US7510199B2 - Off-road vehicle with wheel suspension - Google Patents
Off-road vehicle with wheel suspension Download PDFInfo
- Publication number
- US7510199B2 US7510199B2 US10/796,692 US79669204A US7510199B2 US 7510199 B2 US7510199 B2 US 7510199B2 US 79669204 A US79669204 A US 79669204A US 7510199 B2 US7510199 B2 US 7510199B2
- Authority
- US
- United States
- Prior art keywords
- frame
- suspension arm
- road vehicle
- retainers
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/02—Attaching arms to sprung part of vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/52—Driving a plurality of drive axles, e.g. four-wheel drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/18—Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17
- B62D21/183—Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17 specially adapted for sports vehicles, e.g. race, dune buggies, go-karts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/10—Independent suspensions
- B60G2200/14—Independent suspensions with lateral arms
- B60G2200/144—Independent suspensions with lateral arms with two lateral arms forming a parallelogram
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/14—Mounting of suspension arms
- B60G2204/143—Mounting of suspension arms on the vehicle body or chassis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/40—Auxiliary suspension parts; Adjustment of suspensions
- B60G2204/41—Elastic mounts, e.g. bushings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/04—Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, transversely to the longitudinal centre line of the vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention generally relates to a suspension system for an off-road vehicle.
- Off-road vehicles are designed to be operated over rugged terrain. These vehicles are often operated off-road over terrain such as, for example, steep inclines and declines, rough roads, and areas covered in mud and water.
- Off-road vehicles typically include a frame that is supported by wheels.
- the vehicle has four wheels, i.e., a pair of front wheels and a pair of rear wheels.
- An internal combustion engine is employed to power at least the rear or front wheels, and most commonly, all of the wheels.
- the engine is combined with a transmission to form an engine unit.
- the transmission transfers power to an output shaft from a crankshaft of the engine.
- the output shaft drives the wheels.
- Japanese Patent Utility Model No. JP-Y2-H6-34213 discloses such an arrangement.
- the off-road vehicles also include suspension mechanisms that suspend the front and rear wheels in a manner permitting the wheels to move generally vertically relative to the off-road vehicle frame.
- the frame also typically has brackets that journal axles of the front and rear wheels. Because the frame is formed with tubular members, only limited space is available to fix the brackets to the frame. Moreover, the particular framework to which the brackets are affixed need to ensure sufficient stiffness. As a result, the off-road vehicle's fundamental framework often times needs to be rearranged in order to meet the space and stiffness requirements for prior suspension mechanisms.
- An aspect of the present invention involves an off-road vehicle comprising a frame and at least one wheel.
- a suspension arm includes a plurality of ends and is configured to suspend the wheel from the frame.
- the frame includes at least one horizontal member extending generally horizontally fore to aft.
- a set of retainers is coupled to the horizontal member. The retainers are spaced apart from each other fore to aft. Each retainer is configured to retain one of the ends of the suspension arm in a manner permitting the suspension arm to swing relative to the set of retainers.
- an off-road vehicle comprises a frame and at least one wheel.
- a suspension arm is configured to suspend the wheel from the frame.
- the frame includes a set of vertical members that extend generally vertically. The vertical members are spaced apart from each other fore to aft.
- the suspension arm is coupled to the vertical members in a manner permitting the suspension arm to swing relative to the frame.
- an off-road vehicle comprises a frame and at least one wheel.
- a suspension arm is configured to suspend the wheel from the frame.
- the frame includes a horizontal member extending generally horizontally fore to aft.
- the horizontal member has a vertical surface that extends generally vertically.
- a bracket unit is placed on the vertical surface of the horizontal member. The bracket unit is configured to retain at least a portion of the suspension arm in a manner permitting the suspension arm to swing relative to the frame.
- FIG. 1 is a side elevation view of an off-road vehicle configured in accordance with a preferred embodiment
- FIG. 2 is a top plan view of the off-road vehicle of FIG. 1 ;
- FIG. 3 is a side elevation view of an engine unit of the off-road vehicle
- FIG. 4 is a schematic top plan view of the engine unit
- FIG. 5 is a side elevation view of the engine unit illustrating a linkage of a change speed mechanism, wherein frame members extending adjacent to the engine unit also is partially shown;
- FIG. 6 is a top plan view of the engine unit and the linkage of the change speed mechanism, wherein some of the frame members disposed over the engine unit are also shown;
- FIG. 7 is a perspective view of a portion of a frame of the off-road vehicle including the frame members of FIGS. 5 and 6 ;
- FIG. 8 is a top plan view of the frame, wherein four wheels of the off-road vehicle also are shown;
- FIG. 9 is a partial perspective view of a left-hand side of the frame.
- FIG. 10 is an enlarged partial left side elevational view of the frame in a front area of the off-road vehicle, wherein a portion of a front suspension mechanism also is shown;
- FIG. 11 is a sectional view taken along the line 11 - 11 of FIG. 10 ;
- FIG. 12 is a partial left side elevational view of the frame in a rear area of the off-road vehicle, wherein a portion of a rear suspension mechanism also is shown;
- FIG. 13 is a sectional view taken along the line 13 - 13 of FIG. 12 .
- an overall construction of an off-road vehicle 30 is described.
- Those of skill in the art will appreciate that the present inventions may have utility in a wide range of applications for other vehicles, such as, for example, but without limitation, snow vehicle, tractors, utility vehicles, and the like.
- a preferable construction or structure of an off-road vehicle similar to the off-road vehicle 30 is disclosed in, for example, a co-pending U.S. application Ser. No. 10/791,111filed on Mar. 2, 2004, titled “ENGINE ARRANGEMENT FOR OFF-ROAD VEHICLE,”a co-pending U.S. application Ser. No. 10/791,353 filed on Mar. 2, 2004, titled “DRIVE SYSTEM FOR OFF-ROAD VEHICLE” a co-pending U.S. application Ser. No. 10/790,932 filed on Mar. 2, 2004, titled “AIR INTAKE SYSTEM FOR OFF-ROAD VEHICLE,” a co-pending U.S. application Ser. No. 10/792,463 filed on Mar.
- the off-road vehicle 30 preferably has an open tubular-type frame or body frame 32 .
- the illustrated frame 32 comprises a main frame 34 , a front frame 36 , a rear frame 38 and a compartment frame (or pillar frame) 40 .
- the main frame 34 includes a pair of side frame units 42 spaced apart side by side with each other ( FIG. 2 ).
- Each side frame unit 42 comprises a front member 42 a and a rear member 42 b .
- Each member 42 a , 42 b preferably is rectangular shape in section, but other configurations can be used.
- the front and rear members 42 a , 42 b can have a circular shape in section.
- the members 42 a , 42 b can have an incomplete tubular shape such as, for example, a U or C-shape.
- Each tubular member 42 a , 42 b though preferably has one or more vertical side surface that is generally flat. One of the vertical side surfaces that is located on the outside of the frame is indicated by the reference numeral 352 in FIG. 11 .
- Each tubular member 42 a , 42 b preferably extends generally horizontally fore to aft.
- a rear end of the front member 42 a is bent outwardly and is coupled with a mid portion of the rear member 42 b .
- a forward end of the rear member 42 b is bent inwardly and is coupled with a mid portion of the front member 42 a .
- both of the front and rear members 42 a , 42 b are nested together.
- the side frame units 42 are coupled with each other by a plurality of cross members 44 that extend transversely between the members 42 a , 42 b .
- the cross members 44 are first, second, third and fourth cross members 44 a , 44 b , 44 c , 44 d ( FIG. 2 ).
- the front frame 36 extends generally upward from a front portion of the main frame 34 .
- the rear frame 38 also extends generally upward from a rear portion of the main frame 34 .
- the rear frame 38 preferably includes a pair of rear frame members 46 . Several struts connect the rear frame members 46 to the side members 42 of the main frame 34 and support the rear frame members 46 above the side members 42 .
- the compartment frame 40 is disposed generally between the front and rear frames 36 , 38 in a side view as shown in FIG. 1 .
- the compartment frame 40 includes a pair of compartment members 48 extending generally upward and higher than the front and rear frames 36 , 38 .
- the compartment members 48 are spaced apart from each other on both sides of the off-road vehicle 30 to be placed more outward than the main frame 34 in the illustrated embodiment.
- a floorboard or floor panel 50 extends in an area generally defined by the compartment members 48 in the top plan view ( FIG. 2 ) and is affixed at least to the main frame 34 .
- the floorboard 50 defines a passenger compartment together with the compartment frame 40 .
- the illustrated floorboard 50 generally is a flat panel with a portion that projects upwardly. That is, the floorboard 50 comprises a horizontal section defining a generally flat area and a projection 52 defining a tunnel extending along a longitudinal center plane LC ( FIG. 2 ) of the frame 32 that extends vertically and fore to aft.
- the horizontal section can support feet of a driver and a passenger and also can be used as a step when the driver or the passenger enters or leaves the passenger area of the off-road vehicle 30 .
- the illustrated projection 52 is configured as a trapezoid in section and thus has slanted side surfaces and a top surface. Other configurations also can be used
- the frame 32 is described in greater detail below with reference to FIGS. 7-13 .
- the main, front, rear and compartment frames 34 , 36 , 38 , 40 preferably are welded to each other.
- the illustrated structure and arrangement of the frame 32 , and the combination of the frame 32 and the floorboard 50 are merely one example. Various structures, arrangements and combinations other than those are practicable.
- the respective frames 34 , 36 , 38 , 40 can be provided with struts or reinforcement members which are not described above or will not be described below.
- the off-road vehicle 30 preferably has a pair of front wheels 56 and a pair of rear wheels 58 both supporting the frame 32 .
- Each wheel 56 , 58 preferably has a balloon tire to advantageously proceed over rough roads and in mud and water.
- the balloon tire is relatively wide and air pressure of the tire is relatively low.
- the selected balloon tires are sized as follows: 25 ⁇ 8-12 at the front end and 25 ⁇ 10-12 at the rear end.
- the front and rear wheels 56 , 58 preferably are coupled with the frame 32 through a front suspension mechanism 60 and a rear suspension mechanism 62 , respectively.
- the front suspension mechanism 60 swingably (up and down) and independently suspends both the front wheels 56 .
- the rear suspension mechanism 62 also swingably (up and down) and independently suspends both the rear wheels 58 .
- the illustrated off-road vehicle 30 preferably features four wheel independent suspension.
- the off-road vehicle 30 preferably has a seat unit 66 .
- the illustrated seat unit 66 comprises a pair of seats 68 such that the driver and the passenger can sit side by side.
- the seats 68 are spaced apart from one another to form a space therebetween as shown in FIG. 2 .
- Each seat 68 preferably comprises a seat cushion 72 and a seat back 74 .
- the rear frame 38 at least in part, forms a seat pedestal.
- the seat cushion 72 extends generally horizontally over this seat pedestal and is detachably or removeably affixed to the seat pedestal.
- the seat back 74 extends generally vertically and upward from a rear portion of the seat cushion 72 .
- the seat cushion 72 and the seat back 74 are formed unitarily.
- the seat cushion 72 and the seat back 74 can be separately formed and assembled together.
- front and forward mean the direction in which the driver or passenger looks straight when seated on the seat 68 .
- rear means the direction opposite to the front direction.
- the seat unit 66 can have other number of seats such as, for example, three seats in some alternative arrangements. Also, the seat 68 can be shaped in various configurations. The seat back 74 may be omitted under some circumstances.
- the off-road vehicle 30 preferably has a carrier or cargo box 92 behind the seat unit 66 .
- the illustrated carrier 92 extends over a rear portion of the rear frame 38 and is suitably affixed at least to the rear frame members 46 .
- the carrier 92 can be tipped rearward to allow its contents to be dumped out.
- the carrier 92 preferably is formed generally in the shape of a rectangular parallelepiped and has a bottom, a front, a rear and a pair of lateral sides. That is, the carrier 92 is generally configured as an open-topped box.
- the off-road vehicle 30 preferably comprises a steering mechanism 104 .
- the steering mechanism 104 in the illustrated arrangement includes a steering wheel 106 .
- the steering wheel 106 is affixed to the frame 32 steering movement in front of the seat 68 for the driver, which is located or the left-hand side of the illustrated off-road vehicle 30 .
- the steering mechanism 104 preferably comprises a steering shaft 110 coupled with the steering wheel 106 , a tie-rod 108 coupled with the front wheels 56 , and a rack-and-pinion assembly 112 that connects the steering shaft 110 to the tie-rod 108 .
- the rack-and-pinion assembly 112 converts the pivotal movement of the steering wheel 106 to an axial movement of the tie-rod 108 .
- the rack-and pinion assembly 112 preferably is housed in a gear case. The driver can operate the steering wheel 106 when seated on the seat 68 .
- the tie rods 108 preferably are connected to rod sections that extend outward from the rack and pinion assembly 112 .
- an inner ball joint couples the rod sections to the respective tie rods 108 .
- an outer ball joint preferably couples each tie rod 108 to a knuckle arm (not shown) that is associated with each front wheel 56 .
- Each knuckle arm is coupled with a king pin (not shown) that extends from an axle of the front wheel 56 .
- the tie-rods 108 move axially along with the rod sections when the steering shaft 110 is rotated.
- the vehicle 30 preferably includes four wheel independent suspension.
- the outer ball joints can move around on an imaginary sphere that is defined about the inner ball joint.
- the outer ball joint can move transversely as well as around the surface of the imaginary sphere.
- the knuckle are is only capable of moving along an arc defined by the suspension link connecting the wheel to the frame.
- the knuckle arm rotates about the king pin and causes bump steering unless the curve defined by the suspension link is consistent with the sphere defined about the inner ball joint.
- bump steering causes changes in the toe angle of the front wheels.
- a hood or bonnet 134 surrounds at least a front portion of the main frame 34 , the front frame 36 , the front wheels 56 and a major portion of the steering mechanism 104 .
- a dashboard 136 preferably depends from a rear portion of the hood 134 .
- the dashboard 136 faces toward the passenger compartment and a meter unit preferably is disposed in a central portion of the dashboard 136 .
- the meter unit preferably incorporates meters and/or gauges such as, for example, a speedometer, a fuel level meter and the like. Because of this meter unit arrangement, the driver can easily view the individual meters at a glance.
- the off-road vehicle 30 has a prime mover that powers the off-road vehicle 30 and particularly the front and rear wheels 56 , 58 .
- the prime mover preferably is an internal combustion engine 142 .
- an electric motor can replace the engine 142 .
- Engine power is transferred to the front and rear wheels 56 , 58 through a suitable transmission 144 and a suitable drive mechanism 146 .
- the engine 142 and the transmission 144 are coupled together to form an engine unit 148 .
- the illustrated transmission 144 advantageously includes an endless V-belt transmission mechanism and a change speed mechanism.
- the illustrated drive mechanism 146 comprises a forward driveshaft 150 extending forward from the engine unit 148 , a rear driveshaft 152 extending rearward from the engine unit 148 , a front differential 153 coupled with front axles (not shown) of the front wheels 56 , and a rear differential 154 coupled with rear axles (not shown) of the rear wheels 58 .
- the engine unit 148 preferably is positioned generally lower than the seat unit 66 and generally in the space defined by both of the seats 68 .
