US7623190B2 - LCD device having common line extension and gate line recess of equal areas - Google Patents
LCD device having common line extension and gate line recess of equal areas Download PDFInfo
- Publication number
- US7623190B2 US7623190B2 US11/299,658 US29965805A US7623190B2 US 7623190 B2 US7623190 B2 US 7623190B2 US 29965805 A US29965805 A US 29965805A US 7623190 B2 US7623190 B2 US 7623190B2
- Authority
- US
- United States
- Prior art keywords
- lines
- common
- sub
- substrate
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
- G02F1/133757—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134345—Subdivided pixels, e.g. for grey scale or redundancy
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/52—RGB geometrical arrangements
Definitions
- the present invention relates to a liquid crystal display (LCD) device, and more particularly, to an LCD device that prevents picture quality from deteriorated by distortion of a common voltage.
- LCD liquid crystal display
- a twisted nematic (TN) mode LCD device drives a liquid crystal director twisted at an angle of 90° by applying a voltage to electrodes arranged on two substrates.
- the TN mode LCD device provides excellent contrast and color reproduction but suffers from a narrow viewing angle.
- an in-plane switching (IPS) mode LCD device To solve the narrow viewing angle problem of the TN mode LCD device, an in-plane switching (IPS) mode LCD device has been developed.
- IPS mode LCD device two electrodes are formed on one substrate and a liquid crystal director is controlled by the IPS mode generated between the two electrodes.
- the IPS mode LCD device provides a wide viewing angle but suffers from low aperture ratio and transmittance of light.
- a fringe field switching (FFS) mode LCD device To improve the low aperture ratio and transmittance of the IPS mode LCD device, a fringe field switching (FFS) mode LCD device has been developed.
- FFS LCD device a counter electrode and a pixel electrode are formed of transparent conductors, and the distance between the counter electrode and the pixel electrode is maintained at a narrow range to drive liquid crystal molecules using a fringe field formed between the counter electrode and the pixel electrode.
- An FFS mode LCD device of the related art includes a color filter array substrate provided with color filter layers, and a thin film transistor array substrate provided with thin film transistors (TFTs), counter electrodes and pixel electrodes.
- the color filter array substrate and the TFT array substrate are bonded to each other with a liquid crystal layer therebetween.
- the TFT array substrate as shown in FIG. 1 , includes gate lines 12 , data lines 15 , TFTs at each intersection of the gate line 12 and data line 15 , common lines 25 , plate type counter electrodes 24 , and pixel electrodes 17 .
- the gate lines 12 and the data lines 15 are formed of opaque metal.
- the gate lines 12 perpendicularly cross the data lines 15 to define sub-pixels.
- Each of the TFTs switches on/off a voltage at each crossing point between the respective gate and data lines 12 and 15 .
- the counter and pixel electrodes 24 and 17 are formed of transparent metal, insulated from each other by an insulating layer and overlapped with each other in the pixels.
- the counter electrode 24 contacts the common lines 25 to receive common signals (Vcom) from the common lines 25 .
- each counter electrode 24 is formed of plate type transparent metal.
- Each pixel electrode 17 is provided with a plurality of slits 60 symmetrical to one another around a center portion of a pixel region. A fringe field occurs between the counter electrode 24 and the pixel electrode 17 when voltage is applied to the electrodes.
- the signal Vcom is transmitted to the counter electrode 24 and a pixel voltage passing through the TFT is transmitted to the pixel electrode 17 .
- Each of the slits 60 typically has a width of 2 ⁇ m to 6 ⁇ m.
- Liquid crystals are driven by the fringe field formed between the pixel electrode 17 and the counter electrode 24 . That is, the liquid crystals initially aligned by rubbing in a direction when there is no voltage are rotated by the fringe field to transmit light therethrough.
- the color filter array substrate includes red, green, and blue (R/G/B) color filter layers (not shown) arranged at constant intervals to display colors.
- a black matrix layer serves to divide R/G/B cells from one another and shield aberrant light.
- the respective color filter layers are formed to correspond to the sub-pixels so that each of the sub-pixels has one color.
