US7309457B2 - Chain inorganic oxide fine particle groups - Google Patents
Chain inorganic oxide fine particle groups Download PDFInfo
- Publication number
- US7309457B2 US7309457B2 US10/981,845 US98184504A US7309457B2 US 7309457 B2 US7309457 B2 US 7309457B2 US 98184504 A US98184504 A US 98184504A US 7309457 B2 US7309457 B2 US 7309457B2
- Authority
- US
- United States
- Prior art keywords
- hard coating
- coating film
- film
- particles
- oxide fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 282
- 229910052809 inorganic oxide Inorganic materials 0.000 title claims abstract description 120
- 239000002245 particle Substances 0.000 claims abstract description 249
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 claims description 64
- 239000011248 coating agent Substances 0.000 abstract description 460
- 238000000576 coating method Methods 0.000 abstract description 459
- 239000006185 dispersion Substances 0.000 abstract description 187
- 239000000758 substrate Substances 0.000 abstract description 177
- 229910000410 antimony oxide Inorganic materials 0.000 abstract description 159
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 abstract description 159
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 127
- 239000011159 matrix material Substances 0.000 abstract description 41
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 abstract description 33
- 239000003513 alkali Substances 0.000 abstract description 32
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 32
- 238000000034 method Methods 0.000 abstract description 31
- 239000007864 aqueous solution Substances 0.000 abstract description 29
- 239000003729 cation exchange resin Substances 0.000 abstract description 25
- 239000003957 anion exchange resin Substances 0.000 abstract description 23
- AQTIRDJOWSATJB-UHFFFAOYSA-K antimonic acid Chemical compound O[Sb](O)(O)=O AQTIRDJOWSATJB-UHFFFAOYSA-K 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 13
- 239000002585 base Substances 0.000 abstract description 10
- 239000007788 liquid Substances 0.000 description 129
- 229920005989 resin Polymers 0.000 description 107
- 239000011347 resin Substances 0.000 description 107
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 80
- 238000002360 preparation method Methods 0.000 description 70
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 63
- 239000000377 silicon dioxide Substances 0.000 description 57
- 238000001723 curing Methods 0.000 description 56
- 239000000126 substance Substances 0.000 description 56
- 239000000243 solution Substances 0.000 description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 46
- 239000007787 solid Substances 0.000 description 39
- 229920005862 polyol Polymers 0.000 description 36
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 33
- 150000003077 polyols Chemical class 0.000 description 32
- 238000002834 transmittance Methods 0.000 description 32
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 30
- 229920000139 polyethylene terephthalate Polymers 0.000 description 30
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- 229910052681 coesite Inorganic materials 0.000 description 26
- 229910052906 cristobalite Inorganic materials 0.000 description 26
- 230000000694 effects Effects 0.000 description 26
- 229910052682 stishovite Inorganic materials 0.000 description 26
- 229910052905 tridymite Inorganic materials 0.000 description 26
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 25
- 239000003960 organic solvent Substances 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 21
- 150000003961 organosilicon compounds Chemical class 0.000 description 21
- 239000011164 primary particle Substances 0.000 description 21
- 239000002904 solvent Substances 0.000 description 20
- 238000002242 deionisation method Methods 0.000 description 19
- 229920001187 thermosetting polymer Polymers 0.000 description 19
- 229910044991 metal oxide Inorganic materials 0.000 description 18
- 150000004706 metal oxides Chemical class 0.000 description 18
- 229920002284 Cellulose triacetate Polymers 0.000 description 16
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 16
- 239000007795 chemical reaction product Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000725 suspension Substances 0.000 description 16
- 238000003848 UV Light-Curing Methods 0.000 description 15
- 239000002612 dispersion medium Substances 0.000 description 15
- -1 acrylic polyol Chemical class 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229920000178 Acrylic resin Polymers 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 11
- 230000032683 aging Effects 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910052593 corundum Inorganic materials 0.000 description 9
- 229910001845 yogo sapphire Inorganic materials 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000003456 ion exchange resin Substances 0.000 description 8
- 229920003303 ion-exchange polymer Polymers 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000002708 enhancing effect Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000007865 diluting Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 229910009257 Y—Si Inorganic materials 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000010335 hydrothermal treatment Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000005395 methacrylic acid group Chemical group 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 2
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- HNJCRKROKIPREU-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F HNJCRKROKIPREU-UHFFFAOYSA-N 0.000 description 1
- AWYWDJFMYLZUSV-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7,8,8,11,11,11-heptadecafluoroundecoxy-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F AWYWDJFMYLZUSV-UHFFFAOYSA-N 0.000 description 1
- BKFWFRSRBQVATN-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7,8,8,11,11,11-heptadecafluoroundecoxy-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F BKFWFRSRBQVATN-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N Acetoacetic acid Natural products CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910020826 NaAlF6 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- OSXYHAQZDCICNX-UHFFFAOYSA-N dichloro(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Cl)(Cl)C1=CC=CC=C1 OSXYHAQZDCICNX-UHFFFAOYSA-N 0.000 description 1
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- DIJRHOZMLZRNLM-UHFFFAOYSA-N dimethoxy-methyl-(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](C)(OC)CCC(F)(F)F DIJRHOZMLZRNLM-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- 239000005048 methyldichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 229910003438 thallium oxide Inorganic materials 0.000 description 1
- JNEGECSXOURYNI-UHFFFAOYSA-N trichloro(1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl)silane Chemical compound FC(F)(F)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[Si](Cl)(Cl)Cl JNEGECSXOURYNI-UHFFFAOYSA-N 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical group CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- AAPLIUHOKVUFCC-UHFFFAOYSA-N trimethylsilanol Chemical compound C[Si](C)(C)O AAPLIUHOKVUFCC-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/004—Oxides; Hydroxides; Oxyacids
- C01G30/005—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/20—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/146—After-treatment of sols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/26—Aluminium-containing silicates, i.e. silico-aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06513—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
- H01C17/06533—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Definitions
- the present invention relates to chain inorganic oxide fine particle groups, a process for preparing a dispersion of the fine particle groups, and uses of the fine particle groups.
- the invention relates to chain antimony-oxide fine particle groups comprising antimony oxide fine particles (colloids) which have an extremely small average particle diameter and an extremely narrow particle diameter distribution and are connected in the form of a chain, and uses of the fine particle groups.
- the present invention also relates to a substrate with a hard coating film, which comprises a substrate and a film (hard coating film) formed on a surface of the substrate, said film comprising a matrix component and inorganic oxide particle groups in each of which inorganic oxide fine particles of 2 to 30 on the average are connected in the form of a chain.
- Antimony oxide fine particles are used as flame retardants for plastics, fabrics, fibers and the like, coating agents for plastics and glasses, and materials of transparent films having antistatic properties, electromagnetic wave screening function or the like, and they are also known to have electrical conductivity.
- processes for preparing an antimony oxide sol containing such antimony oxide fine particles various processes are already known.
- a process for preparing a colloidal sol of Sb 2 O 3 having particle diameters of 2 to 100 nm comprising allowing Sb 2 O 3 to react with KOH and H 2 O 2 in a molar ratio of about 1:2.1:2 (Sb 2 O 3 :KOH:H 2 O 2 ) to form potassium antimonate and then performing deionization.
- a stable antimony pentaoxide sol of high concentration and low viscosity is obtained by a process comprising allowing alkali antimonate to react with a monovalent or divalent inorganic acid in a stoichiometric amount of 0.7 to 5 times to form an antimony pentaoxide gel, then separating the gel, washing the gel with water and peptizing the gel by an organic base such as amine.
- an antimony pentaoxide gel comprising peptizing an antimony pentaoxide sol obtained by the reaction of alkali antimonate with a monovalent or divalent inorganic acid, if phosphoric acid is added in the reaction stage and/or the peptization stage so that the P 2 O 5 /Sb 2 O 3 wt % should become 0.2 to 5%, an antimony pentaoxide sol having excellent stability is obtained in the formation of an organosol by solvent replacement with an organic solvent.
- an antimony pentaoxide sol in which an antimony pentaoxide sol wherein surfaces of colloidal particles having properties that they are not aggregated even if an organic solvent is added are coated with a trivalent and/or tetravalent metal is prepared by mixing an antimony pentaoxide sol with an aqueous solution of at least one basic salt of a trivalent metal and/or a tetravalent metal in a given mixing ratio.
- an antimony oxide sol containing fine particles and having a homogeneous particle diameter distribution is obtained by setting a molar ratio between antimony trioxide, an alkali substance and hydrogen peroxide to 1:2.0-2.5:0.8-1.5 and adding hydrogen peroxide to the system containing antimony trioxide and an alkali substance at a rate of 0.2 mol/hr based on 1 mol of the antimony trioxide in the preparation of an antimony sol by the reaction of antimony trioxide with an alkali substance and hydrogen peroxide.
- the antimony oxide fine particles obtained by the conventional processes are dispersed in a monodisperse state, and therefore, when they are used for a transparent film requiring antistatic properties, the resulting film shows insufficient antistatic properties depending upon the purpose, and adhesion of dirt or dust cannot be prevented in some cases.
- increasing the amount of the antimony oxide fine particles added or increasing the film thickness has been made, but in such a case, there is a problem of lowering of film strength and transparency or deterioration of economical efficiency.
- a hard coating film is formed on a surface of a substrate such as glass, plastic sheet or plastic lens in order to enhance scratch resistance of the substrate surface.
- a substrate such as glass, plastic sheet or plastic lens
- resin particles or inorganic particles such as silica are added to further enhance the scratch resistance.
- an anti-reflection film is formed on a surface of a substrate such as glass, plastic sheet or plastic lens to prevent reflection of the substrate surface.
- a film of a low-refractive index material such as a fluororesin or magnesium fluoride, is formed on a surface of a glass substrate or a plastic substrate by means of coating, deposition or CVD method, or an anti-reflection film is formed by coating a substrate surface with a coating liquid containing low-refractive index fine particles such as silica fine particles.
- a coating liquid containing low-refractive index fine particles such as silica fine particles.
- an anti-reflection substrate is prepared by the use of a sol wherein composite oxide colloidal particles consisting of silica and another inorganic oxide are dispersed. Further, formation of a conductive film containing metal fine particles or conductive oxide fine particles is carried out in order to impart antistatic properties and electromagnetic wave screening properties to the substrate.
- a hard coating film is formed between the substrate and the anti-reflection film and/or the conductive film in order to enhance the scratch resistance.
- the present inventors have found that when the inorganic oxide fine particle groups are antimony oxide fine particle groups, the resulting transparent film exhibits excellent transparency and excellent antistatic properties, and even when they are other inorganic oxide fine particle groups, a film (hard coating film) having excellent adhesion to a substrate and excellent scratch resistance can be obtained by adding the inorganic oxide fine particle groups to the film, particularly to the hard coating film.
- the present invention is as follows.
- a chain inorganic oxide fine particle group comprising inorganic oxide fine particles which have an average particle diameter of 4 to 200 nm, are connected in the form of a chain and have an average connection number of 2 to 30.
- the chain inorganic oxide fine particle group as stated in (1) comprising antimony oxide fine particles which have an average particle diameter of 5 to 50 nm and are connected in the form of a chain.
- a process for preparing a chain antimony oxide fine particle group dispersion comprising:
- the substrate with a film according to the present invention is obtained by forming a film, which comprises the above-mentioned chain inorganic oxide fine particle group and a matrix component, singly or together with another film on a surface of a substrate, and is specifically as follows.
- a substrate with a film comprising a substrate and a film formed on a surface of the substrate, said film comprising a chain inorganic oxide fine particle group comprising inorganic oxide fine particles which have an average particle diameter of 4 to 200 nm, are connected in the form of a chain and have an average connection number of 2 to 30, and a matrix component.
- polyol is at least one polyol selected from polyether polyol, acrylic polyol and urethane polyol.
- the chain inorganic oxide fine particle group of the invention comprises inorganic oxide fine particles (primary particles) which have an average particle diameter of 4 to 200 nm, are connected in the form of a chain and have an average connection number (i.e., average number of the connected fine particles) of 2 to 30.
- the inorganic oxide is not specifically restricted, antimony oxide, silica, alumina or silica-alumina is preferable from the viewpoint of ease of forming the chain fine particle group.
- a chain antimony oxide fine particle group and a silica-alumina type inorganic oxide fine particle group are described in detail.
- the chain antimony oxide fine particle group is used for forming a film for the purpose of imparting anti-reflection properties, antistatic properties or hardness properties.
- the antimony oxide fine particles to constitute the fine particle group have an average primary particle diameters of 5 to 50 nm, preferably 10 to 40 nm.
- the antimony oxide may be antimony trioxide or antimony pentaoxide.
- the antimony pentaoxide usually has electrical conductivity.
- the antimony oxide may be one doped with indium oxide, tin oxide or the like.
- the average particle diameter of the antimony oxide fine particles is less than 5 nm, the antimony oxide fine particles are liable to be aggregated, and it becomes difficult to obtain chain antimony oxide fine particles. If the average particle diameter of the antimony oxide fine particles exceeds 50 nm, it becomes difficult to obtain long-chain antimony oxide fine particles, and even if they are obtained, lowering of transparency or deterioration of haze sometimes takes place when they are used for a substrate with a transparent film.
- the chain antimony oxide fine particles for use in the invention are those in which 2 to 30, preferably 5 to 30, on the average, of the above-mentioned antimony oxide fine particles are connected in the form of a chain.
- the antimony oxide fine particles are substantially the same as monodisperse particles, and the later-described volume resistance value becomes large. Therefore, if such fine particles are used in a transparent film, a sufficient antistatic effect is not obtained in some cases.
- the average connection number of the antimony oxide fine particles exceeds 30, it is difficult to obtain a chain fine particle group, and such fine particles are liable to form an aggregate without forming a chain fine particle group. Even if a chain fine particle group is obtained, the group is too long and is tangled with other groups. Therefore, the effect of lowering volume resistance value is sometimes decreased.
- connection number of the antimony oxide fine particles is determined in the following manner. A scanning electron microscope photograph of fine particle groups is taken. Then, in the region where about 100 chain fine particle groups are present, the antimony oxide fine particles connected in the form of a chain are counted, and an average is calculated.
- the average particle diameter of primary particles of the antimony oxide fine particles to constitute the chain fine particle group is determined in the following manner. In each of the above-mentioned about 100 chain fine particle groups, an average of a maximum particle diameter and a minimum particle diameter of the antimony oxide fine particles to constitute the chain fine particle group is calculated, and an average of each 100 chain particle groups is taken as an average particle diameter.
- the chain antimony oxide fine particle group desirably has a volume resistance value, as defined below, of 5 to 2000 ⁇ cm, preferably 10 to 1000 ⁇ cm.
- a volume resistance value as defined below, of 5 to 2000 ⁇ cm, preferably 10 to 1000 ⁇ cm.
- the volume resistance value is in this range, a film having excellent electrical conductivity and excellent antistatic properties can be formed.
- the volume resistance value is determined in the following manner.
- a ceramic cell having a cylindrical hole (sectional area: 0.5 cm 2 ) inside is placed on a base electrode, and the cell is filled with 0.6 g of a sample powder.
- a protrusion of an upper electrode with a cylindrical protrusion is inserted, then a pressure is applied to the upper and the lower electrodes by a hydraulic press, and under application of a pressure of 100 kg/cm 2 (9.80 MPa), a resistance value ( ⁇ ) and a height (cm) of the sample are measured.
- the resistance value is multiplied with the height to obtain a volume resistance value.
- a doping agent such as tin or phosphorus may be contained in the chain antimony oxide fine particles.
- the volume resistance value of the chain antimony oxide fine particles is further decreased.
- the chain antimony oxide fine particles may be used after dried, but by the reason of the preparation, they are obtained in the form of a dispersion containing them. In the state of a dispersion, the fine particles exist stably, and transportation or other operations can be carried out conveniently. Therefore, it is desirable to use the chain antimony oxide fine particles as a chain antimony oxide fine particle group dispersion.
- the dispersion of chain antimony oxide fine particles is a dispersion wherein the aforesaid chain antimony oxide fine particles are dispersed in water.
- the dispersion desirably has a solids concentration (in terms of antimony oxide) of usually 1 to 50% by weight, preferably 2 to 40% by weight.
- the chain antimony oxide fine particle group dispersion desirably has pH of 1 to 9, preferably 2 to 8.
- pH of the chain antimony oxide fine particle group dispersion is less than 1, the length of the chain fine particle group tends to be shortened, and the effect of improving electrical conductivity of the chain antimony oxide fine particles tends to become insufficient. If pH of the chain antimony oxide fine particle group dispersion exceeds 9, dispersibility and stability are lowered, and the use application or the use method is sometimes restricted.
- alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol and hexylene glycol
- esters such as methyl acetate and ethyl acetate
- ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether and diethylene glycol monoethyl ether
- ketones such as acetone, methyl ethyl ketone, acetyl acetone and acetoacetic acid ester
- the chain antimony oxide fine particle group dispersion desirably has an electrical conductivity of 0.01 to 10 mS/cm, preferably 0.05 to 5 mS/cm. It is difficult to obtain a chain antimony oxide fine particle group dispersion having an electrical conductivity of less than 0.01 mS/cm, and even if such a dispersion is obtained, the productivity tends to be greatly decreased. If the electrical conductivity of the chain antimony oxide fine particle group dispersion exceeds 10 mS/cm, the content of the chain antimony oxide fine particles is decreased, that is, it tends to become difficult to form a chain fine particle group.
- the process for preparing the chain antimony oxide fine particles of the invention there is no specific limitation on the process for preparing the chain antimony oxide fine particles of the invention and the process for preparing a dispersion of the fine particles, provided that those satisfying the aforesaid requirements are obtained.
- the following process is preferable because a dispersion of chain antimony oxide fine particles, in which monodisperse particles do not substantially exist, the antimony oxide fine particles are sufficiently connected with each other and the volume resistance value is low because of low boundary resistance, can be obtained.
- the process for preparing a chain antimony oxide fine particle group dispersion according to the invention comprises treating an alkali antimonate aqueous solution with a cation exchange resin to prepare an antimonic acid (gel) dispersion and then treating the dispersion with an anion exchange resin and/or adding a base to the dispersion.
- the alkali antimonate aqueous solution for use in the invention is preferably an alkali antimonate aqueous solution used in the process for preparing an antimony oxide sol disclosed in Japanese Patent Laid-Open Publication No. 180717/1990 applied by the present applicant.
- an alkali antimonate aqueous solution obtained by allowing antimony trioxide to react with an alkali substance and hydrogen peroxide is preferable.
- antimony trioxide, the alkali substance and hydrogen peroxide are used in a molar ratio of 1:2.0-2.5:0.8-1.5, preferably 1:2.1-2.3:0.9-1.2, and to the system containing the antimony trioxide and the alkali substance, hydrogen peroxide is added at a rate of not more than 0.2 mol/hr based on 1 mol of the antimony trioxide.
- the antimony trioxide used herein is preferably in the form of a powder, particularly a fine powder having an average particle diameter of not more than 10 ⁇ m.
- the alkali substances include lithium, potassium, sodium, magnesium and calcium. Of these, preferable are alkali metal hydroxides, such as KOH and NaOH. These alkali substances contribute to stabilizing the resulting antimonic acid solution.
- an antimony trioxide suspension given amounts of an alkali substance and antimony trioxide are added to water to prepare an antimony trioxide suspension.
- the antimony trioxide concentration of this antimony trioxide suspension is desired to be in the range of 3 to 15% by weight.
- the suspension is heated to a temperature of not lower than 50° C., preferably not lower than 80° C.
- hydrogen peroxide water having a concentration of 5 to 35% by weight is added at a rate of not more than 0.2 mol/hr (in terms of hydrogen peroxide) based on 1 mol of the antimony trioxide.
- the addition rate of hydrogen peroxide is high, particle diameters of the antimony oxide fine particles (primary particles) in the resulting chain antimony oxide fine particle group dispersion become large, and the particle diameter distribution is sometimes widened. If the addition rate of hydrogen peroxide is very slow, the productivity is not increased. Therefore, the addition rate of hydrogen peroxide is in the range of 0.04 to 0.2 mol/hr, preferably 0.1 to 0.15 mol/hr.
- the undissolved residue is separated if necessary, then the solution is diluted to control its concentration if necessary, and the solution is treated with a cation exchange resin to remove alkali ion, whereby an antimoic acid (gel) dispersion is prepared.
- an aqueous solution containing a doping agent such as an alkali stannate aqueous solution or a sodium phosphate aqueous solution, may be contained.
- a doping agent such as an alkali stannate aqueous solution or a sodium phosphate aqueous solution.
- the antimony oxide is doped with tin or phosphorus, and thereby chain antimony oxide fine particles having a lower volume resistance value can be obtained.
- the antimonic acid (gel) contains aggregates of fine hydrated antimony oxide particles having particle diameters of about 1 to 5 nm and is in a state of a gel.
- the alkali antimonate aqueous solution desirably has a solids concentration of 0.01 to 5% by weight, preferably 0.1 to 3% by weight.
- the treatment with the cation exchange resin is carried out by, for example, passing the alkali antimonate aqueous solution through a column filled with an ion exchange resin or by adding an ion exchange resin to the aqueous solution, mixing them and separating only the ion exchange resin.
- the solids concentration of the alkali antimonate aqueous solution is less than 0.01% by weight, the production efficiency is low. If the solids concentration thereof exceeds 5% by weight, a large antimonic acid gel is formed, and it becomes difficult to obtain the aforesaid chain antimony oxide of the invention.
- the cation exchange resin in such an amount that the electrical conductivity and the pH should be in the following ranges.
- the resulting antimonic acid (gel) dispersion desirably has an electrical conductivity of 1 to 10 mS/cm, preferably 2 to 5 mS/cm, and pH of 1 to 4, preferably 1 to 3.
- the electrical conductivity of the antimonic acid (gel) dispersion is less than 1 mS/cm, strongly aggregated particles are formed, and it sometimes becomes difficult to obtain a chain fine particle group even if the dispersion is treated with an anion exchange resin. If the electrical conductivity of the antimonic acid (gel) dispersion exceeds 10 mS/cm, monodisperse particles tend to be formed.
- pH of the antimonic acid (gel) dispersion is less than 1, aggregated particles tend to be formed without forming a chain fine particle group. If pH of the antimonic acid (gel) dispersion exceeds 4, monodisperse particles tend to be formed.
- the antimonic acid (gel) dispersion is treated with an anion exchange resin, or a base is added to the antimonic acid (gel) dispersion.
- a base is added to the antimonic acid (gel) dispersion.
- chain antimony oxide fine particles of the invention are formed.
- both of the treatment with an anion exchange resin and the addition of a base may be carried out.
- the treatment with an anion exchange resin is carried out by, for example, passing the antimonic acid (gel) dispersion through a column filled with an ion exchange resin or by adding an ion exchange resin to the dispersion, mixing them and separating only the ion exchange resin.
- the electrical conductivity of the dispersion is in the range of 0.01 to 10 mS/cm, preferably 0.05 to 5 mS/cm, and pH of the dispersion is in the range of 1 to 9, preferably 2 to 8.
- a base such as NH 3 , NaOH, KOH, tetramethylammonium hydroxide (TMAH), in such an amount that the electrical conductivity of the dispersion should be in the range of 0.01 to 10 mS/cm, preferably 0.05 to 5 mS/cm, and that the pH thereof should be in the range of 1 to 9, preferably 2 to 8.
- a base such as NH 3 , NaOH, KOH, tetramethylammonium hydroxide (TMAH)
- TMAH tetramethylammonium hydroxide
- the chain fine particle group is formed by the treatment of the antimonic acid (gel) dispersion with an anion exchange resin or the addition of a base to the dispersion is not clear, it is thought that the electrostatic charge on the surfaces of the antimony oxide particles (primary particles) is decreased, and the particles are connected in the form of a chain without being strongly aggregated.
- the chain antimony oxide fine particle group dispersion is then desirably subjected to aging at a temperature of 30 to 250° C., preferably 50 to 200° C., when needed.
- the chain antimony oxide fine particle group dispersion obtained as above desirably has an electrical conductivity of 0.01 to 10 mS/cm, preferably 0.05 to 5 mS/cm, and pH of 1 to 9, preferably 2 to 8.
- Such a change of pH as mentioned above is considered as follows.
- the ion concentration is lowered to thereby lower electrical conductivity, and together with the lowering of electrical conductivity, a rise of pH takes place. Even if aging is carried out, electrical conductivity and pH are not substantially changed, or electrical conductivity is lowered.
- chain antimony oxide fine particle group dispersion obtained 2 to 30, preferably 5 to 30, on the average, of antimony oxide fine particles (primary particles) having an average particle diameter of 5 to 50 nm are connected in the form of a chain to form chain antimony oxide fine particles.
- the chain antimony oxide fine particle group dispersion obtained as above is then concentrated by an ultrafilter method or the like or diluted with water, when needed, to obtain a dispersion having a desired concentration, usually a solids concentration (in terms of antimony oxide) of 5 to 40% by weight.
- an organic solvent dispersion of the chain antimony oxide fine particles can be obtained.
- the organic solvent the same organic solvent as previously described is employable.
- the silica-alumina type inorganic oxide particle group is usually used for forming a hard coating film.
- the inorganic oxide particles to constitute the inorganic oxide particle group used for forming the hard coating film desirably have an average particle diameter (i.e., primary particle diameter) of 4 to 200 nm, preferably 5 to 100 nm. It is difficult to obtain inorganic oxide particles having a small average particle diameter. If the average particle diameter is too large, it becomes difficult to obtain a chain inorganic oxide particle group, and even if it is obtained, haze of the hard coating film tends to be deteriorated.
- an average particle diameter i.e., primary particle diameter
- inorganic oxide particle group 2 to 30, preferably 5 to 30, on the average, of such inorganic oxide particles as mentioned above are connected in the form of a chain. If the average connection number of the inorganic oxide particles is less than 2, the inorganic oxide particles are substantially the same as monodisperse particles, and it is difficult to obtain a hard coating film having excellent adhesion to a substrate, scratch resistance, scratch strength and pencil hardness.
- silica particles or silica-alumina particles are preferable. When these particles are used, a hard coating film having high film strength and excellent transparency can be formed.
- the silica type particles are preferably porous particles and/or hollow particles having a cavity inside. When such particles are used, a film having excellent scratch resistance and having more excellent adhesion, scratch strength and pencil hardness can be formed. These particles have low refractive index. Therefore, even when high-refractive index particles are used according to necessity, the refractive index of the resulting hard coating-film can be lowered, and consequently, a difference in the refractive index between the hard coating film and the substrate can be decreased. On this account, occurrence of interference fringe can be inhibited. Accordingly, the hard coating film of the invention can be favorably used even if the refractive index of the substrate is not more than 1.55.
- silica type particles those described in, for example, Japanese Patent Laid-Open Publication No. 79616/2002 applied by the present applicant are employable.
- the porous particles or the hollow particles are particles having a shell layer and having pores inside or a cavity inside.
- the thickness of the shell layer is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. When the thickness of the shell layer is in this range, an effect of a low refractive index is sufficiently obtained.
- the porous particles and the hollow particles desirably have a porosity of not less than 10% by volume.
- the inorganic oxide particles for use in the invention desirably have a refractive index of less than 1.41.
- the refractive index is preferably in the range of 1.41 to, 1.37, and in case of the silica type hollow particles, the refractive index is preferably less than 1.37.
- the inorganic oxide particles having a refractive index of this range particularly exhibit a high effect of a low refractive index and can form a hard coating film having excellent transparency and anti-reflection properties.
- the process for preparing the silica type chain fine particle group is not specifically restricted, provided that the above-mentioned inorganic oxide particle group is obtained, and the inorganic oxide particle group can be prepared by a hitherto known process.
- the inorganic oxide particle group can be obtained by controlling concentration or pH of a monodisperse silica particle dispersion and subjecting the dispersion to hydrothermal treatment at a high temperature of, for example, not lower than 100° C.
- a binder component may be added to promote connection of the particles, if desired.
- the silica type particle dispersion used may be passed through an ion exchange resin to remove ion. By the ion exchange treatment, formation of chain particles is promoted. After the hydrothermal treatment, an ion exchange treatment may be carried out again.
- Short fibrous silica or the like disclosed in Japanese Patent Laid-Open Publication No. 61043/1999 applied by the present applicant is also preferably employed for preparing the inorganic oxide particle group (silica particle group) of the invention.
- a water dispersion of silica particles ammonia is added if necessary so as to adjust the ammonia concentration of the dispersion to 50 to 400 ppm, preferably 50 to 200 ppm, more preferably 50 to 100 ppm.
- silica particles form a chain fine particle group.
- the water dispersion may be subjected to hydrothermal treatment at a temperature of not lower than 250° C., preferably not lower than 270° C.
- this hydrothermal treatment the silica particles grow two-dimensionally and are connected to form a short fibrous inorganic oxide particle group.
- the resulting inorganic oxide particle groups can be used after classification, when needed.
- a film comprising the above-described chain inorganic oxide fine particle groups and a matrix component is formed singly or together with another film on a surface of a substrate for the purpose of imparting anti-reflection properties, antistatic properties or hardness properties.
- the chain antimony oxide fine particle groups they are often used for forming a hard coating film, a transparent film or an antistatic film, and in case of the silica-alumina type chain inorganic oxide fine particle groups, they are often used for forming a hard coating film.
- Examples of the substrates employable herein include glasses; sheets, films, lenses and panels made of plastics such as polycarbonate, acrylic resin, PET and TAC; polarizing films, cathode ray tubes, fluorescent character display tubes, liquid crystal displays, projection displays, plasma displays and EL displays.
- the film containing the chain inorganic oxide fine particle groups may be formed singly on the substrate, it may be formed in combination with other films, such as a protective film, a planarization film, a high-refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film and a primer film optionally used, according to the purpose.
- a protective film such as a planarization film, a high-refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film and a primer film optionally used, according to the purpose.
- a protective film such as a planarization film, a high-refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film and a primer film optionally used, according to the purpose.
- a primer film optionally used
- a film-forming coating liquid used for producing the substrate with a film of the invention is a mixture of the aforesaid chain inorganic oxide fine particle group dispersion and a film-forming matrix. To the mixture, an organic solvent may be added when needed.
- the chain inorganic oxide fine particle groups may be treated with a coupling agent, when needed.
- the film-forming matrix means a component capable of forming a film on a surface of the substrate, and can be selected from resins satisfying the requirements such as adhesion to the substrate, hardness and coating properties.
- thermosetting resins and thermoplastic resins known as resins for coating materials is employable. More specifically, there can be mentioned thermoplastic resins, such as polyester resin, acrylic resin, urethane resin, vinyl chloride resin, fluororesin, vinyl acetate resin and silicone rubber, and thermosetting resins, such as urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenolic resin, epoxy resin, unsaturated polyester resin and thermosetting acrylic resin. These resins may be emulsion resins, water-soluble resins or hydrophilic resins. In case of the thermosetting resins, they may be resins of ultraviolet curing type or electron ray curing type. In the thermosetting resins, curing catalysts may be contained. Mixtures of these resins, and resins for coating materials, such as copolymers of these resins and modified products thereof, are also employable.
- thermoplastic resins such as polyester resin, acrylic resin, urethane resin, vinyl chloride resin, fluororesin, vinyl acetate resin and silicone rubber
- hydrolyzable organic silicon compounds such as alkoxysilane, and partial hydrolizates thereof.
- a reaction product of polyol and an organosilicon compound may be contained as a matrix component.
- the organosilicon compound one or more compounds represented by the following formula (1) or (2) are employable.
- polysenors employable in the invention include polyether polyol, acrylic polyol and urethane polyol.
- the polyol for use in the invention desirably has a hydroxyl value X of 1 to 500 mgKOH/g, preferably 10 to 300 mgKOH/g, and a total unsaturation degree Y of not more than 0.07 meq/g.
- the hydroxyl value X of the polyol is less than 1 mgKOH/g, reactivity of the polyol to the later-described organosilicon compound is low, and a transparent film formed by the use of a transparent film-forming coating liquid containing a reaction product of the polyol and the organosilicon compound exhibits an insufficient effect of improving adhesion to the substrate and cannot have sufficient scratch resistance in some cases.
- hydroxyl value X of the polyol exceeds 500 mgKOH/g, many unreacted hydroxyl groups remain, and film shrinkage is increased in the formation of a transparent film, sometimes resulting in occurrence of cracks.
- the polyol for use in the invention desirably has a molecular weight of 1,000 to 100,000, preferably 2,000 to 50,000, in terms of polystyrene.
- polyol commercially available polyol can be used without any restriction.
- the molecular weight of the polyol is less than 1,000, molecules of the resulting reaction product of the polyol and the organosilicon compound have short molecular length, have no direction property (orientation property) and become random. Therefore, bond properties (affinity, interaction) of the resulting film to the substrate become insufficient, and satisfactory adhesion properties are not obtained in some cases.
- the polyol for use in the invention preferably has a functional group represented by the following formula (3): —Si(R 5 ) 3-r (OR 7 ) r (3) wherein R 5 and R 7 are an alkyl group or hydrogen, and r is 1, 2 or 3.
- Such functional groups include dimethylmethoxysilyl, methyldimethoxysilyl, trimethoxysilyl, diethylethoxysilyl, ethyldiethoxysilyl and triethoxysilyl.
- the alkoxy group of the polyol is hydrolyzed and reacts with the organosilicon compound. Therefore, the resulting reaction product exhibits high affinity for the matrix-forming component, and a transparent film obtained by the use of the reaction product has excellent adhesion to the substrate.
- the polyol having a functional group represented by the formula (3) is on the market under the name of Excestar (available from Asahi Glass Co., Ltd.) or Zemrac (available from Kaneka Co., Ltd.).
- organosilicon compounds represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimeth,
- tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane are preferably used because they have high reactivity to polyol, and a transparent film obtained by the use of a reaction product of such tetraalkoxysilane and polyol exhibits excellent adhesion to the substrate and excellent scratch resistance.
- ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane and the like are also preferably used for a transparent film-forming coating liquid of acrylic resin type because a reaction product of such a compound and polyol has high reactivity to a matrix-forming component of acrylic resin type to thereby improve scratch resistance.
- organosilicon compounds represented by the formula (2) include heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecyltrichlorosilane, heptadecafluorodecylmethyltrimethoxysilane, trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, Heptadecafluorodecyl-di-methyldimethoxysilane, heptadecafluorodecyl-di-trichlorosilane, heptadecafluorodecylmethyl-di-trimethoxysilane, trifluoropropyl-di-t-rimethoxysilane, tridecafluorooctyl-di-trimethoxysilane and (CH 3 O) 3 SiC 2 H 4 C 6 F 12 C 2 H 4 Si(CH) 3
- the reaction product of polyol and the organosilicon compound is a compound obtained by dehydration polycondensation reaction of the above-mentioned polyol with the organosilicon compound.
- Such a reaction product e.g., a compound obtained by a process comprising dissolving tetraalkoxysilane and polyol in a water/alcohol mixed solvent, adding an acid such as nitric acid, and if necessary performing solvent replacement with an alcohol by an evaporator or the like, can be favorably used for a transparent film-forming coating liquid.
- a transparent film having excellent adhesion to the substrate or another film and showing excellent scratch resistance, scratch strength, pencil hardness, flexibility, anti-reflection properties and antistatic properties can be formed.
- the content of the reaction product in the matrix is desirably in the range of 1 to 50% by weight, preferably 2 to 30% by weight, in terms of solids. If the content of the reaction product is too low, an effect of enhancing adhesion to the substrate or another film optionally provided is not obtained sufficiently, and besides an effect of enhancing scratch resistance, scratch strength and flexibility is not obtained sufficiently in some cases. If the content of the reaction product is too high, adhesion or flexibility is sometimes lowered.
- the coating liquid can be prepared by, for example, the following process.
- An organic solvent dispersion obtained by replacing water (dispersion medium) of the aforesaid inorganic oxide fine particle group dispersion with an organic solvent, such as an alcohol, or an organic solvent dispersion obtained by treating the chain inorganic oxide fine particle groups with a known coupling agent if desired and then dispersing them in an organic solvent, and a resin for coating material are diluted with an appropriate organic solvent.
- the coating liquid can be prepared by, for example, the following process. Water and an acid or an alkali as a catalyst are added to a mixture of alkoxysilane and an alcohol to obtain a partial hydrolyzate of alkoxysilane, then the hydrolyzate is mixed with a chain inorganic oxide fine particle group dispersion, and then if necessary, the mixture is diluted with an organic solvent.
- the weight ratio of the chain inorganic oxide particle group to the matrix in the film-forming coating liquid is preferably in the range of 1/99 to 9/1 (chain inorganic oxide particle group/matrix). If the weight ratio exceeds 9/1, strength of the film and adhesion of the film to the substrate are lowered to reduce practical usefulness. If the weight ratio is less than 1/99, the effect of enhancing antistatic properties of the film, adhesion of the film to the substrate and film strength due to the addition of the chain inorganic oxide particle groups becomes insufficient. The above-mentioned weight ratio becomes a weight ratio in the resulting film without change.