- the illustrated engine 142 operates on a four-stroke combustion principle.
- the engine 142 preferably has a single cylinder block 158 ( FIG. 3 ) that extends generally upward and rearward from a lower section of the engine unit 148 . That is, the cylinder block 158 has a cylinder axis CA that inclines from a horizontal plane or a vertical plane with a certain angle.
- the illustrated cylinder axis CA inclines from vertical at approximately 45 degrees.
- the cylinder block 158 defines a cylinder bore therein.
- a piston 159 ( FIG. 4 ) is reciprocally disposed within the cylinder bore.
- a cylinder head 160 closes an upper end of the cylinder bore to define a combustion chamber together with the cylinder bore and the piston 159 .
- the cylinder head 160 also defines a pair of intake ports 162 and a pair of exhaust ports 166 both communicating with the combustion chamber.
- An intake valve is provided at each intake port 162 to selectively open the combustion chamber to an air intake system 164 .
- the air intake system 164 is coupled with the intake ports 162 at a front surface 165 of the cylinder head 160 that generally faces forward and upward.
- the front surface 165 is positioned generally in the space defined between the seats 68 .
- the air intake system 164 introduces air into the combustion chamber through the intake ports 162 when the combustion chamber is opened to the intake system 164 by the intake valves.
- An exhaust valve also is provided at each exhaust port 166 to selectively open the combustion chamber to an exhaust system 168 .
- the exhaust system 168 is coupled with the exhaust ports 166 at a rear surface 169 of the cylinder head 160 that is positioned opposite to the front surface 165 and generally faces rearward and downward.
- the exhaust system 168 routes exhaust gases from the combustion chamber to an outside location when the combustion chamber is opened to the exhaust system 168 .
- a cylinder head cover 170 is attached to the cylinder head 160 to enclose one or more camshafts together with the cylinder head 160 .
- the camshafts are journaled at least on the cylinder head 160 and actuate the intake and exhaust valves at timings that vary generally in proportion to the engine speed.
- a lower portion of the engine unit 148 which is the balance of the engine unit 148 , comprises a crankcase 174 which closes a lower end of the cylinder bore.
- a crankshaft 176 is journaled to extend transversely within the crankcase 174 and is coupled with the piston 159 .
- the crankshaft 176 thus rotates with the reciprocal movement of the piston 159 .
- the crankshaft 176 preferably drives the camshafts via a camshaft drive mechanism.
- the crankcase 174 also houses an input shaft for a shiftable portion of the transmission 144 .
- the input shaft is positioned forward of the crankshaft 176 .
- the lower portion of the engine unit 148 also comprises a V-belt housing 178 which is positioned next to the crankcase 174 in the illustrated arrangement.
- the V-belt housing 178 is defined on the left-hand side of the crankcase 174 .
- the V-belt housing 178 houses the V-belt transmission mechanism (e.g., a continuously variable transmission).
- the lower portion of the engine unit 148 (which comprises at least the crankcase 174 and the V-belt housing 178 ) also defines at least in part, a transmission housing 180 .
- the transmission 144 is described in greater detail below.
- the illustrated air intake system 164 extends forward to a location under the hood 134 from the intake ports 162 of the engine 142 .
- the intake system 164 preferably comprises a throttle body or carburetor 182 , an accumulator or plenum chamber 184 , an air intake duct 186 and an air cleaner unit 188 .
- the throttle body 182 is connected to the intake ports 162 through an air intake conduit 192 .
- the throttle body 182 comprises a throttle valve 194 that regulates or meters a rate of airflow amount delivered to the combustion chamber.
- the throttle valve 194 preferably is a butterfly valve and generally is journaled for pivotal movement. The magnitude of airflow depends on an angular position of the throttle valve 194 ; when the throttle valve 194 is closed or substantially closed, minimal airflow results, while when the throttle valve 194 is fully opened or substantially fully opened, maximum airflow results.
- An accelerator pedal is disposed at a front end of the floorboard 50 for pivotal movement to control the position of the throttle valve 194 .
- a throttle cable connects the accelerator pedal to the throttle valve 194 .
- the driver thus can control the throttle valve 194 by adjusting an angular position of the accelerator pedal by foot. Normally, the greater the throttle valve 194 opens, the higher the rate of airflow amount and the higher the engine speed.
- Other suitable mechanisms and/or electrical connections also can be used to transmit operator demand to the throttle valve or engine.
- the throttle body 182 can be in the form of a carburetor, as a charge former. As such, the throttle body 182 also includes a fuel measurement mechanism that measures an amount of fuel mixed with the air in accordance with the rate of airflow amount. Because of this fuel measurement mechanism, an air/fuel charge that has a desired air/fuel ratio can be provided to the combustion chamber.
- the fuel is delivered to the throttle body 182 from a fuel tank (not shown) preferably disposed on the frame 32 .
- the fuel injection system can include a fuel injector spraying fuel directly into the combustion chamber or into a portion of the air intake system downstream of the throttle valve. Such fuel injection can be conducted in accordance with the rate of airflow amount under control of an electronic control unit (ECU), for example.
- ECU electronice control unit
- the accumulator 184 can be coupled with an inlet of the throttle body 182 .
- the accumulator 184 generally forms a portion of the intake duct 186 in the broad sense of the term but provides a larger volume or cross-sectional area as compared to the balance of the intake duct 186 .
- Such a construction allows air to accumulate prior to delivery to the throttle body 182 .
- the accumulator 184 is generally shaped as an arcuate configuration.
- Such a construction advantageously smoothes the delivery of air to the engine. Furthermore, because the accumulator 184 has a relatively large volume and is disposed next to the throttle body 182 , the intake efficiency of the induction system is greatly improved. That is, sufficient air can be quickly supplied to the engine 142 even when the engine is being operated at a relatively high engine speed.
- the air intake conduit 192 , the throttle body 182 and the accumulator 184 together extend forwardly of the engine within a region defined between the seats 68 .
- Upper portions of the throttle body 182 and the accumulator 184 preferably are positioned slightly higher than the top ends 82 A of the seat cushions 72 .
- a forward-most portion of the accumulator 184 turns downward at or just forward of the forward end of the seat assemblies.
- the throttle body 182 and at least a portion of the accumulator 184 are interposed between the seat assemblies and are positioned within, or just adjacent to, the space 70 .
- the throttle body 182 and the accumulator 184 are positioned within a protective region of the vehicle that is located higher than a lowermost surface of the frame assembly or the floorboard 50 .
- Such positioning reduces the likelihood that dirt and other road debris that may be kicked up underneath the vehicle will damage the throttle body 182 or the accumulator 184 .
- Such placement also facilitates servicing of these components and protects these components from water damage while fording a stream, a mud bog or the like.
- the illustrated accumulator 184 which is positioned within the most downstream portion of the illustrated intake duct 186 , ends above a lowermost surface defined by the rear frame section 38 .
- the balance of the air intake duct 186 which has a smaller volume or cross-sectional area than the accumulator 184 , preferably comprises a downstream section 200 , a middle section 202 and an upstream section 204 , which are provide a contiguous air flow path in the illustrated embodiment.
- the downstream section 200 extends downwardly from the accumulator 184 to a lowermost portion of the rear frame section 38 .
- the middle section 202 extends forwardly in a generally horizontal direction from a lower end of the downstream section 200 .
- the middle section 202 extends through a tunnel defined by the projection 52 of the floorboard 50 . Because of this arrangement, the middle section 202 advantageously is positioned higher than the horizontal section of the floorboard 50 , which greatly reduces the likelihood of damage from rocks, sticks, road debris or the like. Furthermore, the driver and/or the passenger are able to maintain a good riding body position because the horizontal section 51 is positioned generally vertically lower than the middle section 202 . Moreover, the illustrated arrangement contributes to a lower center of gravity for the off-road vehicle 30 because the height of the seats 68 does not need to be increased to accommodate the middle section 202 or another portion of the air induction system.
- the middle section 202 preferably ends at a location close to the front frame section 36 .
- the upstream section 204 extends generally vertically upward from the middle section 202 .
- the upstream section 204 preferably is positioned within a space defined below the hood 134 .
- the forward most portion of the upstream section 204 extends forward and slightly downward along a lower surface of the hood 134 .
- the air cleaner unit 188 preferably is attached at an upstream end of the intake duct 186 and extends generally along the lower surface of the hood 134 .
- the illustrated air cleaner unit 188 has a relatively large volume and has a cleaner element therein.
- the air cleaner unit 188 also has an air inlet port. Ambient air is drawn into the air cleaner unit 188 through the air inlet port and passes through the filtration element such that foreign substances such as, for example, dust, mud or water can be substantially removed from the air that is being introduced into the engine.
- the air which has been cleaned in the cleaner unit 188 , flows to the accumulator 184 through the intake duct 186 .
- the airflow amount is regulated by the throttle valve 194 in the throttle body 182 .
- an amount of fuel is measured by the fuel amount measurement mechanism in the throttle body 182 in response to the air amount.
- An air/fuel charge that has a proper air/fuel ratio is formed and is delivered to the combustion chamber 163 when the intake valves open the intake ports 162 .
- the air/fuel charge is ignited by an ignition system (not shown) and burns within the combustion chamber 163 .
- the burning of the charge causes expansion of the gases and increased pressure that results in movement of the piston.
- the crankshaft 176 is rotated within the crankcase 174 by the movement of the piston.
- the illustrated exhaust system 168 preferably comprises a pair of exhaust conduits 208 and a muffler 210 .
- the exhaust conduits 208 are coupled with the respective exhaust ports 166 and extend generally rearward.
- the exhaust conduits 208 extend parallel to each other.
- the exhaust conduits 208 have a wavy shape that serpentines up and down, as shown in FIGS. 1 and 2 .
- Rearward ends of the exhaust conduits 208 preferably extend beyond a rear end of the rear frame 38 .
- the muffler 210 is coupled with the rear ends of the exhaust conduits 208 .
- the muffler 210 preferably has a cylindrical shape.
- a center axis of the muffler 210 preferably extends generally transversely relative to the longitudinal center plane LC of the frame 32 .
- the muffler 210 has a relatively large volume to reduce exhaust energy and noise.
- An outlet port 212 can be formed at a side surface which is on the left-hand side in the illustrated embodiment. Other arrangement can also be used.
- the exhaust gases flow through the exhaust conduits 208 and are discharged through the outlet port 212 of the muffler 210 .
- the engine 142 can have systems, devices, components and members other than those described above.
- the illustrated engine 142 can employ a cooling system using water as a coolant to cool the engine 142 .
- the change speed mechanism 177 and the V-belt transmission mechanism together have a common output shaft 216 .
- the output shaft 216 extends generally parallel to the crankshaft 176 at a location in front of the crankshaft 176 .
- the output shaft 216 preferably extends through the crankcase 174 and the V-belt housing 178 and is journaled for rotation.
- the crankshaft 176 extends into the V-belt housing 178 and has a drive pulley 218 at an end thereof.
- the output shaft 216 has a driven pulley 220 .
- the drive and driven pulleys 218 , 220 both comprise an axially fixed pulley member and an axially movable pulley member that is axially movable along either axis of the crankshaft 176 or the output shaft 216 .
- the pulley members form a V-shaped valley that expands and contracts with changes in engine speed.
- An endless V-belt 222 which has a V-configuration in section, is wound around the drive pulley 218 and the driven pulley 220 .
- Other types of endless transmitters such as a chain, can also be used.
- the movable pulley member of the drive pulley 218 is urged to stay apart from the fixed pulley member by the bias force of a bias member such as, for example, a spring.
- the movable pulley member of the driven pulley 220 is urged to stay close to the fixed pulley member by the bias force of a bias member such as, for example, a spring.
- Each movable pulley member can move axially against the bias force by a clutch mechanism which is provided on either pulley 218 , 220 .
- the clutch mechanism acts by the centrifugal force created when the crankshaft 176 or the output shaft 216 rotates at a speed higher than a preset speed.
- the change in diameter of one pulley causes a corresponding change in the other pulley.
- both diameters of the drive pulley 218 and the driven pulley 220 vary to automatically change the transmission ratio between the drive pulley 218 and the driven pulley 220 normally in response to the engine speed.
- the V-belt housing 178 preferably has an air inlet port 226 at a rear end and an air outlet port 228 at a front end.
- An air inlet duct 230 ( FIGS. 1 and 2 ) preferably is coupled to the inlet port 226
- an air outlet duct 232 preferably is coupled to the outlet port 228 .
- the inlet duct 230 extends generally rearward and upward and generally behind the seat back 74 on the left-hand side.
- the inlet duct 230 has an inlet opening 233 that opens forward and is positioned higher than top surfaces of the seat cushions 72 .
- the outlet duct 232 extends generally upward and rearward and generally along a bottom surface of the seat cushion 72 on the left-hand side.
- the outlet duct 232 has an outlet opening 234 that opens generally rearward.
- Cooling air is introduced into the V-belt housing 178 through the inlet duct 230 and the air inlet port 226 while the crankshaft 176 , the output shaft 216 and the drive and driven pulleys 218 , 220 rotate.
- the air then is discharged through the outlet port 228 and the outlet duct 232 .
- one or both of the pulleys can be provided with fan blades to help induce higher speed air flow as the engine speed increases.
- Other embodiments can provide a ram air type of air flow. Having circulated with the belt chamber of the transmission, the air then is discharged through the outlet port 228 and the outlet duct 232 .
- the engine output that has been transferred to the output shaft 216 through the V-belt mechanism is transferred to the drive mechanism 146 through the change speed mechanism 177 .
- This mechanism preferably is configured to provide a parking state, a high speed forward state, a neutral state, a low speed forward state, and a reverse state.
- the mechanism preferably comprises a suitable gear train that allows an operator to select among at least the above-mentioned operating states.
- a bevel gear assembly 236 can be coupled with the mechanism.
- the mechanism also comprises a shift lever unit 240 that extends from the crankcase 174 .
- the shift lever unit 240 preferably is connected to the rest of the change speed mechanism 177 within the crankcase 174 through a suitable linkage (not shown).
- the shift lever unit 240 preferably is placed generally within the space defined between the seats 68 .
- the illustrated lever unit 240 is positioned generally at the forward-most portion of the space. Such placement facilitates ease of use.
- the shift lever unit 240 preferably comprises a lever 244 and a lever cover 246 .
- the lever 244 preferably is affixed to the frame 32 directly or indirectly for pivotal movement around a fulcrum.
- the shift lever unit 240 can comprise a lever that moves axially. The driver thus can control the change speed mechanism in the crankcase 174 and vary the transmission operating state among at least the parking state, the high speed forward state, the neutral state, the low speed forward state, and the reverse state by operating the lever 244 .
- the shift lever unit 240 is positioned close proximity to the change speed mechanism of the transmission 144 .
- the linkage thus can be short enough to make the change speed mechanism compact and also to improve the feeling that the driver might have when operating the shift lever unit 240 .
- the output of the change speed mechanism 177 is transferred to the drive mechanism 146 through the bevel gear 236 .
- the bevel gear 236 is coupled with a forward intermediate shaft 248 .