- pixels having R/G/B colors are arranged and independently driven. A color of one pixel is displayed by combination of the R/G/B color of the sub-pixels.
- the R/G/B color filter layers are arranged in various patterns, such as a stripe arrangement, a mosaic arrangement, a delta arrangement, or a quad arrangement.
- the R/G/B color filter layers are arranged depending on the size of an LCD panel, shape of the color filter layer, and color arrangement.
- the stripe arrangement as shown in FIG. 2 and FIG. 3 , has the R/G/B color filter layers arranged sequentially in a horizontal direction and the same color arranged in a vertical direction.
- the related art LCD device as described above is turned on/off per each RIG/B pixels to display black (B) or white (W) to check the picture quality, such as residual images, flicker, and greenish tint.
- the related art LCD device may be driven in a counter pattern—i.e., an Nth turned-on pixel and an N+1th turned-on pixel are horizontally shifted one space per line such that the pixels are turned on in an oblique direction.
- the LCD device may also be driven in a vertical pattern—i.e., an Nth turned-on pixel and an N+1th turned-on pixel are arranged at the same position with each other per line such that the pixels are turned on in a vertical direction.
- a data voltage Vdata is applied to the Nth line, as shown in FIG. 4B , in such a manner that voltages of positive polarity (+) and negative polarity ( ⁇ ) applied using an alternating current (AC) voltage and levels of the data voltage are varied to display black and white.
- a common voltage Vcom 1 applied to the Nth line is a direct current (DC) voltage and the liquid crystal layer is driven by the potential difference between the data voltage Vdata and the common voltage Vcom 1 .
- the related art LCD device has several problems. As shown in FIG. 4B , the data voltage Vdata applied to the Nth line is an AC voltage and the common voltage Vcom applied thereto is a DC voltage. Fluctuation of the common voltage Vcom 1 is amplified at a portion where the data line 12 overlaps the common line 25 due to common line capacitance Cdc formed between the data line 12 and the common line 25 . For this reason, coupling occurs in which the common voltage Vcom 1 becomes distorted common voltage Vcom 2 .
- the distorted common voltage Vcom 2 of the R sub-pixel and the distorted common voltage Vcom 2 of the G sub-pixel are offset by each other.
- the distorted common voltage Vcom 2 of the B sub-pixel remains without offset.
- the total common voltage is increased by the remaining common voltage than the applied common DC voltage.
- the voltage difference V 2 between the voltages Vdata and Vcom 2 applied to the green pixel region is greater than the voltage difference V 1 between the voltages Vdata and Vcom 2 applied to the red and blue pixel regions.
- the result is a greenish tint in the displayed image as the color green appears brighter than the other colors. Green appears brighter because rotation of the liquid crystal molecules increases if the voltage difference becomes larger, thereby making the corresponding color brighter.
- the present invention is directed to an LCD device that substantially obviates one or more problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide an LCD device in which common voltages are offset such that residual image, flicker, and greenish tint are eliminated.
- a liquid crystal display (LCD) device includes a first substrate, gate lines formed on the first substrate, data lines perpendicularly crossing the gate lines to define red, green, and blue (R/G/B) sub-pixels, thin film transistors (TFTs) disposed at each intersection where the gate lines cross the data lines, common lines disposed in parallel with the gate lines, the common lines including a common line capacitance (Cdc) control portion, pixel electrodes insulated from the common lines and connected to the TFTs, a second substrate opposite to the first substrate and bonded to the first substrate, and a liquid crystal layer disposed between the first and second substrates.
- TFTs thin film transistors
- a method of fabricating a liquid crystal display (LCD) device includes forming gate lines on a first substrate, the gate lines including a gate line capacitance (Cdg) control portion, forming common lines on the first substrate in parallel with the gate lines, the common lines including a common line capacitance (Cdc) control portion, forming an insulating layer over the gate lines and the common lines, forming data lines on the insulating layer perpendicularly crossing the gate lines to define red, green, and blue (R/G/B) sub-pixels, forming thin film transistors (TFTs) at each intersection where the gate lines cross the data lines, forming pixel electrodes connected to the TFTs, and attaching a second substrate onto the first substrate with a liquid crystal layer disposed therebetween.
- Cdg gate line capacitance
- Cdc common line capacitance
- FIG. 1 is a plane view illustrating a related art fringe field switching (FFS) mode liquid crystal display (LCD) device;
- FFS fringe field switching
- FIG. 2 is a diagram illustrating a related art LCD device driven in a counter pattern
- FIG. 3 is a diagram illustrating a related art LCD device driven in a vertical pattern
- FIG. 4A is a diagram illustrating a polarity pattern of a data voltage for driving the related art LCD device in the counter pattern
- FIG. 4B is a waveform illustrating of a common voltage and a data voltage in the related art LCD device
- FIG. 5 and FIG. 6 are waveforms illustrating generation of a greenish tint in the related art LCD device
- FIG. 7 is a plane view illustrating an FFS mode LCD device according to a first exemplary embodiment of the present invention.
- FIG. 8 is a plane view illustrating an FFS mode LCD device according to a second exemplary embodiment of the present invention.
- FIG. 7 shows a plane view illustrating a fringe field switching (FFS) mode liquid crystal display (LCD) device according to a first exemplary embodiment of the present invention.
- a thin film transistor (TFT) array substrate of an FFS mode LCD device according to the first exemplary embodiment of the present invention includes gate lines 112 , data lines 115 , TFTs at each intersection of the gate lines 112 and data lines 115 , common lines 125 , plate type counter electrodes 124 , and pixel electrodes 117 .
- the gate lines 112 perpendicularly cross the data lines 115 to define pixels.
- the gate lines 112 are insulated from the data lines 115 by a gate insulating layer (not shown).
- Each of the TFTs is arranged at each crossing point between the respective gate and data lines 112 and 115 .
- each common line 125 is provided with an extension 125 a that serves to control a common line capacitance Cdc (i.e., capacitance generated by the overlap of the data line 115 and the common line 125 ) and is arranged at an overlap portion I with the data line 115 in a G sub-pixel.
- the extension 125 a of the common line 125 is flush with the data line 115 .
- the counter electrodes 124 contact the common lines 125 and are formed inside the respective pixel.
- the pixel electrode 117 is connected to a drain electrode 115 b of the TFT through a contact hole 118 and has a plurality of slits 160 .
- the pixel electrode 117 is insulated from the counter electrode 124 . If voltages are applied to the pixel electrodes 117 and the counter electrodes 124 , a fringe field is formed through the slit 160 between the pixel electrode 117 and the counter electrode 124 so that liquid crystal molecules are driven with maximum efficiency.
- the extension 125 a of the common line 125 is not formed in R and B sub-pixels but formed only in the G sub-pixel so that the common line capacitance Cdc of the G sub-pixel is different from that of the R and B sub-pixels.
- a capacitor is made of upper and lower electrodes with an insulating layer interposed therebetween. Capacitance of a capacitor increases as an area of the upper and lower electrodes increases. The capacitance decreases as the thickness of the insulating layer increases. Therefore, the extension 125 a in the G sub-pixel increases the overlap area of the data line 115 and the common line 125 , thereby increasing the common line capacitance Cdc of the G sub-pixel.
- the common line capacitance Cdc can be expressed as follows:
- the common line capacitance Cdc of the G sub-pixel is increased to vary from the common line capacitance Cdc of the R and B sub-pixels.
- a distorted common voltage of the R and B sub-pixels and a distorted common voltage of the G sub-pixel offset each other so that the effective common voltage applied to the R/G/B sub-pixels are uniform.
- a recess 112 a is formed in an area of the gate line 112 overlapped by the data line 115 that also overlaps the extension 125 a .
- the recess 112 a lowers a gate line capacitance Cdg (i.e., capacitance in an overlap portion between the data line 115 and the gate line 112 ) to offset the increased common line capacitance Cdc by the extension 125 a.
- the gate line capacitance Cdg can be expressed as follows:
- the common line capacitance Cdc of the G sub-pixel is increased to prevent greenish tint from being generated by the G sub-pixel, and the gate line capacitance Cdg of the G sub-pixel is decreased by the same amount as the increased common line capacitance Cdc to prevent delay of the data voltage. If the voltage applied to the gate line 112 is the same as that of the voltage applied to the common line 125 , the common line capacitance Cdc is equal to the gate line capacitance Cdg if the following condition is met:
- the thickness d of the gate insulating layer and its dielectric ratio ⁇ are uniform over the entire substrate (i.e., d and ⁇ are equal on either side of the equation 3).
- the increase of the common line capacitance Cdc in the G sub-pixel is offset by the decrease of the gate line capacitance Cdg.
- FIG. 8 shows a plane view illustrating an FFS mode LCD device according to a second exemplary embodiment of the present invention.
- a TFT array substrate includes gate lines 512 , data lines 515 , TFTs formed at each intersection of the gate lines 512 and data lines 515 , common lines 525 , plate type counter electrodes 524 , and pixel electrodes 517 .
- the gate lines 512 perpendicularly cross the data lines 515 to define pixels.
- the gate lines 512 are insulated from the data lines 515 by gate insulating layers (not shown).
- Each of the TFTs is arranged at each crossing point between the respective gate and data lines 512 and 515 .
- the common line 525 is provided with a recess 525 a that serves to control the common line capacitance Cdc (i.e., capacitance generated by the overlap of the data line 515 and the common line 525 ) and is arranged at an overlap portion II with the data line 515 in R and B sub-pixels.
- the recess 525 a of the common line 525 is flush with the data line 515 .
- the counter electrode 524 contacts the common lines 525 and is formed inside the respective pixel.
- the pixel electrode 517 is connected to a drain electrode 515 b of the TFT through a contact hole 518 and has a plurality of slits 560 .
- the pixel electrode 517 is insulated from the counter electrode 524 . If voltages are applied to the pixel electrode 517 and the counter electrode 524 , a fringe field is formed through the slit 560 between the pixel electrode 517 and the counter electrode 524 so that liquid crystal molecules are driven with maximum efficiency.
- the recess 525 a of the common line 525 is not formed in the G sub-pixel but formed in the R and B sub-pixels so that the common line capacitance Cdc of the G sub-pixel varies from the common line capacitance Cdc of the R and B sub-pixels.
- the recess 525 a in the R and B sub-pixels decreases the overlap area between the common line 525 and the data line 515 , thereby decreasing the common line capacitance Cdc of the R and B sub-pixels.
- the common line capacitance Cdc of the R and B sub-pixels can be expressed as follows:
- the common line capacitance Cdc of the R and B sub-pixels is decreased to vary from that of the G sub-pixel.
- a distorted common voltage of the R and B sub-pixels and a distorted common voltage of the G sub-pixel offset each other so that the effective common voltage applied to the R/G/B sub-pixels are uniform.
- an extension 512 a is formed in an area of the gate line 512 overlapped by the data line 515 that also overlaps the recess 525 .
- the extension 512 a increases the gate line capacitance Cdg (i.e., capacitance in an overlap portion between the data line 515 and the gate line 512 ) to offset the decreased common line capacitance Cdc by the recess 525 a.
- the gate line capacitance Cdg can be expressed as follows:
- the common line capacitance Cdc of the R and B sub-pixels is decreased to prevent generation of a greenish tint in the images by of the G sub-pixel, and the gate line capacitance Cdg of the R and B sub-pixels is increased by the same amount of the decreased common line capacitance Cdc to allow uniform flow the data voltages to the R/G/B sub-pixels. If the voltage applied to the gate line 512 is the same as that of the voltage applied to the common line 525 , the common line capacitance Cdc is equal to the gate line capacitance Cdg if the condition according to equation 3 is met.
- the slits 160 and 560 in the first and second exemplary embodiments are formed symmetrically around a center portion of the pixel so that liquid crystal directors are aligned in different directions, thereby obtaining a multi-domain.
- the TFT formed at each crossing point between the gate lines 112 and 512 and the data lines 115 and 515 to control the switching of the data voltage includes a gate electrode corresponding to a predetermined region of the gate line, a gate insulating layer (not shown) formed on an entire surface including the gate lines 112 and 512 , a semiconductor layer (not shown) formed by sequentially depositing amorphous silicon (a-Si) on the gate insulating layer on the gate electrode and n+a-Si implanted with impurity ions on the amorphous silicon, and source/drain electrodes 115 a / 115 b and 515 a / 515 b forked from the data lines 115 and 515 and formed on the semiconductor layer.
- the TFT array substrate is bonded to
- TN twisted nematic
- OCB optically compensated birefringence
- IPS in-plane switching
- VA vertical alignment
- the common line capacitance Cdc of the G sub-pixel is varied from the common line capacitance Cdc of the R and B sub-pixels by modifying a pattern of the overlap portion between the common line and the data line. Further, a pattern of the overlap portion between the gate line and the data line is modified to compensate for the increase or decrease in the modified common line capacitance Cdc.
- the LCD device has the following advantages.
- the pattern of the overlap portions between the common line and the data line is modified so that the common line capacitance Cdc of the G sub-pixel varies from the common line capacitance Cdc of the R and B sub-pixels, thereby fully offsetting the distorted common voltages in white color. Therefore, the greenish tint is prevented, thereby improving picture quality.
- the pattern of the overlap portion between the gate line and the data line is modified to compensate for the increased or decreased common line capacitance Cdc in each sub-pixel, thereby preventing the data signal in each sub-pixel from being delayed.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Therefore, the common line capacitance Cdc is increased by as much as
in the G sub-pixel by the
Therefore, the gate line capacitance Cdg is decreased by as much as
in the G sub-pixel by the
Therefore, the common line capacitance Cdc is decreased by as much as
in each of the R and B sub-pixels by the
for one pixel.
Therefore, the gate line capacitance Cdg is increased by as much as
in the R and B sub-pixels by the
for one pixel.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/603,359 US7868956B2 (en) | 2005-06-29 | 2009-10-21 | LCD device having gate line extension and common line recess of equal areas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KRP2005-56917 | 2005-06-29 | ||
KR1020050056917A KR101147090B1 (en) | 2005-06-29 | 2005-06-29 | Liquid Crystal Display Device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/603,359 Division US7868956B2 (en) | 2005-06-29 | 2009-10-21 | LCD device having gate line extension and common line recess of equal areas |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070002193A1 US20070002193A1 (en) | 2007-01-04 |
US7623190B2 true US7623190B2 (en) | 2009-11-24 |
Family
ID=37578245
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/299,658 Active 2027-08-07 US7623190B2 (en) | 2005-06-29 | 2005-12-13 | LCD device having common line extension and gate line recess of equal areas |
US12/603,359 Expired - Fee Related US7868956B2 (en) | 2005-06-29 | 2009-10-21 | LCD device having gate line extension and common line recess of equal areas |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/603,359 Expired - Fee Related US7868956B2 (en) | 2005-06-29 | 2009-10-21 | LCD device having gate line extension and common line recess of equal areas |
Country Status (3)
Country | Link |
---|---|
US (2) | US7623190B2 (en) |
KR (1) | KR101147090B1 (en) |
CN (1) | CN100449389C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070296682A1 (en) * | 2006-06-22 | 2007-12-27 | Samsung Electronics Co., Ltd. | Liquid crystal display device and driving method thereof |
US20080143946A1 (en) * | 2006-12-15 | 2008-06-19 | Innolux Display Corp. | Fringe field switching mode liquid crystal display device with high transmittance and wide viewing angle |
US20110037747A1 (en) * | 2009-07-30 | 2011-02-17 | Apple Inc. | Crosstalk reduction in lcd panels |
US8743325B2 (en) | 2010-07-29 | 2014-06-03 | Au Optronics Corp. | Liquid crystal display panel |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262006A (en) * | 2007-04-11 | 2008-10-30 | Nec Lcd Technologies Ltd | Active matrix substrate and liquid crystal panel |
TWI420213B (en) * | 2010-04-28 | 2013-12-21 | Au Optronics Corp | Liquid crystal display panel |
TWI407224B (en) | 2010-07-28 | 2013-09-01 | Au Optronics Corp | Liquid crystal display panel, pixel array substrate and pixel structure thereof |
TWI406075B (en) * | 2010-07-29 | 2013-08-21 | Au Optronics Corp | Liquid cyrstal display panel, pixel array substrate and pixel structure thereof |
CN101916019B (en) * | 2010-08-05 | 2011-11-09 | 友达光电股份有限公司 | Liquid crystal display panel, pixel array substrate and pixel structure thereof |
CN101923261B (en) * | 2010-08-12 | 2012-05-30 | 友达光电股份有限公司 | Liquid crystal display panel |
JP2012078415A (en) * | 2010-09-30 | 2012-04-19 | Hitachi Displays Ltd | Display device |
KR101791579B1 (en) * | 2011-04-08 | 2017-10-31 | 삼성디스플레이 주식회사 | Liquid crystal display |
CN202339463U (en) * | 2011-11-29 | 2012-07-18 | 北京京东方光电科技有限公司 | Pixel structure of thin film transistor liquid crystal display and liquid crystal display |
CN102879961B (en) * | 2012-09-28 | 2015-01-07 | 京东方科技集团股份有限公司 | Display panel and display device |
TWI534682B (en) * | 2015-03-24 | 2016-05-21 | 群創光電股份有限公司 | Display panel |
CN112859453B (en) * | 2015-03-24 | 2024-02-06 | 群创光电股份有限公司 | display panel |
CN107015406B (en) * | 2017-06-09 | 2020-03-13 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display panel |
CN113767323B (en) | 2020-04-01 | 2023-10-20 | 京东方科技集团股份有限公司 | Array substrate and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5943106A (en) * | 1997-02-20 | 1999-08-24 | Fujitsu Limited | Liquid crystal display with branched of auxiliary capacitor pattern and its manufacture method |
US6590550B2 (en) * | 2000-03-02 | 2003-07-08 | Hitachi, Ltd. | Liquid crystal display device having stabilized pixel electrode potentials |
US20040109118A1 (en) * | 2002-12-02 | 2004-06-10 | Kim Dae Hong | Pixel structure of liquid crystal display |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3413000B2 (en) * | 1996-01-25 | 2003-06-03 | 株式会社東芝 | Active matrix liquid crystal panel |
JPH10221704A (en) * | 1997-02-07 | 1998-08-21 | Sharp Corp | Reflection type liquid crystal display device and its manufacture |
TW514762B (en) * | 2000-03-06 | 2002-12-21 | Hitachi Ltd | Liquid crystal display element having controlled storage capacitance |
KR100338012B1 (en) * | 2000-07-27 | 2002-05-24 | 윤종용 | Liquid Crystal Display apparatus using a swing common voltage and driving method therefor the same |
KR100835971B1 (en) * | 2001-12-24 | 2008-06-09 | 엘지디스플레이 주식회사 | Array board for transverse electric field type liquid crystal display device and manufacturing method thereof |
KR100895016B1 (en) * | 2002-10-04 | 2009-04-30 | 엘지디스플레이 주식회사 | Transverse electric field liquid crystal display device and manufacturing method thereof |
KR100741890B1 (en) * | 2003-06-26 | 2007-07-23 | 엘지.필립스 엘시디 주식회사 | Transverse electric field type liquid crystal display device and manufacturing method thereof |
KR101157223B1 (en) * | 2003-10-29 | 2012-06-15 | 엘지디스플레이 주식회사 | In plane switching mode liquid crystal display device and fabrication method threrof |
KR100998640B1 (en) * | 2003-12-23 | 2010-12-06 | 엘지디스플레이 주식회사 | Liquid crystal display device and manufacturing method thereof |
-
2005
- 2005-06-29 KR KR1020050056917A patent/KR101147090B1/en active Active
- 2005-12-13 US US11/299,658 patent/US7623190B2/en active Active
- 2005-12-16 CN CNB2005101321369A patent/CN100449389C/en not_active Expired - Fee Related
-
2009
- 2009-10-21 US US12/603,359 patent/US7868956B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5943106A (en) * | 1997-02-20 | 1999-08-24 | Fujitsu Limited | Liquid crystal display with branched of auxiliary capacitor pattern and its manufacture method |
US6590550B2 (en) * | 2000-03-02 | 2003-07-08 | Hitachi, Ltd. | Liquid crystal display device having stabilized pixel electrode potentials |
US20040109118A1 (en) * | 2002-12-02 | 2004-06-10 | Kim Dae Hong | Pixel structure of liquid crystal display |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070296682A1 (en) * | 2006-06-22 | 2007-12-27 | Samsung Electronics Co., Ltd. | Liquid crystal display device and driving method thereof |
US20080143946A1 (en) * | 2006-12-15 | 2008-06-19 | Innolux Display Corp. | Fringe field switching mode liquid crystal display device with high transmittance and wide viewing angle |
US7855772B2 (en) * | 2006-12-15 | 2010-12-21 | Chimei Innolux Corporation | Fringe field switching mode liquid crystal display device with high transmittance and wide viewing angle |
US20110037747A1 (en) * | 2009-07-30 | 2011-02-17 | Apple Inc. | Crosstalk reduction in lcd panels |
US8614654B2 (en) * | 2009-07-30 | 2013-12-24 | Apple Inc. | Crosstalk reduction in LCD panels |
US8743325B2 (en) | 2010-07-29 | 2014-06-03 | Au Optronics Corp. | Liquid crystal display panel |
Also Published As
Publication number | Publication date |
---|---|
CN1888964A (en) | 2007-01-03 |
US20100039601A1 (en) | 2010-02-18 |
US20070002193A1 (en) | 2007-01-04 |
KR101147090B1 (en) | 2012-05-17 |
US7868956B2 (en) | 2011-01-11 |
KR20070001428A (en) | 2007-01-04 |
CN100449389C (en) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7868956B2 (en) | LCD device having gate line extension and common line recess of equal areas | |
US8848151B2 (en) | Liquid crystal display device | |
US8040481B2 (en) | In-plane switching mode liquid crystal display device having first and second common electrode connection lines and first and second pixel electrode connection linesbeing formed on the same layer | |
US7663583B2 (en) | In-Plane Switching mode liquid crystal display device | |
US7599033B2 (en) | In-plane switching mode liquid crystal display device | |
US7206050B2 (en) | IPS type LCD and method for fabricating the same | |
US8149369B2 (en) | In-plane switching mode LCD device | |
US20090147163A1 (en) | Driving method for an in-plane switching liquid crystal display device | |
US7471367B2 (en) | Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same | |
US7542119B2 (en) | In-plane switching mode liquid crystal display device and method of fabricating the same | |
US7649604B2 (en) | In-plane switching mode liquid crystal display device and method of fabricating thereof | |
CN100399164C (en) | In-plane switching mode liquid crystal display device and manufacturing method thereof | |
KR100430376B1 (en) | Liquid crystal display | |
US20080204646A1 (en) | In-plane switching mode liquid crystal display device | |
US7430032B2 (en) | Multi-domain liquid crystal display device and fabrication method with central and peripheral control electrodes formed on same layer and plurality of field distortion slits formed in pixel electrode | |
KR101244691B1 (en) | In-plane switching mode liquid crystal display device | |
US6906770B2 (en) | Array substrate for in-plane switching liquid crystal display device and method of fabricating the same | |
US7151584B2 (en) | Thin film transistor liquid crystal display device for reducing color shift | |
KR20060037514A (en) | LCD Display | |
JP2006251161A (en) | Liquid crystal display device | |
CN1952767A (en) | Liquid crystal display panel and its active element array substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG.PHILIPS LCD CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, WOO HYUN;KIM, EUI TAE;CHANG, SUNG SOO;REEL/FRAME:017347/0351 Effective date: 20051205 |
|
AS | Assignment |
Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021147/0009 Effective date: 20080319 Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021147/0009 Effective date: 20080319 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |