US7537218B2 - Chuck jaw with adjustable tooth - Google Patents
Chuck jaw with adjustable tooth Download PDFInfo
- Publication number
- US7537218B2 US7537218B2 US11/492,184 US49218406A US7537218B2 US 7537218 B2 US7537218 B2 US 7537218B2 US 49218406 A US49218406 A US 49218406A US 7537218 B2 US7537218 B2 US 7537218B2
- Authority
- US
- United States
- Prior art keywords
- base
- cam
- bearing surface
- tooth
- jaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/10—Chucks characterised by the retaining or gripping devices or their immediate operating means
- B23B31/12—Chucks with simultaneously-acting jaws, whether or not also individually adjustable
- B23B31/16—Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving radially
- B23B31/16004—Jaws movement actuated by one or more spiral grooves
- B23B31/16008—Details of the jaws
- B23B31/1602—Individually adjustable jaws
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/19—Radially reciprocating jaws
- Y10T279/1913—Transverse-screw actuated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/19—Radially reciprocating jaws
- Y10T279/1973—Wedge actuated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/19—Radially reciprocating jaws
- Y10T279/1986—Jaws
Definitions
- the invention relates in general to a jaw for a chuck and more specifically to a chuck jaw having an adjustable tooth.
- the three jaw chuck was designed to align a part being turned to the centerline of a turning device, commonly a lathe.
- the three jaws move simultaneously and in unison to maintain a center line through its clamping range. Its development significantly decreased the set-up time for machining.
- the centerline of one or more of the turned areas is not aligned with the center of the segment of the part that is being held by the chuck. Also, due to machine wear or surface irregularities of the part, the centers do not align. When this happens, the conventional three jaw chuck is not useable and a four jaw chuck is usually employed.
- each of the jaws moves independently.
- the jaws are moved to approximately the dimensions of the part about the centerline, the part is placed in, and each jaw is moved to clamp on the part.
- a dial indicator is placed in contact with the surface of the segment to be worked on and the chuck is rotated by hand to determine the displacement of the centerline of the segment from the centerline of the chuck.
- the jaws are then moved independently to align the centerlines, the part re-clamped, and alignment rechecked with the indicator. This may take several iterations and 30 to 40 minutes.
- the invention is a jaw for the chuck of a turning device such as a lathe and it generally comprises a base, a tooth adjustable relative to the base in the radial direction and a cam for adjusting the tooth.
- the base may be restrained to the chuck and driven in a conventional manner well-known in the art.
- the base has a cam bearing surface.
- the adjustable tooth has a face for engaging a workpiece and a cam bearing surface.
- the base and tooth are attached by spaced opposed tracks disposed in spaced opposed channels such that the face is radially movable relative to the base.
- the movable cam includes a base bearing surface bearing against the cam bearing surface of the base and a tooth bearing surface bearing against the cam bearing surface of the tooth.
- the cam varies in thickness such that movement of the cam changes the radial distance between the cam bearing surface of the base and the cam bearing surface of the tooth, thereby changing the radial distance between the tooth face and the cam bearing surface of the base.
- the cam is a cylinder varying in diameter such that rotation of the cam adjusts the tooth.
- the cam is wedge shaped and one or both of the bearing surfaces of the tooth and base are ramps.
- FIG. 1 is an exploded front, left side, inner end perspective view of a jaw according to the invention.
- FIG. 2 is a partially cut away, front, left side perspective view of a three jaw lathe chuck including the jaw of FIG. 1 .
- FIG. 3 is an exploded front elevation view of the jaw of FIG. 1 .
- FIG. 4 is a left side elevation view of the jaw base; the right side elevation view being a mirror image.
- FIG. 5 is a left side elevation view of the adjustable tooth; the right side elevation view being a mirror image.
- FIG. 6 is a side elevation view of the adjustment cam; the other side elevation views being identical.
- FIG. 7 is an enlarged side elevation view of the exemplary attachment of the tooth to the base.
- FIG. 8 is an exploded inner end, front, left side perspective view of a second embodiment of the jaw according to the invention.
- FIG. 9 is an exploded front elevation view of the jaw of FIG. 8 .
- FIG. 10 is a front, right side, outer end perspective view of the wedge of FIG. 8 .
- FIG. 11 is a left side elevation view of the adjustable tooth; the right side elevation view being a mirror image.
- FIG. 12 is a partial cross sectional view of the jaw with the adjustable tooth in the radially outward position.
- FIG. 13 is a cross sectional view similar to FIG. 12 but with the adjustable tooth in the radially inward position.
- FIG. 1 an exploded front, left side, inward end perspective view of a jaw 10 , such as jaw 10 A with an adjustable tooth 40 , such as tooth 40 A, for holding a tool or workpiece, and in FIG. 2 a partially cut away, front, left side perspective view of a three jaw lathe chuck 80 including jaw 10 A of FIG. 1 .
- the other two jaws are not shown.
- Chuck 80 is of conventional three jaw type for mounting on a machine tool (not shown), such as an engine lathe, for rotation about center line 81 .
- a face plate 82 on the front includes three slots 84 , each for receiving and retaining a jaw 10 such that jaw 10 can move radially in slot 84 .
- Slots 84 are equally spaced and extend radially from the centerline 81 .
- Slots 84 include retaining means, such as opposing ribs 86 for receiving retaining means, such as channels 26 on opposite sides of the base 20 of jaw 10 . Although for illustrative purposes, only one jaw 10 is shown mounted on a slot 84 , the other slots 84 would also contain jaws 10 .
- radial adjustment means such as scroll assembly 90 , adjusts the radial position of al jaws 10 in slots 84 .
- a scroll assembly 90 simultaneously radially adjusts the positions of jaws 10 in slots 84 .
- Scroll assembly 90 includes a scroll plate 91 mounted in chuck 80 so as to be rotatable about center line 81 .
- a scrolled ridge 92 on the front of scroll plate 91 engages radial drive means, such as drive teeth 28 on the back of jaw base 20 for radially moving jaw 10 in slots 84 responsive to rotation of scroll plate 91 .