- the forward drive shaft 150 is pivotally coupled to the forward intermediate shaft 248 through a universal joint 250 . That is, the universal joint 250 comprises a first yoke 252 , a second yoke 254 and a cross pin 256 pivotally coupling the first and second yokes 252 , 254 .
- the forward driveshaft 150 is coupled with a forward differential input shaft 262 ( FIG. 4 ) of the forward differential 124 .
- the forward differential input shaft 262 is coupled with the front wheels 56 through a differential mechanism formed within the forward differential 124 .
- a rear intermediate shaft 258 also is connected to the bevel gear 236 through a suitable connection.
- the rear driveshaft 152 is connected to the rear intermediate shaft 258 through a splined coupling 260 .
- Other couplings or a unitary shaft can also be used.
- the rear driveshaft 152 is coupled with a rear differential input shaft (not shown) of the rear differential 154 .
- the rear differential input shaft preferably is coupled with the rear wheels 58 through another differential mechanism formed within the rear differential 154 .
- the off-road vehicle 30 preferably has other devices, components and members.
- the differentials can be selectively lockable such that the differential function can be eliminated on demand.
- a brake system can be provided to slow or stop rotation of the wheels 56 , 58 or another drive train component (e.g., the drive shafts).
- a brake pedal 270 ( FIG. 5 ) can be disposed next to the accelerator pedal 196 and can be connected to brake units that are coupled with the wheels 56 , 58 .
- the brake units can comprise disk brake configurations. The driver thus can stop the off-road vehicle 30 by operating the brake pedal 270 .
- the engine 142 is located generally rearward of the change speed mechanism including the output shaft 216 . Moreover, the engine is positioned generally rearward of, and lower than, the seating area. Thus, heat generated by the engine 142 can be substantially isolated from the driver and/or the passenger, and particularly isolated from the feet of those persons both when seating and when mounting or dismounting from the vehicle.
- the cylinder block 158 , the cylinder head 160 and the cylinder head cover 170 in this arrangement generally are directed rearward and are positioned generally rearward of the occupants. Thus, it is very unlikely that the engine heat will affect the occupants of the vehicle.
- the exhaust system 168 carries a great deal of heat as well while the intake system 164 and the charge former, e.g., the throttle body 182 , generally do not generate or conduct much heat.
- the intake system 164 and the charge former are generally protected from heat carried by the exhaust system 168 because the exhaust system 168 is positioned opposite to the intake system 164 in the illustrated arrangement.
- the engine heat and the exhaust heat can be generally isolated from the intake system 164 during forward operation of the off-road vehicle 30 .
- the temperature of the intake air therefore, is not greatly affected by the heat generated during operation of the off-road vehicle 30 and engine output efficiency can be kept in good condition.
- placement of a radiator preferably is generally below the air intake such that heat generated in the region of the radiator does not adversely affect engine performance through heating of the air inducted into the engine.
- the intake system 164 generally does not extend along a heat generating or conducting surface of the engine 142 .
- the engine heat is generally isolated from the intake system 164 in this arrangement.
- the illustrated air cleaner 188 is greatly spaced from the engine 142 . As such, any air that is heated by the engine 142 and the exhaust system 168 will not be drawn into the air intake system 164 , which improves the engine output efficiency. Additionally, due to the elevated nature of the air inlet and air cleaner 188 , water also is very unlikely to be drawn into the intake system 164 . Furthermore, because the air cleaner 188 is positioned below the hood 134 , water is unlikely to splash its way into the air cleaner.
- the exhaust conduits 208 extend along a relatively lower portion of the off-road vehicle 30 in the illustrated arrangement because the exhaust conduits 208 are directed generally downward and rearward instead a wrapping around from a forward or lateral surface of the engine.
- the exhaust conduits 208 thus, are sufficiently spaced apart from the driver and/or the passenger.
- the seats 68 can be positioned closer to the engine 142 , which allows a narrower overall construction for the vehicle or a closer mounting of the split seats 68 .
- the main frame 34 extends fore to aft along the longitudinal center plane LC of the frame 32 .
- the main frame 34 preferably comprises a center part 250 , a front part 252 and a rear part 254 .
- the center part 250 is positioned between the front and rear parts 252 , 254 and generally under the passenger compartment defined by the compartment frame 40 and the floorboard 50 .
- the center part 250 preferably is wider than either the front or rear part 252 , 254 so as to support the floorboard 50 .
- the front part 252 is positioned at the front end of the main frame 34 and supports the front wheels 56 via the front suspension mechanism 60 .
- the rear part 254 is positioned at the rear end of the main frame 34 and supports the rear wheels 56 via the rear suspension mechanism 60 .
- the illustrated main frame 32 can also be described as comprising a first group 258 of frame members and a second group 260 of frame members.
- the frame members belonging to the first group 258 can include the front members 42 a and the first and second cross members 44 a , 44 b .
- the front members 42 a are spaced apart from each other so as to interpose the longitudinal center plane LC and extend generally parallel to each other.
- the first and second cross members 44 a , 44 b are spaced apart fore to aft from each other and connect the front members 42 a.
- the frame members belonging to the second group 260 can include the rear members 42 b and the third and fourth cross members 44 c , 44 d .
- the rear members 42 b are spaced apart from each other so as to interpose the longitudinal center plane LC and extend generally parallel to each other.
- the third and fourth cross members 44 c , 44 d are spaced apart fore to aft from each other and connect the rear members 42 b.
- the first and second groups 258 , 260 are offset fore to aft relative to each other and overlap with each other.
- the rear section of the first group 258 and a front section of the second group 260 overlap.
- the rear members 42 b generally extend outside of the front members 42 a . In other words, the rear members 42 b extend farther from the longitudinal center plane LC than the front members 42 b.
- Each rear member 42 b preferably has a front end portion 264 that is bent inwardly toward the front member 42 a and is connected to the front member 42 a .
- the front end portion 264 can be welded, bolted, screwed, or bonded to the front member 42 a .
- the welded portion of the rear member 42 b is located slightly forwarder than a front end of the compartment frame 40 .
- Each front member 42 a preferably has a rear end portion 266 that is bent outwardly toward the rear member 42 b and is connected to the rear member 42 a , in a manner described above with reference to the connection between the front end portion 264 and the front member 42 a .
- the connected portion of the front member 42 a is located within a compartment area defined by the compartment frame 40 .
- the first and second groups 258 , 260 are combined together to form the single main frame 34 .
- the main frame 34 formed with the combined first and second groups 258 , 260 preferably lie generally symmetrically relative to the longitudinal center plane LC.
- Front portions 270 of the front members 42 a form the front part 252 of the main frame 34 as well as a front section of the first group 258 .
- the rear members 42 b extend rearward toward a rear end of the compartment area.
- the rear portions 272 of the front members 42 a which form the rear section of the first group 258 , and middle portions 274 of rear members 42 b together form the center part 250 .
- Rear portions 276 of the rear members 42 b preferably are bent inwardly toward the longitudinal center plane LC behind the compartment area, then extend rearward generally along the longitudinal center plane LC. In the illustrated embodiment, the rear portions 276 of the rear members 42 b form the rear part 254 of the main frame 34 .
- the front section of the first group 258 preferably is interposed between the front wheels 56 .
- the rear section of the second group 260 preferably is interposed between the rear wheels 58 .
- the engine unit 148 preferably is mounted on and affixed to the second cross member 44 b and the third cross member 44 c directly or with one or more bracket members (not shown).
- the floorboard 50 generally extends over the rear portions 272 of the front members 42 a and the middle portions 274 of the rear members 42 b.
- each end portion 264 , 266 is relatively small.
- each member 42 a , 42 b has only one bend.
- the members 42 a , 42 b retain sufficient stiffness against bending, even though they include a bend.
- the members 42 a , 42 b can be spaced apart from each other, thereby providing enhanced support for the floorboard 50 .
- the combination of the first and second groups 258 , 260 of frame members can contribute to provide sufficient stiffness of the frame 34 without excessive increases in production costs.
- illustrated main frame 34 remains practicable because of the relatively small bend used in the front and rear end portions 264 , 266 . Additionally, this configuration allows for conventional coupling of the first and second groups 258 , 260 with methods such as a welding process. Thus, the production cost of the off-road vehicle 30 can remain practicable.
- first and second groups 258 , 260 can be reversed such that the front section of the first group 258 defines a rear part of the main frame 34 and the rear section of the second group 260 defines a forward part of the main frame 34 .
- the first group 258 can have members extending farther from the longitudinal center plane LC than members of the second group 260 . That is, the members 42 b can be placed more inward than the members 42 a.
- the bends at the front ends 264 of the members 42 b and/or the rear ends 266 of the members 42 a can be omitted.
- the members 42 a , 42 b lie against each other.
- the contacting portions of these members can be connected with each other entirely or partly. For example, these contacting portions can be welded together.
- the illustrated members 42 a , 42 b are generally rectangular in section with generally vertical surfaces and generally horizontal surfaces.
- the vertical surfaces preferably are longer than the horizontal surfaces in the illustrated arrangement.
- the members 42 a , 42 b can have high stiffness in bending about a generally horizontal bending axis.
- the horizontal surfaces can be longer than the vertical surfaces.
- the members 42 a , 42 b can have a circular or oval section.
- the members 42 a , 42 b can have configurations other than the tubular shape such as, for example, a U or C-shaped section.
- the front and rear frames 36 , 38 can have the optional shapes noted above with respect to the main frame 34 .
- the rear frame 38 preferably comprises a pair of seat frame sections 280 ( FIGS. 7 and 8 ) and a pair of rear suspension support sections 282 .
- Each seat frame section 280 preferably is formed in a front part of the rear frame 38 and defines the foregoing seat pedestal.
- Each rear suspension support section 282 preferably is formed in a rear part of the rear frame 38 and supports the rear suspension mechanism 62 .
- Each seat frame section 280 preferably includes a front portion of the foregoing rear frame member 46 , front and rear struts 286 , 288 and a seat pedestal unit 290 .
- the rear frame member 46 has a shape similar to the rear half of the rear member 42 b and generally extends above and parallel to the rear half of the rear member 42 b .
- the illustrated rear frame member 46 is a member and has a rectangular shape in section. Other configurations, as noted above, can also be used.
- the front and rear struts 286 , 288 extend vertically from the rear member 42 b toward the rear frame member 46 to couple the rear frame member 46 to the rear member 42 b .
- Each strut 286 , 288 preferably is U-shaped in section.
- the front strut 286 can be connected, by welding or other means for example, to a portion of the rear member 42 b adjacent to the connection between the rear end portion 266 and the front end of the rear frame member 46 .
- the rear strut 288 can be connected by welding or other means, for example, to a portion at a rear end of the middle portion 274 of the rear member 42 b . Additionally, the rear strut 288 can be connected to a portion at a rearward portion of the rear frame member 46 .
- Each seat pedestal unit 290 preferably includes a plurality of members.
- One of the members can be a base member 296 that extends outward from the rear member 42 b at the end of the middle portion 274 to the compartment member 48 . Additionally, the base member 296 can extend upwardly to the frame: member 46 .
- the base member 296 can have a rectangular shape in section, or any other shape.
- the seat pedestal unit 290 can also comprise a rear pedestal member 297 that comprises a plurality panels.
- the rear pedestal member 190 can comprise a plurality of pieces of sheet metal combined together and extending transversely between a portion of the rear frame member 46 and a top end of the base member 296 .
- the sheet metal pieces preferably are welded with each other.
- the seat pedestal member 297 preferably is welded to the rear frame member 46 and the rest of the seat support unit 290 .
- the seat 68 can be positioned above the front portion of the rear frame member 46 and the seat support unit 290 including the seat pedestal member 297 .
- a reinforcement member 300 preferably extends between the seat pedestal members 297 .
- the reinforcement member 300 preferably comprises a member 302 that has a rectangular shape in section and a pair of L-shaped brackets 304 disposed on both sides of the tubular bar 302 .
- the illustrated brackets 304 can be welded to the tubular bar 302 so as to unitarily form the reinforcement member 300 together with the tubular bar 302 .
- Other connection methods can also be used.
- a further advantage is provided where the reinforcement member 300 is detachably affixed to the inward lateral sides of the seat pedestal members 297 .
- detachable connections can be provided at the brackets 304 by bolts 306 .
- Other detachable connection devices can also be used.
- the illustrated tubular bar 302 of the reinforcement member 300 extends adjacent to the engine unit 148 .
- the reinforcement member 300 provides additional strength to the frame 32 and aids in protecting the engine unit 148 , yet allows a mechanic or repair person to remove the reinforcement member 300 to access the portion of the engine unit 148 for maintenance or repairs.
- the reinforcement member 300 extends above the cylinder head cover 170 as shown in FIG. 5 , for example.
- the reinforcement member 300 can extend along side of other portions of the engine unit 148 depending on the configuration and orientation of the engine unit 148 .
- the engine unit 148 is mounted on the second and third cross members 44 b , 44 c , the middle portion's 274 of the rear members 42 b , the front portions of the rear frame members 46 , the front and rear struts 286 , 288 , the seat pedestal unit 290 and the reinforcement member 300 extend adjacent to the engine unit 148 , and together, generally surround the engine unit 148 .
- the frame components 44 b , 44 c , 274 , 42 b , 46 , 286 , 288 , 290 , 300 cooperate to enhance stiffness of the frame 32 , particularly portions thereof around the engine unit 148 .
- the cylinder head cover 170 and the cylinder head 160 which is disposed below the cylinder head cover 170 , are detached for certain maintenance procedures. Because the tubular bar 302 of the reinforcement member 300 is positioned above the cylinder head cover 170 , the detachable reinforcement member 300 can provide such a mechanic with easy access to the particular portions (i.e., cylinder head 160 and cylinder head cover 170 ) of the engine unit 148 . Also, the reinforcement member 300 can be easily detached because the reinforcement member 300 is positioned above the engine unit 148 . The mechanic only needs to remove the carrier 92 from an area around the reinforcement member 300 .
- the illustrated reinforcement member 300 can be easily detached and re-attached because of the simple fastening construction that only includes the bolts 306 and nuts, or other detachable connection devices. After re-attachment, the reinforcement member 300 again contributes to provide the stiffness of the frame 32 together with other frame members.
- rear wheels 58 depend from a rear-most portion of the frame 32 that includes a rear portion 308 of the rear frame 46 and the rear portion 276 of the rear member 42 b on each side.
- each rear portion 308 of the rear frame 46 extends slightly farther or more outward from the longitudinal center plane LC than each rear portion 276 of the rear member 42 b . That is, the respective rear portions 308 are spaced apart from each other wider than the respective rear portions 276 which also are spaced apart.
- a set of suspension support members or suspension retainers 310 , 312 connect the rear portion 308 of the rear frame 46 and the rear portion 276 of the rear member 42 b with each other on each side.
- the illustrated suspension support members 310 , 312 can be welded to the rear frame 46 and the tubular member 42 b to form part of the framework of the frame 32 .
- the suspension support members 310 , 312 are spaced apart from each other fore to aft and the support member 310 is positioned forwardly of the support member 312 . Because of the offset arrangement of the rear frame 46 and the rear member 42 b at the rear portions 308 , 276 , the suspension support members 310 , 312 are slightly inclined outward and upward.
- each support member 310 , 312 is configured as a U-shape and thus has a bottom surface 314 and side surfaces 316 .
- the bottom surface 314 faces the longitudinal center plane LC while the side surfaces 316 extend outward from the bottom surface 314 and lie generally normal to the bottom surface 314 .
- the side surfaces 316 thus oppose each other.
- the bottom surface 314 abuts the rear frame 46 and the rear member 42 b .
- the support members 310 , 312 are affixed to the rear frame 46 and the rear member 42 b at the bottom surfaces 314 .
- Each rear suspension mechanism 62 on each side connects each rear wheel 58 with the frame 32 independently or separately from the rear suspension mechanism 62 on the other side.
- Each rear suspension mechanism 62 preferably is a double wishbone type that comprises a pair of rear suspension arms 318 , 320 , a link 322 and a damper or shock absorber (not shown).
- Each suspension arm 318 , 320 is generally configured as a V- or A-shape.
- the suspension arm 318 is disposed above the other suspension arm 320 and the link 322 connects the arms 318 , 320 with each other.
- the pivot connection between each arm 318 , 320 and the link 322 permits the resulting assembly to function as a parallelogram linkage system.
- the link 322 has an aperture 324 at a center portion thereof.
- the axle of the rear wheel 58 is journaled in the aperture 324 .
- a top end portion 364 a of the link 364 is coupled with the upper suspension arm 360
- a bottom end portion 364 b of the link 364 is coupled with the lower suspension arm 362 .
- the damper is disposed between the upper suspension arm 320 and the rear frame 38 to damp shock that occurs while the off-road vehicle 30 proceeds over rugged terrain.
- the upper suspension arm 318 preferably is connected to mid portions of the suspension support members 310 , 312 .
- the lower suspension arm 320 is connected to bottom portions of the suspension support members 310 , 312 .
- Respective arm portions of the lower suspension arm 320 preferably are longer than respective arm portions of the upper suspension arm 318 because of the outwardly inclined arrangement of the support members 310 , 312 . That is, the upper portion of each suspension support member 310 , 312 is positioned farther outward from the longitudinal center plane LC than the respective lower portions of the support members 310 , 312 .
- the axle of each rear wheel 58 extends generally horizontally as the respective suspension system moves up and down.
- Each distal end of the suspension arms 318 , 320 has a mount member 328 .
- Each mount member 328 is interposed between the side surfaces 316 of the respective suspension support member 310 , 312 .
- a pin 330 extends through the corresponding side surfaces 316 and the mount member 328 at each mount structure to hold each suspension arm 318 , 320 for pivotal movement.
- the rear wheels 58 thus can swing up and down generally perpendicularly relative to the frame 32 and independently of each other while the off-road vehicle 30 proceeds over rugged terrain.
- the mount members 328 of the upper and lower suspension arms 318 , 320 can be positioned at any level of the support members 310 , 312 .
- the mount members 328 of the upper suspension arm 318 can be positioned toward the top end of the support members 310 , 312 .
- the mount members 328 of the lower suspension arm 320 are shifted upward with the mount members 328 of the upper suspension arm 318 .
- the illustrated rear suspension mounting construction thus can provide various vertical positions (i.e., elevations) of the suspension arms 318 , 320 without changing the a major portion of the fundamental framework of the off-road vehicle 30 or without requiring rearrangement of the fundamental framework.
- a plurality of apertures are spaced apart vertically on the side surfaces 316 of the support members 310 , 312 .
- One set of apertures can be selected to journal the mount members 328 so as to select the axle position at any desirable level.
- the front wheels 56 depend from a forward-most portion of the frame 32 that includes the front portions 270 of the front tubular members 42 a and support members 332 , 334 .
- the support members 332 , 334 are not specifically provided for supporting the front wheels 66 and are primarily a part of the framework of the front frame 36 .
- each support member 332 extends generally vertically upward from the front member 42 a and then turns rearward along the hood 134 .
- the front support members 332 support a transverse member 336 together with another frame member 338 .
- the rear support members 334 are spaced apart rearward from the front support members 332 and are disposed in front of the frame member 338 .
- the rear support members 334 extend upward toward upper portions of the front support members 332 and support transverse members 340 , 342 .
- a reinforcement member 344 extends between the support members 332 , 334 to reinforce those members 332 , 334 on each side.
- the support members 332 , 334 , the transverse members 336 , 340 and the frame member 338 each have a U-shaped or rectangular in cross-section.
- the reinforcement members 344 can be formed from pieces of sheet metal that have flat surfaces. Side surfaces 348 , 350 of the support members 332 , 334 can also be flat.
- Those frame components 332 , 334 , 338 , 340 , 342 , 344 preferably are welded together at portions where the members meet. Other connections methods and/or structural members can also be used.
- a bumper member 356 ( FIG. 1 ) extends forward and upward from the front end of the main frame 34 toward a location in front of the hood 134 . As such, the bumper member 356 protects the frame 32 , the hood 134 and other components disposed under or around the hood 134 from obstacles or the like.
- each front suspension mechanism 60 on each side connects each front wheel 56 with the frame 32 independently or separately from the front suspension mechanism 60 on the other side.
- each front suspension mechanism 60 preferably is a double wishbone type.
- the front suspension mechanism 60 preferably comprises a pair of front suspension arms 360 , 362 , a link 364 and a damper or shock absorber (not shown).
- each suspension arm 360 , 362 is configured generally as a V- or A-shape.
- the suspension arm 360 is disposed above the other suspension arm 362 and the link 364 (shown in phantom) connects the arms 360 , 362 to each other to form generally a parallelogram linkage, as described above.
- the link 364 has an aperture 366 at a center portion thereof.
- the axle of the front wheel 56 is journaled in the aperture 366 .
- a top portion 364 a of the link 364 is coupled with the upper suspension arm 360
- a bottom end portion 364 b of the link 364 is coupled with the lower suspension arm 362 .
- the damper is disposed between the upper suspension arm 360 and the main frame 34 to dampen shocks that occur while the off-road vehicle 30 proceeds over rugged terrain.
- First and second brackets 370 , 372 which together form a bracket unit, are affixed onto the side surfaces 348 , 350 of the support members 332 , 334 , respectively, on each side of the frame.
- the first and second brackets 370 , 372 form a set of retainers that retains the upper suspension arm 360 .
- the first and second brackets 370 , 372 preferably each have a generally U-shape. Each bottom surface of the U-shape preferably welded to each side surface 348 , 350 of the support members 332 , 334 .
- Other connection methods and/or devices e.g., fasteners
- both the brackets 370 , 372 are disposed close to the reinforcement member 344 .
- the first bracket 370 preferably is positioned slightly higher than the second bracket 372 .
- both the brackets 370 , 372 preferably are slightly inclined such that each bottom is disposed farther forward than the respective top.
- the first and second brackets 370 , 372 can be unitarily formed so as to be a single bracket and can be affixed to the reinforcement member 344 in the slightly inclined position.
- Third and fourth brackets 376 , 378 which also together form a bracket unit, are affixed onto a vertical side surface 352 of the respective front member 42 a on each side of the frame.
- the third and fourth brackets 376 , 378 form a set of retainers that retains the lower suspension arm 362 .
- the vertical side surface 352 extends generally vertically and is positioned outside of the front tubular member 42 a , i.e., opposite to the longitudinal center plane LC.
- the third bracket 376 is disposed generally under and slightly rearward from the first bracket 376 .
- the fourth bracket 378 is spaced apart rearward from the third bracket 376 .
- a distance between the third and fourth brackets 376 , 378 preferably is greater than a distance between the first and second brackets 370 , 372 .
- the third and fourth brackets 376 , 378 can each have a U-shape.
- One end of the side surfaces of the U-shape of the third bracket 376 is welded to a vertical surface of the front member 42 a and is orientated so as to open upwardly (i.e., a lower wall section of the U-shape extends across the lower side of the third bracket 376 ).
- Other connection methods and/or devices can also be used.
- the fourth bracket 378 is welded to the front member 42 a and is oriented so as to open downwardly (i.e., an upper wall section of the U-shape extends across the upper side of the fourth bracket 376 ).
- Other connection methods and/or devices can also be used.
- both the third and fourth brackets 376 , 378 are inclined such that the bottom of each is slightly forward of the respective top end.
- the third and fourth brackets 370 , 372 can be unitarily formed so as to be a single bracket and can be affixed to the front tubular member 42 a in the slightly inclined position.
- the upper suspension arm 360 is connected to the first and second brackets 370 , 372 .
- the lower suspension arm 362 is connected to the third and fourth brackets 376 , 378 .
- Respective arm portions of the lower suspension arm 362 preferably are longer than respective arm portions of the upper suspension arm 360 .
- Each distal end of the upper suspension arm 360 has a mount member 382 .
- the mount member 382 on each end of the upper suspension arm 360 is interposed between the side surfaces of the first and second brackets 370 , 372 .
- a pin 384 extends through the side surfaces of the brackets 370 , 372 and the mount member 382 to support and journal the suspension arm 360 for pivotal movement.
- the pin 384 for the first bracket 370 is positioned slightly higher than the pin 384 for the second bracket 3 - 72 because the first bracket 370 preferably is positioned slightly higher than the second bracket 372 , as noted above.
- Each distal end of the lower suspension arm 362 includes a mount member 388 .
- the mount member 388 on each end is interposed between the side surfaces of the third and fourth brackets 376 , 378 .
- a pin 390 extends through the side surfaces of the brackets 376 , 378 and the mount member 388 to support and journal the suspension arm 362 for pivotal movement.
- the pin 390 for the third bracket 376 is positioned slightly higher than the pin 390 for the fourth bracket 378 because, as noted above, the third bracket 376 opens upwardly and the fourth bracket 378 is opened downwardly.
- the axes of the pins 384 , 390 are slightly inclined upwardly and forwardly.
- the axes of the pins 384 , 390 also extend generally parallel to each other.
- the bottom end portion 364 a of the link 364 is positioned slightly further forward than the aperture 366 of the link 364 .
- the aperture 366 is positioned slightly forward of the top end portion of the link 364 .
- the front wheels 56 can swing up and down relative to the frame 32 and independently with each other while the off-road vehicle 30 proceeds over rugged terrain.
- the inclination of the axes of the pins 384 , 390 which places the bottom end portion 364 b of the link 364 forward of the tope end portion 364 a thereof, is advantageous because the off-road vehicle 30 can provide enhanced stability when the front wheels 56 run over obstacles.
- the individual brackets 370 , 372 , 376 , 378 can be positioned at any level (i.e., elevation).
- the illustrated front suspension mounting construction thus can provide various swing angles of the front suspensions without changing the major or fundamental framework of the off-road vehicle 30 .
- the flat vertical side surface 352 of the front tubular member 42 a is advantageous to fix the brackets 376 , 378 thereto.
- the front tubular member 42 a has such a simple rectangular parallelepiped shape, the production cost of the tubular member 42 a can be relatively small and the front tubular member 42 a can rigidly support the brackets 376 , 378 .