- the film-forming coating liquid is applied onto the substrate by a known method such as dipping, spraying, spinner method or roll coating, then dried, and if necessary, cured by heating or irradiation with ultraviolet light, to form a film.
- the thickness of the film is not specifically restricted and is appropriately selected according to the purpose.
- the substrates include the aforesaid ones, specifically, glasses, and plastic sheets, plastic films and plastic panels made of plastics such as polycarbonate, acrylic resin, PET and TAC. Of these, resin substrates are preferably employed.
- the hard coating film comprises a matrix component and the aforesaid silica-alumina type chain inorganic oxide fine particle groups.
- the content of the inorganic oxide fine particle groups in the hard coating film is desired to be in the range of 5 to 90% by weight, preferably 10 to 80% by weight. If the content of the inorganic oxide fine particle groups in the hard coating film is low, the hard coating film does not have excellent adhesion to the substrate, scratch resistance, scratch strength and pencil hardness in some cases. If the content of the inorganic oxide fine particle groups in the hard coating film is high, the hard coating film does not have excellent adhesion to the substrate, scratch resistance, scratch strength and pencil hardness because the amount of the matrix component is small.
- the hard coating film of the invention further contains antimony pentaoxide (Sb 2 O 5 ) particles having an average particle diameter of 2 to 100 nm, preferably 5 to 80 nm. Since the antimony pentaoxide particles have moderate electrical conductivity, they can impart antistatic properties, and besides, they have a function of resin curing acceleration when a resin is used as a matrix.
- the antimony pentaoxide particles may be in the form of the aforesaid chain fine particle group.
- the hard coating film has excellent adhesion to the substrate and shows excellent scratch resistance and film hardness.
- Such effects are peculiar to the antimony pentaoxide particles among the conductive oxide particles, and other conductive oxide particles, such as indium oxide, tin-doped indium oxide and low titanium oxide, antimony trioxide particles and metal fine particles do not exhibit such effects.
- the matrix component is a thermosetting resin or an ultraviolet curing resin
- the antimony pentaoxide particles accelerates curing of such a resin.
- the resin for coating material is slowly cured or not cured occasionally. It is thought that there is any other cause of hindrance of curing in case of other particles but the antimony pentaoxide particles contributes to suppression of the hindrance.
- the average particle diameter of the antimony pentaoxide particles is less than the lower limit of the above range, an effect of enhancing adhesion to the substrate, scratch resistance and film hardness is not obtained, or depending upon circumstances, lowering of these properties takes place. Moreover, powder resistance is increased, and hence, sufficient antistatic properties are not obtained occasionally.
- the average particle diameter of the antimony pentaoxide particles exceeds the upper limit of the above range, lowering of transparency of the film, coloring of the film or increase of haze sometimes takes place, though it depends upon the content of the antimony pentaoxide particles.
- the content of the antimony pentaoxide particles in the hard coating film is desired to be in the range of 5 to 80% by weight, preferably 10 to 60% by weight, in terms of Sb 2 O 5 , though it varies depending upon the content of the inorganic oxide particle groups.
- the content (in terms of Sb 2 O 5 ) of the antimony pentaoxide particles in the hard coating film is less than the lower limit of the above range, sufficient antistatic properties do not appear, and hence, adhesion of dust is liable to take place on the resulting substrate with a hard coating film.
- the resulting substrate in the production of a substrate having the later-described anti-reflection film and/or intermediate film (conductive film, refractive index-controlling film), the resulting substrate sometimes has poor transparency and haze, and the product yield is lowered.
- the content (in terms of Sb 2 O 5 ) of the antimony pentaoxide particles in the hard coating film exceeds the upper limit of the above range, lowering of adhesion to the substrate, formation of voids and decrease of hardness of the hard coating film are sometimes brought about. Further, transparency and haze of the resulting substrate with a hard coating film sometimes become insufficient. Moreover, the effect of promoting curing of the resin for coating material is not further enhanced.
- the content (in terms of Sb 2 O 5 ) of the antimony pentaoxide particles in the hard coating film is in the above range, an effect of enhancing adhesion to the substrate, scratch resistance and film hardness and an effect of promoting curing of the film are obtained.
- the refractive index can be controlled, and hence, occurrence of interference fringe can be inhibited.
- the interference fringe occurs when the film thickness is not less than the wavelength of light and a difference in the refractive index between the hard coating film and the substrate is not less than 0.1. In case of a transparent substrate, therefore, by the addition of the antimony oxide, control of the refractive index can be easily made and occurrence of interference fringe can be inhibited.
- the process for preparing the antimony pentaoxide particles is not specifically restricted, provided that the average particle diameter of the resulting particles is in the above range and a substrate with a hard coating film having sufficient adhesion to the substrate, hardness and scratch resistance can be obtained.
- the antimony pentaoxide particles can be prepared by a hitherto known process.
- a process for preparing an antimony pentaoxide sol disclosed in Japanese Patent Laid-Open Publication No. 180717/1990 applied by the present applicant can be favorably adopted because an antimony pentaoxide sol having uniform particle diameters, excellent stability and excellent transparency is obtained.
- the antimony pentaoxide particles are used in the invention in such amounts that the total content of the inorganic oxide fine particle groups and the antimony pentaoxide particles becomes 5 to 90% by weight, preferably 10 to 80% by weight.
- the hard coating film does not have excellent adhesion to the substrate, scratch resistance, scratch resistance and pencil hardness in some cases because the amount of the matrix component is small.
- an antimony oxide sol disclosed in Japanese Patent Laid-Open Publication No. 180717/1990 applied by the present applicant can be favorably employed.
- antimony pentaoxide particles the above described chain particles groups may be used.
- the aforesaid resin matrix is preferably employed.
- the resin may be an emulsion resin, a water-soluble resin or a hydrophilic resin.
- a thermosetting resin it may be a resin of ultraviolet curing type or electron ray curing type.
- a curing catalyst may be contained.
- thermosetting resin Particularly in case of a thermosetting resin, the effect given by the use of both of the inorganic oxide particle groups and the antimony pentaoxide particles (i.e., effect of enhancing adhesion to the substrate, scratch resistance and hardness) is conspicuous.
- the thickness of the hard coating film is desired to be in the range of 0.1 to 20 ⁇ m, preferably 0.2 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m.
- the thickness of the hard coating film is less than the lower limit of the above range, a stress applied to the surface of the hard coating film is not absorbed sufficiently because the thickness of the hard coating film is too small, and as a result, pencil hardness sometimes becomes insufficient.
- the thickness of the hard coating film exceeds the upper limit of the above range, uniform coating or uniform drying becomes difficult, and cracks or voids are liable to occur. Consequently, strength and transparency of the resulting hard coating film sometimes become insufficient.
- the matrix can be sufficiently cured even if the film thickness is not more than 5 ⁇ m, and hence, a substrate with a hard coating film, which is excellent not only in adhesion of the film to the substrate, scratch resistance, film hardness and film strength but also in economical efficiency, can be obtained.
- Such effects appear in any of the thermosetting (or ultraviolet curing) resins and the thermoplastic resins, and are conspicuous in case of the ultraviolet curing resins.
- the hard coating film can be formed by applying a coating liquid containing a matrix-forming component capable of forming the aforesaid matrix-component, the aforesaid inorganic oxide fine particle groups, and if necessary, the antimony pentaoxide particles.
- the coating liquid it is preferable to separately prepare a dispersion in which the inorganic oxide fine particle groups are dispersed in a dispersion medium and a sol in which the antimony pentaoxide particles are dispersed in a dispersion medium, in order to obtain a coating liquid in which particles are homogeneously dispersed.
- Each of the inorganic oxide fine particle group dispersion and the antimony pentaoxide particle dispersion sol may be any one of a water dispersion sol and an organic solvent dispersion sol using an organic solvent such as an alcohol as a dispersion medium.
- the inorganic oxide fine particle groups and the antimony pentaoxide particles may be those having been surface treated with a silane coupling agent.
- the inorganic oxide fine particle group dispersion prepared as above, the antimony pentaoxide particle dispersion sol optionally used, and the matrix-forming component are diluted with an appropriate solvent to prepare a coating liquid for forming a hard coating film.
- a surface active agent may be added to improve dispersibility and stability.
- a solvent capable of dissolving the matrix-forming component and capable of easily evaporating may be contained, or if the matrix-forming component is a thermosetting resin, a curing agent may be contained when needed.
- the coating liquid is applied onto the substrate by a known method as previously described, then dried, and then cured in case of a thermosetting resin, whereby a hard coating film can be formed.
- a thermoplastic resin heat treatment is further carried out at a temperature lower than the softening point of the substrate when needed, whereby a hard coating film can be formed.
- an anti-reflection film may be provided on the hard coating film.
- a conventionally known anti-reflection film can be used without any restriction, provided that it has anti-reflection properties.
- a film having a lower refractive index than the hard coating film has anti-reflection properties.
- Such an anti-reflection film is composed of an anti-reflection film-forming matrix, and if necessary, a low-refractive index component.
- the anti-reflection film-forming matrix is a component capable of forming an anti-reflection film, and can be selected taking adhesion to a substrate, hardness and coating properties into consideration.
- the same matrix component as the aforesaid hard coating film-forming component can be used.
- hydrolyzable organosilicon compound as a matrix.
- a partial hydrolyzate of alkoxysilane obtained by adding water and an acid or an alkali as a catalyst to a mixture of alkoxysilane and an alcohol is favorably employed.
- low-refractive index components examples include low-refractive index substances, such as CaF 2 , NaF, NaAlF 6 and MgF, silica type particles (silica particles, silica hollow particles, silica-alumina composite oxide particles) and porous silica type particles.
- an anti-reflection film having a low refractive index and excellent anti-reflection properties can be obtained.
- the content of the low-refractive index component in the anti-reflection film is desired to be not more than 90% by weight, preferably not more than 50% by weight. If the content of the low-refractive index component exceeds 90% by weight, film strength is sometimes lowered, or adhesion to the hard coating film (or the later-described intermediate film if the intermediate film is provided) sometimes becomes insufficient.
- the thickness of the anti-reflection film is desired to be in the range of 50 to 300 nm, preferably 80 to 200 nm.
- the thickness of the anti-reflection film is less than the lower limit of the above range, film strength and anti-reflection properties are sometimes deteriorated. If the thickness of the anti-reflection film exceeds the upper limit of the above range, cracks are sometimes produced to thereby lower film strength, or anti-reflection properties become insufficient because of too large thickness.
- the refractive index of the anti-reflection film is desired to be in the range of usually 1.28 to 1.50, though it varies depending upon the mixing ratio between the low-refractive index component and the matrix such as a resin and the refractive index of the resin used. If the refractive index of the anti-reflection film exceeds 1.50, anti-reflection properties sometimes become insufficient, depending upon the refractive index of the substrate. It is difficult to obtain an anti-reflection film having a refractive index of less than 1.28.
- the anti-reflection film a film having a lower reactive index than the hard coating film is employed.
- the anti-reflection film is formed by applying an anti-reflection film-forming coating liquid containing the anti-reflection film-forming matrix, and if necessary, a low-refractive index component and a solvent.
- the coating liquid has only to be applied onto a substrate by a known method, such as dipping, spraying, spinner method or roll coating, and then dried, similarly to the formation of the aforesaid hard coating film.
- the forming component is a thermosetting resin
- curing of the anti-reflection film may be accelerated by heat treatment, ultraviolet irradiation treatment, electron ray irradiation treatment or the like.
- a hydrolyzable organosilicon compound is contained in the forming component, hydrolysis and polycondensation of the hydrolyzable orgnaosilicon compound may be accelerated.
- an intermediate film may be provided between the hard coating film and the anti-reflection film.
- the anti-reflection properties are enhanced.
- the difference in the refractive index between the anti-reflection film and the substrate is small, the anti-reflection properties sometimes become insufficient. Therefore, an intermediate film having a high refractive index is provided.
- a film having a refractive index of not less than 1.6 is provided.
- the refractive index of the substrate or the hard coating film is not more than 1.55, the difference in the refractive index between the substrate or the hard coating film and the anti-reflection film becomes small, and the anti-reflection properties sometimes become insufficient. Therefore, it is preferable to form an intermediate film having a refractive index of not less than 1.6.
- the intermediate film is composed of metal oxide fine particles of high refractive index, and if necessary, an intermediate film-forming matrix.
- the intermediate film-forming matrix means a component capable of forming an intermediate film on a surface of the hard coating film, and can be selected from resins satisfying the requirements such as adhesion to the hard coating film and coating properties. More specifically, there can be mentioned, for example, the aforesaid hard coating film-forming matrix and the hydrolyzable organosilicon compounds previously exemplified for the anti-reflection film, such as alkoxysilane.
- metal oxide fine particles of high refractive index those having a refractive index of not less than 1.60 are preferably employed.
- the refractive index of the metal oxide fine particles is more preferably not less than 1.70.
- metal oxide fine particles include titanium oxide (refractive-index: 2.5), zinc oxide (refractive index: 2.0), zirconium oxide (refractive index: 2.2), cerium oxide (refractive index: 2.2), tin oxide (refractive index: 2.0), thallium oxide (refractive index: 2.1), barium titanate (refractive index: 2.40), aluminum oxide (refractive index: 1.73), magnesium oxide (refractive index: 1.77), yttrium oxide (refractive index: 1.92), antimony oxide (refractive index: 2.0) and indium oxide (refractive index: 2.0).
- conductive fine particles such as titanium oxide, cerium oxide, tin oxide, antimony. oxide, zirconium oxide and indium oxide
- conductive fine particles are doped with a different element such as antimony, tin or fluorine because the resulting anti-reflection film exhibits an antistatic effect and electromagnetic wave screening properties in addition to the anti-reflection properties.
- the resulting intermediate film does not have a refractive index of not less than 1.60, and the difference in the refractive index between the intermediate film and the anti-reflection film is small. Consequently, the anti-reflection properties become insufficient, and the effect given by providing the intermediate film is not satisfactory.
- the content of the metal oxide fine particles in the intermediate film is not specifically restricted, provided that the intermediate film has a refractive index of not less than 1.6.
- the content of the metal oxide fine particles is desired to be in the range of usually 30 to 100% by weight, preferably 50 to 95% by weight, though it depends upon the intermediate film-forming matrix and the refractive index of the metal oxide fine particles.
- the intermediate film may be a film composed of only the metal oxide fine particles without containing a matrix.
- the intermediate film does not have a refractive index of not less than 1.60 though it depends upon the type of the metal oxide fine particles, and the effect given by providing the intermediate film is not satisfactory.
- the intermediate film can be formed by applying an intermediate film-forming coating liquid containing the metal oxide fine particles of high refractive index, and if necessary, an intermediate film-forming matrix and a solvent.
- a sol in which the metal oxide fine particles are dispersed in a dispersion medium For example, a water dispersion sol, an organic solvent dispersion obtained by dispersing the fine particles in an organic solvent such as an alcohol or an organic solvent dispersion obtained by treating the fine particles with a known coupling agent and then dispersing them in an organic solvent, and a resin for coating material are diluted with an appropriate organic solvent to prepare the intermediate film-forming coating liquid.
- a surface active agent may be further added to enhance dispersibility and stability.
- the application method of the intermediate film-forming coating liquid similarly to the case of the anti-reflection film-forming coating liquid.
- the coating liquid has only to be applied onto a substrate by a known method, such as dipping, spraying, spinner method or roll coating, and then dried, similarly to the application of the aforesaid hard coating film-forming coating liquid.
- the forming component is a thermosetting resin
- curing of the intermediate film may be accelerated by heat treatment, ultraviolet irradiation treatment, electron ray irradiation treatment or the like.
- hydrolysis and polycondensation of the hydrolyzable organosilicon compound may be accelerated by heat treatment.
- curing acceleration treatment may be carried out after each film (hard coating film, anti-reflection film, intermediate film) is formed, or it is also possible that the intermediate film is formed on the hard coating film, then curing acceleration treatment is carried out, thereafter the anti-reflection film is formed, and then curing acceleration treatment is carried out.
- the inorganic oxide fine particle groups are contained in the hard coating film, and therefore, the hard coating film exhibits excellent adhesion to the substrate, scratch resistance and film hardness.
- the inorganic oxide fine particle groups and the antimony pentaoxide particles are contained, static electricity generated is removed by the antimony pentaoxide particles. As a result, adhesion of dust is inhibited, and the hard coating film exhibits excellent adhesion to the substrate, scratch resistance and film hardness.
- the hard coating film-forming coating liquid is described below.
- the hard coating film-forming coating liquid according to the invention comprises a matrix-forming component, chain inorganic oxide fine particle groups, and if necessary, antimony pentaoxide particles.
- the antimony pentaoxide particles and the matrix-forming component are employable.
- the dispersion medium may be water or an organic solvent such as an alcohol and can be appropriately selected.
- the inorganic oxide fine particles groups in the form of a dispersion in which the fine particle groups are dispersed in a dispersion medium and to use the antimony pentaoxide particles in the form of a sol in which the particles are dispersed in a dispersion medium.
- Each of the inorganic oxide fine particle group dispersion and the antimony pentaoxide particle dispersion sol may be any one of a water dispersion sol and an organic solvent dispersion sol using an organic solvent such as an alcohol as a dispersion medium.
- the inorganic oxide fine particle groups and the antimony pentaoxide particles may be those having been surface treated with a silane coupling agent.
- the inorganic oxide fine particle group dispersion prepared as above, the antimony pentaoxide particle dispersion sol optionally used, and the matrix-forming component are diluted with an appropriate solvent to prepare a coating liquid for forming a hard coating film.
- a surface active agent may be added to enhance dispersibility and stability.
- a solvent capable of dissolving the matrix-forming component and capable of easily evaporating may be contained.
- a curing agent may be contained when needed.
- the concentration of the matrix-forming component in the hard coating film-forming coating liquid is desired to be in the range of 6 to 36% by weight, preferably 10 to 30% by weight.
- the concentration of the matrix-forming component in the hard coating film-forming coating liquid is high, the thickness of the hard coating film tends to become nonuniform.
- the concentration of the matrix-forming component in the hard coating film-forming coating liquid is determined so that the content of the inorganic oxide fine particle groups in the hard coating film should be in the range of 5 to 90% by weight, preferably 10 to 80% by weight. Specifically, the solids concentration is desired to be in the range of 1.5 to 36% by weight, preferably 3 to 32% by weight.
- the concentration of the antimony pentaoxide particles optionally used is determined so that the content of the antimony pentaoxide particles in the hard coating film should be in the range of 5 to 80% by weight, preferably 10 to 60% by weight.
- the concentration in terms of Sb 2 O 5 is in the range of 5 to 50% by weight, preferably 10 to 40% by weight, and the total concentration of Sb 2 O 5 and the inorganic oxide fine particle groups is in the range of 10 to 80% by weight.
- the concentration of the antimony pentaoxide particles in the hard coating film-forming coating liquid is low, the effect of accelerating curing of the resin for coating material (i.e., matrix component) becomes insufficient. If the concentration of the antimony pentaoxide particles in the hard coating film-forming coating liquid is high, adhesion of the hard coating film to the substrate is lowered, or voids are produced to thereby lower hardness of the hard coating film.
- a chain inorganic oxide fine particle group is obtained.
- the chain antimony oxide fine particle group has a lower volume resistance value than monodisperse antimony oxide fine particles because of a chain form, and a transparent film excellent in adhesion to a substrate, antistatic properties, hard coating function, etc. can be formed.
- a chain inorganic oxide fine particle group of silica or silica-alumina type is contained in a film formed on a surface of a substrate, the film functions as a hard coating film having excellent adhesion to the substrate and showing excellent scratch resistance, excellent film hardness and the like.
- the inorganic oxide fine particle group and antimony pentaoxide particles are contained in the film (hard coating film)
- the film is further improved in the adhesion to the substrate, scratch resistance and film hardness and shows excellent antistatic properties and economical efficiency even if the film is thin.
- a substrate with a film, which is prevented from occurrence of interference fringe can be obtained.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.1 and an electrical conductivity of 2.4 mS/cm.
- the solution was passed through an anion exchange resin layer (available from Mitsubishi Chemical Corporation, SA-20A) to perform deionization until the solution had pH of 2.5 and an electrical conductivity of 1.0 mS/cm.
- an anion exchange resin layer available from Mitsubishi Chemical Corporation, SA-20A
- the solution obtained by the deionization was aged at a temperature of 70° C. for 10 hours and then concentrated by the use of an ultrafilter to prepare a chain antimony oxide fine particle group dispersion (1) having a solids concentration of 14% by weight (in terms of antimony oxide).
- the resulting chain antimony oxide fine particle group dispersion (1) had pH of 3.0 and an electrical conductivity of 0.1 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 15 nm, and the average connection number thereof was 5.
- the chain antimony oxide fine particle group dispersion (1) was subjected to solvent replacement to replace water with an ethyl cellosolve/ethanol mixed solvent (weight ratio: 44/66) and thereby adjust the solids concentration to 20% by weight.
- the hard coating film-forming coating liquid (H-1) was applied onto a PET film (thickness: 188 ⁇ m, refractive index: 1.65) by a bar coater method, dried at 80° C. for 1 minute and then cured by irradiation with a high-pressure mercury lamp (80 W/cm) for 1 minute, to prepare a substrate (F-1) with a hard coating film.
- the thickness of the hard coating film was 5 ⁇ m.
- the pencil hardness was measured by a pencil hardness tester in accordance with JIS-K-5400.
- DD The film surface is wholly abraded.
- AA The number of the remaining squares is 95 or more.
- BB The number of the remaining squares is 90 to 94.
- CC The number of the remaining squares is 85 to 89.
- DD The number of the remaining squares is 84 or less.
- a chain antimony oxide fine particle group dispersion (2) was prepared in the same manner as in Example A1, except that the deionization by passing the solution through an anion exchange resin was carried out until the solution had pH of 2.8 and an electrical conductivity of 0.5 mS/cm.
- the average particle diameter of the antimony oxide fine particles (primary particles) was 15 nm, and the average connection number thereof was 10.
- a hard coating film (transparent film)-forming coating liquid (H-2) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (2) was used. Then, a substrate (F-2) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-2) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- a chain antimony oxide fine particle group dispersion (3) was prepared in the same manner as in Example A1, except that the deionization by passing the solution through an anion exchange resin was carried out until the solution had pH of 5.0 and an electrical conductivity of 0.5 mS/cm.
- the average particle diameter of the antimony oxide fine particles (primary particles) was 15 nm, and the average connection number thereof was 15.
- a hard coating film (transparent film)-forming coating liquid (H-3) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (3) was used. Then, a substrate (F-3) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-3) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.2 and an electrical conductivity of 2.3 mS/cm.
- the solution was passed through an anion exchange resin layer (available from Mitsubishi Chemical Corporation, SA-20A) to perform deionization until the solution had pH of 2.5 and an electrical conductivity of 1.0 mS/cm.
- an anion exchange resin layer available from Mitsubishi Chemical Corporation, SA-20A
- the solution obtained by the deionization was aged at a temperature of 70° C. for 10 hours and then concentrated by the use of an ultrafilter to prepare a chain antimony oxide fine particle group dispersion (4) having a solids concentration of 14% by weight.
- the resulting chain antimony oxide fine particle group dispersion (4) had pH of 3.2 and an electrical conductivity of 0.1 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 20 nm, and the average connection number thereof was 5.
- a hard coating film (transparent film)-forming coating liquid (H-4) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (4) was used. Then, a substrate (F-4) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-4) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.2 and an electrical conductivity of 2.4 mS/cm.
- the solution was passed through an anion exchange resin layer (available from Mitsubishi Chemical Corporation, SA-20A) to perform deionization until the solution had pH of 2.8 and an electrical conductivity of 0.5 mS/cm.
- an anion exchange resin layer available from Mitsubishi Chemical Corporation, SA-20A
- the solution obtained by the deionization was aged at a temperature of 70° C. for 10 hours and then concentrated by the use of an ultrafilter to prepare a chain antimony oxide fine particle group dispersion (5) having a solids concentration of 14% by weight.
- the resulting chain antimony oxide fine particle group dispersion (5) had pH of 3.3 and an electrical conductivity of 0.1 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 20 nm, and the average connection number thereof was 10.
- a hard coating film (transparent film)-forming coating liquid (H-5) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (5) was used. Then, a substrate (F-5) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-5) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the chain antimony oxide fine particle group dispersion (5) was subjected to solvent replacement to replace water with an ethyl cellosolve/ethanol mixed solvent (weight ratio: 44/66) and thereby adjust the solids concentration to 20% by weight.
- a substrate (F-6) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film (transparent film)-forming coating liquid (H-6) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the chain antimony oxide fine particle group dispersion (5) was subjected to solvent replacement to replace water with an ethyl cellosolve/ethanol mixed solvent (weight ratio: 44/66) and thereby adjust the solids concentration to 20% by weight.
- a substrate (F-7) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film (transparent film)-forming coating liquid (H-7) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard-coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- a chain antimony oxide fine particle group dispersion (6) was prepared in the same manner as in Example A5, except that the deionization by passing the solution through an anion exchange resin was carried out until the solution had pH of 5.0 and an electrical conductivity of 0.5 mS/cm.
- the resulting chain antimony oxide fine particle group dispersion (6) had pH of 6.5 and an electrical conductivity of 0.1 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 20 nm, and the average connection number thereof was 15.
- a hard coating film (transparent film)-forming coating liquid (H-8) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (6) was used. Then, a substrate (F-8) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-8) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.0 and an electrical conductivity of 3.0 mS/cm.
- the solution was passed through an anion exchange resin layer (available from Mitsubishi Chemical Corporation, SA-20A) to perform deionization until the solution had pH of 2.8 and an electrical conductivity of 0.5 mS/cm.
- an anion exchange resin layer available from Mitsubishi Chemical Corporation, SA-20A
- the solution obtained by the deionization was aged at a temperature of 70° C. for 10 hours and then concentrated by the use of an ultrafilter to prepare a chain antimony oxide fine particle group dispersion (7) having a solids concentration of 14% by weight.
- the resulting chain antimony oxide fine particle group dispersion (7) had pH of 3.2 and an electrical conductivity of 0.2 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 35 nm, and the average connection number thereof was 10.
- a hard coating film (transparent film)-forming coating liquid (H-9) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (7) was used. Then, a substrate (F-9) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-9) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.1 and an electrical conductivity of 3.1 mS/cm.
- ammonia water having a concentration of 3% by weight was added to the solution to adjust pH of the solution to 5.0.
- the solution had an electrical conductivity of 4.5 mS/cm.
- the resulting solution was aged at a temperature of 70° C. for 10 hours, then passed through an anion exchange resin layer (available from Mitsubishi Chemical Corporation, SA-20A) to perform deionization until the solution had pH of 3.0 and an electrical conductivity of 0.4 mS/cm, and concentrated by the use of an ultrafilter to prepare a chain antimony oxide fine particle group dispersion (8) having a solids concentration of 14% by weight.
- the resulting chain antimony oxide fine particle group dispersion (8) had pH of 3.8 and an electrical conductivity of 0.5 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 20 nm, and the average connection number thereof was 20.
- a hard coating film (transparent film)-forming coating liquid (H-10) was prepared in the same manner as in Example A1, except that the chain antimony oxide fine particle group dispersion (8) was used. Then, a substrate (F-10) with a hard coating film was prepared in the same manner as in Example A1, except that the coating liquid (H-10) was used. The thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- a hard coating film-forming coating liquid (RH-1) was prepared by mixing 380 g of an ultraviolet curing resin (available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids-concentration: 79% by weight) with 620 g of ethyl cellosolve.
- an ultraviolet curing resin available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids-concentration: 79% by weight
- a substrate (RF-1) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film-forming coating liquid (RH-1) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- a hard coating film-forming coating liquid (RH-2) was prepared by mixing 300 g of an acrylic resin (available from Hitachi Kasei K.K., Hitaloid 1007) with 700 g of ethyl cellosolve.
- a substrate (RF-2) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film-forming coating liquid (RH-2),was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- a hard coating film-forming coating liquid (RH-3) was prepared by mixing 200 g of a silica organosol (available from Catalysts & Chemicals Industries Co., Ltd., OSCAL-1432, average particle diameter: 12 nm, SiO 2 concentration: 20% by weight, dispersion medium: isopropyl alcohol) with 203 g of an ultraviolet curing resin (available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids concentration: 79% by weight) and 264 g of ethyl cellosolve.
- a silica organosol available from Catalysts & Chemicals Industries Co., Ltd., OSCAL-1432, average particle diameter: 12 nm, SiO 2 concentration: 20% by weight
- dispersion medium isopropyl alcohol
- an ultraviolet curing resin available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids concentration: 79% by weight
- a substrate (RF-3) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film-forming coating liquid (RH-3) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- Antimony trioxide particles (average particle diameter: 150 ⁇ m) were dispersed in isopropyl alcohol in such a manner that the concentration became 30% by weight, followed by pulverization by a sand mill at 30° C. for 5 hours. Then, isopropyl alcohol was added to prepare an antimony trioxide fine particle dispersion (average particle diameter: 50 nm) having a concentration of 20% by weight. With 200 g of the dispersion, 203 g of an ultraviolet curing resin (available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids concentration: 79% by weight) and 264 g of ethyl cellosolve were mixed, to prepare a hard coating film-forming coating liquid (RH-4). (The antimony oxide particles were not connected in the form of a chain.)
- a substrate (RF-4) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film-forming coating liquid (RH-4) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- the resulting solution was weighed out, and the solution was diluted with 6000 g of pure water and then passed through a cation exchange resin layer (available from Mitsubishi Chemical Corporation, pk-216) to perform deionization. At this time, the solution had pH of 2.0 and an electrical conductivity of 3.1 mS/cm.
- the resulting solution was aged at a temperature of 70° C. for 10 hours and then concentrated by the use of an ultrafilter to prepare an antimony oxide fine particle dispersion (R-1) having a solids concentration of 14% by weight.
- the resulting antimony oxide fine particle dispersion. (R-1) had pH of 2.1 and an electrical conductivity of 1.2 mS/cm.
- the average particle diameter of the antimony oxide fine particles was 20 nm.
- the antimony oxide fine particle dispersion (R-1) was subjected to solvent replacement to replace water with an ethyl cellosolve/ethanol mixed solvent (weight ratio: 44/66) and thereby adjust the solids concentration to 20% by weight.
- a substrate (RF-5) with a hard coating film was prepared in the same manner as in Example A1, except that the hard coating film (transparent film)-forming coating liquid (RH-5.) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 1.
- Substrate with film Chain antimony oxide fin particles Substrate with film (properties) Primary particles Volume Total Average resis- light Ad- Surface particle Connection tance Matrix trans- Pencil Scratch hesion resis- Sub- diameter number value Content Content mittance Haze hard- resis- prop tance strate (nm) (particles) ( ⁇ ⁇ cm) (wt %) Type (wt %) (%) (%) (%) (%) (%) ness tance erties ( ⁇ / ⁇ ) Ex. A1 PET 15 5 50 20 ultra- 80 91.8 1.2 3H AA AA 5.0E+09 violet curing resin Ex.
- A1 violet curing more resin Comp. PET — — — — acrylic 100 91.8 1.2 1H DD DD 1.0E+14 or Ex.
- silica sol available from Catalysts & Chemicals Industries Co., Ltd., SI-550, average particle diameter: 5 nm, SiO 2 concentration: 20% by weight, Na in silica: 2700 ppm
- 6000 g of ion-exchanged water was added, then 400 g of a cation exchange resin (available from Mitsubishi Chemical Corporation, SK-1BH) was added, and they were stirred for 1 hour to perform dealkalization.
- a cation exchange resin available from Mitsubishi Chemical Corporation, SK-1BH
- an anion exchange resin available from Mitsubishi Chemical Corporation, SANUPC
- a silica particle (RA) dispersion having a SiO 2 concentration of 5% by weight was prepared. (At this time, the Na content in the silica particles was 200 ppm.)
- the dispersion was adjusted to pH 4.0 by the use of dilute hydrochloric acid and then treated at 200° C. for 1 hour in an autoclave.
- a cation exchange resin was added at room temperature, and they were stirred for 1 hour to perform dealkalization.
- an anion exchange resin was added to the dispersion, and they were stirred for 1 hour to perform deanionization.
- an inorganic oxide particle group (1) dispersion having a SiO 2 concentration of 5% by weight was prepared.
- An average connection number of the inorganic oxide particle group is set forth in Table 2.
- the inorganic oxide particle group (1) dispersion having a SiO 2 concentration of 5% by weight was concentrated to a SiO 2 concentration of 20% by weight, and then the dispersion was subjected to solvent replacement with methanol by an ultrafilter method to prepare an inorganic oxide particle group (1) methanol dispersion having a SiO 2 concentration of 20% by weight.
- the hard coating film-forming coating liquid (H-1) was applied onto a PET film (thickness: 188 mm, refractive index: 1.65) by a bar coater method, dried at 80° C. for 1 minute and then cured by irradiation with a high-pressure mercury lamp (80 W/cm) for 1 minute, to prepare a substrate (F-1) with a hard coating film.
- the thickness of the hard coating film was 5 ⁇ m.
- a substrate (F-2) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-2) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-3) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-3) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-4) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-4) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- silica sol available from Catalysts & Chemicals Industries Co., Ltd., SI-550, average particle diameter: 5 nm, SiO 2 concentration: 20% by weight, Na in silica: 2700 ppm
- 6000 g of ion-exchanged water was added, then 400 g of a cation exchange resin (available from Mitsubishi Chemical Corporation, SK-1BH) was added, and they were stirred for 1 hour to perform dealkalization.
- a cation exchange resin available from Mitsubishi Chemical Corporation, SK-1BH
- an anion exchange resin available from Mitsubishi Chemical Corporation, SANUPC
- a silica particle (RA) dispersion having a SiO 2 concentration of 5% by weight was prepared. (At this time, the Na content in the silica particles was 200 ppm.)
- the dispersion was adjusted to pH 4.0 by the use of dilute hydrochloric acid and then treated at 200° C. for 1 hour in an autoclave.
- a cation exchange-resin was added at room temperature, and they were stirred for 1 hour to perform dealkalization.
- an anion exchange resin was added to the dispersion, and they were stirred for 1 hour to perform deanionization.
- an inorganic oxide particle group (2) dispersion having a SiO 2 concentration of 5% by weight was prepared.
- An average connection number of the inorganic oxide particle group is set forth in Table 2.
- the inorganic oxide particle group (2) dispersion having a SiO 2 concentration of 5% by weight was concentrated to a SiO 2 concentration of 20% by weight, and then the dispersion was subjected to solvent replacement with methanol by an ultrafilter method to prepare an inorganic oxide particle group (2) methanol dispersion having a SiO 2 concentration of 20% by weight.
- a substrate (F-5) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-5) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-6) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-6) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- Example B1 With 271 g of an inorganic oxide particle group (1) methanol dispersion obtained in the same manner as in Example B1, 126.4 g of a thermosetting acrylic resin (available from Hitachi Kasei K.K., Hitaloid 1007) and 205 g of ethyl cellosolve were mixed, to prepare a hard coating film-forming coating liquid (H-7).
- a thermosetting acrylic resin available from Hitachi Kasei K.K., Hitaloid 1007
- H-7 hard coating film-forming coating liquid
- a substrate (F-7) with a hard coating film was prepared by applying the hard coating film-forming coating liquid (H-7) by a bar coater method and then curing by heating at 80° C. for 1 minute in Example B1.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a mixture of 100 g of a silica sol having an average particle diameter of 5 nm and a SiO2 concentration of 20% by weight and 1900 g of pure water was heated to 80° C.
- This reaction mother liquor had pH of 10.5.
- 9000 g of a sodium silicate aqueous solution having a concentration of 1.17% by weight in terms of SiO 2 and 9000 g of a sodium aluminate aqueous solution having a concentration of 0.83% by weight in terms of Al 2 O 3 were added at the same time.
- the temperature of the reaction liquid was maintained at 80° C.
- pH of the reaction liquid rose to 12.5, but thereafter, it hardly changed.
- the reaction liquid was cooled to room temperature and then washed by an ultrafilter to prepare a SiO 2 .Al 2 O 3 primary particle dispersion having a solids concentration of 20% by weight.
- the silica-alumina particle (RC) dispersion was adjusted to pH 4.0 by the use of dilute hydrochloric acid and then treated at 200° C. for 1 hour in an autoclave.
- a cation exchange resin was added at room temperature, and they were stirred for 1 hour to perform dealkalization.
- an anion exchange resin was added to the dispersion, and they were stirred for 1 hour to perform deanionization.
- an inorganic oxide (silica-alumina) particle group (3) dispersion having a SiO 2 .Al 2 O 3 concentration of 5% by weight was prepared.
- An average connection number of the inorganic oxide particle group (3) is set forth in Table 2.
- the SiO 2 /Al 2 O 3 molar ratio was 0.0019, and the refractive index was 1.28.
- the refractive index was measured in the following manner using CARGILL Series A, AA as standard refraction liquids.
- a composite oxide dispersion is placed in an evaporator, and a dispersion medium is evaporated.
- the inorganic oxide particle group (3) dispersion having a SiO 2 .Al 2 O 3 concentration of 5% by weight was concentrated to a SiO 2 .Al 2 O 3 concentration of 20% by weight, and then the dispersion was subjected to solvent replacement with methanol by an ultrafilter method to prepare an inorganic oxide particle group (3) methanol dispersion having a SiO 2 .Al 2 O 3 concentration of 20% by weight.
- a substrate (F-8) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-8) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-9) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (H-9) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-10) with a hard coating film was prepared in the same manner as in Example B2, except that the hard coating film-forming coating liquid (H-2) was applied onto a triacetyl cellulose (TAC) film (thickness: 0.8 mm, refractive index: 1.50).
- TAC triacetyl cellulose
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (F-11) with a hard coating film was prepared in the same manner as in Example B4, except that the hard coating film-forming coating liquid (H-4) was applied onto a triacetyl cellulose (TAC) film (thickness: 0.8 mm, refractive index: 1.50). The thickness of the hard coating film was 5 ⁇ m.
- TAC triacetyl cellulose
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a hard coating film-forming coating liquid (RH-1) was prepared by mixing 160 g of an ultraviolet curing resin (available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids concentration: 79% by weight) with 261 g of ethyl cellosolve.
- an ultraviolet curing resin available from Dainippon Ink & Chemicals, Inc., Unidic 17-824-9, solids concentration: 79% by weight
- a substrate (RF-1) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (RH-1) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a hard coating film-forming coating liquid (RH-2) was prepared by mixing 100 g of a thermosetting acrylic resin (available from Hitachi Kasei K.K., Hitaloid 1007) with 233 g of ethyl cellosolve.
- a substrate (RF-2) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (RH-2) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (RF-3) with a hard coating film was prepared in the same manner as in Comparative Example B1, except that the hard coating film-forming coating liquid (RH-1) was applied onto a triacetyl cellulose (TAC) film (thickness: 0.8 mm, refractive index: 1.50).
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a silica sol (available from Catalysts & Chemicals Industries Co., Ltd., SI-550, average particle diameter: 5 nm, SiO 2 concentration: 20% by weight, Na in silica: 2700 ppm) was subjected to solvent replacement with methanol by an ultrafilter method to prepare a methanol dispersion of silica fine particles having a solids concentration of 20% by weight.
- a substrate (RF-4) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (RH-4) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a methanol dispersion of silica fine particles having a solids concentration of 20% by weight was prepared in the same manner as in Comparative Example B4.
- a substrate (RF-5) with a hard coating film was prepared in the same manner as in Example B1, except that the hard coating film-forming coating liquid (RH-5) was used.
- the thickness of the hard coating film was 5 ⁇ m.
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- a substrate (RF-6) with a hard coating film was prepared in the same manner as in Comparative Example B5, except that the hard coating film-forming coating liquid (RH-5) was applied onto a triacetyl cellulose (TAC) film (thickness: 0.8 mm, refractive index: 1.50,). The thickness of the hard coating film was 5 ⁇ m.
- RH-5 hard coating film-forming coating liquid
- TAC triacetyl cellulose
- the resulting hard coating film was evaluated on the surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion properties. The results are set forth in Table 2.
- TAC UV curing 100 — — — — — 5 91.7 0.2 HB DD CC 1000 or Ex. B1 resin more Comp. PET UV curing 85 12 0 15 — — 5 91.6 1.8 H CC BB 1000 or Ex. B1 resin more Comp. PET UV curing 70 12 0 30 — — 5 91.5 1.8 2H CC BB 1000 or Ex. B1 resin more Comp. TAC UV curing 70 12 0 30 — — 5 91.4 0.3 H CC BB 1000 or Ex. B1 resin more
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Geology (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Silicon Compounds (AREA)
Abstract
Description
R1 mSi(OR2)4-m or R1 mSi(HA.)4-m (1)
wherein R1 and R2 are selected from an alkyl group, an aryl group, a vinyl group, an acrylic group, a methacrylic group, an epoxy group, a halogenated alkyl group, an alkyl group containing an amino or mercapto group or a hydrogen atom, and m is 0, 1, 2 or 3, HA is halogen atom,
X—Si(R1)n(OR3)3-n or X—Si(R1)n(HA.)3-n (2)
wherein R3 is selected from an alkyl group, an aryl group, a vinyl group, an acrylic group, a methacrylic group or an epoxy group, n is 0, 1, or 2, HA is halogen atom, and X is —Y—Si(R1)n(OR3)3-n, —Y—Si(R1)n(HA.)3-n or —Y—H, Y is —(CH2)p—(CF2)q—(CH2)p— wherein p and q are each an integer of 0 to 6, HA is halogen atom.
—Si(R5)3-r(OR7)r (3)
wherein R5 and R7 are each an alkyl group or hydrogen, and r is 1, 2 or 3.
R1 mSi(OR2)4-m or R1 mSi(HA.)4-m (1)
wherein R1 and R2 are selected from an alkyl group, an aryl group, a vinyl group, an acrylic group, a methacrylic group, an epoxy group, a halogenated alkyl group, an alkyl group containing an amino or mercapto group or a hydrogen atom, and m is Of 1, 2 or 3,
X—Si(R1)n(OR3)3-n or X—Si(1)n(HA.)3-n (2)
wherein R3 is selected from an alkyl group, an aryl group, a vinyl group, an acrylic group, a methacrylic group or an epoxy group, n is 0, 1, or 2, HA is halogen atom, and X is —Y—Si(R1)n(OR3)3-n-3, —Y—Si (R1)n(HA.)3-n or —Y—H, Y is —(CH2)p—(CF2)q—(CH2)p— wherein p and q are each an integer of 0 to 6, HA is halogen atom.
—Si(R5)3-r(OR7)r (3)
wherein R5 and R7 are an alkyl group or hydrogen, and r is 1, 2 or 3.
TABLE 1 | |||
Substrate with film |
Chain antimony oxide fin particles | Substrate with film (properties) |
Primary particles | Volume | Total |
Average | resis- | light | Ad- | Surface |
particle | Connection | tance | Matrix | trans- | Pencil | Scratch | hesion | resis- |
Sub- | diameter | number | value | Content | Content | mittance | Haze | hard- | resis- | prop | tance | |||
strate | (nm) | (particles) | (Ω · cm) | (wt %) | Type | (wt %) | (%) | (%) | ness | tance | erties | (Ω/□) | ||
Ex. A1 | PET | 15 | 5 | 50 | 20 | ultra- | 80 | 91.8 | 1.2 | 3H | AA | AA | 5.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A2 | PET | 15 | 10 | 30 | 20 | ultra- | 80 | 91.6 | 1.3 | 3H | AA | AA | 3.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A3 | PET | 15 | 15 | 20 | 20 | ultra- | 80 | 91.6 | 1.4 | 3H | AA | AA | 1.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A4 | PET | 20 | 5 | 200 | 20 | ultra- | 80 | 92.0 | 1.3 | 3H | AA | AA | 8.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A5 | PET | 20 | 10 | 100 | 20 | ultra- | 80 | 91.9 | 1.3 | 3H | AA | AA | 5.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A6 | PET | 20 | 10 | 100 | 50 | ultra- | 50 | 91.8 | 1.4 | 4H | AA | AA | 8.0E+08 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A7 | PET | 20 | 10 | 100 | 50 | acrylic | 50 | 91.7 | 1.5 | 2H | BB | BB | 6.0E+08 |
resin | |||||||||||||
Ex. A8 | PET | 20 | 15 | 80 | 20 | ultra- | 80 | 91.7 | 1.4 | 3H | AA | AA | 3.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A9 | PET | 35 | 10 | 500 | 20 | ultra- | 80 | 91.5 | 1.6 | 3H | AA | AA | 6.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Ex. A10 | PET | 20 | 20 | 50 | 20 | ultra | 80 | 91.8 | 1.5 | 3H | AA | AA | 1.0E+09 |
violet | |||||||||||||
curing | |||||||||||||
resin | |||||||||||||
Comp. | PET | — | — | — | — | ultra- | 100 | 92.0 | 1.2 | 2H | CC | DD | 1.0E+14 or |
Ex. A1 | violet | ||||||||||||
curing | more | ||||||||||||
resin | |||||||||||||
Comp. | PET | — | — | — | — | acrylic | 100 | 91.8 | 1.2 | 1H | DD | DD | 1.0E+14 or |
Ex. A2 | resin | more | |||||||||||
Comp. | PET | 12 | — | 106 | 20 | ultra- | 80 | 91.0 | 1.3 | 2H | BB | CC | 1.0E+14 or |
Ex. A3 | monodisperse | violet | |||||||||||
SiO2 | curing | more | |||||||||||
resin | |||||||||||||
Comp. | PET | 50 | — | 106 | 20 | ultra- | 80 | 91.0 | 1.8 | 2H | BB | CC | 1.0E+14 or |
Ex. A4 | monodisperse | violet | |||||||||||
Sb2O3 | curing | more | |||||||||||
resin | |||||||||||||
Comp. | PET | 20 | — | 1000 | 20 | ultra- | 80 | 91.9 | 1.2 | 3H | BB | CC | 1.0E+10 |
Ex. A5 | monodisperse | violet | |||||||||||
Sb2O5 | curing | ||||||||||||
resin | |||||||||||||
TABLE 2 | ||
Substrate with hard coating film |
Hard coating film |
Inorganic compound | ||
particle group |
Matrix | Average | Sb2O5 particles | Total | Surface |
Con- | primary | Con- | Average | Con- | Film | light | resis- |
tent | particle | Con- | tent | particle | tent | thick- | trans- | Pencil | Scratch | tance | ||||||
Sub- | (wt | diameter | nection | (wt | diameter | (wt | ness | mittance | Haze | hard- | resis- | Adhesion | (Ω/□) | |||
strate | Type | %) | (nm) | number | %) | (nm) | %) | (μm) | (%) | (%) | ness | tance | properties | 1.E+10 | ||
Ex. B1 | PET | UV curing | 85 | 12 | 10 | 15 | — | — | 5 | 91.5 | 1.5 | 4H | BB | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B2 | PET | UV curing | 70 | 12 | 10 | 30 | — | — | 5 | 91.3 | 1.5 | 5H | AA | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B3 | PET | UV curing | 30 | 12 | 10 | 70 | — | — | 5 | 91.1 | 1.6 | 4H | BB | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B4 | PET | UV curing | 40 | 12 | 10 | 20 | 20 | 40 | 5 | 91.8 | 1.4 | 5H | AA | AA | 9 |
resin | |||||||||||||||
Ex. B5 | PET | UV curing | 70 | 18 | 15 | 30 | — | — | 5 | 91.3 | 1.5 | 5H | AA | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B6 | PET | UV curing | 40 | 18 | 15 | 20 | 20 | 40 | 5 | 91.8 | 1.5 | 5H | AA | AA | 7 |
resin | |||||||||||||||
Ex. B7 | PET | acrylic | 70 | 12 | 10 | 30 | — | — | 5 | 91.2 | 1.6 | 4H | BB | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B8 | PET | UV curing | 70 | 30 | 5 | 30 | — | — | 5 | 91.3 | 1.8 | 4H | AA | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B9 | PET | UV curing | 40 | 30 | 5 | 20 | 20 | 40 | 5 | 91.4 | 1.8 | 5H | AA | AA | 12 |
resin | |||||||||||||||
Ex. B10 | TAC | UV curing | 70 | 12 | 10 | 30 | — | — | 5 | 91.5 | 0.3 | 3H | BB | BB | 1000 or |
resin | more | ||||||||||||||
Ex. B11 | TAC | UV curing | 40 | 12 | 10 | 30 | 20 | 40 | 5 | 91.6 | 0.3 | 4H | BB | AA | 8 |
resin | |||||||||||||||
Comp. | PET | UV curing | 100 | — | — | — | — | — | 5 | 91.8 | 1.8 | H | DD | CC | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Comp. | PET | acrylic | 100 | — | — | — | — | — | 5 | 91.7 | 1.8 | HB | DD | CC | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Comp. | TAC | UV curing | 100 | — | — | — | — | — | 5 | 91.7 | 0.2 | HB | DD | CC | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Comp. | PET | UV curing | 85 | 12 | 0 | 15 | — | — | 5 | 91.6 | 1.8 | H | CC | BB | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Comp. | PET | UV curing | 70 | 12 | 0 | 30 | — | — | 5 | 91.5 | 1.8 | 2H | CC | BB | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Comp. | TAC | UV curing | 70 | 12 | 0 | 30 | — | — | 5 | 91.4 | 0.3 | H | CC | BB | 1000 or |
Ex. B1 | resin | more | |||||||||||||
Claims (3)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003376812A JP4439876B2 (en) | 2003-11-06 | 2003-11-06 | Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof |
JP2003-376812 | 2003-11-06 | ||
JP2003430414A JP4540979B2 (en) | 2003-12-25 | 2003-12-25 | Base material with hard coat film and coating liquid for forming hard coat film |
JP2003-430414 | 2003-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050116205A1 US20050116205A1 (en) | 2005-06-02 |
US7309457B2 true US7309457B2 (en) | 2007-12-18 |
Family
ID=34622154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/981,845 Expired - Fee Related US7309457B2 (en) | 2003-11-06 | 2004-11-05 | Chain inorganic oxide fine particle groups |
Country Status (4)
Country | Link |
---|---|
US (1) | US7309457B2 (en) |
KR (1) | KR101163539B1 (en) |
CN (1) | CN1626584B (en) |
TW (1) | TWI365170B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4883383B2 (en) * | 2005-06-02 | 2012-02-22 | 旭硝子株式会社 | Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating |
JP5057199B2 (en) * | 2005-06-02 | 2012-10-24 | 旭硝子株式会社 | Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating |
JP5209855B2 (en) * | 2006-05-31 | 2013-06-12 | 日揮触媒化成株式会社 | Paint for forming transparent film and substrate with transparent film |
TW200900354A (en) * | 2007-03-16 | 2009-01-01 | Asahi Glass Co Ltd | Hollow micro particle, method for production thereof, coating composition, and article having coating film formed thereon |
US8153249B2 (en) * | 2008-08-26 | 2012-04-10 | Snu R&Db Foundation | Article treated with silica particles and method for treating a surface of the article |
WO2012124717A1 (en) * | 2011-03-15 | 2012-09-20 | 栃木住友電工株式会社 | Metal wire having abrasive grains bonded thereto and method for manufacturing metal wire having abrasive grains bonded thereto |
TWI541534B (en) * | 2011-10-17 | 2016-07-11 | Dainippon Printing Co Ltd | Optical film, polarizing plate and image display device |
JP6016548B2 (en) * | 2012-09-19 | 2016-10-26 | 日揮触媒化成株式会社 | Coating liquid for forming transparent film and substrate with transparent film |
TWI777011B (en) * | 2017-12-27 | 2022-09-11 | 日商日揮觸媒化成股份有限公司 | Method for producing chain particle dispersion liquid for abrasives |
CN113105777A (en) * | 2021-05-31 | 2021-07-13 | 齐鲁工业大学 | Wear-resistant and stable flame-retardant super-hydrophobic/super-oleophobic coating and preparation and application thereof |
CN114094874B (en) * | 2021-11-16 | 2023-07-21 | 北京航空航天大学 | Biomimetic Nanofluidic Devices Based on Optical Energy/Osmotic Energy Integration Based on Photoelectric Material Modification |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3860523A (en) | 1971-12-27 | 1975-01-14 | Henry G Petrow | Antimony oxide colloidal sol, formulation and method of preparing the same |
US4457973A (en) * | 1980-06-06 | 1984-07-03 | Kanebo Synthetic Fibers Ltd. | Conductive composite filaments and methods for producing said composite filaments |
JPS6041536A (en) | 1983-08-16 | 1985-03-05 | Nissan Chem Ind Ltd | Preparation of antimony pentoxide sol |
JPS60137828A (en) | 1983-12-21 | 1985-07-22 | Japan Exlan Co Ltd | Production of colloidal antimony oxide |
US4533538A (en) * | 1983-06-16 | 1985-08-06 | Japan Exlan Company Limited | Method of producing colloidal antimony oxide |
JPS61227919A (en) | 1985-04-03 | 1986-10-11 | Nissan Chem Ind Ltd | Antimony pentoxide sol electrified in positive and its production |
JPS61227918A (en) | 1985-04-03 | 1986-10-11 | Nissan Chem Ind Ltd | Method for producing antimony pentoxide sol |
JPH021717A (en) | 1987-12-23 | 1990-01-08 | Norsolor Sa | New method for manufacture of aminoplast resin evolving very little formalin |
JPH02180717A (en) | 1988-12-28 | 1990-07-13 | Catalysts & Chem Ind Co Ltd | Antomony oxide sol and its production |
JPH07133105A (en) | 1993-11-04 | 1995-05-23 | Catalysts & Chem Ind Co Ltd | Multiple oxide sol, its production and base material |
JPH1161043A (en) | 1997-08-07 | 1999-03-05 | Catalysts & Chem Ind Co Ltd | Coating liquid for forming porous silica-based coated layer, base material with coated layer and short fiber type silica |
JP2002079616A (en) | 2000-06-23 | 2002-03-19 | Toshiba Corp | Transparent film-applied base material, coating solution for forming transparent film and display device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110247A (en) * | 1977-04-07 | 1978-08-29 | The Harshaw Chemical Company | Method of preparing colloidal sol of antimony oxide |
US5665422A (en) * | 1991-03-19 | 1997-09-09 | Hitachi, Ltd. | Process for formation of an ultra fine particle film |
EP0974560B2 (en) * | 1997-12-09 | 2015-12-30 | Nippon Sheet Glass Co., Ltd. | Antireflection glass plate, process for producing the same, and antireflection coating composition |
WO2001042155A1 (en) * | 1999-12-13 | 2001-06-14 | Nippon Sheet Glass Co., Ltd. | Low-reflection glass article |
-
2004
- 2004-11-04 KR KR1020040089148A patent/KR101163539B1/en not_active Expired - Fee Related
- 2004-11-05 TW TW093133783A patent/TWI365170B/en not_active IP Right Cessation
- 2004-11-05 US US10/981,845 patent/US7309457B2/en not_active Expired - Fee Related
- 2004-11-08 CN CN2004100905486A patent/CN1626584B/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3860523A (en) | 1971-12-27 | 1975-01-14 | Henry G Petrow | Antimony oxide colloidal sol, formulation and method of preparing the same |
US4457973B1 (en) * | 1980-06-06 | 1995-05-09 | Kanebo Synthetic Fibert Ltd | Conductive composite filaments and methods for producing said composite filaments |
US4457973A (en) * | 1980-06-06 | 1984-07-03 | Kanebo Synthetic Fibers Ltd. | Conductive composite filaments and methods for producing said composite filaments |
US4533538A (en) * | 1983-06-16 | 1985-08-06 | Japan Exlan Company Limited | Method of producing colloidal antimony oxide |
JPS6041536A (en) | 1983-08-16 | 1985-03-05 | Nissan Chem Ind Ltd | Preparation of antimony pentoxide sol |
JPS60137828A (en) | 1983-12-21 | 1985-07-22 | Japan Exlan Co Ltd | Production of colloidal antimony oxide |
JPS61227918A (en) | 1985-04-03 | 1986-10-11 | Nissan Chem Ind Ltd | Method for producing antimony pentoxide sol |
JPS61227919A (en) | 1985-04-03 | 1986-10-11 | Nissan Chem Ind Ltd | Antimony pentoxide sol electrified in positive and its production |
JPH021717A (en) | 1987-12-23 | 1990-01-08 | Norsolor Sa | New method for manufacture of aminoplast resin evolving very little formalin |
JPH02180717A (en) | 1988-12-28 | 1990-07-13 | Catalysts & Chem Ind Co Ltd | Antomony oxide sol and its production |
JPH07133105A (en) | 1993-11-04 | 1995-05-23 | Catalysts & Chem Ind Co Ltd | Multiple oxide sol, its production and base material |
JPH1161043A (en) | 1997-08-07 | 1999-03-05 | Catalysts & Chem Ind Co Ltd | Coating liquid for forming porous silica-based coated layer, base material with coated layer and short fiber type silica |
JP2002079616A (en) | 2000-06-23 | 2002-03-19 | Toshiba Corp | Transparent film-applied base material, coating solution for forming transparent film and display device |
Non-Patent Citations (5)
Title |
---|
Guo et al. "Synthesis of novel Sb2O3 and Sb2O5 nanorods." Chem. Phys. Let., 2000, 318, 49. * |
Satishkumar et al. "Synthesis of metal oxide nanorods using carbon nanotubes as templates." J. Mater. Chem., 2000, 2115. * |
Xiong et al. "Controlled growth of Sb2O5 nanoparticles and their use as polymer electrolyte fillers." J. Mater. Chem., 2003, 13, 1994. * |
Ye et al. "A facile vapor-solid synthetic route to Sb2O3 fibrils and tubules." Chem. Phys. Let., 2002, 363, 34. * |
Zhang, Zaoli. "Synthesis and microstrucute of antimony oxide nanorods." J. Mater. Res., 2002, 17, 1698. * |
Also Published As
Publication number | Publication date |
---|---|
KR20040099228A (en) | 2004-11-26 |
CN1626584B (en) | 2011-08-24 |
CN1626584A (en) | 2005-06-15 |
US20050116205A1 (en) | 2005-06-02 |
TW200519038A (en) | 2005-06-16 |
KR101163539B1 (en) | 2012-07-06 |
TWI365170B (en) | 2012-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6713170B1 (en) | Hard coating material and film comprising the same | |
EP1787959B1 (en) | Method for producing silica-based fine particles | |
EP1887059B1 (en) | DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM | |
JP4592274B2 (en) | Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles | |
KR101416610B1 (en) | Paint for transparent film and transparent film coated substrate | |
US20100196687A1 (en) | Antireflection laminate | |
JP4428923B2 (en) | Method for producing silica-based hollow fine particles | |
US7309457B2 (en) | Chain inorganic oxide fine particle groups | |
KR101877810B1 (en) | Coating solution for forming transparent film and substrate coated by transparent film | |
JP4439876B2 (en) | Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof | |
JP4540979B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
US8617693B2 (en) | Antireflection laminate | |
JPH09202864A (en) | Coating solution for forming transparent coating film and substrate having coating film | |
JP4979876B2 (en) | Base material with hard coat film | |
KR920006597B1 (en) | Coating liquid for conductive film formation | |
JP5534758B2 (en) | Phosphorus-containing antimony pentoxide fine particles, a transparent conductive film-forming coating solution containing the fine particles, and a substrate with a transparent conductive film | |
KR20080095773A (en) | Coating Composition and Optical Element | |
JP3955971B2 (en) | Base material with antireflection film | |
JP5116285B2 (en) | Base material with transparent coating | |
JP5084122B2 (en) | Film-coated substrate and coating solution for film formation | |
US5785892A (en) | Organo-antimony oxide sols and coating compositions thereof | |
JP2004204173A (en) | Paint for forming infrared shielding film and substrate with infrared shielding film | |
KR20210094577A (en) | Reactive silicone composition and cured product thereof | |
JP5395418B2 (en) | Process for producing chain antimony pentoxide fine particles and coated substrate containing the fine particles | |
JP2011093754A (en) | Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CATALYSTS & CHEMICALS INDUSTRIES CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAGUSHI, RYO;MATSUDA, MASAYUKI;NISHIDA, HIROYASU;AND OTHERS;REEL/FRAME:015966/0549 Effective date: 20040925 |
|
AS | Assignment |
Owner name: CATALYSTS & CHEMICALS INDUSTRIES CO., LTD., JAPAN Free format text: CORRECTED COVER SHEET TO CORRECT ASSIGNOR'S NAME, PREVIOUSLY RECORDED AT REEL/FRAME 015966/0549 (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNORS:MURAGUCHI, RYO;MATSUDA, MASAYUKI;NISHIDA, HIROYASU;AND OTHERS;REEL/FRAME:016574/0719 Effective date: 20040925 |
|
CC | Certificate of correction | ||
CC | Certificate of correction | ||
CC | Certificate of correction | ||
AS | Assignment |
Owner name: JGC CATALYSTS AND CHEMICALS LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:CATALYSTS & CHEMICALS INDUSTRIES CO., LTD.;REEL/FRAME:022320/0084 Effective date: 20080701 Owner name: JGC CATALYSTS AND CHEMICALS LTD.,JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:CATALYSTS & CHEMICALS INDUSTRIES CO., LTD.;REEL/FRAME:022320/0084 Effective date: 20080701 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20151218 |