US7626205B2 - Semiconductor device and electro-optical device - Google Patents
Semiconductor device and electro-optical device Download PDFInfo
- Publication number
- US7626205B2 US7626205B2 US11/949,370 US94937007A US7626205B2 US 7626205 B2 US7626205 B2 US 7626205B2 US 94937007 A US94937007 A US 94937007A US 7626205 B2 US7626205 B2 US 7626205B2
- Authority
- US
- United States
- Prior art keywords
- thin film
- film transistor
- gate electrode
- drain
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 34
- 239000010409 thin film Substances 0.000 claims abstract description 250
- 239000010408 film Substances 0.000 claims abstract description 138
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 50
- 238000009413 insulation Methods 0.000 claims description 73
- 239000000758 substrate Substances 0.000 claims description 55
- 239000012535 impurity Substances 0.000 claims description 20
- 238000002513 implantation Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 27
- 230000008859 change Effects 0.000 abstract description 11
- 229920006395 saturated elastomer Polymers 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 76
- 238000005401 electroluminescence Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 15
- 230000005684 electric field Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000012212 insulator Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- -1 phosphorus ion Chemical class 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000005224 laser annealing Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- XMQFTWRPUQYINF-UHFFFAOYSA-N bensulfuron-methyl Chemical compound COC(=O)C1=CC=CC=C1CS(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 XMQFTWRPUQYINF-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6733—Multi-gate TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6733—Multi-gate TFTs
- H10D30/6734—Multi-gate TFTs having gate electrodes arranged on both top and bottom sides of the channel, e.g. dual-gate TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/441—Interconnections, e.g. scanning lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/02—Alignment layer characterised by chemical composition
- C09K2323/023—Organic silicon compound, e.g. organosilicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/05—Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
- C09K2323/053—Organic silicon compound, e.g. organosilicon
Definitions
- the present invention relates to a semiconductor device and an electro-optical device that uses a polycrystalline silicon film disposed over a substrate as an active layer of a thin film transistor.
- a thin film transistor is used as a transistor for controlling an electric current that flows into an organic electro-luminescence element of an organic electro-luminescence device.
- Another example of applications of a thin film transistor is a constituent element of a liquid crystal device that has analog circuits, a typical example of which is an operational amplifier, though not limited thereto, formed on the same single built-in circuit board thereof.
- the saturation characteristics of the thin film transistor are utilized in comparison with the counterpart of a MOS transistor that is formed on a silicon substrate, it is known that the saturation characteristics of a thin film transistor are relatively incomplete. Specifically, the saturation characteristics of the thin film transistor show some phenomena that indicate that a drain current increases when a drain voltage level changes. With reference to FIG. 14 , these phenomena are explained below.
- First Phenomenon As illustrated in FIG. 14 , due to a phenomenon called as “kink effects”, the electric current of a thin film transistor has a tendency to increase at an area where the level of a drain voltage is high. That is, due to the kink effects, the rate of change in the level of a drain current relative to the level of a drain voltage tends to be large thereat. The reason why such a phenomenon occurs is considered as follows. When the level of a drain voltage is raised in the operation of a thin film transistor, a comparatively large electric field concentrates on a drain end once after the level of the drain voltage exceeds a pinch off voltage point.
- an LDD (Lightly Doped Drain) structure which has a lightly doped region opposed to the end portion of a gate electrode in a semiconductor layer, is frequently adopted.
- the LDD structure alone is not sufficient for completely suppressing the kink phenomenon.
- the potential of the channel region of the thin film transistor is determined by a relative relationship among a gate voltage, a drain voltage, and a source voltage thereof. That is, it is considered that the drain voltage has effects not only through the semiconductor layer that is the route of an electric current but also through an insulating material that is positioned at an opposite side with respect to a gate electrode.
- the LDD structure is adopted as a technical solution to the first phenomenon, since the LDD region constantly provides a parasitic resistance, an effectual drain voltage that is applied to the channel region is relatively small. This is another reason for the above.
- Third Phenomenon A range between the region where a source-drain current increases, which is pointed out as the first phenomenon described above, and the pinch off voltage point, which is pointed out as the second phenomenon described above, constitutes the saturation region of a thin film transistor.
- the rate of change in the level of a drain current relative to the level of a drain voltage is not satisfactorily small. Thus, it is difficult to expect constant current operation.
- Configuration A The third problematic phenomenon will be solved if the channel length of the thin film transistor is lengthened.
- the intensity of an electric field in the drain direction is reduced when the channel length is increased, the first problematic phenomenon is also partly solved.
- tile channel length must be made considerably large in order to achieve satisfactory characteristics thereof.
- the gate capacitance increases as the channel length is increased, the high frequency characteristics of the circuit operations thereof are degraded.
- sensitivity for increasing a current by changing a gate voltage is also degraded.
- its scope and field of application is limited because the area occupancy of the thin film transistor increases.
- Configuration B It is known in the related art to form an LDD region at a drain end for the purpose of relaxing the intensity of an electric field at the drain end. It is possible to partly solve the first problematic phenomenon by setting the impurity dope concentration of the LDD region at a sufficiently low level and making the longitudinal dimension thereof sufficiently large. Disadvantageously, however, since the LDD region constantly provides a parasitic resistance, such a configuration considerably limits the ON current of the thin film transistor. As another disadvantage thereof, since the effectual drain voltage becomes smaller, the second phenomenon pointed out above becomes more problematic.
- FIG. 15A As illustrated in FIG. 15A , two thin film transistors are connected in series. With such a serial connection, a certain level of voltage Vbias is applied to the gate of one of these thin film transistors that lies at the drain side.
- FIG. 15B illustrates, under such a configuration, the voltage-current characteristics of the source-side thin film transistor TFTs and those of the drain-side thin film transistor TFTd with a node voltage Vm taken as a parameter.
- the broken lines represent the voltage-current characteristics of the drain-side TFTd when the drain voltage Vd is changed into Vd 1 , Vd 2 , Vd 3 , and Vd 4 , respectively.
- FIG. 15B The intersection of the voltage-current characteristics of the source-side TFTs and those of the drain-side TFTd that is shown in FIG. 15B represents an operating current taken when two of these thin film transistors are connected in series. As illustrated in FIG. 15C , its saturated operations are remarkably enhanced. This is a popular technique used in MOS analog circuits that employ a so-called cascode connection. Disadvantageously, however, if the cascode configuration is adopted, it becomes necessary to provide a separate circuit that can generate Vbias. As still another disadvantage thereof, the input range of Vgate will be limit ed.
- FIG. 16A it is possible to offer advantageous operational effects that are similar to those achieved when the configuration C described above is adopted by connecting two thin film transistors in series and by electrically connecting the gate of one of these two thin film transistors with the gate of the other thereof, thereby integrating Vbias and Vgate into common one.
- FIG. 16B illustrates, under such a configuration, the voltage-current characteristics of the source-side TFTs and those of the drain-side TFTd with a node voltage Vm taken as a parameter.
- the broken lines represent the voltage-current characteristics of the drain-side TFTd when the drain voltage Vd is changed into Vd 1 , Vd 2 , Vd 3 , and Vd 4 , respectively.
- the intersection of the voltage-current characteristics of the source-side TFTs and those of the drain-side TFTd that is shown in FIG. 16B represents an operating current taken when two of these thin film transistors are connected in series. As illustrated in FIG. 16C , its saturated operations are remarkably enhanced. Examples of the above-described configurations are disclosed n, for example, “L. Mariucci et al., AM-LCD '03 pp. 57-60” and “Woo-Jin Nam et al., IDW'04 pp. 307-310”.
- An advantage of some aspects of the invention is to provide a semiconductor device and an electro-optical device that ensures a stable output even when there is a change in a source-drain current in a saturated operation region of a thin film transistor due to kink effects.
- the invention provides, as a first aspect thereof, a semiconductor device including: a substrate; and a thin film transistor that uses a polycrystalline silicon film disposed over the substrate as an active layer thereof, wherein the polycrystalline silicon film is sandwiched between a first gate insulation layer and a second gate insulation layer, the thin film transistor has a first thin film transistor portion and a second thin film transistor portion, the first thin film transistor portion having a first channel region and a first front gate electrode, the first channel region being formed at the drain-side position of the polycrystalline silicon film, the first front gate electrode being opposed to the first channel region with the first gate insulation layer being sandwiched therebetween, the second thin film transistor portion having a second channel region and a second front gate electrode, the second channel region being formed at a source-side position adjacent indirectly to the drain-side first channel region with an impurity implantation region being interposed therebetween in the polycrystalline silicon film, the second front gate electrode being opposed to the second channel region with the first gate insulation layer being
- the drain-side first thin film transistor portion and the source-side second thin film transistor portion which is adjacent to the drain-side first thin film transistor portion, are connected in series.
- the gate electrode of the drain-side first thin film transistor portion and the gate electrode of the source-side second thin film transistor portion are electrically connected to each other.
- the source-side back gate electrode to which a source potential is applied is formed in the source-side second thin film transistor portion, it is possible to make the conductance of the source-side second thin film transistor portion low relative to the conductance of the drain-side first thin film transistor portion without any necessity to set a value calculated as the result of dividing the channel width of the drain-side first thin film transistor portion by the channel length thereof significantly larger than a value calculated as the result of dividing the channel width of the source-side second thin film transistor portion by the channel length thereof. For this reason, it is further possible to prevent the operating point from falling within the linear operation range of the source-side second thin film transistor in a reliable manner. Therefore, as in a case where two thin film transistor portions are cascode connected, it is possible to make the rate of change in the level of a drain current in the saturation region smaller without any necessity to add a bias-generating circuit, thereby remarkably enhancing the saturated operations thereof.
- the source-side back gate electrode should be formed at a region overlapping a part of the second channel region extending from the source end to a halfway point without reaching the drain end thereof.
- the preferred configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the source-side back gate electrode at the drain end of the second channel region.
- a drain-side back gate electrode that is electrically connected to the first front gate electrode should be formed at a region that; is opposed to the first channel region with the second gate insulation layer being sandwiched therebetween. Since such a configuration makes the conductance of the drain-side first thin film transistor portion high relative to the conductance of the source-side second thin film transistor portion, as in a case where two thin film transistor portions are cascode connected, it is possible to make the rate of change in the level of a drain current in the saturation region smaller without any necessity to add a bias-generating circuit, thereby remarkably enhancing the saturated operations thereof.
- the drain-side back gate electrode should be formed at a region overlapping a part of the first channel region extending from the source end to a halfway point without reaching the drain end thereof.
- the preferred configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the drain-side back gate electrode at the drain end of the first channel region.
- the second gate insulation layer, the polycrystalline silicon film, and the first gate insulation layer may be laminated over the substrate in the order of appearance herein.
- the first gate insulation layer, the polycrystalline silicon film, and the second gate insulation layer may be laminated over the substrate in the order of appearance herein.
- the semiconductor device to Which the invention is applied can be used for a display device of a variety of electronic apparatuses such as a mobile phone, a mobile computer, and the like.
- the semiconductor device to which the invention is applied can be used for an electro-optical device such as a print head, where the semiconductor device is an element substrate having a plurality of pixels formed thereon.
- a thin film transistor to which the invention is applied can be used, for example, for driving an organic EL element provided on each pixel, or used as a constituent element of an analog circuit such as an operational amplifier provided on an element substrate of a liquid crystal device as a driving circuit thereof.
- the thin film transistor according to the invention is used for driving an organic EL element, it is possible to reduce a leak current at the time of black display, which results in improved contrast.
- a driving current does not change even when there is a variation in power supply voltage that is attributable to resistance in power supply wiring patterned inside a display panel, it is possible to achieve uniform image display, thereby making it further possible to offer a display device featuring its large capacity and large screen size.
- the thin film transistor according to the invention is used as a constituent element of an analog circuit of an operational amplifier, it is possible to configure an output buffer that offers an excellent linearity with a small offset. Therefore, it is possible to provide a high-definition liquid display device.
- an offset causes the flickering and/or “burning” of a display image
- the invention provides a technical solution to such problematic phenomena that are otherwise caused by the offset.
- FIG. 1A is a general circuit diagram that schematically illustrates an example of the electric configuration of an organic EL device to which the invention is applied
- FIG. 1B is an equivalent circuit diagram of a thin film transistor for electric current control to which the invention is applied.
- FIG. 2 is a sectional view that schematically illustrates an example of an element substrate that is provided with organic EL elements.
- FIG. 3A is a plan view of a current-controlling thin film transistor according to the first exemplary embodiment of the invention, whereas FIG. 3B is a sectional view thereof.
- FIG. 4 is a set of voltage-current characteristic diagrams that illustrates the advantageous effects of the thin film transistor to which the invention is applied.
- FIG. 5 is an explanatory diagram that illustrates the saturation characteristics of the thin film transistor to which the invention is applied, which are shown in comparison with related art and a reference example.
- FIG. 6 is a set of graphs that illustrates the voltage-current characteristics of the thin film transistor to which the invention is applied and those of a thin film transistor of related art with a gate voltage being changed for each thereof.
- FIG. 7 is a set of sectional views that schematically illustrates an exemplary method for production of the current-controlling thin film transistor according to the first exemplary embodiment of the invention on a step-by-step basis.
- FIG. 8 is a set of sectional views that schematically illustrates the exemplary method for production of the current-controlling thin film transistor according to the first exemplary embodiment of the invention on a step-by-step basis, which are performed after the steps illustrated in FIG. 7 .
- FIG. 9A is a plan view of a current-controlling thin film transistor according to an improvement example of the first exemplary embodiment of the invention, whereas FIG. 9B is a sectional view thereof.
- FIG. 10A is a plan view of a current-controlling thin film transistor according to the second exemplary embodiment of the invention, whereas FIG. 10B is a sectional view thereof.
- FIG. 11 is a set of sectional views that schematically illustrates an exemplary method for production of the current-controlling thin film transistor according to the second exemplary embodiment of the invention on a step-by-step basis.
- FIG. 12A is a plan view of a current-controlling thin film transistor according to an improvement example of the second exemplary embodiment of the invention, whereas FIG. 12B is a sectional view thereof.
- FIG. 13 is an explanatory diagram of a driving circuit that is formed on an element substrate of a liquid crystal device as another example of semiconductor devices to which the invention is applied.
- FIG. 14 is an explanatory diagram that illustrates the problems of a thin film transistor of related art.
- FIG. 15 is a set of explanatory diagrams that illustrates two cascode-connected thin film transistor portions.
- FIG. 16 is a set of explanatory diagrams that illustrates a thin film transistor having a multi-gate structure.
- FIG. 1A is a general circuit diagram that schematically illustrates an example of the electric configuration of an organic EL device to which the invention is applied
- FIG. 1B is an equivalent circuit diagram of a thin film transistor for electric current control to which the invention is applied
- a light-emitting device (apparatus) 100 that is illustrated in FIG. 1 is configured to drive an organic EL element 40 , which emits light when a driving current flows through the organic EL element 40 , by means of a thin film transistor.
- Such a type of light-emitting device does not require any backlight because the organic EL element 40 emits light in a self-luminous manner. As another example of advantages thereof, it offers less angle-dependent visibility.
- the light-emitting device 100 has a plurality of scanning lines 120 , a plurality of data lines 110 that extend in a direction orthogonal to the extending direction of the scanning lines 120 , a plurality of common power feed lines 130 that extend in parallel with the scanning lines 120 , and pixels 100 a each of which is provided at a position corresponding to the intersection defined by each of the data lines 110 and each of the scanning lines 120 .
- These components are formed on an element substrate 13 of the light-emitting device 100 .
- the pixels 100 a are arrayed in a matrix pattern an image display area.
- a data line driving circuit which is not shown in the drawing, is formed for driving the data line 110 .
- the data line driving circuit is provided with a shift register, a level shifter, a video line, and an analog switch.
- a scanning line driving circuit which is not shown in the drawing, is formed on the element substrate 13 for driving the scanning line 120 .
- the scanning line driving circuit is provided with a shift register and a level shifter.
- Each of the plurality of pixels 100 a has a pixel-switching thin film transistor 20 , a retention volume (i.e., hold capacitor) 30 , a current-controlling thin film transistor 10 , and the organic EL element 40 .
- a scanning signal is supplied to the gate electrode of the pixel-switching thin film transistor 20 through the scanning line 1 - 20 .
- the retention volume 30 holds an image signal that is supplied from the data line 110 via the pixel-switching thin film transistor 20 .
- the image signal that is held by the retention volume 30 is supplied to the gate electrode of the current-controlling thin film transistor 10 .
- the organic EL element 40 is electrically connected to the common power feed line 130 through the current-controlling thin film transistor 10 , a driving current flows from the common power feed line 130 into the organic EL element 40 .
- FIG. 2 is a sectional view that schematically illustrates an example of an element substrate that is provided with organic EL elements.
- the organic EL element 40 has a laminated structure formed in the element substrate 13 .
- the laminated structure of the organic EL element 40 is made up of, as an exemplary configuration thereof, a pixel electrode 44 that functions as an anode, a hole transport layer 46 that injects/transports a hole from the pixel electrode 44 , a light-emitting layer (i.e., organic EL functional layer) 47 that is made of an organic EL material, an electron injection layer 48 that injects/transports an electron, and a cathode 49 , which are laminated in the order of appearance herein.
- a pixel electrode 44 that functions as an anode
- a hole transport layer 46 that injects/transports a hole from the pixel electrode 44
- a light-emitting layer (i.e., organic EL functional layer) 47 that is made of an organic EL material
- the light-emitting device 100 is configured as a bottom-emission type device that outputs light which was emitted by the light-emitting layer 47 from the pixel-electrode ( 44 ) side thereof, the emitted light goes out from the substrate side of the element substrate 13 .
- a transparent substrate 15 such as glass, quartz, resin (plastic sheet/plate, plastic film), or the like, is used as the base substance of the element substrate 13 .
- a preferable example of the transparent substrate 15 is a glass substrate.
- a circuit layer structure 16 is formed under the organic EL element 40 on the element substrate 13 .
- the circuit layer structure 16 includes but not limited to the data lines 110 , the scanning lines 120 , the common power feed lines 130 , the pixel-switching thin film transistors 20 , the retention volumes 30 , the current-controlling thin film transistors 10 , which are explained above while making reference to FIG. 1A .
- FIG. 3A is a plan view of a current-controlling thin film transistor that is used in a light-emitting device according to the present embodiment of the invention.
- FIG. 3B is a sectional view thereof.
- An example illustrated herein has a laminated structure that is made up of a back gate electrode, a lower-layer-side gate insulation layer (a second gate insulation layer), a polycrystalline silicon film, an upper-layer-side gate insulation layer (a first gate insulation layer), and a front gate electrode, which are laminated in the order of appearance herein.
- a short dashed line indicates the polycrystalline silicon film.
- a solid line indicates the front gate electrode.
- An alternate long and short dash line indicates a source-drain electrode.
- a long dashed line indicates the back gate electrode.
- a two-dot chain line indicates each boundary between regions of the polycrystalline silicon film.
- a multi-gate structure i.e., configuration D
- FIGS. 16A , 16 B, and 16 C are adopted when configuring the current-controlling thin film transistor 10 illustrated in FIG. 1A .
- the drain-side thin film transistor (TFTd) and the source-side thin film transistor (TFTs) are connected in series.
- the gate electrode (i.e., front gate) of the drain-side thin film transistor TFTd and the gate electrode (front gate) of the source-side thin film transistor TFTs are electrically connected to each other.
- each of the drain,-side thin film transistor TFTd and the source-side thin film transistor TFTs is provided with a back gate.
- the back gate of the drain-side thin film transistor TFTd which is referred to as the drain-side back gate hereunder, is electrically connected to the front rate thereof.
- a source potential is applied to the back gate of the source-side thin film transistor TFTs, which is referred to as the source-side back gate hereunder.
- a base ground (i.e., underlying) protective film made of a silicon oxide film, a silicon nitride film, or the like, which is not shown in the drawings, is formed on the transparent substrate 15 of the element substrate (semiconductor device) 13 according to the present embodiment of the invention; and then, a drain-side back gate electrode 8 a and a source-side back gate electrode 8 b are formed on the surface of the base ground protective film.
- a lower-layer-side gate insulation layer (a second gate insulation layer) 7 is deposited on the drain-side back gate electrode 8 a and the source-side back gate electrode 8 b.
- An “island-shaped” isolated polycrystalline silicon film 1 a is formed on the lower-layer-side gate insulation layer 7 .
- the polycrystalline silicon film 1 a is a film formed by, as a first step, depositing an amorphous silicon film on the lower-lyer-side gate insulation layer 7 , and then by processing the film into polycrystalline one by means of laser annealing, lamp annealing, or the like.
- An upper-layer-side gate insulation layer (a first gate insulation layer) 2 made of a silicon oxide film, a silicon nitride film, or the like is deposited on the surface of the polycrystalline silicon film 1 a.
- the thin film transistor 10 has a first n-channel thin film transistor portion 10 a that has a first channel region 1 e formed at the drain-side position of the polycrystalline silicon film 1 a and a second n-channel thin film transistor portion 10 b that is formed at the source-side position adjacent to the drain-side first n-channel chin film transistor portion 10 a .
- the second thin film transistor portion 10 b has a second channel region 1 g that is formed at a source-side position opposite to the drain-side first channel region 1 e with a highly doped n-type region 1 f (i.e., impurity implantation region) being interposed therebetween in the polycrystalline silicon film 1 a .
- the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are connected in series so as to form the n-channel thin film transistor 10 . It should be noted that the channel length of the first thin film transistor portion 10 a is set to be shorter than the channel length of the second thin film transistor portion 10 b.
- the first thin film transistor portion 10 a has a first front gate electrode 3 a at a position opposed to the first channel region 1 e with the upper-layer-side gate insulation layer 2 being sandwiched therebetween.
- the second thin film transistor portion 10 b has a second front gate electrode 3 b at a position opposed to the second channel region 1 g with the upper-layer-side gate insulation layer 2 being sandwiched therebetween.
- the front gate electrode 3 a and the front gate electrode 3 b are electrically connected to each other at a certain side/peripheral position of the polycrystalline silicon film 1 a.
- the first thin film transistor portion 10 a has an LDD structure however, the first thin film transistor portion 10 a -has a lightly doped n-type region 1 d only at a position that is adjacent to the first channel region 1 e at the drain side thereof. That is, the first thin film transistor portion 10 a has not any lightly doped n-type region at a position that is adjacent to the first channel region 1 e at the source side thereof.
- the second thin film transistor portion 10 b has neither an LDD structure nor a self-aligned structure.
- the second channel region 1 g of the second thin film transistor portion 10 b is formed at a region of the polycrystalline silicon film 1 a that overlaps (i.e., underlies) the central region of the second front gate electrode 3 b only when viewed along the longitudinal direction thereof, meaning that it does not extend beyond the area overlapping the central region thereof.
- the polycrystalline silicon film 1 a has a highly doped n-type region 1 c , the lightly doped n-type region 1 d , the first channel region 1 e , the highly doped n-type region 1 f , the second channel region 1 g , and a highly doped n-type region 1 h , which are formed/arrayed in the order of appearance herein when viewed from the drain side toward the source side thereof.
- the highly doped n-type region 1 c , the lightly doped n-type region 1 d , the first channel region 1 e , and the highly doped n-type region 1 f constitute the first thin film transistor portion 10 a .
- the highly doped n-type region 1 f , the second channel region 1 g , and the highly doped n-type region 1 h constitute the second thin film transistor portion 10 b .
- the highly doped n-type region 1 f functions as a node for the first thin film transistor portion 10 a and the second thin film transistor portion 10 b.
- the lightly doped n-type region 1 d is configured as a region that is formed by implanting lightly doped n-type impurity ion (phosphorus ion) in a dose amount ranging from, for example, approximately 0.1 ⁇ 10 13 /m 2 to approximately 10 ⁇ 10 13 /cm 2 while using each of the first front gate electrode 3 a and the second front gate electrode 3 b as a mask.
- the impurity dope concentration of tightly doped n-type region id ranges from, for example, approximately 0.1 ⁇ 10 18 /cm 3 to approximately 1 ⁇ 10 18 /cm 3 .
- each of the highly doped n-type regions 1 c , 1 f , and 1 h is configured as a region that is formed by implanting highly doped n-type impurity ion (phosphorus ion) in a dose amount ranging from, for example, approximately 0.1 ⁇ 10 15 /cm 2 to approximately 10 ⁇ 10 15 /cm 2 while using resist masks as a mask.
- highly doped n-type impurity ion phosphorus ion
- the impurity dope concentration of each of the highly doped n-type regions 1 c , 1 f , and 1 h ranges from, for example, approximately 0.1 ⁇ 10 20 /cm 3 to approximately 10 ⁇ 10 20 /cm 3 .
- An inter-bedded insulator film 4 is deposited on the first front gate electrode 3 a and the second front gate electrode 3 b .
- a drain electrode 6 a is electrically connected to the highly doped n-type region 1 c via a contact hole 4 a that is formed so as to go through tie inter-bedded insulator film 4 .
- a source gate 6 b is electrically connected to the highly doped n-type region 1 h via a contact hole 4 b that is formed so as to go through the inter-bedded insulator film 4 .
- a relay electrode 3 c is formed on the upper-layer-side gate insulation layer 2 in the same electrode formation process as that applied to the first front gate electrode 3 a and the second front gate electrode 3 b .
- the relay electrode 3 c is electrically connected to the source-side back gate electrode 8 b via a contact hole 2 a that goes through the upper-layer-side gate insulation layer 2 and the lower-layer-side gate insulation layer 7 .
- the inter-bedded insulator film 4 has a contact hole 4 c through which the source electrode 6 b is electrically connected to the relay electrode 3 c . Therefore, the source-side back gate electrode 8 b is electrically connected to the source electrode 6 b via the relay electrode 3 c so as to allow a source voltage/potential to be applied thereto.
- a contact hole 2 b that goes through the upper-layer-side gate insulation layer 2 and the lower-layer-side gate insulation layer 7 is formed at a certain side/peripheral position of the polycrystalline silicon film 1 a .
- the first front gate electrode 3 a and the drain-side back gate electrode 8 a are electrically connected to each other via the contact hole 2 b.
- FIG. 4 is a set of voltage-current characteristic diagrams that illustrates the advantageous effects of the thin film transistor to which the invention is applied. Specifically each of FIGS. 4A , 4 B, and 4 C is a graph that shows the voltage-current characteristics of thin film transistor portions that make up the thin film transistor to which the invention is applied.
- FIG. 5 is an explanatory diagram that illustrates the saturation characteristics of the thin film transistor to which the invention is applied, which are shown in comparison with related art and a reference example.
- FIG. 6 is a set of graphs that illustrates the voltage-current characteristics of the thin film transistor to which the invention is applied and those of a thin film transistor of related art with a gate voltage being changed for each thereof.
- the thin film transistor 10 adopts the configuration D that is explained above while making reference to FIG. 16 .
- the first thin film transistor portion 10 a corresponds to the drain-side thin film transistor TFTd that is illustrated in FIG. 16A .
- the second thin film transistor portion 10 b corresponds to the source-side thin film transistor TFTs that is illustrated in FIG. 16A .
- the highly doped n-type region “ 1 f ” corresponds to the node illustrated in FIG. 16A .
- FIG. 16B illustrates the voltage-current characteristics of the first thin film transistor portion 10 a (TFTd) and those of the second thin film transistor portion 10 b (TFTs) with the node voltage Vm taken as a parameter.
- TFTd the voltage-current characteristics of the first thin film transistor portion 10 a
- TFTs the second thin film transistor portion 10 b
- the broken lines represent the voltage-current characteristics of the drain-side TFTd when the drain voltage Vd is changed into Vd 1 , Vd 2 , Vd 3 , and Vd 4 , respectively.
- the intersection o the voltage-current characteristics of the source-side TFTs and those of the drain-side TFTd that is shown in FIG. 16B represents an operating current taken when two of these thin film transistors are connected in series.
- the operating characteristics of the thin film transistor are schematically illustrated in FIG. 16C . Therefore, the operating point of the thin film transistor 10 , lies in the proximity of the pinch off voltage point of the source-side second thin film transistor portion 10 b . Therefore, it is possible to avoid the kink effects of the second thin film transistor portion 10 b.
- the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are provided with the drain-side back gate electrode 8 a and the source-side back gate electrode 8 b , respectively.
- the back gate electrode 8 a of the drain-side thin film transistor TFTd is electrically connected to the first front gate 3 a thereof.
- a source potential/voltage is applied to the back gate electrode 8 b of the source-side thin film transistor TFTs.
- FIG. 4B is an explanatory diagram that illustrates the saturation characteristics of a thin film transistor of related art. This drawing shows a region where Vds is relatively small.
- FIG. 4C is an explanatory diagram that illustrates the saturation characteristics of a bulk type MOS transistor with a potential/voltage of a silicon substrate (bulk) taken as a source potential/voltage thereof. This drawing shows a region where Vds is relatively small. In each of FIGS.
- the pinch off voltage point Vp is set at a value that is defined on the basis of a threshold voltage Vth.
- the region B illustrated in FIG. 5 shows, as a comparative example of ⁇ , a case where the conductance gm of the source-side second thin film transistor portion 10 b is set relatively low and the conductance gm of the drain-side first thin film transistor portion 10 a is set relatively high by changing a threshold voltage by means of channel doping without forming any back gate electrode.
- the region B shows a result of changing the channel doping concentration thereof from 1.5 ⁇ 10 16 cm 3 to 5.5 ⁇ 10 16 cm 3 .
- the diamond dot C illustrated in FIG. 5 plots a related art example in which no back gate electrode formation nor channel doping is done.
- ⁇ increases as the thickness of the lower-layer-side gate insulation layer 7 increases. While it might seem that the current of the source-side second thin film transistor portion 10 b may be set at a low level, in a practical sense, it is not preferable to set it at an extremely low level because it will cause an increase in power supply voltage and power consumption. Therefore, although it is optimum to set the thickness of the lower-layer-side gate insulation layer 7 to be 225 nm, such conditions may be determined into an optimum value depending on required saturation characteristics.
- the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are connected in series; and in such a configuration, an original/primary gate-electrode voltage of the drain-side first thin film transistor portion 10 a (i.e., a voltage of the front gate electrode of the drain-side first thin film transistor portion 10 a ) is applied to the drain-side back gate thereof.
- an original/primary gate-electrode voltage of the drain-side first thin film transistor portion 10 a i.e., a voltage of the front gate electrode of the drain-side first thin film transistor portion 10 a
- the invention provides a solution to the problem of kink effects.
- the conductance gm of the drain-side first thin film transistor portion 10 a is raised, it is possible to achieve stable saturated operations in a wide drain voltage range and in a wide gate voltage range.
- the source-side back gate electrode 8 b is connected to the source electrode 6 b so as to improve the saturation characteristics of the source-side second thin film transistor portion 10 b at the operating point according to the invention, excellent combined saturation characteristics offered by the serial connection of the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are ensured.
- saturation characteristics depend also on the original nature of a semiconductor film or the like, it is possible to achieve, for example, 0.003 as the value of ⁇ if the invention described herein is adopted.
- Such a value is sufficient for a thin film transistor to be used as a transistor for controlling an electric current (i.e., driving transistor) that flows into an organic electro-luminescence element of an organic electro-luminescence device, or as a constituent element of a liquid crystal device that has analog circuits, a typical example of which is an operational Amplifier, though not limited thereto, formed on the same single built-in circuit board thereof.
- driving transistor an electric current (i.e., driving transistor) that flows into an organic electro-luminescence element of an organic electro-luminescence device, or as a constituent element of a liquid crystal device that has analog circuits, a typical example of which is an operational Amplifier, though not limited thereto, formed on the same single built-in circuit board thereof.
- FIGS. 7 and 8 are sectional views that schematically illustrate an exemplary method for production of the thin film transistor according to the present embodiment of the invention on a step-by-step basis.
- the transparent substrate 15 made of glass or the like is subjected to ultrasonic cleaning or other alternative cleaning treatment.
- a plasma CVD method or other alternative technique is used for the formation of the base ground protective film over the transparent substrate 15 under the substrate temperature conditions ranging from 150 degrees Celsius to 450 degrees Celsius.
- a metal film such as a molybdenum film, an aluminum film, a titanium film, a tungsten film, a tantalum film, or a lamination of these films is formed on the entire surface of the transparent substrate 15 .
- the formed metal film is subjected to patterning by means of a photolithography technique so as to form the drain-side back gate electrode 8 a and the source-side back gate electrode 8 b .
- the drain-side back gate electrode 8 a is formed at a position that overlaps (i.e., underlies) a region within which the first channel region 1 e illustrated in FIG. 3 is formed.
- the source-side back gate electrode 8 b is formed at a position that overlaps (i.e., underlies) a region within which the second channel region 1 g illustrated in FIG. 3 is formed.
- the lower-layer-side gate insulation layer 7 made of a silicon oxide film having a thickness ranging from 75 nm to 600 nm, for example, a thickness of approximately 225 nm is formed on the entire surface by means of a CVD method or the like.
- an amorphous silicon film having a thickness of, for example, 40-50 nm is formed on the entire surface by means of a plasma CVD method or the like under the substrate temperature conditions ranging from 150 degrees Celsius to 450 degrees Celsius.
- the formed silicon film is made into polycrystalline one by means of a laser annealing method, a flash (rapid) heating method, or the like.
- the silicon film is patterned by means of a photolithography technique so as to form the island-shaped, that is, isolated, polycrystalline silicon film 1 a as illustrated in FIG. 7C .
- the upper-layer-side gate insulation layer 2 made of a silicon oxide film having a thickness of, for example, 75 nm is formed on the surface of the polycrystalline silicon film 1 a by means of a CVD method or the like.
- highly doped n-type impurity ion (phosphorus ion) is implanted into the polycrystalline silicon film 1 a in a dose amount ranging from, for example, approximately 0.1 ⁇ 10 15 /cm 2 to approximately 10 ⁇ 10 15 /cm 2 .
- the resist masks 9 a and 9 b are removed.
- the highly doped n-type regions 1 c , 1 f , and 1 h are formed in the polycrystalline silicon film 1 a.
- the contact hole 2 a that goes through the upper-layer-side gate insulation layer 2 and the lower-layer-side gate insulation layer 7 to reach the source-side back gate electrode 8 b is formed.
- the contact hole 2 b that goes through the upper-layer-side gate insulation layer 2 and the lower-layer-side gate insulation layer 7 to reach the drain-side back gate electrode 8 a is also formed concurrently therewith.
- a metal film such as a molybdenum film, an aluminum film, a titanium film, a tungsten film, a tantalum film, or a lamination of these films is formed on the entire surface. Thereafter, the formed metal film is subjected to patterning by means of a photolithography technique so as to form the first front gate electrode 3 a , the second front gate electrode 3 b , and the relay electrode 3 c.
- lightly doped n-type impurity ion (phosphorus ion) is implanted into the polycrystalline silicon film 1 a in a dose amount ranging from, for example, approximately 0.1 ⁇ 10 3 /cm 2 to approximately 10 ⁇ 10 13 /cm 2
- the lightly doped n-type region 1 d is formed in a self-aligned manner with respect to the first front gate electrode 3 a .
- the first channel region 1 e and the second channel region 1 g are formed at regions that are covered by the first front gate electrode 3 a and the second front gate electrode 3 b , respectively.
- the inter-bedded insulator film 4 made of a silicon oxide film is formed by means of a CVD method or the like. Thereafter, the contact hole 4 a that goes through the inter-bedded insulator film 4 to reach the highly doped n-type region 1 c , the contact hole 4 b that goes through the inter-bedded insulator film 4 to reach the highly doped n-type region 1 h , and the contact hole 4 c that goes through the inter-bedded insulator film 4 to reach the relay electrode 3 c are formed.
- a metal film such as a molybdenum film, an aluminum film, a titanium film, a tungsten film, a tantalum film, or a lamination of these films is formed on the entire surface. Thereafter, the formed metal film is subjected to patterning by means of a photolithography technique so as to form the drain electrode 6 a and the source electrode 6 b that are illustrated in FIGS. 3A and 3B .
- the thin film transistor 10 that is constituted by the first thin film transistor portion 10 a and the second thin film transistor portion 10 b can be manufactured as described above.
- the exemplary production method described above may be modified in such a manner that, after impurity implantation, the element substrate 10 is heated so as to activate the implanted impurity.
- hydrogen ion may be implanted into the polycrystalline silicon film 1 a by means of ion shower doping or the like so as to terminate any dangling bond that exists in the polycrystalline silicon film 1 a.
- the drain-side back gate electrode 8 a is formed at a region that overlaps the whole length of the first channel region 1 e .
- the source-side back gate electrode 8 b is formed at a region that overlaps the whole length of the second channel region 1 g .
- the source-side back gate electrode 8 b should be formed at a region that overlaps not the whole length but the partial length of the second channel region 1 g ; more specifically, it is preferable that the source-side back gate electrode 8 b should be formed at a region that overlaps the source end of the second channel region 1 g but not the drain end thereof in such a manner the drain end of the source-side back gate electrode 8 b lies under a “halfway point” that falls short of, that is, does not reach, the drain end of the second channel region 1 g when viewed in a direction going from the source end toward the drain end thereof.
- the source-side back gate electrode 8 b it is preferable to form the source-side back gate electrode 8 b at a region that leaves a non-overlapping distance of d 2 extending from the above-mentioned halfway point that falls short of the drain end of the second channel region 1 g to the drain end thereof.
- the improved configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the source-side back gate electrode 8 b at the drain end of the second channel region 1 g.
- the drain-side back gate electrode 8 a should be formed at a region that overlaps the source end of the first channel region 1 e but not the drain end thereof in such a manner the drain end of the drain-side back gate electrode 8 a lies under a halfway point that falls short of the drain end of the first channel region 1 e when viewed in a direction going from the source end toward the drain end thereof.
- the improved configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the drain-side back gate electrode 8 a at the drain end of the first channel region 1 e.
- both of the drain-side back gate electrode 8 a and the source-side back gate electrode 8 b are formed.
- the source-side back gate electrode 8 b only may be formed.
- FIG. 10A is a plan view of a current-controlling thin film transistor that is used in a light-emitting device according to the present embodiment of the invention.
- FIG. 10B is a sectional view thereof.
- An example illustrated herein has a laminated structure that is made up of a front gate electrode, a lower-layer-side gate insulation layer (a first gate insulation layer), a polycrystalline silicon film, an upper-layer-side gate insulation layer (a second gate insulation layer), and a back gate electrode, which are laminated in the order of appearance herein.
- a short dashed line indicates the polycrystalline silicon film.
- a solid line indicates the front gate electrode.
- An alternate long and snort dash line indicates a source-drain electrode and the back gate electrode.
- a two-dot chain line indicates each boundary between regions of the polycrystalline silicon film. Except for the lamination order of layers, the basic configuration of the present embodiment of the invention is the same as that of the first exemplary embodiment of the invention described above. Accordingly, in the following description, the same reference numerals are consistently used for the same components as those described in the first exemplary embodiment of the invention so as to omit any redundant explanation thereof.
- a multi-gate structure i.e., configuration D
- FIGS. 16A , 16 B, and 16 C are adopted when configuring the current-controlling thin film transistor 10 illustrated in FIG. 1A .
- the drain-side thin film transistor (TFTd) and the source-side thin film transistor (TFTs) are connected in series.
- the gate electrode (i.e., front gate) of the drain-side thin film transistor TFTd and the gate electrode (front gate) of the source-side thin film transistor TFTs are electrically connected to each other.
- each of the drain-side thin film transistor TFTd and the source-side thin film transistor TFTs is provided with a back gate.
- the back gate of the drain-side thin film transistor TFTd which is referred to as the drain-side back gate hereunder, is electrically connected to the front gate thereof.
- a source potential/voltage is applied to the back gate of the source-side thin film transistor TFTs, which is referred to as the source-side back gate hereunder.
- a base ground protective film made of a silicon oxide film, a silicon nitride film, or the like, which is not shown in the drawings, is formed on the transparent substrate 15 of the element substrate (semiconductor device) 13 according to the present embodiment of the invention; and then, the first front gate electrode 3 a and the second front gate electrode 3 b are formed as an integrated single-piece front gate electrode 3 d on the surface of the base ground protective film.
- a lower-layer-side gate insulation layer (a first gate insulation layer) 12 is formed on the first front gate electrode 3 a and the second front gate electrode 3 b.
- the island-shaped isolated polycrystalline silicon film 1 a is formed on the lower-layer-side gate insulation layer 12 .
- the polycrystalline silicon film da is a film formed by, as a first step, depositing an amorphous silicon film on the element substrate 13 , and then by processing the film into polycrystalline one by means of laser annealing, lamp annealing, or the like.
- An upper-layer-side gate insulation layer (a second gate insulation layer) 17 made of a silicon oxide film, a silicon nitride film, or the like is deposited on the surface of the polycrystalline silicon film 1 a.
- the thin film transistor 10 has a first n-channel thin film transistor portion 10 a that has a first channel region 1 e formed at the drain-side position of the polycrystalline silicon film 1 a and a second n-channel thin film transistor portion 10 b that is formed at the source-side position adjacent to the drain-side first n-channel thin film transistor portion 10 a .
- the second thin film transistor portion 10 b has the second channel region 1 g that is formed at a source-side position opposite to the drain-side first channel region 1 e with the highly doped n-type region 1 f (i.e., impurity implantation region) being interposed therebetween in the polycrystalline silicon film 1 a .
- the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are connected in series so as to form the n-channel thin film transistor 10 . It should be noted that the channel length of the first thin film transistor portion 10 a is set to be shorter than the channel length of the second thin film transistor portion 10 b.
- the first thin film transistor portion 10 a has the lightly doped n-type region 1 d at a position that is adjacent to the first channel region 1 e at the drain side thereof.
- the lightly doped n-type region 1 d is formed at a region that overlaps the first front gate electrode 3 a of the front gate electrode 3 d .
- the first thin film transistor portion 10 a has not any lightly doped n-type region at a position that is adjacent to the first channel region 1 e at the source side thereof.
- the second thin film transistor portion 10 b has neither an LDD structure nor a self-aligned structure.
- the second channel region 1 g of the second thin film transistor portion 10 b is formed at a region of the polycrystalline silicon film 1 a that overlaps, that is, underlies, the central region of the second front gate electrode 3 b of the front gate electrode 3 d only when viewed along the longitudinal direction thereof, meaning that it does not extend beyond the area overlapping the central region thereof.
- the polycrystalline silicon film 1 a has the highly doped n-type region 1 c , the lightly doped n-type region 1 d , the first channel region 1 e , the highly doped n-type region 1 f , the second channel region 1 g , and the highly doped n-type region 1 h , which are formed/arrayed in the order of appearance herein when viewed from the drain side toward the source side thereof.
- the highly doped n-type region 1 c , the lightly doped n-type region 1 d , the first channel region 1 e , and the highly doped n-type region 1 f constitute the first thin film transistor portion 10 a .
- the highly doped n-type region 1 f , the second channel region 1 g , and the highly doped n-type region 1 h constitute the second thin film transistor portion 10 b .
- the highly doped n-type region 1 f functions as a node for the first thin film transistor portion 10 a and the second thin film transistor portion 10 b.
- the upper-layer-side gate insulation layer (the second gate insulation layer) 17 is formed on the polycrystalline silicon film 1 a .
- the drain electrode 6 a and the source electrode 6 b are formed on the upper-layer-side gate insulation layer 17 .
- the drain electrode 6 a is electrically connected to the highly doped n-type region 1 c via a contact hole 17 a that is formed so as to go through the upper-layer-side gate insulation layer 17 .
- the source electrode 6 b is electrically connected to the highly doped n-type region 1 h via a contact hole 17 b that is formed so as to go through the upper-layer-side gate insulation layer 17 .
- the drain-side back gate electrode 6 e is formed on the upper-layer-side gate insulation layer 17 at a position opposed to the first channel region 1 e with the upper-layer-side gate insulation layer 17 being sandwiched therebetween.
- the drain-side back gate electrode 6 e is electrically connected to the first front gate electrode 3 a of the front gate electrode 3 d via a contact hole 17 e .
- the contact hole 17 e which goes through the upper-layer-side gate insulation layer 17 and the lower-layer-side gate insulation layer 12 , is formed at a certain side/peripheral position of the polycrystalline silicon film 1 a.
- the source-side back gate electrode 6 f is formed at one end of the source electrode 6 b on the upper-layer-side gate insulation layer 17 at a position opposed to the second channel region 1 g with the upper-layer-side gate insulation layer 17 being sandwiched therebetween. A source potential/voltage is applied to the source-side back gate electrode 6 f.
- the thin film transistor 10 adopts the configuration D that is explained above while making reference to FIG. 16 , which is the same as the first exemplary embodiment of the invention described above.
- the first thin film transistor portion 10 a corresponds to the drain-side thin film transistor TFTd that is illustrated in FIG. 16A .
- the second thin film transistor portion 10 b corresponds to the source-side thin film transistor TFTs that is illustrated in FIG. 16A .
- the operating characteristics of the thin film transistor 10 are schematically illustrated in FIG. 16 c . Therefore, the operating point of the thin film transistor 10 lies in the proximity of the pinch off voltage point of the source-side second thin film transistor portion 10 b . Therefore, it is possible to avoid the kink effects of the second thin film transistor portion 10 b.
- the first thin film transistor portion 10 a and the second thin film transistor portion 10 b are provided with the drain-side back gate electrode 6 e and the source-side back gate electrode 6 f , respectively.
- the back gate electrode 6 e of the drain-side thin firm transistor TFTd is electrically connected to the first front gate 3 a thereof.
- a source potential/voltage is applied to the back gate electrode 6 f of the source-side thin film transistor TFTs.
- the operating point of the thin film transistor 10 at a position where Vm is higher than the pinch off voltage point of the second thin film transistor portion 10 b without any necessity to set a value calculated as the result of dividing the channel width Wa of the first thin film transistor portion 10 a by the channel length La thereof (Wa/La) significantly larger than a value calculated as the result of dividing the channel width Wb of the second thin film transistor portion 10 b by the channel length Lb thereof (Wb/Lb).
- the inclination of the source-drain current Ids relative to the source-drain voltage Vds is small.
- the present embodiment of the invention can achieve the same advantageous effects as those achieved by the first exemplary embodiment of the invention.
- FIG. 11 is a sectional view that schematically illustrates an exemplary method for production of the thin film transistor according to the present embodiment of the invention on a step-by-step basis.
- the transparent substrate 15 made of glass or the like is subjected to ultrasonic cleaning or other alternative cleaning treatment.
- a base ground protective film made of a silicon oxide film is formed on the entire surface of the transparent substrate 15 .
- a plasma CVD method or other alternative technique is used for the formation of the base ground protective film over the transparent substrate 15 under the substrate temperature conditions ranging from 150 degrees Celsius to 450 degrees Celsius.
- a metal film such as a molybdenum film, an aluminum film, a titanium film, a tungsten film, a tantalum film, or a lamination of these films is formed on the entire surface of the transparent substrate 15 .
- the formed metal film is subjected to patterning by means of a photolithography technique so as to form the front gate electrode 3 d , which includes the first front gate electrode 3 a and the second front gate electrode 3 b.
- an amorphous silicon film having a thickness of, for example, 40-50 nm is formed on the entire surface by means of a plasma CVD method or the like under the substrate temperature conditions ranging from 150 degrees Celsius to 450 degrees Celsius.
- the formed silicon film is made into polycrystalline one by means of a laser annealing method, a flash (rapid) heating method, or the like.
- the silicon film is patterned by means of a photolithography technique so as to form the island-shaped, that is, isolated, polycrystalline silicon film 1 a as illustrated in FIG. 11C .
- the upper-layer-side gate insulation layer 17 made of a silicon oxide film having a thickness ranging from 75 nm to 600 nm, for examples a thickness of approximately 225 nm is formed on the surface of the polycrystalline silicon film 1 a by means of a CVD method or the like.
- highly doped n-type impurity ion (phosphorus ion) is implanted into the polycrystalline silicon film 1 a , which is followed by implantation of lightly doped n-type impurity ion (phosphorus ion) into the polycrystalline silicon film 1 a .
- the highly doped n-type region 1 c , the lightly doped n-type region 1 d , the highly doped n-type region 1 f , and the highly doped n-type region 1 h are formed in the polycrystalline silicon film 1 a . Remaining regions where no impurity is implanted constitute the first channel region 1 e and the second channel region 1 g.
- the contact holes 17 a and 17 b are formed in the upper-layer-side gate insulation layer 17 .
- the contact holes 17 a and 17 b go through the upper-layer-side gate insulation layer 17 to reach the highly doped n-type regions 1 c and 1 h , respectively.
- the contact hole 17 e that goes through the upper-layer-side gate insulation layer 17 and the lower-layer-side gate insulation layer 12 to reach the first front gate electrode 3 a of the front gate electrode 3 d is formed.
- a metal film such as a molybdenum film, an aluminum film, a titanium film, a tungsten film, a tantalum film, or a lamination of these films is formed on the entire surface.
- the formed metal film is subjected to patterning by means of a photolithography technique so as to form the drain electrode 6 a , the source electrode 6 b , the drain-side back gate electrode 6 e , and the source-side back gate electrode 6 f , which are illustrated in FIGS. 10A and 10B .
- the drain-side back gate electrode 6 e is formed at a region that overlaps (i.e., overlies) the whole length of the first channel region 1 e .
- the source-side back gate electrode 6 f is formed at a region that overlaps the whole length of the second channel region 1 g .
- the source-side back gate electrode 6 f should be formed at a region that overlaps not the whole length but the partial length of the second channel region 1 g ; more specifically, it is preferable that the source-side back gate electrode 6 f should be formed at a region that overlaps the source end of the second channel region 1 g but not the drain end thereof in such a mariner the drain end of the source-side back gate electrode 6 f lies over a “halfway point” that falls short of the drain end of the second channel region 1 g when viewed in a direction going from tile source end toward the drain end thereof.
- the source-side back gate electrode 6 f it is preferable to form the source-side back gate electrode 6 f at a region that leaves a non-overlapping distance of d 2 extending from the above-mentioned halfway point that falls short of the drain end of the second channel region 1 g to he drain end thereof.
- the improved configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the source-side back gate electrode 6 f at the drain end of the second channel region 1 g.
- the drain-side back gate electrode 6 e should be formed at a region that overlaps the source end of the first channel region 1 e but not the drain end thereof in such a manner the drain end of the drain-side back gate electrode 6 e lies over a halfway point that falls short of the drain end of the first channel region 1 e when viewed in a direction going from the source end toward the drain end thereof.
- the improved configuration described above makes it possible to eliminate the adverse effects of a vertical electric field exerted from the drain-side back gate electrode 6 e at the drain end of the first channel region 1 e.
- both of the drain-side back gate electrode 6 e and the source-side back gate electrode 6 f are formed.
- the source-side back gate electrode 6 f only may be formed.
- the thin film transistor 10 is configured as an n-type transistor.
- the thin film transistor 10 can be modified into a p-type transistor only by replacing the n-type with the p-type in the configuration and the production method described above.
- the element substrate 13 of the light-emitting device 100 that has the organic EL element 40 is taken as an example of a variety of semiconductor devices.
- the invention is not limitedly applied to such a specific example.
- an analog circuit such as an operational amplifier illustrated in FIG. 13 is provided on the element substrate (semiconductor device) of a liquid crystal device as a driving circuit thereof. If the thin film transistor 10 to which the invention is applied is adopted as a constituent element of a driving transistor, a current mirror circuit, and an output circuit, it is possible to configure an output buffer that offers an excellent linearity with a small offset.
Landscapes
- Thin Film Transistor (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Ids=A(1+λ·Vds).
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006327889A JP5088661B2 (en) | 2006-12-05 | 2006-12-05 | Semiconductor device and electro-optical device |
JP2006-327889 | 2006-12-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080128705A1 US20080128705A1 (en) | 2008-06-05 |
US7626205B2 true US7626205B2 (en) | 2009-12-01 |
Family
ID=39474671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/949,370 Active 2028-05-27 US7626205B2 (en) | 2006-12-05 | 2007-12-03 | Semiconductor device and electro-optical device |
Country Status (3)
Country | Link |
---|---|
US (1) | US7626205B2 (en) |
JP (1) | JP5088661B2 (en) |
CN (1) | CN101197380B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080121889A1 (en) * | 2006-11-29 | 2008-05-29 | Seiko Epson Corporation | Semiconductor device, method for manufacturing semiconductor device, and electro-optical apparatus |
US20150034945A1 (en) * | 2013-07-31 | 2015-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10325938B2 (en) | 2016-04-01 | 2019-06-18 | Boe Technology Group Co., Ltd. | TFT array substrate, method for manufacturing the same, and display device |
US11764074B2 (en) | 2013-10-10 | 2023-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4725608B2 (en) * | 2008-07-03 | 2011-07-13 | ソニー株式会社 | Comparator, comparator calibration method, solid-state imaging device, and camera system |
US7772620B2 (en) * | 2008-07-25 | 2010-08-10 | Suvolta, Inc. | Junction field effect transistor using a silicon on insulator architecture |
US7786481B2 (en) | 2008-08-26 | 2010-08-31 | Lg Display Co., Ltd. | Organic light emitting diode display and fabricating method thereof |
KR101482162B1 (en) * | 2008-08-26 | 2015-01-15 | 엘지디스플레이 주식회사 | Organic light emitting diode display device and manufacturing method thereof |
KR101799601B1 (en) * | 2008-10-16 | 2017-11-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting display device |
KR101943589B1 (en) * | 2008-11-12 | 2019-01-30 | 삼성디스플레이 주식회사 | Display device |
KR20100060652A (en) * | 2008-11-28 | 2010-06-07 | 주식회사 동부하이텍 | Method for fabricating a semiconductor device |
JP5494115B2 (en) * | 2010-03-29 | 2014-05-14 | ソニー株式会社 | Display device and electronic device |
US9112014B2 (en) | 2010-07-27 | 2015-08-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Transistor with counter-electrode connection amalgamated with the source/drain contact |
GB2492972B (en) * | 2011-07-15 | 2013-09-11 | M Solv Ltd | Method and apparatus for dividing a thin film device into separate cells |
KR101926356B1 (en) * | 2011-12-06 | 2018-12-07 | 삼성전자주식회사 | Semiconductor device having back-bias region |
US20130207102A1 (en) * | 2012-02-15 | 2013-08-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR102035302B1 (en) * | 2013-04-25 | 2019-10-23 | 삼성디스플레이 주식회사 | Apparatus for pixel circuit of organic light emitting display |
KR102548131B1 (en) | 2018-12-18 | 2023-06-27 | 엘지디스플레이 주식회사 | Thin film transistor and display panel |
CN110600488B (en) * | 2019-10-12 | 2025-03-28 | 京东方科技集团股份有限公司 | Oxide thin film transistor and driving method thereof, and display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759283B2 (en) * | 2001-05-16 | 2004-07-06 | Nec Lcd Technologies, Ltd. | Thin film transistor and method of fabricating the same |
US20080002084A1 (en) * | 2006-06-30 | 2008-01-03 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and fabrication method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9000736A (en) * | 1990-03-28 | 1991-10-16 | Imec Inter Uni Micro Electr | CIRCUIT ELEMENT WITH ELIMINATION OF KINK EFFECT. |
JP3370263B2 (en) * | 1997-12-16 | 2003-01-27 | 日本電信電話株式会社 | Insulated gate transistor |
JP3702096B2 (en) * | 1998-06-08 | 2005-10-05 | 三洋電機株式会社 | Thin film transistor and display device |
JP2006237624A (en) * | 1998-06-12 | 2006-09-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device and inverter circuit |
JP3456913B2 (en) * | 1998-12-25 | 2003-10-14 | 株式会社東芝 | Semiconductor device |
JP4552239B2 (en) * | 1999-05-12 | 2010-09-29 | ソニー株式会社 | Thin film semiconductor element for display and display device |
-
2006
- 2006-12-05 JP JP2006327889A patent/JP5088661B2/en active Active
-
2007
- 2007-12-03 US US11/949,370 patent/US7626205B2/en active Active
- 2007-12-05 CN CN2007101964574A patent/CN101197380B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759283B2 (en) * | 2001-05-16 | 2004-07-06 | Nec Lcd Technologies, Ltd. | Thin film transistor and method of fabricating the same |
US20080002084A1 (en) * | 2006-06-30 | 2008-01-03 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and fabrication method thereof |
Non-Patent Citations (2)
Title |
---|
Mariucci et al., "Asymmetric Fingered polysilicon Thin Film Transistors for kink-effect suspension" AM-LCD '03, p. 57-60. |
Nam et al., "Kink-current Reduced Poly-Si TFTs Employing Asymmetric Dual-Gate Design for AMOLED Pixel Elements," IDW '04, p. 307-310. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080121889A1 (en) * | 2006-11-29 | 2008-05-29 | Seiko Epson Corporation | Semiconductor device, method for manufacturing semiconductor device, and electro-optical apparatus |
US7943935B2 (en) * | 2006-11-29 | 2011-05-17 | Seiko Epson Corporation | Semiconductor device, method for manufacturing semiconductor device, and electro-optical apparatus |
US20150034945A1 (en) * | 2013-07-31 | 2015-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9130047B2 (en) * | 2013-07-31 | 2015-09-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US11764074B2 (en) | 2013-10-10 | 2023-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10325938B2 (en) | 2016-04-01 | 2019-06-18 | Boe Technology Group Co., Ltd. | TFT array substrate, method for manufacturing the same, and display device |
Also Published As
Publication number | Publication date |
---|---|
JP2008141091A (en) | 2008-06-19 |
JP5088661B2 (en) | 2012-12-05 |
CN101197380A (en) | 2008-06-11 |
US20080128705A1 (en) | 2008-06-05 |
CN101197380B (en) | 2011-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7626205B2 (en) | Semiconductor device and electro-optical device | |
JP4548408B2 (en) | Manufacturing method of semiconductor device | |
US11696494B2 (en) | Semiconductor device having multiple semiconductor layers | |
CN107731858B (en) | Array substrate, manufacturing method thereof and display panel | |
US6501448B1 (en) | Electroluminescence display device with improved driving transistor structure | |
US8711074B2 (en) | Flat panel display | |
US8149188B2 (en) | EL display device | |
US8652885B2 (en) | Method of fabricating thin film transistor | |
KR100458710B1 (en) | A Crystalline Silicon Thin Film Transistor Panel for OELD and a Fabrication Method Thereof | |
WO2019052265A1 (en) | Thin film transistor and manufacturing method therefor, and electronic apparatus | |
CN110085678A (en) | The production method of display panel and thin film transistor (TFT) | |
JP2009043748A (en) | Semiconductor device and electro-optical device | |
JP2000223279A (en) | Electroluminescent display device | |
JP2004133455A (en) | Flat panel display | |
JP2005064477A (en) | Thin film transistor in which gate and body are electrically connected, method for manufacturing the same, and display device including the same | |
CN100451796C (en) | Thin film transistor structure | |
JP2008135605A (en) | Semiconductor device and electro-optical device | |
JP2015161701A (en) | display | |
KR102043826B1 (en) | Thin Film Transistor Substrate And Method For Manufacturing The Same | |
JP2004288750A (en) | Display device | |
KR20190037568A (en) | Thin film transistor for ultra-high resolution and organic light emitting DISPLAY device including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEIKO EPSON CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISHIGURO, HIDETO;REEL/FRAME:020202/0268 Effective date: 20071129 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: EL TECHNOLOGY FUSION GODO KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEIKO EPSON CORPORATION;REEL/FRAME:047998/0879 Effective date: 20181012 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: ELEMENT CAPITAL COMMERCIAL COMPANY PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EL TECHNOLOGY FUSION GODO KAISHA;REEL/FRAME:059435/0428 Effective date: 20211228 |