- a pinion 98 rotatably mounted in chuck 80 engages a circular rack 94 on back of scroll plate 91 for rotating scroll plate 91 responsive to rotation of pinion 98 , such as by an operator using a pinion engaging key (not shown).
- jaw 10 of the invention is applicable to and may be readily adapted to many types of chucks. Therefore, it is to be understood that all matter thereto is to be interpreted as illustrative and not in any limiting sense, and it is intended to cover in the appended claims such modifications as come within the true spirit and scope of the invention.
- FIG. 3 is an exploded front elevation view of the jaw 10 A of FIG. 1 ;
- FIG. 4 is a left side elevation view of jaw base 20 , the right side elevation view being a mirror image;
- FIG. 5 is a left side elevation view of adjustable tooth 40 A, the right side elevation view being a mirror image;
- FIG. 6 is a side elevation view of cylindrical adjustment cam 50 A; the other side elevation views being a identical;
- FIG. 7 is an enlarged side elevation view of the exemplary attachment means, such as track 44 of tooth 40 and channel 34 of base 20 .
- Jaw 10 A generally includes a base 20 A, an adjustable tooth 40 A, such as tooth 40 A, a cam 50 , such as generally cylindrical cam 50 A, and a cam retainer, such as ball 58 .
- Base 20 A of the exemplary embodiment also includes fixed teeth 39 on the outer end, and a cam bearing surface 37 , such as concave bearing surface 37 A.
- Base 20 A and tooth 40 A include cooperative attaching means, such as a pair of channels 34 and a pair of tracks 44 , for attaching adjustable tooth 40 A to base 20 A.
- Adjustable tooth 40 A is generally a C-shaped member in front view having a central orifice 42 and generally includes an inner face 41 for gripping a tool or workpiece, cooperating attachment means, such as spaced, front to back tracks 44 , for attachment to base 20 A, a seat 49 for a cam retainer, such as a bearing, such as ball 58 , and a cam bearing surface 47 , such as concave cam bearing surface 47 A.
- Face 41 may include ridges or grooves for enhancing gripping friction
- tracks 44 and channels 34 include cooperating retaining means for preventing removal of tooth 40 A from base 20 A except when tooth 40 A is in a specific position.
- Each track 44 includes small inner and outer flanges 45 on its back end, for retaining tracks 44 in channels 34 .
- Each channel 34 includes inner and outer cavities 35 , for receiving flanges 45 of tracks such that tracks 44 may move inwardly and outwardly in channels 34 , hence allowing adjustable tooth 40 A to move inwardly and outwardly.
- each flange 45 may protrude 0.010′′ such that tooth 40 A may be adjustable a total of 0.020′′.
- both inner and outer flanges 45 are shown for each channel 34 , a single flange 45 of twice the length could also be used.
- Channels 34 and tracks 44 may be on either base 20 A or tooth 40 A.
- Cylindrical cam 50 A is a slightly eccentric cylinder having an axis 51 of rotation parallel to centerline 81 of chuck 80 .
- Activation means such as hexagonal socket 52 in front end of cylindrical cam 50 A, is used by an operator for rotating cylindrical cam 50 A.
- Circumferential race 56 receives ball 58 .
- Cylindrical cam 50 A includes a surface 53 including diametrically opposed bearing surfaces adapted to bear against bearing surface 37 A of base 20 A and bearing surface 47 A of adjustable tooth 40 A and bearing surface 37 A of base 20 A.
- the diameter of cylindrical cam 50 A varies.
- the inner half of cylindrical cam 50 A has a radius R, such as at 90 degrees, 145 degrees, 180 degrees, 225 degrees and 270 degrees, R 1 -R 5 respectively, while the outer half has a radius R(M) at 315 degrees that is 0.010′′ less than the radius R, a radius R at 0 degrees R 6 , and a radius R(P) at 45 degrees that is 0.010′′ more than radius R.
- cylindrical cam 50 A is faired from R 1 to R(P) counter clockwise as seen in FIG. 3 to smoothly transition from a radius R to R(M) back to R and finally to R(P).
- Bearing surface 47 A of tooth 40 A is adapted for receiving cylindrical cam 50 A.
- there is a sharp transition in cam surface 53 at R(P) such that the cam surface 53 from R 5 to R(P) has radius R.
- bearing surface 47 A of tooth 40 A is preferably concave and has a radius of R(P) or greater. In a standard size lathe, radius R is typically about 0.5′′.
- Bearing surface 37 A of base 20 A is adapted for receiving cylindrical cam 50 A.
- bearing surface 37 A is concave to have a centering effect and has a radius of R(P) or greater.
- the middle of the concave surfaces 37 A, 47 A are on the center line.
- the central arc of tooth bearing surface 47 A has a radius on either side equal to the radius of the surface of cam 50 A seated therein.
- bearing surface 47 A has central arc about the centerline of at least 90 degrees of radius R, and the outer half of cam 50 A has a radius of R.
- the mating surface of cam 50 a will exactly seat in bearing 47 A over its adjusting movement.
- the mating surfaces are the same radius over sixty degrees of arc or more.
- Jaw 10 A is assembled by placing ball 58 in seat 49 on tooth 40 A.
- Cylindrical cam 50 A is then inserted in orifice 42 toward the outer side of orifice 42 with the R 3 -R 6 diameter radially oriented. This places cylindrical cam 50 A in the “neutral position” with a diameter of 2 R on the centerline. Cylindrical cam 50 A is moved inward such that seated ball 58 is in race 56 . Tracks 44 are inserted into channels 34 . From this neutral position in which tooth 40 A may be removed from base 20 A, any rotation of cylindrical cam 50 A moves track flanges 45 either inward or outward into channel cavities 35 such that tooth 40 A cannot be removed from base 20 A.
- Rotation of cylindrical cam 50 A changes the radial distance between cam bearing surface 37 A of base 20 A and cam bearing surface 47 A of tooth 40 A, thereby changing the relative radial distance between tooth face 41 and base 20 A.
- tooth 40 A can be moved radially relative to base 20 A plus and minus 0.010′′ by rotation of cylindrical cam 50 A plus or minus 45 degrees.
- FIGS. 8-13 show a second exemplary embodiment of jaw 10 , such as jaw 10 B, wherein cam 50 is in the form of a wedge cam 50 B.
- FIG. 8 is an exploded inner end, front, left side perspective view of a second embodiment 10 B of jaw 10 according to the invention;
- FIG. 9 is an exploded front elevation view of jaw 10 B of FIG. 8 ;
- FIG. 10 is a front, right side, outer end perspective view of wedge cam 50 B of FIG. 8 ;
- FIG. 11 is a left side elevation view of adjustable tooth 40 B; the right side elevation view being a mirror image;
- FIG. 12 is a partial cross sectional view of jaw 10 B with adjustable tooth 40 B in the radially outward position; and
- FIG. 13 is a cross sectional view similar to FIG. 12 but with adjustable tooth 40 B in the radially inward position.
- Jaw 10 B is similar to jaw 10 A except as noted.
- Jaw 10 B generally includes a base 20 B, an adjustable tooth 40 B, a wedge cam 50 B, and cam adjustment means, such as bolt 60 .
- Bolt 60 includes a shaft 61 having a threaded end and a head 62 .
- Wedge cam 50 B includes an outward bearing surface 54 , an inner bearing surface 55 , a base 57 opposite an apex, and a half bore 59 for receiving bolt shaft 61 .
- Base 20 B includes a bearing surface 37 , such as inward facing bearing surface 37 B for receiving the outward facing bearing surface 54 of wedge cam 50 B.
- a threaded bore 30 , half bore 31 , and counter sink 32 accommodate bolt 60 for attachment to base 20 B.
- Tooth 40 B includes a radially outward cam bearing surface 47 , such as slanted ramp 47 B for receiving the inward facing surface 55 of wedge cam 50 B, central orifice 42 and a stop 48 for wedge cam 50 B.
- Jaw 10 B is assembled by placing wedge cam 50 B in central orifice 42 of tooth 40 B such that inward bearing surface 55 rests on ramp 47 B.
- Wedge cam 50 B and ramp 47 B are adapted, such as by the apex angle of wedge cam 50 B and the angle of ramp 47 B being equal, so that outward bearing surface 54 of wedge cam 50 B is parallel to tooth face 41 and chuck centerline 81 .
- Tooth 40 B is attached to base 20 B by inserting tracks 44 into channels 34 .
- Bolt 60 is screwed partially into bore 30 .
- bearing surfaces 54 , 55 , 37 B, 47 B are adapted, such as by being smooth and lubricated, such that wedge cam 50 B slides freely and any outward pressure on face 41 of tooth 40 B moves wedge cam 50 B forward along ramp 47 B such that tooth 40 B is in the outward position shown in FIG. 12 .
- wedge cam 50 B is held by means, such as stop 48 of tooth 40 B or head 62 of bolt 60 as seen in FIG. 12 .
- Tooth 40 B is moved from the radially outward position of FIG. 12 to the radially inward position of FIG. 13 by further screwing bolt 60 into bore 30 whereby bolt head 62 pushes base 57 of wedge cam 50 B rearward along ramp 47 B such that tooth 40 B is moved radially inward.
- a typical range of motion would be 0.020′′.
- the bearing surface of tooth 40 B includes ramp 47 B and the bearing surface 37 A of base 20 B is horizontal, these surfaces could be reversed or both could be ramped.
- the present invention provides an extremely simple, quick and reliable manner of adjusting the jaws of chuck. It allows a three jaw chuck to be used in many instances where it otherwise could not be used and it shortens the typical adjustment time from 30-45 minutes to 5 minutes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gripping On Spindles (AREA)
Abstract
A jaw for the chuck of a turning device such as a lathe generally comprises a base, a tooth adjustable relative to the base in the radial direction and a cam for adjusting the tooth position. The base may be held on the chuck and driven in a conventional manner. The tooth has a face for engaging a workpiece and is attached to the base such that the face is radially movable relative to the base. The cam includes a surface bearing against the base and a surface bearing against the tooth. The cam varies in thickness such that movement of the cam changes the radial distance between the base and the tooth. In exemplary embodiments, the cam is an eccentric cylinder that rotates to adjust the tooth or is wedge shaped and one or both of the bearing surfaces of the tooth and base are ramps.
Description
The invention relates in general to a jaw for a chuck and more specifically to a chuck jaw having an adjustable tooth.
The three jaw chuck was designed to align a part being turned to the centerline of a turning device, commonly a lathe. The three jaws move simultaneously and in unison to maintain a center line through its clamping range. Its development significantly decreased the set-up time for machining.
Frequently, however, and particularly in repair work, the centerline of one or more of the turned areas is not aligned with the center of the segment of the part that is being held by the chuck. Also, due to machine wear or surface irregularities of the part, the centers do not align. When this happens, the conventional three jaw chuck is not useable and a four jaw chuck is usually employed.
In a four jaw chuck, each of the jaws moves independently. The jaws are moved to approximately the dimensions of the part about the centerline, the part is placed in, and each jaw is moved to clamp on the part. A dial indicator is placed in contact with the surface of the segment to be worked on and the chuck is rotated by hand to determine the displacement of the centerline of the segment from the centerline of the chuck. The jaws are then moved independently to align the centerlines, the part re-clamped, and alignment rechecked with the indicator. This may take several iterations and 30 to 40 minutes.
Therefore, there is a need for a jaw having a tooth that is easily radially adjustable such that any chuck, and particularly three jaw chucks, can be used and with much shorter set-up time.
The invention is a jaw for the chuck of a turning device such as a lathe and it generally comprises a base, a tooth adjustable relative to the base in the radial direction and a cam for adjusting the tooth. The base may be restrained to the chuck and driven in a conventional manner well-known in the art. The base has a cam bearing surface.
The adjustable tooth has a face for engaging a workpiece and a cam bearing surface. The base and tooth are attached by spaced opposed tracks disposed in spaced opposed channels such that the face is radially movable relative to the base. The movable cam includes a base bearing surface bearing against the cam bearing surface of the base and a tooth bearing surface bearing against the cam bearing surface of the tooth. The cam varies in thickness such that movement of the cam changes the radial distance between the cam bearing surface of the base and the cam bearing surface of the tooth, thereby changing the radial distance between the tooth face and the cam bearing surface of the base.
In an exemplary embodiment, the cam is a cylinder varying in diameter such that rotation of the cam adjusts the tooth. In another example, the cam is wedge shaped and one or both of the bearing surfaces of the tooth and base are ramps.
Other features and many attendant advantages of the invention will become more apparent upon a reading of the following detailed description together with the drawings wherein like reference numerals refer to like parts throughout.
With reference now to the drawings, and more particularly to FIGS. 1 and 2 thereof, there is shown in FIG. 1 an exploded front, left side, inward end perspective view of a jaw 10, such as jaw 10A with an adjustable tooth 40, such as tooth 40A, for holding a tool or workpiece, and in FIG. 2 a partially cut away, front, left side perspective view of a three jaw lathe chuck 80 including jaw 10A of FIG. 1 . The other two jaws are not shown.
Chuck 80 is of conventional three jaw type for mounting on a machine tool (not shown), such as an engine lathe, for rotation about center line 81. A face plate 82 on the front includes three slots 84, each for receiving and retaining a jaw 10 such that jaw 10 can move radially in slot 84. Slots 84 are equally spaced and extend radially from the centerline 81. Slots 84 include retaining means, such as opposing ribs 86 for receiving retaining means, such as channels 26 on opposite sides of the base 20 of jaw 10. Although for illustrative purposes, only one jaw 10 is shown mounted on a slot 84, the other slots 84 would also contain jaws 10.
As seen in the cut-away portion of FIG. 2 , radial adjustment means, such as scroll assembly 90, adjusts the radial position of al jaws 10 in slots 84. In the embodiment shown, a scroll assembly 90 simultaneously radially adjusts the positions of jaws 10 in slots 84. Scroll assembly 90 includes a scroll plate 91 mounted in chuck 80 so as to be rotatable about center line 81. A scrolled ridge 92 on the front of scroll plate 91 engages radial drive means, such as drive teeth 28 on the back of jaw base 20 for radially moving jaw 10 in slots 84 responsive to rotation of scroll plate 91. A pinion 98 rotatably mounted in chuck 80 engages a circular rack 94 on back of scroll plate 91 for rotating scroll plate 91 responsive to rotation of pinion 98, such as by an operator using a pinion engaging key (not shown).
Although a conventional chuck is shown and described, it will become apparent that jaw 10 of the invention is applicable to and may be readily adapted to many types of chucks. Therefore, it is to be understood that all matter thereto is to be interpreted as illustrative and not in any limiting sense, and it is intended to cover in the appended claims such modifications as come within the true spirit and scope of the invention.
Returning to FIG. 2 and further including FIGS. 3-7 ; FIG. 3 is an exploded front elevation view of the jaw 10A of FIG. 1 ; FIG. 4 is a left side elevation view of jaw base 20, the right side elevation view being a mirror image; FIG. 5 is a left side elevation view of adjustable tooth 40A, the right side elevation view being a mirror image; FIG. 6 is a side elevation view of cylindrical adjustment cam 50A; the other side elevation views being a identical; and FIG. 7 is an enlarged side elevation view of the exemplary attachment means, such as track 44 of tooth 40 and channel 34 of base 20.
Jaw 10A generally includes a base 20A, an adjustable tooth 40A, such as tooth 40A, a cam 50, such as generally cylindrical cam 50A, and a cam retainer, such as ball 58. Base 20A of the exemplary embodiment also includes fixed teeth 39 on the outer end, and a cam bearing surface 37, such as concave bearing surface 37A. Base 20A and tooth 40A include cooperative attaching means, such as a pair of channels 34 and a pair of tracks 44, for attaching adjustable tooth 40A to base 20A.
Left and right tracks 44 are adapted to slide into left and right channels 34, respectively, of base 20. As best seen in FIG. 7 , tracks 44 and channels 34 include cooperating retaining means for preventing removal of tooth 40A from base 20A except when tooth 40A is in a specific position. Each track 44 includes small inner and outer flanges 45 on its back end, for retaining tracks 44 in channels 34. Each channel 34 includes inner and outer cavities 35, for receiving flanges 45 of tracks such that tracks 44 may move inwardly and outwardly in channels 34, hence allowing adjustable tooth 40A to move inwardly and outwardly. For example, each flange 45 may protrude 0.010″ such that tooth 40A may be adjustable a total of 0.020″. Although both inner and outer flanges 45 are shown for each channel 34, a single flange 45 of twice the length could also be used. Channels 34 and tracks 44 may be on either base 20A or tooth 40A.
As best seen in FIG. 3 , the diameter of cylindrical cam 50A varies. For example, in the exemplary embodiment, the inner half of cylindrical cam 50A has a radius R, such as at 90 degrees, 145 degrees, 180 degrees, 225 degrees and 270 degrees, R1-R5 respectively, while the outer half has a radius R(M) at 315 degrees that is 0.010″ less than the radius R, a radius R at 0 degrees R6, and a radius R(P) at 45 degrees that is 0.010″ more than radius R. Preferably, cylindrical cam 50A is faired from R1 to R(P) counter clockwise as seen in FIG. 3 to smoothly transition from a radius R to R(M) back to R and finally to R(P). Bearing surface 47A of tooth 40A is adapted for receiving cylindrical cam 50A. Preferably, there is a sharp transition in cam surface 53 at R(P) such that the cam surface 53 from R5 to R(P) has radius R. This allows the bearing surface 47A of tooth 40A to be a semicircle of radius R in cross-section which provides a more stable bearing for cam 50A. If cam surface 53 is completely faired, then bearing surface 47A of tooth 40A is preferably concave and has a radius of R(P) or greater. In a standard size lathe, radius R is typically about 0.5″. Bearing surface 37A of base 20A is adapted for receiving cylindrical cam 50A. Preferably, bearing surface 37A is concave to have a centering effect and has a radius of R(P) or greater. The middle of the concave surfaces 37A, 47A are on the center line. Preferably, as shown, the central arc of tooth bearing surface 47A has a radius on either side equal to the radius of the surface of cam 50A seated therein. For example, bearing surface 47A has central arc about the centerline of at least 90 degrees of radius R, and the outer half of cam 50A has a radius of R. Thus, the mating surface of cam 50 a will exactly seat in bearing 47A over its adjusting movement. Preferably, the mating surfaces are the same radius over sixty degrees of arc or more.
Rotation of cylindrical cam 50A changes the radial distance between cam bearing surface 37A of base 20A and cam bearing surface 47A of tooth 40A, thereby changing the relative radial distance between tooth face 41 and base 20A. In the exemplary embodiment described, tooth 40A can be moved radially relative to base 20A plus and minus 0.010″ by rotation of cylindrical cam 50A plus or minus 45 degrees.
Jaw 10B is similar to jaw 10A except as noted. Jaw 10B generally includes a base 20B, an adjustable tooth 40B, a wedge cam 50B, and cam adjustment means, such as bolt 60. Bolt 60 includes a shaft 61 having a threaded end and a head 62. Wedge cam 50B includes an outward bearing surface 54, an inner bearing surface 55, a base 57 opposite an apex, and a half bore 59 for receiving bolt shaft 61. Base 20B includes a bearing surface 37, such as inward facing bearing surface 37B for receiving the outward facing bearing surface 54 of wedge cam 50B. A threaded bore 30, half bore 31, and counter sink 32 accommodate bolt 60 for attachment to base 20B.
Jaw 10B is assembled by placing wedge cam 50B in central orifice 42 of tooth 40B such that inward bearing surface 55 rests on ramp 47B. Wedge cam 50B and ramp 47B are adapted, such as by the apex angle of wedge cam 50B and the angle of ramp 47B being equal, so that outward bearing surface 54 of wedge cam 50B is parallel to tooth face 41 and chuck centerline 81. Tooth 40B is attached to base 20B by inserting tracks 44 into channels 34. Bolt 60 is screwed partially into bore 30. Preferably, bearing surfaces 54, 55, 37B, 47B are adapted, such as by being smooth and lubricated, such that wedge cam 50B slides freely and any outward pressure on face 41 of tooth 40B moves wedge cam 50B forward along ramp 47B such that tooth 40B is in the outward position shown in FIG. 12 . In the radially outward position, wedge cam 50B is held by means, such as stop 48 of tooth 40B or head 62 of bolt 60 as seen in FIG. 12 .
Although in the exemplary embodiment, the bearing surface of tooth 40B includes ramp 47B and the bearing surface 37A of base 20B is horizontal, these surfaces could be reversed or both could be ramped.
Although a displacement capability of 0.020″ is sufficient for the majority of normal requirements, the jaw is not so limited and is easily adaptable by one reasonably skilled in the art to provide larger displacements.
From the foregoing description, it is seen that the present invention provides an extremely simple, quick and reliable manner of adjusting the jaws of chuck. It allows a three jaw chuck to be used in many instances where it otherwise could not be used and it shortens the typical adjustment time from 30-45 minutes to 5 minutes.
The foregoing is a complete description of two exemplary embodiments of a chuck jaw with an adjustable tooth which is constructed in accordance with the principles of this invention. It is likely that changes and modifications will occur to those skilled in the art which are within the inventive concepts disclosed and claimed herein. Therefore, it is to be understood that modifications and substitutions can be made by a person skilled in the art without departing from the spirit and scope of the invention.
Claims (20)
1. A jaw for a chuck of a turning device; the chuck rotating about a centerline; said jaw comprising:
a base having left and right sides and including:
retaining means for retaining said base to said chuck;
radial adjustment means for cooperating with the chuck for adjusting said base radially outwardly from the center line of the chuck; and
a radially facing, cam bearing surface;
a tooth having left and right sides and including:
a face for engaging a workpiece; and
a radially facing, cam bearing surface radially spaced from said cam bearing surface of said base; said base and tooth including cooperating attaching means for attaching said tooth to said base such that said face is radially movable relative to said base; and
a movable cam including:
a radially facing, base bearing surface bearing against said cam bearing surface of said base; and
a radially facing, tooth bearing surface facing away from and radially spaced from said base bearing surface and bearing against said cam bearing surface of said tooth; said cam variable in radial thickness between said base bearing surface and said tooth bearing surface by rotational or sliding movement of said cam between said cam bearing surface of said base and said cam bearing surface of said tooth such that rotation or sliding movement of said cam between said cam bearing surface of said base and said cam bearing surface of said tooth changes the radial spacing between said cam bearing surface of said base and said cam bearing surface of said tooth such that said face moves radially relative to said base.
2. The jaw of claim 1 wherein:
said cooperating attaching means includes spaced opposed tracks disposed in spaced opposed channels.
3. The jaw of claim 2 wherein:
said tracks and channels include:
cooperating retaining means for preventing removal of said tooth from said base except when said tooth is in a specific position radially relative to said base.
4. The jaw of claim 3 wherein said cooperating retaining means includes:
a flange and cavity.
5. The jaw of claim 1 wherein:
radial movement of said face by said cam does not move said face in a direction parallel to the centerline.
6. A jaw for a chuck of a turning device; the chuck rotating about a centerline; said jaw comprising:
a base including:
retaining means for retaining said base to said chuck;
radial adjustment means for cooperating with the chuck for adjusting said base radially outwardly from the center line of the chuck; and
a cam bearing surface;
a tooth including:
a face for engaging a workpiece; and
a cam bearing surface radially spaced from said cam bearing surface of said base; said base and tooth including cooperating attaching means for attaching said tooth to said base such that said face is radially movable relative to said base; and
a rotatable cam including:
a base bearing surface bearing against said cam bearing surface of said base; and
a tooth bearing surface facing away from and radially spaced from said base bearing surface and bearing against said cam bearing surface of said tooth; said cam varying in diameter such that rotation of said cam between said cam bearing surface of said base and said cam bearing surface of said tooth changes the radial spacing between said cam bearing surface of said base and said cam bearing surface of said tooth such that said face moves radially relative to said base.
7. The jaw of claim 6 wherein:
said cam is an eccentric cylinder.
8. The jaw of claim 7 wherein:
said cam bearing surface of said tooth is concavely radiused to receive said cam.
9. The jaw of claim 7 wherein:
said cam bearing surface of said tooth and said tooth bearing surface of said cam are arcs of equal radius.
10. The jaw of claim 7 wherein:
said cam bearing surface of said tooth and said tooth bearing surface of said cam are arcs of equal radius of at least sixty degrees about the center line.
11. The jaw of claim 7 wherein:
said cam bearing surface of said base is concavely radiused to receive said cam.
12. The jaw of claim 6 wherein:
said cooperating attaching means includes;
spaced opposed tracks disposed in spaced opposed channels.
13. The jaw of claim 12 wherein:
said tracks and channels include:
cooperating retaining means for preventing removal of said tooth from said base except when said tooth is in a specific position radially relative to said base.
14. The jaw of claim 13 wherein:
said cooperating retaining means includes:
a flange and cavity.
15. The jaw of claim 6 wherein:
radial movement of said face by said cam does not move said face in a direction parallel to the centerline.
16. A jaw for a chuck of a turning device; the chuck rotating about a centerline; said jaw comprising:
a base including:
retaining means for retaining said base to said chuck;
radial adjustment means for cooperating with the chuck for adjusting said base radially outwardly from the center line of the chuck; and
a radially facing, cam bearing surface;
a tooth including:
a face for engaging a workpiece;
attaching means for attaching said tooth to said base such that said face is radially movable relative to said base; and
a radially facing, cam bearing surface radially spaced from said cam bearing surface of said base; and
a slideable cam including:
a radially facing, base bearing surface bearing against said cam bearing surface of said base; and
a radially facing, tooth bearing surface facing away from and radially spaced from said base bearing surface and bearing against said cam bearing surface of said tooth; said cam variable in radial thickness between said base bearing surface and said tooth bearing surface by sliding movement of said cam between said cam bearing surface of said base and said cam bearing surface of said tooth such that sliding movement of said cam between said cam bearing surface of said base and said cam bearing surface of said tooth changes the radial spacing between said cam bearing surface of said base and said cam bearing surface of said tooth such that said face moves radially relative to said base.
17. The jaw of claim 16 wherein:
said cam bearing surfaces form a wedge.
18. The jaw of claim 16 wherein:
said cam bearing surfaces form a wedge; and
at least one of said cam bearing surfaces of said base or said tooth is a ramp.
19. The jaw of claim 16 wherein:
said cooperating attaching means includes;
spaced opposed tracks disposed in spaced opposed channels including:
cooperating retaining means for preventing removal of said tooth from said base except when said tooth is in a specific position radially relative to said base.
20. The jaw of claim 16 wherein:
radial movement of said face by said cam does not move said face in a direction parallel to the centerline.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/492,184 US7537218B2 (en) | 2006-07-24 | 2006-07-24 | Chuck jaw with adjustable tooth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/492,184 US7537218B2 (en) | 2006-07-24 | 2006-07-24 | Chuck jaw with adjustable tooth |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080018062A1 US20080018062A1 (en) | 2008-01-24 |
US7537218B2 true US7537218B2 (en) | 2009-05-26 |
Family
ID=38970706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/492,184 Expired - Fee Related US7537218B2 (en) | 2006-07-24 | 2006-07-24 | Chuck jaw with adjustable tooth |
Country Status (1)
Country | Link |
---|---|
US (1) | US7537218B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090096177A1 (en) * | 2007-10-16 | 2009-04-16 | Rohm Georg | Method of holding easily deformed workpieces and chuck for carrying out the method |
US20120024087A1 (en) * | 2009-03-31 | 2012-02-02 | Illinois Tool Works Inc. | Grip-mounted specimen holder |
US20160069784A1 (en) * | 2008-03-18 | 2016-03-10 | Illinois Tool Works Inc. | Rotating dovetail connection for materials testing |
WO2016072209A1 (en) * | 2014-11-07 | 2016-05-12 | 村田機械株式会社 | Chuck device, workpiece holding method, and loader device |
US20220072684A1 (en) * | 2018-08-29 | 2022-03-10 | New Revo Brand Group, Llc | Multifaceted vise-jaw cover |
US11933569B1 (en) | 2018-08-29 | 2024-03-19 | New Revo Brand Group, Llc | Adjustable support stand |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006055417B4 (en) | 2006-11-22 | 2010-05-20 | Rattunde & Co. Gmbh | Tool head for a pipe cutting machine |
MX2010011062A (en) * | 2008-04-08 | 2010-11-10 | Afl Telecommunications Llc | EXTREME DEAD OF WEDGE TO SUPPORT OPTICAL GROUND CONNECTION WIRE. |
DE102009053437A1 (en) * | 2009-11-17 | 2011-05-19 | Andreas Weidner | jaw |
US8601706B1 (en) | 2009-12-03 | 2013-12-10 | Jeffry R. Maxwell | Adjustable front stop for a chuck and method of use |
US9472776B2 (en) * | 2011-10-14 | 2016-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing sealed structure including welded glass frits |
CN104359664B (en) * | 2014-11-14 | 2017-01-11 | 沈阳仪表科学研究院有限公司 | Rotating and swinging test device used for clamping sleeve pipeline assembly |
CN107971671A (en) * | 2017-11-24 | 2018-05-01 | 重庆冠亨汽车配件有限公司 | For manufacturing the positioner of shaped form auto parts machinery |
GB2608602B (en) * | 2021-07-05 | 2024-03-27 | Record Power Ltd | Jaw assembly |
CN113953757A (en) * | 2021-12-22 | 2022-01-21 | 倍得福机械科技(常州)股份有限公司 | Pneumatic rear chuck for laser cutting machine |
KR102478391B1 (en) * | 2022-04-22 | 2022-12-16 | (주)유앤아이테크 | Workpiece holding device for CNC lathe and manufacturing method thereof |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US346133A (en) | 1886-07-27 | singer | ||
US2687308A (en) * | 1952-01-05 | 1954-08-24 | Whiton Machine Company | Chuck jaw adjusting device |
US2869884A (en) * | 1957-02-21 | 1959-01-20 | Bedford Gear & Machine Product | Chuck |
US3151871A (en) | 1961-10-19 | 1964-10-06 | Skinner Prec Ind Inc | Chuck |
US3281158A (en) * | 1964-10-12 | 1966-10-25 | American Work Holding Co Inc | Work holding chucks |
US3679221A (en) * | 1970-06-11 | 1972-07-25 | Alvin J Behrens | Chuck jaw insert and assembly |
US4353561A (en) | 1980-08-26 | 1982-10-12 | The United States Of America As Represented By The Unites States Department Of Energy | Self-aligning lathe chuck jaws |
US4569530A (en) * | 1984-06-18 | 1986-02-11 | N. A. Woodworth Company | Chuck jaw and mounting therefor |
JPS6176202A (en) * | 1984-09-19 | 1986-04-18 | Aioi Seiki Kk | Chuck for lathe |
JPS61159306A (en) * | 1984-09-19 | 1986-07-19 | Aioi Seiki Kk | Chuck for horizontal lathe |
US4706973A (en) * | 1986-08-08 | 1987-11-17 | David S. Covarrubias | Chuck and top jaw assemblies |
US4763906A (en) * | 1985-07-17 | 1988-08-16 | Sandvik Tobler S.A. | System for the rapid change of clamping jaws on a machine tool |
US4771933A (en) | 1986-07-04 | 1988-09-20 | Roehm Guenter H | Three-jaw chuck for a lathe |
US4938491A (en) | 1987-04-28 | 1990-07-03 | Sumenko Vladimir I | Four-jaw self-centering chuck |
US4946177A (en) * | 1988-07-21 | 1990-08-07 | Sandvik Tobler S.A. | System for rapidly changing clamping jaws on a machine tool |
US4960285A (en) * | 1988-09-22 | 1990-10-02 | Katsumi Doi | Jaw assembly |
US5015003A (en) * | 1988-08-03 | 1991-05-14 | Kennametal Inc. | Top jaw assembly with replaceable work holding pads |
US5040806A (en) * | 1989-07-28 | 1991-08-20 | Smw Schneider & Weisshaupt Gmbh | Chucking device |
US5199725A (en) * | 1991-01-07 | 1993-04-06 | Jaggers James R | Adjustable top jaw |
US5409242A (en) * | 1992-01-02 | 1995-04-25 | Gonnocci; Ralph J. | Swivel mountings for a power chuck |
US5464232A (en) * | 1994-02-25 | 1995-11-07 | Illinois Tool Works Inc. | Locking tool holder apparatus |
US5522608A (en) | 1994-12-16 | 1996-06-04 | Illinois Tool Works Inc. | Self compensating and geometrically centering chuck |
US5542686A (en) * | 1994-07-15 | 1996-08-06 | Revuelta; Jose O. | Chuck jaw manufacture |
US5735534A (en) * | 1996-11-19 | 1998-04-07 | Edwards; Wayne | Easily replaceable top jaw for a chuck |
US6354606B1 (en) | 2000-05-19 | 2002-03-12 | Xtek, Inc. | Chuck adapter assembly and related method for converting a fixed chuck to a compensating chuck |
US20020038939A1 (en) * | 2000-10-04 | 2002-04-04 | Michael Fitzpatrick | Master and insert jaw system |
US6478311B1 (en) * | 2000-05-22 | 2002-11-12 | Ronald L. Hinson | Expendable jaw system |
US6491305B2 (en) * | 2000-05-16 | 2002-12-10 | Sida Seisakusyo, Co. | Chuck and gripping claws for chuck |
US6568694B1 (en) | 2002-07-12 | 2003-05-27 | Phillip A. White | Adjustable workholding jaw assemblies |
US6679503B2 (en) | 2001-01-11 | 2004-01-20 | Yamazaki Mazak Kabushiki Kaisha | Chuck unit for machine tool |
-
2006
- 2006-07-24 US US11/492,184 patent/US7537218B2/en not_active Expired - Fee Related
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US346133A (en) | 1886-07-27 | singer | ||
US2687308A (en) * | 1952-01-05 | 1954-08-24 | Whiton Machine Company | Chuck jaw adjusting device |
US2869884A (en) * | 1957-02-21 | 1959-01-20 | Bedford Gear & Machine Product | Chuck |
US3151871A (en) | 1961-10-19 | 1964-10-06 | Skinner Prec Ind Inc | Chuck |
US3281158A (en) * | 1964-10-12 | 1966-10-25 | American Work Holding Co Inc | Work holding chucks |
US3679221A (en) * | 1970-06-11 | 1972-07-25 | Alvin J Behrens | Chuck jaw insert and assembly |
US4353561A (en) | 1980-08-26 | 1982-10-12 | The United States Of America As Represented By The Unites States Department Of Energy | Self-aligning lathe chuck jaws |
US4569530A (en) * | 1984-06-18 | 1986-02-11 | N. A. Woodworth Company | Chuck jaw and mounting therefor |
JPS6176202A (en) * | 1984-09-19 | 1986-04-18 | Aioi Seiki Kk | Chuck for lathe |
JPS61159306A (en) * | 1984-09-19 | 1986-07-19 | Aioi Seiki Kk | Chuck for horizontal lathe |
US4763906A (en) * | 1985-07-17 | 1988-08-16 | Sandvik Tobler S.A. | System for the rapid change of clamping jaws on a machine tool |
US4771933A (en) | 1986-07-04 | 1988-09-20 | Roehm Guenter H | Three-jaw chuck for a lathe |
US4706973A (en) * | 1986-08-08 | 1987-11-17 | David S. Covarrubias | Chuck and top jaw assemblies |
US4938491A (en) | 1987-04-28 | 1990-07-03 | Sumenko Vladimir I | Four-jaw self-centering chuck |
US4946177A (en) * | 1988-07-21 | 1990-08-07 | Sandvik Tobler S.A. | System for rapidly changing clamping jaws on a machine tool |
US5015003A (en) * | 1988-08-03 | 1991-05-14 | Kennametal Inc. | Top jaw assembly with replaceable work holding pads |
US4960285A (en) * | 1988-09-22 | 1990-10-02 | Katsumi Doi | Jaw assembly |
US5040806A (en) * | 1989-07-28 | 1991-08-20 | Smw Schneider & Weisshaupt Gmbh | Chucking device |
US5199725A (en) * | 1991-01-07 | 1993-04-06 | Jaggers James R | Adjustable top jaw |
US5409242A (en) * | 1992-01-02 | 1995-04-25 | Gonnocci; Ralph J. | Swivel mountings for a power chuck |
US5464232A (en) * | 1994-02-25 | 1995-11-07 | Illinois Tool Works Inc. | Locking tool holder apparatus |
US5542686A (en) * | 1994-07-15 | 1996-08-06 | Revuelta; Jose O. | Chuck jaw manufacture |
US5522608A (en) | 1994-12-16 | 1996-06-04 | Illinois Tool Works Inc. | Self compensating and geometrically centering chuck |
US5735534A (en) * | 1996-11-19 | 1998-04-07 | Edwards; Wayne | Easily replaceable top jaw for a chuck |
US6491305B2 (en) * | 2000-05-16 | 2002-12-10 | Sida Seisakusyo, Co. | Chuck and gripping claws for chuck |
US6354606B1 (en) | 2000-05-19 | 2002-03-12 | Xtek, Inc. | Chuck adapter assembly and related method for converting a fixed chuck to a compensating chuck |
US6478311B1 (en) * | 2000-05-22 | 2002-11-12 | Ronald L. Hinson | Expendable jaw system |
US20020038939A1 (en) * | 2000-10-04 | 2002-04-04 | Michael Fitzpatrick | Master and insert jaw system |
US6679503B2 (en) | 2001-01-11 | 2004-01-20 | Yamazaki Mazak Kabushiki Kaisha | Chuck unit for machine tool |
US6568694B1 (en) | 2002-07-12 | 2003-05-27 | Phillip A. White | Adjustable workholding jaw assemblies |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090096177A1 (en) * | 2007-10-16 | 2009-04-16 | Rohm Georg | Method of holding easily deformed workpieces and chuck for carrying out the method |
US20160069784A1 (en) * | 2008-03-18 | 2016-03-10 | Illinois Tool Works Inc. | Rotating dovetail connection for materials testing |
US9377385B2 (en) * | 2008-03-18 | 2016-06-28 | Illinois Tool Works Inc. | Rotating dovetail connection for materials testing |
US20120024087A1 (en) * | 2009-03-31 | 2012-02-02 | Illinois Tool Works Inc. | Grip-mounted specimen holder |
US8448522B2 (en) * | 2009-03-31 | 2013-05-28 | Illinois Tool Works Inc. | Grip-mounted specimen holder |
WO2016072209A1 (en) * | 2014-11-07 | 2016-05-12 | 村田機械株式会社 | Chuck device, workpiece holding method, and loader device |
JP2016087758A (en) * | 2014-11-07 | 2016-05-23 | 村田機械株式会社 | Chuck device, holding method and loader device of workpiece |
US20220072684A1 (en) * | 2018-08-29 | 2022-03-10 | New Revo Brand Group, Llc | Multifaceted vise-jaw cover |
US11933569B1 (en) | 2018-08-29 | 2024-03-19 | New Revo Brand Group, Llc | Adjustable support stand |
US12097593B2 (en) * | 2018-08-29 | 2024-09-24 | New Revo Brand Group, Llc | Multifaceted vise-jaw cover |
Also Published As
Publication number | Publication date |
---|---|
US20080018062A1 (en) | 2008-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7537218B2 (en) | Chuck jaw with adjustable tooth | |
US5346344A (en) | Cutting area | |
JP2003211310A (en) | Uniformly fastening chuck assembly | |
US8556551B2 (en) | Cutting tool having a shank-mounted adjustment ring | |
RU2097169C1 (en) | Quick-change tool holder with control mechanism | |
US8578588B2 (en) | System pendulum apparatus and method | |
CN109676414B (en) | Automatic alignment positioning device | |
US6910693B2 (en) | Draw down chuck | |
US9644686B2 (en) | Modular interface arrangement for tools | |
US5243884A (en) | Tool holder device having screw-operated means for connection and disconnection of two engageable members for attachment and removal of cutting tool | |
JP6676599B2 (en) | Tool holder | |
US20030177877A1 (en) | Adjustable live center apparatus | |
US4544309A (en) | Adjustable cutting or boring tool | |
JP2010105121A (en) | Collet holder | |
US9427810B2 (en) | Tool holder | |
KR20120043866A (en) | Index drive unit | |
JP2016001032A (en) | Adjustment screw, operating tool, and cutting tool | |
JPWO2019167927A1 (en) | Chuck | |
EP0461172B1 (en) | Conversion arrangement for optical units for use with cameras | |
JPS5976737A (en) | Holder for tool tip position adjustable cutting tool | |
JPH09264395A (en) | Pressurizing device of ball screw | |
KR200468660Y1 (en) | Index drive device | |
US10625346B2 (en) | Adjustable pipe center and method | |
US9586269B2 (en) | Collet adapter | |
JP2549005Y2 (en) | Cutting tool equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210526 |