- the front tubular member 42 a can have any configurations, although the brackets 376 , 378 preferably will have corresponding configurations that suit the configurations of the front tubular member 42 a.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Body Structure For Vehicles (AREA)
- Automatic Cycles, And Cycles In General (AREA)
Abstract
Description
Claims (46)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/796,692 US7510199B2 (en) | 2003-04-02 | 2004-03-09 | Off-road vehicle with wheel suspension |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45995703P | 2003-04-02 | 2003-04-02 | |
US45995903P | 2003-04-02 | 2003-04-02 | |
US10/796,692 US7510199B2 (en) | 2003-04-02 | 2004-03-09 | Off-road vehicle with wheel suspension |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040195797A1 US20040195797A1 (en) | 2004-10-07 |
US7510199B2 true US7510199B2 (en) | 2009-03-31 |
Family
ID=33102184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/796,692 Expired - Lifetime US7510199B2 (en) | 2003-04-02 | 2004-03-09 | Off-road vehicle with wheel suspension |
Country Status (1)
Country | Link |
---|---|
US (1) | US7510199B2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080023249A1 (en) * | 2006-07-28 | 2008-01-31 | Richard Larry Sunsdahl | Side-by-side ATV |
US20080100098A1 (en) * | 2004-09-30 | 2008-05-01 | Honda Motor Co., Ltd. | Vehicle floor structure and vehicle body frame structure |
US20090014976A1 (en) * | 2007-07-13 | 2009-01-15 | Yamaha Hatsudoki Kabushiki Kaisha | All terrain vehicle with double wishbone suspension |
US20100019538A1 (en) * | 2008-07-24 | 2010-01-28 | Kiley Matthew P | Modular Architecture for Combat Tactical Vehicle |
US20100078911A1 (en) * | 2007-03-29 | 2010-04-01 | Nissan Motor Co., Ltd. | Multi-link suspension device and method for suspending wheels |
US20120193163A1 (en) * | 2011-02-01 | 2012-08-02 | Polaris Industries Inc. | All terrain vehicle |
US20120223500A1 (en) * | 2011-02-11 | 2012-09-06 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US20140167399A1 (en) * | 2012-08-23 | 2014-06-19 | John K. Koberstein | Hybrid Vehicle and Conversion Kit |
US8801015B2 (en) | 2012-08-31 | 2014-08-12 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle |
US9102205B2 (en) * | 2011-02-01 | 2015-08-11 | Polaris Industries Inc. | All terrain vehicle |
USD761713S1 (en) | 2014-07-24 | 2016-07-19 | Hendrick Motorsports Performance Group, LLC | Vehicle roll cage structure |
US9446640B1 (en) | 2015-10-05 | 2016-09-20 | Mike Smith | Box A-frame suspension arm |
US20170029035A1 (en) * | 2014-01-31 | 2017-02-02 | Bombardier Recreational Products Inc. | Off-road wheeled side-by-side vehicle |
USD788653S1 (en) | 2015-10-05 | 2017-06-06 | Mike Smith | Boxed suspension arm |
USD835545S1 (en) | 2017-02-17 | 2018-12-11 | Polaris Industries Inc. | Off-road vehicle |
US10207555B2 (en) | 2014-01-31 | 2019-02-19 | Bombardier Recreational Products Inc. | Off-road wheeled side-by-side vehicle |
US10532772B2 (en) | 2018-01-22 | 2020-01-14 | Honda Motor Co., Ltd. | Mounting assembly for a suspension and wheel assembly of a vehicle, and vehicle including same |
US10569819B2 (en) | 2016-07-08 | 2020-02-25 | Polaris Industries Inc. | All-terrain vehicle |
US20200139811A1 (en) * | 2015-08-23 | 2020-05-07 | Arctic Cat Inc. | Off road vehicle |
US10661624B2 (en) * | 2017-09-04 | 2020-05-26 | Mazda Motor Corporation | Suspension device for vehicle |
US10689029B2 (en) * | 2018-04-12 | 2020-06-23 | Cnh Industrial America Llc | Four-wheel steering with front/rear matching geometries |
US11028883B2 (en) | 2017-11-13 | 2021-06-08 | Arctic Cat Inc. | Off-road recreational vehicle |
US11124057B2 (en) * | 2018-02-20 | 2021-09-21 | The United States Of America, As Represented By The Secretary Of The Navy | Hyper-compact electric all-terrain vehicle drivetrain and conversion kit |
US20210323400A1 (en) * | 2017-03-21 | 2021-10-21 | Arctic Cat Inc. | Off-road utility vehicle |
US11173808B2 (en) | 2016-12-22 | 2021-11-16 | Polaris Industies Inc. | Vehicle |
US11465496B2 (en) * | 2019-08-29 | 2022-10-11 | Kawasaki Motors, Ltd. | Power unit of utility vehicle |
US11623487B2 (en) * | 2007-05-16 | 2023-04-11 | Polaris Industries Inc. | All terrain vehicle |
US11712925B2 (en) | 2019-07-01 | 2023-08-01 | Textron Inc. | Axial plunging half-shaft assembly |
US11787279B2 (en) | 2015-08-23 | 2023-10-17 | Arctic Cat Inc. | Off-road recreational vehicle |
US11926365B2 (en) | 2017-03-21 | 2024-03-12 | Arctic Cat Inc. | Cab and fasteners for vehicle cab |
US12017702B2 (en) | 2013-03-15 | 2024-06-25 | Polaris Industries Inc. | Utility vehicle |
US12172518B2 (en) | 2019-04-30 | 2024-12-24 | Polaris Industries Inc. | Vehicle |
US12187127B2 (en) | 2020-05-15 | 2025-01-07 | Polaris Industries Inc. | Off-road vehicle |
USD1067123S1 (en) | 2023-01-20 | 2025-03-18 | Polaris Industries Inc. | Off-road vehicle |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7828108B2 (en) * | 2006-02-01 | 2010-11-09 | Polaris Industries, Inc. | Rear drive and suspension for an all terrain vehicle |
US8585068B2 (en) * | 2006-02-01 | 2013-11-19 | Polaris Industries Inc. | Independent rear suspension system for an all terrain vehicle |
US8827028B2 (en) * | 2006-07-28 | 2014-09-09 | Polaris Industries Inc. | Side-by-side ATV |
US8029021B2 (en) | 2007-03-16 | 2011-10-04 | Polaris Industries Inc. | Vehicle |
US7795602B2 (en) * | 2007-03-16 | 2010-09-14 | Polaris Industries Inc. | Vehicle |
US7871106B2 (en) * | 2007-03-16 | 2011-01-18 | Polaris Industries Inc. | Method and apparatus related to transportability of a vehicle |
WO2008115459A1 (en) * | 2007-03-16 | 2008-09-25 | Polaris Industries Inc. | Utility vehicle having modular components |
US8167072B2 (en) * | 2007-03-16 | 2012-05-01 | Polaris Industries Inc. | Vehicle with space utilization |
US7717495B2 (en) * | 2007-03-16 | 2010-05-18 | Polaris Industries, Inc. | Vehicle with space utilization |
US8522911B2 (en) * | 2010-04-06 | 2013-09-03 | Polaris Industries Inc. | Prime mover and transmission support for a vehicle |
US8746719B2 (en) | 2010-08-03 | 2014-06-10 | Polaris Industries Inc. | Side-by-side vehicle |
US8613335B2 (en) | 2010-08-03 | 2013-12-24 | Polaris Industries Inc. | Side-by-side vehicle |
US8998253B2 (en) | 2012-03-30 | 2015-04-07 | Polaris Industries Inc. | Folding cab frame |
CN110254526B (en) * | 2012-05-04 | 2023-10-20 | 北极星工业有限公司 | Side-by-side all-terrain vehicle |
US9327587B2 (en) | 2012-05-31 | 2016-05-03 | Arctic Cat Inc. | Off-highway recreational vehicle |
US9592782B2 (en) | 2012-09-20 | 2017-03-14 | Polaris Industries Inc. | Vehicle |
US9440671B2 (en) | 2012-09-20 | 2016-09-13 | Polaris Industries Inc. | Vehicle |
CN104661903B (en) | 2012-09-20 | 2017-11-10 | 北极星工业有限公司 | Multifunctional vehicle |
JP6425129B2 (en) * | 2014-12-10 | 2018-11-21 | 三菱自動車工業株式会社 | Front body structure |
US10300786B2 (en) | 2014-12-19 | 2019-05-28 | Polaris Industries Inc. | Utility vehicle |
WO2016186942A1 (en) | 2015-05-15 | 2016-11-24 | Polaris Industries Inc. | Utility vehicle |
USD787985S1 (en) | 2015-06-24 | 2017-05-30 | Polaris Industries Inc. | All-terrain vehicle |
US9649928B2 (en) | 2015-06-25 | 2017-05-16 | Polaris Industries Inc. | All-terrain vehicle |
US9884647B2 (en) | 2015-12-10 | 2018-02-06 | Polaris Industries Inc. | Utility vehicle |
US9878614B1 (en) * | 2016-01-27 | 2018-01-30 | Textron Innovations Inc. | All-terrain vehicle |
RU2735192C2 (en) | 2016-04-28 | 2020-10-28 | Бомбардье Рекриэйшенел Продактс Инк. | Air intake system for an off-road vehicle |
CN109070733B (en) * | 2016-04-28 | 2021-12-03 | 庞巴迪动力产品公司 | Cooling system for turbocharger and adjacent components |
JP6234514B1 (en) * | 2016-07-08 | 2017-11-22 | ヤマハモーターパワープロダクツ株式会社 | vehicle |
US9944320B1 (en) * | 2016-12-29 | 2018-04-17 | Kawasaki Jukogyo Kabushiki Kaisha | Utility vehicle |
US10604187B2 (en) * | 2017-01-30 | 2020-03-31 | Gary Isom | Sprint car safety block |
WO2019126485A1 (en) | 2017-12-21 | 2019-06-27 | Polaris Industries Inc. | Rear suspension assembly for a vehicle |
US11285807B2 (en) * | 2018-01-05 | 2022-03-29 | Polaris Industries Inc. | Driveline assembly for a utility vehicle |
US11260773B2 (en) | 2018-01-09 | 2022-03-01 | Polaris Industries Inc. | Vehicle seating arrangements |
US10793181B2 (en) | 2018-02-13 | 2020-10-06 | Polaris Industries Inc. | All-terrain vehicle |
US10946736B2 (en) | 2018-06-05 | 2021-03-16 | Polaris Industries Inc. | All-terrain vehicle |
CN210309896U (en) * | 2019-06-13 | 2020-04-14 | 赛格威科技有限公司 | Side-by-side all-terrain vehicle |
US11718240B2 (en) | 2019-12-20 | 2023-08-08 | Polaris Industries Inc. | All-terrain vehicle |
USD937710S1 (en) | 2020-07-24 | 2021-12-07 | Polaris Industries Inc. | All-terrain vehicle |
CA3156559A1 (en) | 2021-05-05 | 2022-11-05 | Polaris Industries Inc. | Exhaust assembly for a utility vehicle |
JP2023136172A (en) * | 2022-03-16 | 2023-09-29 | 株式会社クボタ | work vehicle |
Citations (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US483644A (en) | 1892-10-04 | Ingot-manipulator | ||
US957626A (en) | 1908-07-29 | 1910-05-10 | Philip J Rivers | Driving-gear for automobiles. |
GB164051A (en) | 1919-12-04 | 1921-06-04 | Joseph Gladstone Owen | Improvements in or relating to motor vehicles |
US1852464A (en) | 1931-04-09 | 1932-04-05 | Int Motor Co | Movable cab for motor vehicles |
US2053869A (en) | 1932-05-28 | 1936-09-08 | Haltenberger Jules | Independent wheel springing |
US2064100A (en) | 1934-06-16 | 1936-12-15 | Autocar Company | Motor vehicle |
US2145545A (en) | 1936-06-01 | 1939-01-31 | Sterling Electric Motors Inc | Air-cooled variable-speed device |
US2315317A (en) | 1939-08-17 | 1943-03-30 | Renold & Coventry Chain Co | Casing for chain belt and like transmissions |
US2331976A (en) | 1941-09-17 | 1943-10-19 | Amesbury Seat Mfg Co | Motorcycle |
AT171825B (en) | 1950-11-07 | 1952-07-10 | Rudolf Schwaiger | Cooling device for cylinders of motorcycle engines |
US2707402A (en) | 1952-03-14 | 1955-05-03 | Chayes Dental Instr Company | Air cooled pulley |
US2718409A (en) * | 1953-12-04 | 1955-09-20 | American Motors Corp | Frame structure for wheel support |
US2751992A (en) * | 1949-07-30 | 1956-06-26 | Daimler Benz Ag | Unit power plant and axle unit suspension in motor vehicles |
US2792498A (en) * | 1953-08-21 | 1957-05-14 | Rca Corp | Stabilized two-stage oscillators |
US2850852A (en) | 1957-05-31 | 1958-09-09 | Fred C Hofberger | Air cooled pulley for abrasive belt grinders |
US3147814A (en) | 1962-02-26 | 1964-09-08 | Clary Corp | Engine cooling and silencing system |
US3149856A (en) | 1959-08-17 | 1964-09-22 | Smith Corp A O | Motor vehicle having increased ground clearance level floor space |
US3229424A (en) | 1963-05-31 | 1966-01-18 | Joseph J Fielder | Concentric motor and cooling pulley assembly for abraders and the like |
US3419098A (en) | 1966-12-13 | 1968-12-31 | Fred T. Mayers | Three-wheeled automotive vehicle |
US3650344A (en) | 1970-04-06 | 1972-03-21 | John A Plessinger | Recreational vehicle |
US3709314A (en) | 1970-10-16 | 1973-01-09 | Fmc Corp | All terrain vehicle |
US3733918A (en) | 1972-03-09 | 1973-05-22 | Textron Inc | Centrifugal clutch |
US3943785A (en) | 1974-04-26 | 1976-03-16 | Carlisle Corporation | Air cooled belt clutch |
US4249631A (en) | 1978-05-13 | 1981-02-10 | Deere & Company | Axle for motor vehicles |
US4350124A (en) | 1979-09-29 | 1982-09-21 | Yamaha Hatsudoki Kabushiki Kaisha | Overflow device for vehicular carburetor |
US4354570A (en) | 1979-09-21 | 1982-10-19 | Honda Giken Kogyo Kabushiki Kaisha | Arrangement of air cleaner for a motorcycle |
US4496019A (en) | 1981-06-22 | 1985-01-29 | Yamaha Hatsudoki Kabushiki Kaisha | Offroad auto tricycle |
US4497285A (en) | 1981-09-09 | 1985-02-05 | Honda Giken Kogyo Kabushiki Kaisha | Cooling structure for internal combustion engine |
US4531928A (en) | 1981-12-23 | 1985-07-30 | Honda Giken Kogyo Kabushiki Kaisha | Belt transmission having air cooling function |
US4534442A (en) | 1982-06-14 | 1985-08-13 | Bela Botar | Vertically installed engine low floor bus |
JPS6189187U (en) | 1984-11-17 | 1986-06-10 | ||
US4597466A (en) | 1984-05-28 | 1986-07-01 | Honda Giken Kogyo Kabushiki Kaisha | Air intake apparatus for vehicle |
US4600074A (en) | 1983-06-07 | 1986-07-15 | Honda Giken Kogyo Kabushiki Kaisha | All wheel drive vehicle |
US4632071A (en) | 1984-12-18 | 1986-12-30 | Honda Giken Kogyo Kabushiki Kaisha | Engine breather device for motor vehicle with riding saddle |
US4650029A (en) | 1985-12-19 | 1987-03-17 | Yamaha Hatsudoki Kabushiki Kaisha | Off-the-road four-wheel drive vehicle |
US4671373A (en) | 1983-11-25 | 1987-06-09 | Robert Bosch Gmbh | Vehicle with lockable differential |
US4681185A (en) | 1985-02-16 | 1987-07-21 | Daimler-Benz Aktiengesellschaft | Apparatus for the automatic engagement and disengagement of drive elements of a motor vehicle |
US4697665A (en) | 1985-06-18 | 1987-10-06 | Polaris Industries, Inc. | Recreational vehicle with air cooled transmission |
US4733639A (en) | 1985-01-29 | 1988-03-29 | Honda Giken Kogyo Kabushiki Kaisha | Air intake system |
US4735275A (en) * | 1985-10-07 | 1988-04-05 | Honda Giken Kogyo Kabushiki Kaisha | Body frame for vehicles |
US4744432A (en) | 1985-01-28 | 1988-05-17 | Yamaha Hatsudoki Kabushiki Kaisha | Cooling apparatus for vehicle engine |
US4751856A (en) | 1986-05-22 | 1988-06-21 | Toyota Jidosha Kabushiki Kaisha | Device for controlling 4wd vehicle central differential restriction device according to vehicle road speed and engine load, and method of operation thereof |
US4765434A (en) | 1985-12-27 | 1988-08-23 | Aisin-Warner Kabushiki Kaisha | Control apparatus for four-wheel drive vehicle with center differential mechanism |
US4773661A (en) | 1987-01-09 | 1988-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Front fenders for four wheeled buggy operated by driver in sitting posture |
US4773675A (en) | 1986-05-06 | 1988-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Supporting frame for a four wheeled buggy operated by a seated driver |
US4792012A (en) | 1986-07-25 | 1988-12-20 | Toyota Jidosha Kabushiki Kaisha | Anti torque shock control device and method engaging torque transmitting clutch between vehicle wheels when transmission is shifted from non drive range to drive range |
US4798400A (en) | 1986-07-11 | 1989-01-17 | Kawasaki Jukogyo Kabushiki Kaisha | Light-weight and strong vehicle frame for a four wheeled buggy operated by a seated driver |
US4815550A (en) | 1987-08-21 | 1989-03-28 | Clark Equipment Company | Engine cooling system for skid steer loaders |
US4817985A (en) | 1986-09-18 | 1989-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Rear suspension for off-road vehicle |
US4821685A (en) | 1986-03-14 | 1989-04-18 | Yamaha Hatsudoki Kabushiki Kaisha | Suction device of engine |
US4881610A (en) | 1986-12-27 | 1989-11-21 | Kawasaki Jukogyo Kabushiki Kaisha | Guide for hot air from radiator in four wheeled vehicle operated by driver in sitting posture |
US4883138A (en) | 1987-04-27 | 1989-11-28 | Mazda Motor Corporation | Four-wheel drive vehicle operating system |
US4895217A (en) | 1986-12-20 | 1990-01-23 | Deere & Company | Drive system for two pairs of wheels |
US4951964A (en) * | 1988-02-17 | 1990-08-28 | Semiconductor Energy Laboratory Co., Ltd. | Structure for supporting vehicle suspension system |
US4955853A (en) | 1988-03-12 | 1990-09-11 | General Motors Corporation | Differential gear unit for motor vehicle drive axles |
US5005663A (en) | 1987-10-28 | 1991-04-09 | Mazda Motor Corporation | Four-wheel drive vehicle |
US5044646A (en) | 1985-12-27 | 1991-09-03 | Honda Giken Kogyo Kabushiki Kaisha | Scooter type vehicle |
US5054573A (en) | 1988-08-13 | 1991-10-08 | Massey-Ferguson Services N.V. | Vehicle with multiple driven axles |
US5054842A (en) | 1988-09-12 | 1991-10-08 | Honda Giken Kogyo Kabushiki Kaisha | Floor panel for off-road vehicle |
US5071392A (en) | 1988-11-08 | 1991-12-10 | Gkn Automotive Ag | Process and device for controlling locking differentials |
US5086858A (en) | 1990-08-17 | 1992-02-11 | Kawasaki Jukogyo Kabushiki Kaisha | Air intake system for utility vehicle |
US5101924A (en) | 1989-07-13 | 1992-04-07 | Honda Giken Kogyo Kabushiki Kaisha | Electric motor driven vehicle and power unit thereof |
US5107952A (en) * | 1989-04-12 | 1992-04-28 | Honda Giken Kogyo Kabushiki Kaisha | Saddle type off-road vehicle |
US5125490A (en) | 1989-01-27 | 1992-06-30 | Aisin Seiki K.K. | Center differential lock mechanism controlling device |
US5152365A (en) | 1990-01-12 | 1992-10-06 | Yamaha Hatsudoki Kabushiki Kaisha | Air intake system for small snowmobile |
US5169171A (en) * | 1990-05-25 | 1992-12-08 | Nissan Motor Co., Ltd. | Supporting structure for vehicular suspension |
US5195607A (en) | 1989-11-21 | 1993-03-23 | Mazda Motor Corporation | Exhaust system for automotive engine |
US5251713A (en) | 1989-09-20 | 1993-10-12 | Honda Giken Kogyo Kabushiki Kaisha | Four wheel vehicle |
US5257672A (en) | 1991-08-27 | 1993-11-02 | Mitsubishi Denki K.K. | Rear differential gear lock controller including diagnostic system for determining vehicle speed sensor failure |
US5314378A (en) | 1991-08-27 | 1994-05-24 | Mitsubishi Denki Kabushiki Kaisha | Rear differential gear lock controller with automatic unlock control means |
US5327989A (en) | 1991-03-20 | 1994-07-12 | Honda Giken Kogyo Kabushiki Kaisha | Four-wheeled buggy |
JPH0634213Y2 (en) | 1986-09-09 | 1994-09-07 | 川崎重工業株式会社 | Seated four-wheel buggy-front body of car |
US5366041A (en) | 1991-06-27 | 1994-11-22 | Mazda Motor Corporation | Vehicle control system |
US5401056A (en) | 1994-03-11 | 1995-03-28 | Eastman; Clayton | Modular vehicle constructed of front, rear and center vehicular sections |
US5431429A (en) * | 1992-12-28 | 1995-07-11 | Hyundai Motor Company | Suspension system for vehicle |
US5451188A (en) | 1993-11-30 | 1995-09-19 | Navistar International Transportation Corp. | Driver-controlled differential lock control system |
US5498019A (en) * | 1994-12-15 | 1996-03-12 | Adato; Henri | Suspension system for controlling lateral displacement of a wheel |
US5505267A (en) | 1994-11-14 | 1996-04-09 | Case Corporation | Differential lock control system for agricultural vehicles |
US5575352A (en) | 1994-04-26 | 1996-11-19 | Yamaha Hatsudoki Kabushiki Kaisha | Four-wheeled vehicle |
US5577747A (en) | 1993-10-19 | 1996-11-26 | Honda Giken Kogyo Kabushiki Kaisha | Battery unit cooling system for an electric vehicle |
JPH1035315A (en) | 1996-07-24 | 1998-02-10 | Nissan Diesel Motor Co Ltd | Starting auxiliary equipment of vehicle |
JPH1035314A (en) | 1996-07-24 | 1998-02-10 | Nissan Diesel Motor Co Ltd | Starting auxiliary equipment of vehicle |
US5775455A (en) | 1995-08-30 | 1998-07-07 | Cho; In Hee | Steering mechanism for electric vehicles with an off-center mounted drive wheel |
US5873428A (en) | 1995-12-13 | 1999-02-23 | Yamaha Hatsudoki Kabushiki Kaisha | All wheel drive vehicle |
US5902489A (en) | 1995-11-08 | 1999-05-11 | Hitachi, Ltd. | Particle handling method by acoustic radiation force and apparatus therefore |
US5915727A (en) * | 1996-05-31 | 1999-06-29 | Dana Corporation | Mounting structure for vehicle frame assembly |
US5950748A (en) | 1995-12-26 | 1999-09-14 | Honda Giken Kogyo Kabushiki Kaisha | Crawler-belt vehicle |
US5950478A (en) | 1997-05-29 | 1999-09-14 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Hot tandem rolling mill |
US5980415A (en) | 1995-12-11 | 1999-11-09 | Borg-Warner Automotive, Inc. | Adaptive transfer case with EM clutch and dog clutch for 4WD lock up |
US6016883A (en) | 1996-10-30 | 2000-01-25 | Suzuki Motor Corporation | Two wheel/four wheel drive shifting device including an indicator |
US6038506A (en) | 1996-07-01 | 2000-03-14 | Claas Kgaa | Arrangement for and method of automatically controlling a differential lock in drive axles of a motor vehicle |
US6047988A (en) * | 1998-02-10 | 2000-04-11 | Chrysler Corporation | Rear shock tower casting |
JP2000103246A (en) | 1998-09-29 | 2000-04-11 | Kawasaki Heavy Ind Ltd | Cover structure of belt converter |
US6076624A (en) | 1997-04-28 | 2000-06-20 | Yamaha Hatsudoki Kabushiki Kaisha | Drive layout for offroad vehicle |
US6085138A (en) | 1998-11-12 | 2000-07-04 | Caterpillar Inc. | Differential lock control system |
US6108601A (en) | 1997-04-06 | 2000-08-22 | Wabco Gmbh | Method and apparatus for the synchronization of two rotating parts |
US6155371A (en) | 1997-04-22 | 2000-12-05 | Yamaha Hatsudoki Kabushiki Kaisha | Drive layout for offroad vehicle |
JP3119213B2 (en) | 1997-09-26 | 2000-12-18 | 日本電気株式会社 | Method and apparatus for analyzing impurities in a clean room atmosphere and on a semiconductor substrate surface |
US6170875B1 (en) * | 1999-07-01 | 2001-01-09 | Robert Allen Jones | Wheel suspension attachment assembly |
US6202777B1 (en) | 1999-05-21 | 2001-03-20 | Deere & Company | Engine enclosure with cooling air baffle |
US6269899B1 (en) | 1997-04-28 | 2001-08-07 | Yamaha Hatsudoki Kabushiki Kaisha | Transmission for offroad vehicle |
US6273074B1 (en) | 1999-09-05 | 2001-08-14 | Honda Giken Kogyo Kabushiki Kaisha | Crankcase emission control system |
US20010013440A1 (en) | 1999-03-17 | 2001-08-16 | Kazuhiko Izumi | Selective four wheel drive transmission for all-terrain vehicle |
US20010045312A1 (en) | 2000-03-31 | 2001-11-29 | Eiji Adachi | Motorcycle frame |
US20020000340A1 (en) | 2000-06-28 | 2002-01-03 | Franz Laimbock | Single-track motor vehicle |
US20020027038A1 (en) | 1999-06-23 | 2002-03-07 | Bombardier Inc. | All terrain vehicle |
US6386310B2 (en) | 2000-06-23 | 2002-05-14 | Agco Gmbh & Co. | Steering device, especially for farming tractors and similar commercial vehicles |
US20020063005A1 (en) * | 2000-11-29 | 2002-05-30 | Klais Matthew E. | Upper control arm adjustment system |
US20020070066A1 (en) | 2000-12-07 | 2002-06-13 | Kazuo Nakamura | Differential locking control system |
US6405823B1 (en) | 1999-08-10 | 2002-06-18 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle power unit |
US20020117843A1 (en) | 2000-03-13 | 2002-08-29 | Mihai Rasidescu | Frames for all-terrain vehicles |
US20020125057A1 (en) | 2001-03-07 | 2002-09-12 | Kawasaki Jukogyo Kabushiki Kaisha | Method of controlling selective four-wheel drive transmission system for all-terrain vehicle |
US6454040B1 (en) | 1998-04-13 | 2002-09-24 | Yamaha Hatsudoki Kabushiki Kaisha | Transmission and cooling arrangement for all terrain vehicle |
US20020139598A1 (en) | 2001-03-27 | 2002-10-03 | Akio Miguchi | Four-wheel-drive all terrain vehicle |
US6502659B2 (en) | 2000-06-27 | 2003-01-07 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle front structure |
US6510912B1 (en) | 2000-11-22 | 2003-01-28 | Yamaha Hatsudoki Kabushiki Kaisha | Steering and lubrication system component arrangement for land vehicles |
US6523634B1 (en) | 1997-04-10 | 2003-02-25 | Bombardier Inc. | All terrain vehicle |
US6533060B1 (en) | 1999-02-17 | 2003-03-18 | Yamaha Hatsudoki Kabushiki Kaisha | ATV transmission |
US6557661B1 (en) | 2002-01-15 | 2003-05-06 | New Holland North America, Inc. | Front axle suspension mechanism for utility vehicles |
US6582004B1 (en) | 2002-07-19 | 2003-06-24 | Deere & Company | Pivoting seat assembly |
US6595312B2 (en) | 2000-06-14 | 2003-07-22 | Nissan Motor Co., Ltd. | Engine compartment structure for four-wheel drive vehicle |
US20030146033A1 (en) | 2002-02-04 | 2003-08-07 | Malmstrom Harold Wayne | Apparatus for controlling electrical attachments on ATV'S |
US20030173132A1 (en) | 2000-10-19 | 2003-09-18 | Masakazu Komatsu | Tractor |
US6622806B1 (en) | 1999-04-27 | 2003-09-23 | Yamaha Hatsudoki Kabushiki Kaisha | Air inlet for ATV |
US6626260B2 (en) | 1998-04-09 | 2003-09-30 | Bombardier Inc. | All terrain vehicle |
US6675925B2 (en) | 2002-02-15 | 2004-01-13 | Kubota Corporation | Working vehicle |
US6695083B2 (en) | 2001-03-22 | 2004-02-24 | Suzuki Motor Corporation | Saddle-mounted type four-wheel vehicle |
US6695086B2 (en) | 2000-12-12 | 2004-02-24 | Kawasaki Jukogyo Kabushiki Kaisha | Differential limiting apparatus for all-terrain vehicle |
US6702058B2 (en) * | 2001-06-29 | 2004-03-09 | Suzuki Kabushiki Kaisha | Vehicle body frame structure and manufacturing method of same |
US6729830B2 (en) | 2001-10-12 | 2004-05-04 | Clark Equipment Compnay | Wheeled work machine and frame assembly |
US20040124029A1 (en) | 2002-09-26 | 2004-07-01 | Honda Giken Kogyo Kabushiki Kaisha | Engine mounting structure of low floor type vehicle |
US6767022B1 (en) * | 2001-08-17 | 2004-07-27 | Polaris Industries Inc. | Methods and apparatus for steering an ATV |
US20040195034A1 (en) | 2003-04-02 | 2004-10-07 | Eiji Kato | Transmission for off-road vehicle |
US20040206567A1 (en) | 2003-04-02 | 2004-10-21 | Eiji Kato | Frame arrangement for off-road vehicle |
US20040216942A1 (en) | 2003-04-02 | 2004-11-04 | Norihiko Tanaka | Engine arrangement for off-road vehicle |
US6874590B2 (en) | 2000-08-04 | 2005-04-05 | Bombardier Recreational Products Inc. | Fender structure for an all terrain vehicle |
US20050103553A1 (en) | 2000-09-01 | 2005-05-19 | Brp- Rotax Gmbh & Co. Kg | Component arrangement for an all terrain vehicle |
US20050109554A1 (en) | 2003-09-30 | 2005-05-26 | Honda Motor Co., Ltd. | V-belt type continously variable transmission |
US6902022B2 (en) | 2002-06-13 | 2005-06-07 | Society For Research And Initiatives (Sristi) | Tractor having a convertible front end and variable track width and related methods |
US20050126842A1 (en) | 2003-12-11 | 2005-06-16 | Mihai Rasidescu | Methodology for the design and manufacture of a family of recreational vehicles and the vehicles designed and manufactured according to that methodology |
US20050150706A1 (en) | 2004-01-09 | 2005-07-14 | Honda Motor Co., Ltd. | Fuel injection system and related structure for a four-wheeled saddle-type vehicle |
US6920949B2 (en) | 2001-08-10 | 2005-07-26 | Yamaha Hatsudoki Kabushiki Kaisha | Cooling air system for small vehicle |
US20050230209A1 (en) | 2002-07-20 | 2005-10-20 | Thomas Duignan | Motorcycle transmission shifting mechanism |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US607624A (en) * | 1898-07-19 | Fredrick g |
-
2004
- 2004-03-09 US US10/796,692 patent/US7510199B2/en not_active Expired - Lifetime
Patent Citations (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US483644A (en) | 1892-10-04 | Ingot-manipulator | ||
US957626A (en) | 1908-07-29 | 1910-05-10 | Philip J Rivers | Driving-gear for automobiles. |
GB164051A (en) | 1919-12-04 | 1921-06-04 | Joseph Gladstone Owen | Improvements in or relating to motor vehicles |
US1852464A (en) | 1931-04-09 | 1932-04-05 | Int Motor Co | Movable cab for motor vehicles |
US2053869A (en) | 1932-05-28 | 1936-09-08 | Haltenberger Jules | Independent wheel springing |
US2064100A (en) | 1934-06-16 | 1936-12-15 | Autocar Company | Motor vehicle |
US2145545A (en) | 1936-06-01 | 1939-01-31 | Sterling Electric Motors Inc | Air-cooled variable-speed device |
US2315317A (en) | 1939-08-17 | 1943-03-30 | Renold & Coventry Chain Co | Casing for chain belt and like transmissions |
US2331976A (en) | 1941-09-17 | 1943-10-19 | Amesbury Seat Mfg Co | Motorcycle |
US2751992A (en) * | 1949-07-30 | 1956-06-26 | Daimler Benz Ag | Unit power plant and axle unit suspension in motor vehicles |
AT171825B (en) | 1950-11-07 | 1952-07-10 | Rudolf Schwaiger | Cooling device for cylinders of motorcycle engines |
US2707402A (en) | 1952-03-14 | 1955-05-03 | Chayes Dental Instr Company | Air cooled pulley |
US2792498A (en) * | 1953-08-21 | 1957-05-14 | Rca Corp | Stabilized two-stage oscillators |
US2718409A (en) * | 1953-12-04 | 1955-09-20 | American Motors Corp | Frame structure for wheel support |
US2850852A (en) | 1957-05-31 | 1958-09-09 | Fred C Hofberger | Air cooled pulley for abrasive belt grinders |
US3149856A (en) | 1959-08-17 | 1964-09-22 | Smith Corp A O | Motor vehicle having increased ground clearance level floor space |
US3147814A (en) | 1962-02-26 | 1964-09-08 | Clary Corp | Engine cooling and silencing system |
US3229424A (en) | 1963-05-31 | 1966-01-18 | Joseph J Fielder | Concentric motor and cooling pulley assembly for abraders and the like |
US3419098A (en) | 1966-12-13 | 1968-12-31 | Fred T. Mayers | Three-wheeled automotive vehicle |
US3650344A (en) | 1970-04-06 | 1972-03-21 | John A Plessinger | Recreational vehicle |
US3709314A (en) | 1970-10-16 | 1973-01-09 | Fmc Corp | All terrain vehicle |
US3733918A (en) | 1972-03-09 | 1973-05-22 | Textron Inc | Centrifugal clutch |
US3943785A (en) | 1974-04-26 | 1976-03-16 | Carlisle Corporation | Air cooled belt clutch |
US4249631A (en) | 1978-05-13 | 1981-02-10 | Deere & Company | Axle for motor vehicles |
US4354570A (en) | 1979-09-21 | 1982-10-19 | Honda Giken Kogyo Kabushiki Kaisha | Arrangement of air cleaner for a motorcycle |
US4350124A (en) | 1979-09-29 | 1982-09-21 | Yamaha Hatsudoki Kabushiki Kaisha | Overflow device for vehicular carburetor |
US4496019A (en) | 1981-06-22 | 1985-01-29 | Yamaha Hatsudoki Kabushiki Kaisha | Offroad auto tricycle |
US4497285A (en) | 1981-09-09 | 1985-02-05 | Honda Giken Kogyo Kabushiki Kaisha | Cooling structure for internal combustion engine |
US4531928A (en) | 1981-12-23 | 1985-07-30 | Honda Giken Kogyo Kabushiki Kaisha | Belt transmission having air cooling function |
US4534442A (en) | 1982-06-14 | 1985-08-13 | Bela Botar | Vertically installed engine low floor bus |
US4600074A (en) | 1983-06-07 | 1986-07-15 | Honda Giken Kogyo Kabushiki Kaisha | All wheel drive vehicle |
US4671373A (en) | 1983-11-25 | 1987-06-09 | Robert Bosch Gmbh | Vehicle with lockable differential |
US4597466A (en) | 1984-05-28 | 1986-07-01 | Honda Giken Kogyo Kabushiki Kaisha | Air intake apparatus for vehicle |
JPS6189187U (en) | 1984-11-17 | 1986-06-10 | ||
US4632071A (en) | 1984-12-18 | 1986-12-30 | Honda Giken Kogyo Kabushiki Kaisha | Engine breather device for motor vehicle with riding saddle |
US4744432A (en) | 1985-01-28 | 1988-05-17 | Yamaha Hatsudoki Kabushiki Kaisha | Cooling apparatus for vehicle engine |
US4733639A (en) | 1985-01-29 | 1988-03-29 | Honda Giken Kogyo Kabushiki Kaisha | Air intake system |
US4681185A (en) | 1985-02-16 | 1987-07-21 | Daimler-Benz Aktiengesellschaft | Apparatus for the automatic engagement and disengagement of drive elements of a motor vehicle |
US4697665A (en) | 1985-06-18 | 1987-10-06 | Polaris Industries, Inc. | Recreational vehicle with air cooled transmission |
US4735275A (en) * | 1985-10-07 | 1988-04-05 | Honda Giken Kogyo Kabushiki Kaisha | Body frame for vehicles |
US4650029A (en) | 1985-12-19 | 1987-03-17 | Yamaha Hatsudoki Kabushiki Kaisha | Off-the-road four-wheel drive vehicle |
US5044646A (en) | 1985-12-27 | 1991-09-03 | Honda Giken Kogyo Kabushiki Kaisha | Scooter type vehicle |
US4765434A (en) | 1985-12-27 | 1988-08-23 | Aisin-Warner Kabushiki Kaisha | Control apparatus for four-wheel drive vehicle with center differential mechanism |
US4821685A (en) | 1986-03-14 | 1989-04-18 | Yamaha Hatsudoki Kabushiki Kaisha | Suction device of engine |
US4773675A (en) | 1986-05-06 | 1988-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Supporting frame for a four wheeled buggy operated by a seated driver |
US4751856A (en) | 1986-05-22 | 1988-06-21 | Toyota Jidosha Kabushiki Kaisha | Device for controlling 4wd vehicle central differential restriction device according to vehicle road speed and engine load, and method of operation thereof |
US4798400A (en) | 1986-07-11 | 1989-01-17 | Kawasaki Jukogyo Kabushiki Kaisha | Light-weight and strong vehicle frame for a four wheeled buggy operated by a seated driver |
US4792012A (en) | 1986-07-25 | 1988-12-20 | Toyota Jidosha Kabushiki Kaisha | Anti torque shock control device and method engaging torque transmitting clutch between vehicle wheels when transmission is shifted from non drive range to drive range |
JPH0634213Y2 (en) | 1986-09-09 | 1994-09-07 | 川崎重工業株式会社 | Seated four-wheel buggy-front body of car |
US4817985A (en) | 1986-09-18 | 1989-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Rear suspension for off-road vehicle |
US4895217A (en) | 1986-12-20 | 1990-01-23 | Deere & Company | Drive system for two pairs of wheels |
US4881610A (en) | 1986-12-27 | 1989-11-21 | Kawasaki Jukogyo Kabushiki Kaisha | Guide for hot air from radiator in four wheeled vehicle operated by driver in sitting posture |
US4773661A (en) | 1987-01-09 | 1988-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Front fenders for four wheeled buggy operated by driver in sitting posture |
US4883138A (en) | 1987-04-27 | 1989-11-28 | Mazda Motor Corporation | Four-wheel drive vehicle operating system |
US4815550A (en) | 1987-08-21 | 1989-03-28 | Clark Equipment Company | Engine cooling system for skid steer loaders |
US5005663A (en) | 1987-10-28 | 1991-04-09 | Mazda Motor Corporation | Four-wheel drive vehicle |
US4951964A (en) * | 1988-02-17 | 1990-08-28 | Semiconductor Energy Laboratory Co., Ltd. | Structure for supporting vehicle suspension system |
US4955853A (en) | 1988-03-12 | 1990-09-11 | General Motors Corporation | Differential gear unit for motor vehicle drive axles |
US5054573A (en) | 1988-08-13 | 1991-10-08 | Massey-Ferguson Services N.V. | Vehicle with multiple driven axles |
US5054842A (en) | 1988-09-12 | 1991-10-08 | Honda Giken Kogyo Kabushiki Kaisha | Floor panel for off-road vehicle |
US5071392A (en) | 1988-11-08 | 1991-12-10 | Gkn Automotive Ag | Process and device for controlling locking differentials |
US5125490A (en) | 1989-01-27 | 1992-06-30 | Aisin Seiki K.K. | Center differential lock mechanism controlling device |
US5107952A (en) * | 1989-04-12 | 1992-04-28 | Honda Giken Kogyo Kabushiki Kaisha | Saddle type off-road vehicle |
US5101924A (en) | 1989-07-13 | 1992-04-07 | Honda Giken Kogyo Kabushiki Kaisha | Electric motor driven vehicle and power unit thereof |
US5251713A (en) | 1989-09-20 | 1993-10-12 | Honda Giken Kogyo Kabushiki Kaisha | Four wheel vehicle |
US5195607A (en) | 1989-11-21 | 1993-03-23 | Mazda Motor Corporation | Exhaust system for automotive engine |
US5152365A (en) | 1990-01-12 | 1992-10-06 | Yamaha Hatsudoki Kabushiki Kaisha | Air intake system for small snowmobile |
US5169171A (en) * | 1990-05-25 | 1992-12-08 | Nissan Motor Co., Ltd. | Supporting structure for vehicular suspension |
US5086858A (en) | 1990-08-17 | 1992-02-11 | Kawasaki Jukogyo Kabushiki Kaisha | Air intake system for utility vehicle |
US5327989A (en) | 1991-03-20 | 1994-07-12 | Honda Giken Kogyo Kabushiki Kaisha | Four-wheeled buggy |
US5366041A (en) | 1991-06-27 | 1994-11-22 | Mazda Motor Corporation | Vehicle control system |
US5314378A (en) | 1991-08-27 | 1994-05-24 | Mitsubishi Denki Kabushiki Kaisha | Rear differential gear lock controller with automatic unlock control means |
US5257672A (en) | 1991-08-27 | 1993-11-02 | Mitsubishi Denki K.K. | Rear differential gear lock controller including diagnostic system for determining vehicle speed sensor failure |
US5431429A (en) * | 1992-12-28 | 1995-07-11 | Hyundai Motor Company | Suspension system for vehicle |
US5577747A (en) | 1993-10-19 | 1996-11-26 | Honda Giken Kogyo Kabushiki Kaisha | Battery unit cooling system for an electric vehicle |
US5451188A (en) | 1993-11-30 | 1995-09-19 | Navistar International Transportation Corp. | Driver-controlled differential lock control system |
US5401056A (en) | 1994-03-11 | 1995-03-28 | Eastman; Clayton | Modular vehicle constructed of front, rear and center vehicular sections |
US5575352A (en) | 1994-04-26 | 1996-11-19 | Yamaha Hatsudoki Kabushiki Kaisha | Four-wheeled vehicle |
US5505267A (en) | 1994-11-14 | 1996-04-09 | Case Corporation | Differential lock control system for agricultural vehicles |
US5498019A (en) * | 1994-12-15 | 1996-03-12 | Adato; Henri | Suspension system for controlling lateral displacement of a wheel |
US5775455A (en) | 1995-08-30 | 1998-07-07 | Cho; In Hee | Steering mechanism for electric vehicles with an off-center mounted drive wheel |
US5902489A (en) | 1995-11-08 | 1999-05-11 | Hitachi, Ltd. | Particle handling method by acoustic radiation force and apparatus therefore |
US5980415A (en) | 1995-12-11 | 1999-11-09 | Borg-Warner Automotive, Inc. | Adaptive transfer case with EM clutch and dog clutch for 4WD lock up |
US6105702A (en) | 1995-12-11 | 2000-08-22 | Borgwarner Inc. | Adaptive vehicle drive method for extreme operating conditions |
US5873428A (en) | 1995-12-13 | 1999-02-23 | Yamaha Hatsudoki Kabushiki Kaisha | All wheel drive vehicle |
US5950748A (en) | 1995-12-26 | 1999-09-14 | Honda Giken Kogyo Kabushiki Kaisha | Crawler-belt vehicle |
US5915727A (en) * | 1996-05-31 | 1999-06-29 | Dana Corporation | Mounting structure for vehicle frame assembly |
US6038506A (en) | 1996-07-01 | 2000-03-14 | Claas Kgaa | Arrangement for and method of automatically controlling a differential lock in drive axles of a motor vehicle |
JPH1035314A (en) | 1996-07-24 | 1998-02-10 | Nissan Diesel Motor Co Ltd | Starting auxiliary equipment of vehicle |
JPH1035315A (en) | 1996-07-24 | 1998-02-10 | Nissan Diesel Motor Co Ltd | Starting auxiliary equipment of vehicle |
US6016883A (en) | 1996-10-30 | 2000-01-25 | Suzuki Motor Corporation | Two wheel/four wheel drive shifting device including an indicator |
US6108601A (en) | 1997-04-06 | 2000-08-22 | Wabco Gmbh | Method and apparatus for the synchronization of two rotating parts |
US6732830B2 (en) | 1997-04-10 | 2004-05-11 | Bombardier Recreational Products Inc. | All terrain vehicle |
US6523634B1 (en) | 1997-04-10 | 2003-02-25 | Bombardier Inc. | All terrain vehicle |
US6155371A (en) | 1997-04-22 | 2000-12-05 | Yamaha Hatsudoki Kabushiki Kaisha | Drive layout for offroad vehicle |
US6076624A (en) | 1997-04-28 | 2000-06-20 | Yamaha Hatsudoki Kabushiki Kaisha | Drive layout for offroad vehicle |
US6269899B1 (en) | 1997-04-28 | 2001-08-07 | Yamaha Hatsudoki Kabushiki Kaisha | Transmission for offroad vehicle |
US5950478A (en) | 1997-05-29 | 1999-09-14 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Hot tandem rolling mill |
JP3119213B2 (en) | 1997-09-26 | 2000-12-18 | 日本電気株式会社 | Method and apparatus for analyzing impurities in a clean room atmosphere and on a semiconductor substrate surface |
US6047988A (en) * | 1998-02-10 | 2000-04-11 | Chrysler Corporation | Rear shock tower casting |
US6626260B2 (en) | 1998-04-09 | 2003-09-30 | Bombardier Inc. | All terrain vehicle |
US6454040B1 (en) | 1998-04-13 | 2002-09-24 | Yamaha Hatsudoki Kabushiki Kaisha | Transmission and cooling arrangement for all terrain vehicle |
JP2000103246A (en) | 1998-09-29 | 2000-04-11 | Kawasaki Heavy Ind Ltd | Cover structure of belt converter |
US6085138A (en) | 1998-11-12 | 2000-07-04 | Caterpillar Inc. | Differential lock control system |
US6533060B1 (en) | 1999-02-17 | 2003-03-18 | Yamaha Hatsudoki Kabushiki Kaisha | ATV transmission |
US20010013440A1 (en) | 1999-03-17 | 2001-08-16 | Kazuhiko Izumi | Selective four wheel drive transmission for all-terrain vehicle |
US6622806B1 (en) | 1999-04-27 | 2003-09-23 | Yamaha Hatsudoki Kabushiki Kaisha | Air inlet for ATV |
US6202777B1 (en) | 1999-05-21 | 2001-03-20 | Deere & Company | Engine enclosure with cooling air baffle |
US6691815B2 (en) | 1999-06-23 | 2004-02-17 | Bombardier Inc. | Parking gear assembly for an all terrain vehicle |
US20020027038A1 (en) | 1999-06-23 | 2002-03-07 | Bombardier Inc. | All terrain vehicle |
US6648093B2 (en) | 1999-06-23 | 2003-11-18 | Bombardier Inc. | Engine mounting structure for all terrain vehicle |
US6170875B1 (en) * | 1999-07-01 | 2001-01-09 | Robert Allen Jones | Wheel suspension attachment assembly |
US6405823B1 (en) | 1999-08-10 | 2002-06-18 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle power unit |
US6273074B1 (en) | 1999-09-05 | 2001-08-14 | Honda Giken Kogyo Kabushiki Kaisha | Crankcase emission control system |
US20020117843A1 (en) | 2000-03-13 | 2002-08-29 | Mihai Rasidescu | Frames for all-terrain vehicles |
US20010045312A1 (en) | 2000-03-31 | 2001-11-29 | Eiji Adachi | Motorcycle frame |
US6595312B2 (en) | 2000-06-14 | 2003-07-22 | Nissan Motor Co., Ltd. | Engine compartment structure for four-wheel drive vehicle |
US6386310B2 (en) | 2000-06-23 | 2002-05-14 | Agco Gmbh & Co. | Steering device, especially for farming tractors and similar commercial vehicles |
US6502659B2 (en) | 2000-06-27 | 2003-01-07 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle front structure |
US20020000340A1 (en) | 2000-06-28 | 2002-01-03 | Franz Laimbock | Single-track motor vehicle |
US6547023B2 (en) | 2000-06-28 | 2003-04-15 | Avl List Gmbh | Single-track motor vehicle |
US6874590B2 (en) | 2000-08-04 | 2005-04-05 | Bombardier Recreational Products Inc. | Fender structure for an all terrain vehicle |
US6896087B2 (en) | 2000-09-01 | 2005-05-24 | Brp-Rotax Gmbh & Co. Kg | Component arrangement for an all terrain vehicle |
US20050103553A1 (en) | 2000-09-01 | 2005-05-19 | Brp- Rotax Gmbh & Co. Kg | Component arrangement for an all terrain vehicle |
US20030173132A1 (en) | 2000-10-19 | 2003-09-18 | Masakazu Komatsu | Tractor |
US6510912B1 (en) | 2000-11-22 | 2003-01-28 | Yamaha Hatsudoki Kabushiki Kaisha | Steering and lubrication system component arrangement for land vehicles |
US20020063005A1 (en) * | 2000-11-29 | 2002-05-30 | Klais Matthew E. | Upper control arm adjustment system |
US20020070066A1 (en) | 2000-12-07 | 2002-06-13 | Kazuo Nakamura | Differential locking control system |
US6695086B2 (en) | 2000-12-12 | 2004-02-24 | Kawasaki Jukogyo Kabushiki Kaisha | Differential limiting apparatus for all-terrain vehicle |
US20020125057A1 (en) | 2001-03-07 | 2002-09-12 | Kawasaki Jukogyo Kabushiki Kaisha | Method of controlling selective four-wheel drive transmission system for all-terrain vehicle |
US6695083B2 (en) | 2001-03-22 | 2004-02-24 | Suzuki Motor Corporation | Saddle-mounted type four-wheel vehicle |
US20020139598A1 (en) | 2001-03-27 | 2002-10-03 | Akio Miguchi | Four-wheel-drive all terrain vehicle |
US6702058B2 (en) * | 2001-06-29 | 2004-03-09 | Suzuki Kabushiki Kaisha | Vehicle body frame structure and manufacturing method of same |
US6920949B2 (en) | 2001-08-10 | 2005-07-26 | Yamaha Hatsudoki Kabushiki Kaisha | Cooling air system for small vehicle |
US6767022B1 (en) * | 2001-08-17 | 2004-07-27 | Polaris Industries Inc. | Methods and apparatus for steering an ATV |
US6729830B2 (en) | 2001-10-12 | 2004-05-04 | Clark Equipment Compnay | Wheeled work machine and frame assembly |
US6557661B1 (en) | 2002-01-15 | 2003-05-06 | New Holland North America, Inc. | Front axle suspension mechanism for utility vehicles |
US20030146033A1 (en) | 2002-02-04 | 2003-08-07 | Malmstrom Harold Wayne | Apparatus for controlling electrical attachments on ATV'S |
US6675925B2 (en) | 2002-02-15 | 2004-01-13 | Kubota Corporation | Working vehicle |
US6902022B2 (en) | 2002-06-13 | 2005-06-07 | Society For Research And Initiatives (Sristi) | Tractor having a convertible front end and variable track width and related methods |
US6582004B1 (en) | 2002-07-19 | 2003-06-24 | Deere & Company | Pivoting seat assembly |
US20050230209A1 (en) | 2002-07-20 | 2005-10-20 | Thomas Duignan | Motorcycle transmission shifting mechanism |
US20040124029A1 (en) | 2002-09-26 | 2004-07-01 | Honda Giken Kogyo Kabushiki Kaisha | Engine mounting structure of low floor type vehicle |
US20040206567A1 (en) | 2003-04-02 | 2004-10-21 | Eiji Kato | Frame arrangement for off-road vehicle |
US20040216942A1 (en) | 2003-04-02 | 2004-11-04 | Norihiko Tanaka | Engine arrangement for off-road vehicle |
US20040195034A1 (en) | 2003-04-02 | 2004-10-07 | Eiji Kato | Transmission for off-road vehicle |
US7147075B2 (en) | 2003-04-02 | 2006-12-12 | Yamaha Hatsudoki Kabushiki Kaisha | Engine arrangement for off-road vehicle |
US20050109554A1 (en) | 2003-09-30 | 2005-05-26 | Honda Motor Co., Ltd. | V-belt type continously variable transmission |
US20050126842A1 (en) | 2003-12-11 | 2005-06-16 | Mihai Rasidescu | Methodology for the design and manufacture of a family of recreational vehicles and the vehicles designed and manufactured according to that methodology |
US20050150706A1 (en) | 2004-01-09 | 2005-07-14 | Honda Motor Co., Ltd. | Fuel injection system and related structure for a four-wheeled saddle-type vehicle |
Non-Patent Citations (3)
Title |
---|
ATV 1998 Yamaha Catalogue, Information about Breeze, 8 pages. |
ATV 1998 Yamaha Catalogue, Information about Grizzly 4WD; 8 pages. |
For sale ad of a Meyers Manx dune buggy including multiple photos, http://www.oldbug.com/manx.htm, published on or before Jul. 25, 2007-with the vehicle shown being in public use in 1968 or before. |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080100098A1 (en) * | 2004-09-30 | 2008-05-01 | Honda Motor Co., Ltd. | Vehicle floor structure and vehicle body frame structure |
US8047557B2 (en) * | 2004-09-30 | 2011-11-01 | Honda Motor Co., Ltd. | Vehicle body frame structure |
US20080023249A1 (en) * | 2006-07-28 | 2008-01-31 | Richard Larry Sunsdahl | Side-by-side ATV |
US7819220B2 (en) * | 2006-07-28 | 2010-10-26 | Polaris Industries Inc. | Side-by-side ATV |
US20110048828A1 (en) * | 2006-07-28 | 2011-03-03 | Polaris Industries Inc. | Side-by-side ATV |
US8596405B2 (en) | 2006-07-28 | 2013-12-03 | Polaris Industries Inc. | Side-by-side ATV |
US12012000B2 (en) | 2006-07-28 | 2024-06-18 | Polaris Industries Inc. | Side-by-side ATV |
US20100078911A1 (en) * | 2007-03-29 | 2010-04-01 | Nissan Motor Co., Ltd. | Multi-link suspension device and method for suspending wheels |
US8056912B2 (en) * | 2007-03-29 | 2011-11-15 | Nissan Motor Co., Ltd. | Multi-link suspension device and method for suspending wheels |
US11623487B2 (en) * | 2007-05-16 | 2023-04-11 | Polaris Industries Inc. | All terrain vehicle |
US20090014976A1 (en) * | 2007-07-13 | 2009-01-15 | Yamaha Hatsudoki Kabushiki Kaisha | All terrain vehicle with double wishbone suspension |
US7896371B2 (en) * | 2007-07-13 | 2011-03-01 | Yamaha Hatsudoki Kabushiki Kaisha | All terrain vehicle with double wishbone suspension |
US20100019538A1 (en) * | 2008-07-24 | 2010-01-28 | Kiley Matthew P | Modular Architecture for Combat Tactical Vehicle |
US20110175398A1 (en) * | 2008-07-24 | 2011-07-21 | Alcoa Inc. | Modular architecture for combat tactical vehicle |
US7905540B2 (en) * | 2008-07-24 | 2011-03-15 | Alcoa Inc. | Modular architecture for combat tactical vehicle |
US20120193163A1 (en) * | 2011-02-01 | 2012-08-02 | Polaris Industries Inc. | All terrain vehicle |
US9102205B2 (en) * | 2011-02-01 | 2015-08-11 | Polaris Industries Inc. | All terrain vehicle |
US10160497B2 (en) * | 2011-02-01 | 2018-12-25 | Polaris Industries Inc. | All terrain vehicle |
US20120223500A1 (en) * | 2011-02-11 | 2012-09-06 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US11912337B2 (en) * | 2011-02-11 | 2024-02-27 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US20170253273A1 (en) * | 2011-02-11 | 2017-09-07 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US20220033004A1 (en) * | 2011-02-11 | 2022-02-03 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US11104384B2 (en) | 2011-02-11 | 2021-08-31 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US10450006B2 (en) * | 2011-02-11 | 2019-10-22 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US9650078B2 (en) * | 2011-02-11 | 2017-05-16 | Polaris Industries Inc. | Side-by-side all terrain vehicle |
US20140167399A1 (en) * | 2012-08-23 | 2014-06-19 | John K. Koberstein | Hybrid Vehicle and Conversion Kit |
US9187128B2 (en) * | 2012-08-23 | 2015-11-17 | John K. Koberstein | Hybrid vehicle and conversion kit |
US8801015B2 (en) | 2012-08-31 | 2014-08-12 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle |
US12017702B2 (en) | 2013-03-15 | 2024-06-25 | Polaris Industries Inc. | Utility vehicle |
US20170029035A1 (en) * | 2014-01-31 | 2017-02-02 | Bombardier Recreational Products Inc. | Off-road wheeled side-by-side vehicle |
US9932073B2 (en) * | 2014-01-31 | 2018-04-03 | Bombardier Recreational Products Inc. | Off-road wheeled side-by-side vehicle |
US10207555B2 (en) | 2014-01-31 | 2019-02-19 | Bombardier Recreational Products Inc. | Off-road wheeled side-by-side vehicle |
USD761713S1 (en) | 2014-07-24 | 2016-07-19 | Hendrick Motorsports Performance Group, LLC | Vehicle roll cage structure |
USD783503S1 (en) | 2014-07-24 | 2017-04-11 | Hendrick Motorsports Performance Group, LLC | Vehicle roll cage structure |
USD783502S1 (en) | 2014-07-24 | 2017-04-11 | Hendrick Motorsports Performance Group, LLC | Vehicle roll cage structure |
US20200139811A1 (en) * | 2015-08-23 | 2020-05-07 | Arctic Cat Inc. | Off road vehicle |
US11787279B2 (en) | 2015-08-23 | 2023-10-17 | Arctic Cat Inc. | Off-road recreational vehicle |
US11766932B2 (en) | 2015-08-23 | 2023-09-26 | Arctic Cat Inc. | Off road vehicle |
USD788653S1 (en) | 2015-10-05 | 2017-06-06 | Mike Smith | Boxed suspension arm |
US9446640B1 (en) | 2015-10-05 | 2016-09-20 | Mike Smith | Box A-frame suspension arm |
US10569819B2 (en) | 2016-07-08 | 2020-02-25 | Polaris Industries Inc. | All-terrain vehicle |
US11945540B2 (en) | 2016-07-08 | 2024-04-02 | Polaris Industries Inc. | All-terrain vehicle |
US12208706B2 (en) | 2016-12-22 | 2025-01-28 | Polaris Industries Inc. | Vehicle |
US11173808B2 (en) | 2016-12-22 | 2021-11-16 | Polaris Industies Inc. | Vehicle |
USD835545S1 (en) | 2017-02-17 | 2018-12-11 | Polaris Industries Inc. | Off-road vehicle |
US11926365B2 (en) | 2017-03-21 | 2024-03-12 | Arctic Cat Inc. | Cab and fasteners for vehicle cab |
US12240319B2 (en) * | 2017-03-21 | 2025-03-04 | Arctic Cat Inc. | Off-road utility vehicle |
US20210323400A1 (en) * | 2017-03-21 | 2021-10-21 | Arctic Cat Inc. | Off-road utility vehicle |
US20230398863A1 (en) * | 2017-03-21 | 2023-12-14 | Arctic Cat Inc. | Off-road utility vehicle |
US10661624B2 (en) * | 2017-09-04 | 2020-05-26 | Mazda Motor Corporation | Suspension device for vehicle |
US11028883B2 (en) | 2017-11-13 | 2021-06-08 | Arctic Cat Inc. | Off-road recreational vehicle |
US12117048B2 (en) | 2017-11-13 | 2024-10-15 | Arctic Cat Inc. | Off-road recreational vehicle |
US11802593B2 (en) | 2017-11-13 | 2023-10-31 | Arctic Cat Inc. | Off-road recreational vehicle |
US10532772B2 (en) | 2018-01-22 | 2020-01-14 | Honda Motor Co., Ltd. | Mounting assembly for a suspension and wheel assembly of a vehicle, and vehicle including same |
US11124057B2 (en) * | 2018-02-20 | 2021-09-21 | The United States Of America, As Represented By The Secretary Of The Navy | Hyper-compact electric all-terrain vehicle drivetrain and conversion kit |
US10689029B2 (en) * | 2018-04-12 | 2020-06-23 | Cnh Industrial America Llc | Four-wheel steering with front/rear matching geometries |
US12172518B2 (en) | 2019-04-30 | 2024-12-24 | Polaris Industries Inc. | Vehicle |
US11712925B2 (en) | 2019-07-01 | 2023-08-01 | Textron Inc. | Axial plunging half-shaft assembly |
US12208644B2 (en) | 2019-07-01 | 2025-01-28 | Textron Inc. | Axial plunging half-shaft assembly |
US11465496B2 (en) * | 2019-08-29 | 2022-10-11 | Kawasaki Motors, Ltd. | Power unit of utility vehicle |
US12187127B2 (en) | 2020-05-15 | 2025-01-07 | Polaris Industries Inc. | Off-road vehicle |
USD1067123S1 (en) | 2023-01-20 | 2025-03-18 | Polaris Industries Inc. | Off-road vehicle |
Also Published As
Publication number | Publication date |
---|---|
US20040195797A1 (en) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7510199B2 (en) | Off-road vehicle with wheel suspension | |
US7650959B2 (en) | Frame arrangement for off-road vehicle | |
US7147075B2 (en) | Engine arrangement for off-road vehicle | |
US7287619B2 (en) | Air intake system for off-road vehicle | |
US7367417B2 (en) | Floor arrangement for off-road vehicle | |
US11241927B2 (en) | Rear suspension assembly for an off-road vehicle | |
US7506712B2 (en) | Off road vehicle with air intake system | |
US7690472B2 (en) | Transmission for off-road vehicle | |
US20230339316A1 (en) | Side-by-side vehicle | |
CA2657101C (en) | Front wheel suspension structure for saddle-type vehicle, and vehicle incorporating same | |
US7357211B2 (en) | Steering system for off-road vehicle | |
CN103249578B (en) | Side-by-side vehicle | |
CN109843612B (en) | Rear suspension assembly for an off-road vehicle | |
US20100108427A1 (en) | Snowmobile Exhaust System | |
US20030029664A1 (en) | Drive belt cooling system for small vehicle | |
US6581716B1 (en) | All terrain vehicle with rear-facing rear arm bracket | |
US20040195028A1 (en) | Drive system for off-road vehicle | |
CN102039968B (en) | Bestriding wheel-type tricycle and frame thereof | |
CN101472787B (en) | Riding/striding type wheeled vehicle and frame thereof | |
KR100804372B1 (en) | Low floor vehicle | |
RU2780350C1 (en) | Rear suspension assembly for off-road vehicle | |
RU2780259C2 (en) | Rear suspension assembly for off-road vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: YAMAHA MOTOR MANUFACTURING CORPORATION OF AMERICA, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, COLBY;KATO, EIJI;REEL/FRAME:015087/0873 Effective date: 20040302 Owner name: YAMAHA HATSUDOKI KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, COLBY;KATO, EIJI;REEL/FRAME:015087/0873 Effective date: 20040302 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |