 | 1995-03-21 | Thomson-Csf | Device for the 3D encapsulation of semiconductor chips |
US5885850A (en) | 1992-03-13 | 1999-03-23 | Thomson-Csf | Method for the 3D interconnection of packages of electronic components, and device obtained by this method |
US6307261B1 (en) | 1992-05-27 | 2001-10-23 | Thomson Csf | Method for the manufacturing of a semiconductor device which comprises at least one chip and corresponding device |
US5526230A (en) | 1992-10-13 | 1996-06-11 | Thomson-Csf | 3D interconnection process for electronic component packages and resulting 3D components |
US5324687A (en) | 1992-10-16 | 1994-06-28 | General Electric Company | Method for thinning of integrated circuit chips for lightweight packaged electronic systems |
EP0611129A2 (fr) | 1993-02-08 | 1994-08-17 | General Electric Company | Substrat intégré pour modules à circuits intégrés |
US5497033A (en) * | 1993-02-08 | 1996-03-05 | Martin Marietta Corporation | Embedded substrate for integrated circuit modules |
US5637536A (en) | 1993-08-13 | 1997-06-10 | Thomson-Csf | Method for interconnecting semiconductor chips in three dimensions, and component resulting therefrom |
US5640760A (en) | 1994-05-10 | 1997-06-24 | Thomson-Csf | Method for the 3D interconnection of packages of electronic components using printed circuit boards |
US6441495B1 (en) * | 1997-10-06 | 2002-08-27 | Rohm Co., Ltd. | Semiconductor device of stacked chips |
US6809367B2 (en) | 1999-12-15 | 2004-10-26 | 3D Plus | Device for interconnecting, in three dimensions, electronic components |
US6716672B2 (en) | 2000-02-11 | 2004-04-06 | 3D Plus | Three dimensional interconnection method and electronic device obtained by same |
US7134198B2 (en) * | 2000-03-17 | 2006-11-14 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing electric element built-in module with sealed electric element |
EP1137066A2 (fr) | 2000-03-24 | 2001-09-26 | Shinko Electric Industries Co. Ltd. | Dispositif semi-conducteur et méthode de fabrication associée |
WO2002015266A2 (fr) | 2000-08-16 | 2002-02-21 | Intel Corporation | Couche formee directement sur un boitier a puce encapsule |
FR2818804A1 (fr) | 2000-12-21 | 2002-06-28 | Thomson Csf | Procede de realisation d'un module multi-composants enterres et module obtenu par ce procede |
US20020151103A1 (en) * | 2001-04-06 | 2002-10-17 | Shigeru Nakamura | Semiconductor device and method of manufacturing the same |
US20020175400A1 (en) | 2001-05-26 | 2002-11-28 | Gerber Mark A. | Semiconductor device and method of formation |
US20030045030A1 (en) | 2001-08-31 | 2003-03-06 | Hitachi, Ltd. | Method of manufacturing a semiconductor device |
US20030222335A1 (en) * | 2002-05-30 | 2003-12-04 | Matsushita Electric Industrial Co., Ltd. | Circuit component, circuit component package,, circuit component built-in module, circuit component package production and circuit component built-in module production |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014439A1 (en) * | 2006-03-25 | 2008-01-17 | Igor Bol | Process for manufacture of thin wafer |
US8420505B2 (en) * | 2006-03-25 | 2013-04-16 | International Rectifier Corporation | Process for manufacture of thin wafer |
US8159076B2 (en) | 2007-06-07 | 2012-04-17 | Commissariat A L'energie Atomique | Method of producing a via in a reconstituted substrate |
US20090260228A1 (en) * | 2007-10-26 | 2009-10-22 | 3D Plus | Process for the vertical interconnection of 3d electronic modules by vias |
US8567051B2 (en) * | 2007-10-26 | 2013-10-29 | 3D Plus | Process for the vertical interconnection of 3D electronic modules by vias |
US8359740B2 (en) | 2008-12-19 | 2013-01-29 | 3D Plus | Process for the wafer-scale fabrication of electronic modules for surface mounting |
US8546190B2 (en) | 2009-03-10 | 2013-10-01 | 3D Plus | Method for positioning chips during the production of a reconstituted wafer |
US9496241B2 (en) | 2012-06-15 | 2016-11-15 | Medtronic, Inc. | Integrated circuit packaging for implantable medical devices |
US11213690B2 (en) | 2012-06-15 | 2022-01-04 | Medtronic, Inc. | Wafer level packages of high voltage units for implantable medical devices |
Also Published As
Publication number | Publication date |
---|---|
FR2857157B1 (fr) | 2005-09-23 |
WO2005004237A1 (fr) | 2005-01-13 |
US20070117369A1 (en) | 2007-05-24 |
FR2857157A1 (fr) | 2005-01-07 |
EP1642336A1 (fr) | 2006-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7635639B2 (en) | Method for the interconnection of active and passive components and resulting thin heterogeneous component | |
KR100550480B1 (ko) | 다중 계층 어레이 커패시터 및 그 제작 방법 | |
US10262967B2 (en) | Semiconductor packages | |
US6891248B2 (en) | Semiconductor component with on board capacitor | |
US6673698B1 (en) | Thin film semiconductor package utilizing a glass substrate with composite polymer/metal interconnect layers | |
US7638875B2 (en) | Packaging structure | |
EP0522518B1 (fr) | Assemblage de puces électroniques empilées et méthode de fabrication pour celui-ci | |
EP0070380B1 (fr) | Condensateur discret à film mince | |
US5521434A (en) | Semiconductor chip and electronic module with integrated surface interconnects/components | |
KR100818088B1 (ko) | 반도체 패키지 및 그 제조 방법 | |
US7074696B1 (en) | Semiconductor circuit module and method for fabricating semiconductor circuit modules | |
EP0596075A4 (en) | Non-conductive end layer for integrated stack of ic chips | |
WO2007040064A1 (fr) | Composant électronique composite de type feuille et son procédé de fabrication | |
US20020070446A1 (en) | Semiconductor device and method for the production thereof | |
CN101159239A (zh) | 电子器件及其制造方法 | |
US20040031982A1 (en) | Interdigitated integrated circuit capacitor | |
US7906838B2 (en) | Electronic component package and method of manufacturing same | |
US9640477B1 (en) | Semiconductor package and method of producing the semiconductor package | |
US7067352B1 (en) | Vertical integrated package apparatus and method | |
JP2003318323A (ja) | 半導体装置およびその製造方法 | |
US6903917B2 (en) | Substrate-embedded capacitor, production method thereof, and circuit board | |
US6784551B2 (en) | Electronic device having a trimming possibility and at least one semiconductor chip and method for producing the electronic device | |
CN113097185B (zh) | 晶圆级裸片堆叠结构和方法、裸片堆叠封装结构和方法 | |
CN108962868B (zh) | 封装结构及其制法 | |
US7816176B2 (en) | Method of manufacturing electronic component package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3D PLUS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAL, CHRISTIAN;LIGNIER, OLIVIER;REEL/FRAME:017998/0299 Effective date: 20060710 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |