US7304118B2 - Polyethylene pipe having better melt processibility and high resistance to stress and method of preparing the same using metallocene catalyst - Google Patents
Polyethylene pipe having better melt processibility and high resistance to stress and method of preparing the same using metallocene catalyst Download PDFInfo
- Publication number
- US7304118B2 US7304118B2 US11/100,659 US10065905A US7304118B2 US 7304118 B2 US7304118 B2 US 7304118B2 US 10065905 A US10065905 A US 10065905A US 7304118 B2 US7304118 B2 US 7304118B2
- Authority
- US
- United States
- Prior art keywords
- ethylene
- molecular weight
- based copolymer
- water supply
- supply pipes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 Polyethylene Polymers 0.000 title claims description 80
- 239000012968 metallocene catalyst Substances 0.000 title abstract description 11
- 229920000573 polyethylene Polymers 0.000 title description 29
- 239000004698 Polyethylene Substances 0.000 title description 25
- 238000000034 method Methods 0.000 title description 23
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000005977 Ethylene Substances 0.000 claims abstract description 68
- 229920001577 copolymer Polymers 0.000 claims abstract description 50
- 238000009826 distribution Methods 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000004711 α-olefin Substances 0.000 claims abstract description 17
- 239000003054 catalyst Substances 0.000 claims description 49
- 150000001875 compounds Chemical class 0.000 claims description 41
- 239000002002 slurry Substances 0.000 claims description 17
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 16
- 229920000098 polyolefin Polymers 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 229910007928 ZrCl2 Inorganic materials 0.000 claims description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 4
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 claims description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 claims description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 claims description 4
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 claims description 4
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 claims description 4
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 claims description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 claims description 4
- HMDQPBSDHHTRNI-UHFFFAOYSA-N 1-(chloromethyl)-3-ethenylbenzene Chemical compound ClCC1=CC=CC(C=C)=C1 HMDQPBSDHHTRNI-UHFFFAOYSA-N 0.000 claims description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 2
- 229940069096 dodecene Drugs 0.000 claims description 2
- 239000012778 molding material Substances 0.000 claims 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims 1
- 238000007334 copolymerization reaction Methods 0.000 abstract description 5
- 230000006353 environmental stress Effects 0.000 abstract description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 39
- 238000004132 cross linking Methods 0.000 description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 239000004971 Cross linker Substances 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 230000002902 bimodal effect Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 8
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 125000003158 alcohol group Chemical group 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 150000001451 organic peroxides Chemical class 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 150000005840 aryl radicals Chemical class 0.000 description 5
- 239000003651 drinking water Substances 0.000 description 5
- 235000020188 drinking water Nutrition 0.000 description 5
- 229920001038 ethylene copolymer Polymers 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 0 *C(*)(C)CC(*)(*)C Chemical compound *C(*)(C)CC(*)(*)C 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000010382 chemical cross-linking Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910007932 ZrCl4 Inorganic materials 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- JNTPTNNCGDAGEJ-UHFFFAOYSA-N 6-chlorohexan-1-ol Chemical compound OCCCCCCCl JNTPTNNCGDAGEJ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- SBWFFTMJSQSWGS-UHFFFAOYSA-N CN[N](NC)(NC)O[N](C)(N)N Chemical compound CN[N](NC)(NC)O[N](C)(N)N SBWFFTMJSQSWGS-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- SHPVKUQHCZKKRP-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC SHPVKUQHCZKKRP-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001399 aluminium compounds Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004595 color masterbatch Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- MASNVFNHVJIXLL-UHFFFAOYSA-N ethenyl(ethoxy)silicon Chemical compound CCO[Si]C=C MASNVFNHVJIXLL-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 229910021482 group 13 metal Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VMRZYTKLQVKYKQ-UHFFFAOYSA-N lithium;1,9-dihydrofluoren-1-ide Chemical compound [Li+].C1=C[C-]=C2CC3=CC=CC=C3C2=C1 VMRZYTKLQVKYKQ-UHFFFAOYSA-N 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Chemical group 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- XPPWLXNXHSNMKC-UHFFFAOYSA-N phenylboron Chemical compound [B]C1=CC=CC=C1 XPPWLXNXHSNMKC-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 150000003623 transition metal compounds Chemical group 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42F—SHEETS TEMPORARILY ATTACHED TOGETHER; FILING APPLIANCES; FILE CARDS; INDEXING
- B42F1/00—Sheets temporarily attached together without perforating; Means therefor
- B42F1/02—Paper-clips or like fasteners
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G11/00—Producing optical signals at preselected times
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G13/00—Producing acoustic time signals
- G04G13/02—Producing acoustic time signals at preselected times, e.g. alarm clocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42P—INDEXING SCHEME RELATING TO BOOKS, FILING APPLIANCES OR THE LIKE
- B42P2241/00—Parts, details or accessories for books or filing appliances
- B42P2241/16—Books or filing appliances combined with other articles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
Definitions
- the present invention relates to a polyethylene copolymer to be used for water supply pipes, prepared using a supported hybrid metallocene catalyst that can synthesize polyolefin whose physical properties and molecular weight distribution can be more easily controlled compared to a conventional Ziegler-Natta catalyst.
- a plastic water supply pipe is composed of polyethylene, polyvinyl chloride, polypropylene, polybutene, and the like.
- a plastic pipe has a lower rigidity than a steel pipe, a cast iron pipe or copper pipe, but a demand therefor is increasing due to its high toughness, ease of installation, and superior chemical resistance such as chlorine.
- a polyethylene pipe has a higher toughness than a polyvinyl chloride or polypropylene pipe and can be heat bonded, and thus can be easily installed.
- the polyethylene pipe has also a high resistance to chlorine, which is contained in drinking water, when being used as a water supply pipe. Thus, a demand for the polyethylene pipe is increasing.
- a conventional polyethylene pipe has been modified by a chemical-crosslinking or moisture-crosslinking due to inferior internal pressure resistance and environmental stress cracking resistance (ESCR) of a polyethylene resin.
- ESCR environmental stress cracking resistance
- a chemically-crosslinked pipe is fabricated by extruding a resin composition including polyethylene and an organic peroxide such as dicumyl peroxide in a pipe shape while heating the resin composition to a pyrolysis temperature of the organic peroxide or higher.
- the organic peroxide is pyrolyzed into organic radicals.
- the organic radicals generate polyethylene radicals so as to lead to crosslinking of the polyethylene.
- a moisture-crosslinked pipe is fabricated by compounding polyethylene, a silane compound such as vinylethoxy silane, an organic peroxide, and silanol condensation catalyst, and then extruding the resulting composition in a pipe shape while heating the composition.
- a silane crosslinking is performed by exposing the molded pipe to moisture.
- Japanese Patent Laid-Open Publication No. Hei 8-073670 discloses a crosslinked polyethylene composition including a copolymer of ethylene and butene-1, having a specific melt index
- Japanese Patent Laid-Open Publication No. Hei 9-324081 discloses a crosslinked polyethylene pipe fabricated using polyethylene and an specific antioxidant, and discloses a crosslinked pipe fabricated using polyolefin having a number of double bonds.
- Japanese Patent Publication No. Sho 57-170913 discloses a crosslinked pipe fabricated using polyethylene with a specific density and molecular weight
- Hei 9-020867 and 7-157568 disclose a crosslinked pipe fabricated using a silane modified graft polyethylene with a narrow molecular weight distribution
- Japanese Patent Laid-Open Publication No. Hei 7-041610 discloses a crosslinked pipe for drinking water, fabricated using a specific organic peroxide.
- Japanese Patent Publication No. Sho 60-001252 discloses a crosslinked pipe fabricated using an activated carbon, silica, and alumina
- Japanese Patent Laid-Open Publication No. Hei 10-182757 discloses a pipe for supplying water or hot water, fabricated using a specific organic unsaturated silane and a specific radical generator
- Japanese Patent Laid-Open Publication No. Hei 7-330992 discloses a method of fabricating a pipe using an epoxy compound
- Japanese Patent Laid-Open Publication No. Hei 6-248089 discloses a crosslinked pipe fabricated using a high density polyethylene.
- the polyethylene resin that is used as a raw material in the conventional technologies is prepared using a conventional polymerization catalyst such as a Ziegler-Natta catalyst or vanadium catalyst.
- a conventional polymerization catalyst such as a Ziegler-Natta catalyst or vanadium catalyst.
- the use of such an ethylene polymer causes various problems. That is, when the conventional ethylene polymer that has a broad molecular weight distribution and more comonomers incorporated in low molecular weight components than in high molecular weight components is used to fabricate a crosslinked pipe, the low molecular weight components are mainly crosslinked and the high molecular weight components are not sufficiently crosslinked. Thus, the crosslinked pipe has an inferior mechanical strength, in particular, internal pressure creep resistance at high temperatures.
- silane crosslinked pipe When molding a moisture-crosslinked pipe, a large amount of an unsaturated silane compound should be added in order to sufficiently occur a silane crosslinking in the high molecular weight compounds.
- the silane crosslinked pipe has an offensive odor due to the unsaturated silane compound.
- a long term processing is difficult due to die gum from polyethylene residue.
- a metallocene catalyst system comprises a main catalyst whose main component is a transition metal compound, mainly a Group IV metal and an organometallic compound cocatalyst whose main component is aluminum.
- a catalyst offers a polymer having a narrow molecular weight distribution depending on the single site characteristics.
- the molecular weight and molecular weight distribution of polyolefin are important factors in determining the fluity and mechanical properties that affect the physical properties and processability of a polymer. In order to manufacture various polyolefin products, it is important to improve melt processability through the control of the molecular weight distribution (C. A. Sperat, W. A. Franta, H. W. Starkweather Jr., J. Am. Chem. Soc., 75, 1953, 6127).
- the chemically crosslinked pipes and moisture-crosslinked pipes are not suitable for drinking water due to the remaining unreacted monomers, flexibility in the installation is diminished, and heat bonding is difficult.
- the inventors made efforts to design an polyethylene composition that can maintain rigidity by increasing a comonomer content in high molecular weight components and decreasing a comonomer content in low molecular weight components, in order to fabricate a pipe having a sufficient resistance to stress without crosslinking of polyethylene.
- the inventors prepared an ethylene-based copolymer having a bimodal or broad molecular weight distribution and superior processability, resistance to stress, and ESCR due to copolymerization of ethylene and C 3-20 ⁇ -olefin mainly occurring in high molecular weight chains by using a supported hybrid catalyst in which a metallocene compound suitable to prepare a low molecular weight polyethylene and a metallocene compound suitable to prepare a high molecular weight polyethylene are supported on a support, thereby completing the present invention.
- the present invention provides an ethylene-based copolymer for non-crosslinked water supply pipes, which does not give off an odor, does not increase a load of an extruder, does not generate heat and die gum from polyethylene residue, keeps the characteristics of a thermoplastic resin to be recycled, is inexpensive, and can be molded into a flexible pipe that is convenient to be installed.
- an ethylene-based copolymer for crosslinked water supply pipes obtained by copolymerizing ethylene and C 3-20 ⁇ -olefin using a supported hybrid catalyst in which at least two different metallocene compounds are supported on a support, the ethylene-based copolymer having a density of 0.930-0.960 g/cm 3 , a melt index of 0.3-1.0 g/10 min (190 degrees, 2.16 kg load), and a molecular weight distribution (weight average molecular weight/number average molecular weight) of 5-30.
- a polyethylene prepared using a metallocene catalyst has a relatively narrow molecular weight distribution due to a uniform molecular weight and a more uniform distribution of ⁇ -olefin comonomers compared to a polyethylene prepared a Ziegler-Natta catalyst, and superior physical properties due to reduction of side reaction by catalyst residues.
- the polyethylene prepared using the metallocene catalyst has inferior workability due to a narrow molecular weight distribution, and in particular, has significantly lowered producibility upon pipe production due to the effects of extrusion load. It is difficult to apply the polyethylene prepared using the metallocene catalyst to products that should have superior internal pressure creep resistance and ESCR, such as a water supply pipe, due to a lack of high molecular weight ethylene content at the same level of the melt index.
- a supported hybrid catalyst where metallocene compounds are supported on a support is used to prepare an ethylene-based copolymer having a bimodal or broad molecular weight distribution and a molecular weight distribution of 5-30, thus superior processability upon molding the products and superior internal pressure creep resistance and ESCR due to intensive copolymerization of ⁇ -olefin comonomer in high molecular weight ethylene chains.
- the ethylene-based copolymer has an ethylene content of 55-99 wt. %, and preferably 65-98 wt. %, and more preferably 70-96 wt. %, and a C 3-20 ⁇ -olefin content of 1-45 wt. %, and preferably 2-35 wt. %, and more preferably 4-20 wt. %.
- the supported hybrid catalyst where at least two different metallocene compounds are supported on a single support is used to prepare an ethylene-based copolymer having a bimodal or broad molecular weight distribution, wherein a metallocene compound in the supported hybrid catalyst (hereinafter, is abbreviated to “a first metallocene compound”) is used to mainly produce a low molecular polyethylene and the other metallocene compound (hereinafter, is abbreviated to “a second metallocene compound”) is used to mainly produce a high molecular polyethylene.
- a metallocene compound in the supported hybrid catalyst hereinafter, is abbreviated to “a first metallocene compound”
- a second metallocene compound is used to mainly produce a high molecular polyethylene.
- a high performance ethylene-based copolymer in which ⁇ -olefin comonomers intensively bond to high molecular weight ethylene chains can be prepared by functions of the two metallocene compounds.
- Examples of a support useful for the supported hybrid catalyst include silica dried at high temperatures, silica-alumina, silica-magnesia, and the like. These supports may typically contain oxides such as Na 2 O, carbonates such as K 2 CO 3 , sulfates such as BaSO 4 , nitrates such as Mg(NO 3 ) 2 . Although a smaller amount of alcohol groups (—OH) on the surface of the support is preferable, removal of all alcohol groups is practically impossible.
- the amount of the alcohol groups (—OH) is preferably 0.1-10 mmol/g, and more preferably 0.1-1 mmol/g, still more preferably 0.1-0.5 mmol/g.
- the amount of the surface alcohol groups (—OH) can be controlled by various preparation processes or drying conditions of a support (for example, temperature, time, and drying method such as vacuum or spray dry).
- a catalyst prepared by chemically removing alcohol groups (—OH) while maintaining highly reactive siloxane groups involved in supporting can also be used (Korean Patent Laid-Open Publication No. 2001-003325).
- the metallocene compounds are selected from the following compounds.
- the first metallocene compound in the supported hybrid catalyst is a compound represented by Formula (1) below. (C 5 R 1 ) p (C 5 R 1 )MQ 3-p (1)
- M is a Group IV transition metal
- (C 5 R 1 ) is a metalloid radical of a Group XIV metal substituted by a hydrogen radical, C 1-20 alkyl radical, alkenyl radical, aryl radical, alkylaryl radical, arylalkyl radical or hydrocarbyl; or a cyclopentadienyl or a substituted cyclopentadienyl ligand wherein two neighboring carbon atoms of C 5 are connected by a hydrocarbyl radical to form a C 4 to C 8 ring;
- Q is a halogen, C 1-20 alkyl radical, alkenyl radical, aryl radical, alkylaryl radical, arylalkyl radical or hydrocarbyl;
- p is 0 or 1
- At least one hydrogen radical in R 1 is substituted by a radical represented by the following Formula (a), a radical represented by the following Formula (b) or a radical represented by the following Formula (c):
- Z is oxygen or sulfur
- each of R and R′ is an identical or different hydrogen radical, C 1-40 alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl radical, and two R's may be connected to form a ring;
- G is a C 1-40 alkoxy, aryloxy, alkylthio, arylthio, phenyl or substituted phenyl, and may be connected to R′ to form a ring;
- G should be an alkoxy or aryloxy
- G is an alkylthio, arylthio, phenyl or substituted phenyl, Z should be oxygen;
- Z is oxygen or sulfur, and at least one of two Zs is oxygen
- each of the R and R′′ is an identical or different hydrogen radical, C 1-40 alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl radical;
- R and R′′ may be connected to form a ring
- R′′s are hydrogen radicals, they may be connected to form a ring
- each of the R and R′′′ is an identical or different hydrogen radical, C 1-40 alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl radical;
- the second metallocene compound in the supported hybrid catalyst is a compound represented by the following Formula (2) or (3).
- M is a Group IV transition metal
- each of (C 5 R 3 ), (C 5 R 4 ) and (C 5 R 5 ) is a cyclopentadienyl or a substituted cyclopentadienyl ligand which is a metalloid of a Group XIV metal substituted by an identical or different C 1-40 alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, arylalkenyl radical or hydrocarbyl, or a substituted cyclopentadienyl ligand wherein two neighboring carbon atoms of C 5 are connected by a hydrocarbyl radical to form one or more C 4 to C 16 ring;
- each Q is an identical or different halogen radical, C 1-20 alkyl radical, alkenyl radical, aryl radical, alkylaryl radical, arylalkyl radical or C 1-20 alkylidene radical;
- B is a bridge that binds two cyclopentadienyl ligands or binds a cyclopentadienyl ligand and JR 9 z-y by a covalent bond, the cyclopentadienyl comprising a C 1-4 alkylene radical, dialkylsilicon or germanium, or alkyl phosphine or amine;
- R 9 is a hydrogen radical, C 1-20 alkyl radical, alkenyl radical, aryl radical, alkylaryl radical or arylalkyl radical;
- J is a Group XV element or a Group XVI element
- Y is oxygen or nitrogen
- A is a hydrogen radical, C 1-20 alkyl radical, alkenyl radical, aryl radical, alkylaryl radical, arylalkyl radical, alkylsilyl radical, arylsilyl radical, methoxymethyl, t-butoxymethyl, tetrahydropyranyl, tetrahydrofuranyl, 1-ethoxyethyl, 1-methyl-1-methoxyethyl or t-butyl;
- z-y is 1 or 2;
- a is an integer of 4 to 8.
- At least one hydrogen radical of the R 3 , R 4 and R 5 of (C 5 R 3 ), (C 5 R 4 ) and (C 5 R 5 ) is substituted by a radical selected from the radical represented by Formula (a), the radical represented by Formula (b) and the radical represented by formula (c) as defined in Formula (1) above.
- Examples of a cocatalyst useful to activate the metallocene compounds alkyl aluminium compounds, such as trimethyl aluminium, triethyl aluminium, triisobutyl aluminium, trioctyl aluminium, methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane, neutral or ionic boron based compounds such as tripentafluoro phenylboron and tributylammonium tetrapentafluoro phenylboron.
- alkyl aluminium compounds such as trimethyl aluminium, triethyl aluminium, triisobutyl aluminium, trioctyl aluminium, methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane
- a low molecular weight polyolefin prepared using the supported hybrid catalyst has preferably a molecular weight ranging from 1000 to 100,000 and a high molecular weight polyolefin prepared using the supported hybrid catalyst has preferably a molecular weight higher than that of the low molecular weight, ranging from 10,000 to 1,000,000.
- the present invention also provides a method of preparing an ethylene-based copolymer, the method including copolymerizing ethylene and C 3-20 ⁇ -olefin in the presence of a supported hybrid catalyst in which at least two different metallocene compounds are supported on a support.
- a supported hybrid catalyst is prepared by sequentially adding at least two different metallocene compounds having different polymerization characteristics for olefin to a single support, and then an ethylene-based copolymer having various properties and a bimodal or broad molecular weight distribution is prepared by inherent specific olefin polymerization characteristics of the respective metallocene compounds using the supported hybrid catalyst.
- an ethylene-based copolymer is prepared using a supported hybrid catalyst which can easily control a molecular weight distribution even in a single reactor by impregnating a first metallocene compound inducing a low molecular weight olefin, a second metallocene compound inducing a high molecular weight olefin, and a cocatalyst with a single support.
- a content of the Group IV metal of the finally obtained supported hybrid catalyst for olefin polymerization is 0.1-20 wt. %, and preferably 0.1-10 wt. %, and more preferably 1-3 wt. %.
- a molar ratio of a Group XIII metal/a Group IV metal of the supported hybrid metallocene catalyst is 1-10,000, and preferably 1-1,000, and more preferably 10-100.
- the supported hybrid catalyst of the present invention can be used for olefin polymerization without treatment. Also, it can be prepared into a pre-polymerized catalyst by contacting the supported hybrid catalyst with an olefinic monomer such as ethylene, propylene, 1-butene, 1-hexene and 1-octene.
- an olefinic monomer such as ethylene, propylene, 1-butene, 1-hexene and 1-octene.
- a polymerization process using the supported hybrid catalyst may be a solution process, a slurry process, a gas phase process, and a combination of slurry and gas phase processes, and preferably, a slurry or gas phase process, and more preferably, a slurry or gas phase process using a single reactor.
- the supported hybrid catalyst can be used in an olefin polymerization process after being diluted into a slurry using an appropriate C 5-12 aliphatic hydrocarbon solvent, such as pentane, hexane, heptane, nonane, decane, or an isomer thereof; an aromatic hydrocarbon solvent, such as toluene or benzene; or a chlorine-substituted hydrocarbon solvent, such as dichloromethane or chlorobenzene.
- the solvent is preferably treated with a trace of aluminium to remove catalytic poisons such as water, air, and the like.
- Examples of the olefinic monomer which can be polymerized using the supported hybrid catalyst include ethylene, propylene, ⁇ -olefin, cyclic olefin, and the like.
- a dienic olefinic monomer or trienic olefinic monomer having two or more double bonds can also be polymerized.
- Examples of such monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-icocene, norbornene, norbornadiene, ethylidenenorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like. These monomers can also be copolymerized in combination.
- the temperature for polymerizing these monomers in the presence of the supported hybrid catalyst of the present invention is 25-500° C., and preferably 25-200° C., and more preferably 50-100° C.
- the polymerization pressure is 1-100 Kgf/cm 2 , and preferably 1-50 Kgf/cm 2 , and more preferably 5-40 Kgf/cm 2 .
- a density of the ethylene-based copolymer is influenced by an amount of the ⁇ -olefin comonomer used. That is, as the amount of the ⁇ -olefin comonomer used increases, the density of the ethylene-based copolymer decreases. As the amount of the ⁇ -olefin comonomer used decreases, the density of the ethylene-based copolymer increases.
- the density of the ethylene-based copolymer is preferably 0.930-0.960 g/cm 3 , in particular 0.933-0.952 g/cm 3 in order to obtain optimum internal pressure creep resistance and environmental stress cracking resistance (ESCR) of products.
- a melt index of the ethylene-based copolymer is preferably 0.3-1.0 g/10 min, in particular 0.4-0.8 g/10 min in order to prevent a failure in the product molding due to drop and poor fluity in the molding process.
- the present invention provides a method of preparing an ethylene-based copolymer, the method including copolymerizing ethylene and ⁇ -olefin using a supported hybrid catalyst in which at least two different metallocene compounds are supported on a support in a continuous slurry polymerization reactor at 75-85° C. by continuously supplying ethylene, a solvent and C 3-20 ⁇ -olefin at a constant ratio into the reactor.
- an antioxidant In the preparation of the ethylene-based copolymer, an antioxidant, a pigment for adjusting the color, etc. can be used according to its final use.
- a phenol-based antioxidant is typically used in order to prevent a thermal oxidation and improve a long-term resistance to thermal oxidation when passing through an extruder and a typical color master batch is used as the pigment for adjusting color.
- the ethylene-based copolymer obtained in the present invention has superior processability, internal pressure creep resistance and ESCR, it can be used to fabricate water supply pipes without crosslinking when molding pipes.
- the ethylene-based copolymer itself is used as a raw material, a compounding process of a crosslinker is not required.
- the ethylene-based copolymer is easily processed in a typical extruder without modification of an appliance and power consumption is maintained at a constant, and thus processing costs are reduced.
- the pipe fabricated using the ethylene-based copolymer of the present invention is more suitable as a water supply pipe for drinking water than conventional pipes fabricated in a chemical-crosslinking or moisture-crosslinking method.
- Organic reagents and solvents required for the preparation of a catalyst and polymerization were obtained from Aldrich and purified by the standard methods.
- Ethylene was obtained from Applied Gas Technology as a high purity product and filtered to remove moisture and oxygen before polymerization. Catalyst synthesis, supporting and polymerization were carried out isolated from air and moisture to ensure reproducibility.
- t-Butyl-O—(CH 2 ) 6 —Cl was prepared using 6-chlorohexanol according to a method reported in literature (Tetrahedron Lett. 2951 (1988)) and was reacted with NaCp to obtain t-Butyl-O—(CH 2 ) 6 —C 5 H 5 (yield: 60%, b.p. 80° C./0.1 mmHg). 1 equivalent of n-BuLi was dropwise added to the obtained t-Butyl-O—(CH 2 ) 6 —C 5 H 5 ligand, and then the mixture was reacted with 0.5 equivalent of ZrCl 4 (THF) 2 at ⁇ 20° C. or lower to obtain a white solid [ t Bu-O—(CH 2 ) 6 —C 5 H 4 ] 2 ZrCl 2 (yield: 92%).
- THF ZrCl 4
- a dilithium salt (2.0 g, 4.5 mmol)/ether (30 mL) solution was slowly added to a ZrCl 4 (1.05 g, 4.50 mmol)/ether (30 mL) suspension at ⁇ 78° C.
- a reaction was carried out for 3 hours at room temperature. All volatile materials were removed by vacuum drying, and the resultant oily liquid was filtered by adding a dichloromethane solvent. The filtered solution was vacuum dried, and hexane was added to induce precipitation.
- Silica (XPO 2412, Grace Davison) was dehydrated for 15 hours at 800° C. in vacuum. 1.0 g of the silica was placed in 3 glass reactors. After adding 10 mL of hexane, 10 mL of a hexane solution dissolving the first metallocene compound prepared in Preparation Example 1 was added. Then a reaction was carried out for 4 hours at 90° C. while stirring the reactor. After the reaction was completed, the hexane was removed by layer separation. After washing three times with 20 mL of a hexane solution, the hexane was removed by suction to obtain a solid powder.
- a methylaluminoxane (MAO) solution containing 12 mmol of aluminium in a toluene solution was added at 40° C. while stirring.
- the unreacted aluminium compound was removed by washing a sufficient amount of toluene. Then, the remaining toluene was removed by suction at 50° C.
- a toluene solution dissolving the second metallocene compound prepared in Preparation Example 2
- a reaction was carried out at 40° C. while stirring the reactor. After washing with a sufficient amount of toluene, drying was carried out to obtain a powder.
- the resultant supported hybrid catalyst can be used as a catalyst without further treatment. Alternatively, 30 psig of ethylene may be added for 2 minutes and a prepolymerization can be carried out for 1 hour at room temperature. The powder was vacuum dried to obtain a solid catalyst.
- the catalyst injection amount was controlled such that the ethylene pressure remains at 8-9 kgf/cm 2 .
- Each 10 mL of the catalyst was injected at time intervals.
- the polymerization time was controlled by the solvent amount such that the residence time in the reactor is 2-3 hours.
- 1-Butene was used at an ⁇ -olefin to identify the copolymerization characteristics.
- a small amount of hydrogen was added to control the molecular weight.
- Example 1 Two ethylene-based copolymers (Examples 1 and 2) were prepared with a different injection amount of the supported hybrid catalyst prepared in Preparation Example 3 considering the ethylene polymerization activity and the response to 1-butene as the comonomer and hydrogen for molecular weight control.
- the activity, apparent density, density, molecular weight, molecular weight distribution and basic physical properties of each ethylene-based copolymer are displayed in Table 1.
- the catalyst of the present invention caused no process interruption due to fouling.
- the apparent density of the polymer was good, in the range of 0.3-0.5 g/mL.
- the results of evaluating the characteristics are displayed in Table 1.
- An ethylene copolymer was prepared using an Mg supported Ti type Ziegler Natta catalyst and using 1-butene as a comonomer in a continuous process as in Examples 1 and 2. 0.7 wt. % of an organic oxide and 0.3 wt. % of antioxidant were added the ethylene copolymer. The mixture was then extruded to obtain a chemically crosslinked pipe with the same dimension as in the above Examples. The results of evaluating the characteristics are displayed in Table 1.
- An ethylene copolymer was prepared in the same manner as in Comparative Example 1. 2.0 wt. % of a silane compound, 0.3 wt. % of an organic peroxide, and 0.2 wt. % of an antioxidant were added to the ethylene copolymer. The mixture was extruded to obtain a moisture-crosslinked pipe with the same dimensions as in the above Examples. The results of evaluating of the characteristics are displayed in Table 1.
- An ethylene copolymer was prepared using 1-butene as a comonomer in the same manner as in Comparative Example 1, except that a continuous two step slurry polymerization process was used. An ethylene homopolymerization was carried out in a first step reactor. After removing hydrogen, the resultant was transferred to a second step reactor. A copolymerization of ethylene/1-butene was continuously carried out to obtain an ethylene-based copolymer with a bimodal molecular weight distribution. The obtained ethylene-based copolymer was extruded to obtain a pipe with the same dimension as in the above Examples. The results of evaluating the characteristics are displayed in Table 1.
- An ethylene-based copolymer was prepared using a solution polymerization process, 1-octene as a comonomer, and a Ziegler-Natta catalyst. The obtained ethylene-based copolymer was extruded to obtain a pipe with the same dimension as in the above Examples. The results of evaluating the characteristics are displayed in Table 1.
- An ethylene-based copolymer was prepared using a [ t Bu-O—(CH 2 ) 6 —C 5 H 4 ] 2 ZrCl 2 catalyst according to a standard method. A continuous slurry polymerization process was used and 1-butene was used as a comonomer. The obtained ethylene-based copolymer had a bimodal molecular weight distribution. A pipe with the same dimension as in the above Examples was molded. The results of evaluating the characteristics are displayed in Table 1.
- the evaluation properties and evaluation methods of the ethylene-based copolymers prepared in the above Examples of the present invention and the above Comparative Examples are as follows.
- the pipes with an outer diameter of 32 mm and a thickness of 2.9 mm were molded and its physical properties were evaluated.
- the density was determined according to ASTM D792. For a sample containing a crosslinker, the measurements were conducted prior to the addition of the crosslinker.
- the melt index was at 190° C.
- the measurments were conducted prior to the addition of the crosslinker.
- a number average molecular weight, a weight average molecular weight, and a Z average molecular weight were determined from a gel permeation chromatography (GPC). It is represented by a ratio of the weight average molecular weight to the number average molecular weight.
- GPC gel permeation chromatography
- ASTM D638 it is measured using a 3 mm thick hot press sheet at a stretch rate of 50 mm/min. For a sample containing a crosslinker, the measurements were conducted after crosslinking.
- the ESCR is determined by recording the time until F50 (50% fracture) using a 10% Igepal CO-630 Solution at 50° C. For a sample containing a crosslinker, the measurements were conducted after crosslinking.
- the processability was classified as “good”, “fair” or “poor” on the basis of a line speed (m/min) upon pipe molding.
- a test stress of 3.5 Mpa was applied to the molded pipes in hot water at 95° C. and the breakdown time was recorded.
- the molded pipe was cut into 10 pieces so as to have a length of 20 cm, and immersed in 5 L of hot water at 50° C. for 24 hours. Then, an odor of the water was classified as “good”, “fair” or “poor”.
- the cost effectiveness was classified as “good” or “bad” on the basis of the costs of raw materials and process and manufacturing costs of the pipes.
- Comparative Example 3 has a bimodal molecular weight distribution similar to the products of Examples 1 and 2, but has a limitation in the amount of comonomer added due to the Ziegler-Natta catalyst, and thus has too high density to be applied to products which should have flexibility, such as a water supply pipe, and has low productivity due to low MI.
- Comparative Example 4 using 1-octent as a comonomer has sufficient physical properties, but is unfavorable costly due to the high costs of the comonomer and the process costs of solution polymerization.
- the product of Comparative Example 5 uses a metallocene catalyst as in Examples, but has poor processability due to a typical narrow single molecular weight distribution and is difficult to be processed in general extruders.
- the ethylene-based copolymer according to the present invention has no odor problem when being used for water supply pipes since it is not crosslinked, and has no increase of load of an extruder, heat, and die gum from polyethylene residue. Also, the ethylene-based copolymer is inexpensive since a compounding process of a crosslinker is not required and the pipe molded therefrom has sufficient flexibility and can be easily installed by thermal bonding.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2004-0024106 | 2004-04-08 | ||
KR1020040024106A KR100646249B1 (ko) | 2004-04-08 | 2004-04-08 | 혼성 담지 메탈로센 촉매를 이용한 가공성 및 내압 특성이뛰어난 급수관 파이프용 폴리에틸렌 및 그의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050228139A1 US20050228139A1 (en) | 2005-10-13 |
US7304118B2 true US7304118B2 (en) | 2007-12-04 |
Family
ID=35061418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/100,659 Expired - Lifetime US7304118B2 (en) | 2004-04-08 | 2005-04-07 | Polyethylene pipe having better melt processibility and high resistance to stress and method of preparing the same using metallocene catalyst |
Country Status (7)
Country | Link |
---|---|
US (1) | US7304118B2 (fr) |
EP (1) | EP1732958B1 (fr) |
JP (1) | JP5079333B2 (fr) |
KR (1) | KR100646249B1 (fr) |
CN (1) | CN1906220A (fr) |
NO (1) | NO337427B1 (fr) |
WO (1) | WO2006001588A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080072986A1 (en) * | 2006-09-25 | 2008-03-27 | The Goodyear Tire & Rubber Company. | Kink, crush, and burst resistant flexible hose construction |
US20090137756A1 (en) * | 2007-04-12 | 2009-05-28 | Pequeno R Eric | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
US8815357B1 (en) * | 2013-02-27 | 2014-08-26 | Chevron Phillips Chemical Company Lp | Polymer resins with improved processability and melt fracture characteristics |
US9738735B1 (en) * | 2014-08-07 | 2017-08-22 | Basell Polyolefine Gmbh | Process for ethylene polymerization with improved ethylene feed system |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2232767T3 (es) * | 2001-08-31 | 2005-06-01 | Dow Global Technologies Inc. | Material de polietileno multimodal. |
US7943700B2 (en) * | 2002-10-01 | 2011-05-17 | Exxonmobil Chemical Patents Inc. | Enhanced ESCR of HDPE resins |
KR100753477B1 (ko) * | 2005-01-31 | 2007-08-31 | 주식회사 엘지화학 | 혼합 담지 메탈로센 촉매, 그 제조방법 및 이를 이용하여제조된 폴리올레핀 및 그 제조 방법 |
KR100753478B1 (ko) * | 2005-02-15 | 2007-08-31 | 주식회사 엘지화학 | 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조방법 |
EP1820820A1 (fr) * | 2006-02-15 | 2007-08-22 | INEOS Manufacturing Belgium NV | Composition de polyéthylène |
KR101299375B1 (ko) * | 2006-06-27 | 2013-08-22 | 유니베이션 테크놀로지즈, 엘엘씨 | 에틸렌-알파 올레핀 공중합체 및 이의 중합 제조 방법 |
WO2008002381A2 (fr) | 2006-06-27 | 2008-01-03 | Univation Technologies, Llc | Procédés de polymérisation améliorés dans lesquels sont utilisés des catalyseurs métallocènes, produits polymériques obtenus à l'aide de ces procédés et leurs applications |
EP1939243A1 (fr) * | 2006-12-28 | 2008-07-02 | Borealis Technology Oy | Procédés, systèmes et produits de programme informatique pour intégrer des services de porteuses au sein d'une entreprise |
DE202007008719U1 (de) * | 2007-06-19 | 2008-10-30 | Rehau Ag + Co | Trinkwasserschlauch |
US8627840B2 (en) * | 2007-09-21 | 2014-01-14 | Total Petrochemicals Research Feluy | Pipes for transporting water containing chloramine |
EP2190921B1 (fr) | 2007-09-21 | 2012-05-02 | Total Petrochemicals Research Feluy | Canalisations destinées au transport d'une eau contenant du chlore |
EP2042525A1 (fr) * | 2007-09-21 | 2009-04-01 | Total Petrochemicals Research Feluy | Tuyaux pour le transport d'eau contenant de la chloramine |
JP2009256591A (ja) * | 2008-03-18 | 2009-11-05 | Sumitomo Chemical Co Ltd | 予備重合触媒成分および予備重合触媒成分の製造方法 |
EP2133367A1 (fr) * | 2008-06-09 | 2009-12-16 | INEOS Manufacturing Belgium NV | Nouveaux copolymères |
WO2010128826A2 (fr) * | 2009-05-07 | 2010-11-11 | 주식회사 엘지화학 | Polymère d'oléfine et fibre le comprenant |
KR101299650B1 (ko) * | 2009-08-10 | 2013-08-23 | 주식회사 엘지화학 | 다정 분자량 분포를 가지는 폴리올레핀 및 이의 제조방법 |
BR112012025380A2 (pt) * | 2010-04-26 | 2017-11-28 | Momentive Performance Mat Inc | cloro-resistente reticulável de composições de poliolefina e artigos feitos a partir destes |
CN102952323B (zh) * | 2011-08-31 | 2015-08-19 | 中国石油化工股份有限公司 | 一种耐热聚乙烯组合物及其用途 |
CN103087240B (zh) * | 2011-10-31 | 2015-07-22 | 中国石油化工股份有限公司 | 一种制备乙烯聚合物的方法 |
US9556289B2 (en) | 2014-09-05 | 2017-01-31 | Lg Chem, Ltd. | Supported hybrid catalyst and method for preparing olefin-based polymer using the same |
RU2640045C1 (ru) * | 2014-10-13 | 2017-12-26 | ЭлДжи КЕМ, ЛТД. | Сополимер этилен/1-гексен или этилен/1-бутен, обладающий отличными технологическими свойствами и сопротивлением разрастанию трещин под действием факторов окружающей среды |
WO2016060445A1 (fr) * | 2014-10-13 | 2016-04-21 | 주식회사 엘지화학 | Copolymère d'éthylène/1-hexène ou d'éthylène/1-butène présentant d'excellentes propriétés de travail et résistance à la fissuration sous contrainte environnementale |
WO2016186282A1 (fr) * | 2015-05-15 | 2016-11-24 | 주식회사 엘지화학 | Composition catalytique et procédé de préparation d'une polyoléfine l'utilisant |
KR101768194B1 (ko) | 2015-05-15 | 2017-08-16 | 주식회사 엘지화학 | 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법 |
KR101892918B1 (ko) | 2016-10-07 | 2018-08-29 | 대한유화(주) | 내압특성이 우수한 파이프용 폴리에틸렌 및 이의 제조 방법 |
KR102060669B1 (ko) * | 2016-10-20 | 2019-12-31 | 대림산업 주식회사 | 용융강도가 높은 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 멀티모달 폴리올레핀 공중합체 |
US11479624B2 (en) | 2017-11-17 | 2022-10-25 | Exxonmobil Chemical Patents Inc. | PE-RT pipes and processes for making the same |
US20230399426A1 (en) | 2020-12-02 | 2023-12-14 | Exxonmobil Chemical Patents Inc. | Medium density polyethylene compositions with broad orthogonal composition distribution |
WO2023076818A1 (fr) | 2021-10-26 | 2023-05-04 | Exxonmobil Chemical Patents Inc. | Films de polyéthylène à basse densité linéaire hautement orientés ayant une aptitude au traitement et des propriétés mécaniques exceptionnelles |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170913A (en) | 1981-04-16 | 1982-10-21 | Mitsubishi Petrochem Co Ltd | Preparation of crosslinked polyethylene having excellent creep characteristics |
JPS5819309A (ja) | 1981-07-09 | 1983-02-04 | ヘキスト・アクチエンゲゼルシヤフト | ポリオレフインの製造法 |
JPS601252A (ja) | 1983-06-20 | 1985-01-07 | Sekisui Chem Co Ltd | シラン架橋ポリエチレンパイプ |
JPS6035007A (ja) | 1983-06-06 | 1985-02-22 | エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− | ポリオレフインの密度及び分子量を調節するための方法と触媒 |
JPS6035006A (ja) | 1983-06-06 | 1985-02-22 | エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− | 反応器ブレンドポリオレフインの製造方法及びその触媒 |
JPS61130314A (ja) | 1984-11-27 | 1986-06-18 | ヘキスト・アクチエンゲゼルシヤフト | キラルなジルコニウム化合物 |
JPS61221208A (ja) | 1985-03-26 | 1986-10-01 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系共重合体の製法 |
JPS62121709A (ja) | 1985-11-21 | 1987-06-03 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系ランダム共重合体およびその用途 |
JPS62121711A (ja) | 1985-11-21 | 1987-06-03 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系ランダム共重合体 |
JPS6358090A (ja) | 1986-08-29 | 1988-03-12 | トリニテイ工業株式会社 | 流動床炉の運転方法 |
KR890000036B1 (ko) | 1985-08-05 | 1989-03-06 | 호남석유화학 주식회사 | 고밀도 폴리에틸렌을 주제로한 무공해 팽창 필름 제조방법 |
JPH02253076A (ja) | 1989-03-28 | 1990-10-11 | Osaka Gas Co Ltd | 給湯用架橋ポリエチレン管およびその製造方法 |
JPH06248089A (ja) | 1993-03-01 | 1994-09-06 | Sumitomo Bakelite Co Ltd | 給水給湯用パイプ |
JPH0741610A (ja) | 1993-07-27 | 1995-02-10 | Furukawa Electric Co Ltd:The | 飲料水用架橋ポリオレフィン管 |
JPH07157568A (ja) | 1993-12-09 | 1995-06-20 | Furukawa Electric Co Ltd:The | シラン架橋ポリエチレン管 |
JPH07258496A (ja) | 1994-03-25 | 1995-10-09 | Mitsubishi Chem Corp | 架橋性樹脂組成物および架橋成形体 |
JPH07330992A (ja) | 1994-06-01 | 1995-12-19 | Toray Ind Inc | シラン変性ポリオレフィン組成物およびそれからなる熱収縮チューブ |
JPH0873670A (ja) | 1994-09-07 | 1996-03-19 | Sumitomo Electric Ind Ltd | 架橋性ポリエチレン組成物及び電線、ケーブル |
JPH0920867A (ja) | 1995-07-06 | 1997-01-21 | Sekisui Chem Co Ltd | 難燃性樹脂組成物 |
JPH09133270A (ja) | 1995-11-07 | 1997-05-20 | Sekisui Chem Co Ltd | ポリエチレン可撓管 |
JPH09324081A (ja) | 1996-04-02 | 1997-12-16 | Furukawa Electric Co Ltd:The | 架橋ポリエチレンパイプ |
JPH10182757A (ja) | 1996-12-26 | 1998-07-07 | Sumitomo Bakelite Co Ltd | 給水給湯パイプ |
JPH10193468A (ja) | 1997-01-10 | 1998-07-28 | Sekisui Chem Co Ltd | 架橋ポリエチレン管の製造方法 |
WO1998049209A1 (fr) | 1997-04-25 | 1998-11-05 | Mobil Oil Corporation | Resines pour tuyaux de qualite superieure |
WO1998057998A1 (fr) * | 1997-06-16 | 1998-12-23 | Borealis A/S | Procede de polymerisation en plusieurs etapes utilisant un catalyseur presentant differents sites a effet catalytique |
JP2000343583A (ja) | 1999-06-07 | 2000-12-12 | Sekisui Chem Co Ltd | 架橋ポリエチレン管の製造方法 |
KR20010003325A (ko) | 1999-06-22 | 2001-01-15 | 성재갑 | 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합 |
WO2001098409A1 (fr) | 2000-06-22 | 2001-12-27 | Exxonmobil Chemical Patents Inc. | Mélange de polyéthylène très basse densité et de polyéthylène haute densité |
US6340730B1 (en) * | 1999-12-06 | 2002-01-22 | Univation Technologies, Llc | Multiple catalyst system |
JP2004217802A (ja) | 2003-01-15 | 2004-08-05 | Asahi Kasei Chemicals Corp | 無架橋温水パイプ用ポリエチレン樹脂組成物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS649712A (en) | 1987-07-02 | 1989-01-13 | Rohm Co Ltd | Resin molding device |
JPH03179031A (ja) | 1989-12-07 | 1991-08-05 | Hitachi Cable Ltd | 架橋ポリエチレンパイプの製造方法 |
ES2163404T3 (es) * | 1993-04-07 | 2002-02-01 | Atofina Res | Procedimiento para la produccion de poliolefinas y catalizador poliolefinico. |
US6372868B1 (en) * | 1999-12-07 | 2002-04-16 | Univation Technologies, Llc | Start up methods for multiple catalyst systems |
KR100579843B1 (ko) * | 2003-04-01 | 2006-05-12 | 주식회사 엘지화학 | 혼성 담지 메탈로센 촉매 및 그의 제조방법과 이를 이용한폴리올레핀의 제조방법 |
PL1574525T3 (pl) * | 2004-03-12 | 2007-09-28 | Saudi Basic Ind Corp | Kompozycja katalizatora do polimeryzacji olefin i sposób polimeryzacji z jej zastosowaniem |
-
2004
- 2004-04-08 KR KR1020040024106A patent/KR100646249B1/ko not_active Expired - Lifetime
-
2005
- 2005-03-24 EP EP05789733.2A patent/EP1732958B1/fr not_active Expired - Lifetime
- 2005-03-24 WO PCT/KR2005/000854 patent/WO2006001588A1/fr not_active Application Discontinuation
- 2005-03-24 CN CNA2005800015449A patent/CN1906220A/zh active Pending
- 2005-03-24 JP JP2006543749A patent/JP5079333B2/ja not_active Expired - Lifetime
- 2005-04-07 US US11/100,659 patent/US7304118B2/en not_active Expired - Lifetime
-
2006
- 2006-05-18 NO NO20062232A patent/NO337427B1/no unknown
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170913A (en) | 1981-04-16 | 1982-10-21 | Mitsubishi Petrochem Co Ltd | Preparation of crosslinked polyethylene having excellent creep characteristics |
JPS5819309A (ja) | 1981-07-09 | 1983-02-04 | ヘキスト・アクチエンゲゼルシヤフト | ポリオレフインの製造法 |
JPS6035007A (ja) | 1983-06-06 | 1985-02-22 | エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− | ポリオレフインの密度及び分子量を調節するための方法と触媒 |
JPS6035006A (ja) | 1983-06-06 | 1985-02-22 | エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− | 反応器ブレンドポリオレフインの製造方法及びその触媒 |
JPS601252A (ja) | 1983-06-20 | 1985-01-07 | Sekisui Chem Co Ltd | シラン架橋ポリエチレンパイプ |
JPS61130314A (ja) | 1984-11-27 | 1986-06-18 | ヘキスト・アクチエンゲゼルシヤフト | キラルなジルコニウム化合物 |
JPS61221208A (ja) | 1985-03-26 | 1986-10-01 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系共重合体の製法 |
KR890000036B1 (ko) | 1985-08-05 | 1989-03-06 | 호남석유화학 주식회사 | 고밀도 폴리에틸렌을 주제로한 무공해 팽창 필름 제조방법 |
JPS62121709A (ja) | 1985-11-21 | 1987-06-03 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系ランダム共重合体およびその用途 |
JPS62121711A (ja) | 1985-11-21 | 1987-06-03 | Mitsui Petrochem Ind Ltd | 低結晶性エチレン系ランダム共重合体 |
JPS6358090A (ja) | 1986-08-29 | 1988-03-12 | トリニテイ工業株式会社 | 流動床炉の運転方法 |
JPH02253076A (ja) | 1989-03-28 | 1990-10-11 | Osaka Gas Co Ltd | 給湯用架橋ポリエチレン管およびその製造方法 |
JPH06248089A (ja) | 1993-03-01 | 1994-09-06 | Sumitomo Bakelite Co Ltd | 給水給湯用パイプ |
JPH0741610A (ja) | 1993-07-27 | 1995-02-10 | Furukawa Electric Co Ltd:The | 飲料水用架橋ポリオレフィン管 |
JPH07157568A (ja) | 1993-12-09 | 1995-06-20 | Furukawa Electric Co Ltd:The | シラン架橋ポリエチレン管 |
JPH07258496A (ja) | 1994-03-25 | 1995-10-09 | Mitsubishi Chem Corp | 架橋性樹脂組成物および架橋成形体 |
JPH07330992A (ja) | 1994-06-01 | 1995-12-19 | Toray Ind Inc | シラン変性ポリオレフィン組成物およびそれからなる熱収縮チューブ |
JPH0873670A (ja) | 1994-09-07 | 1996-03-19 | Sumitomo Electric Ind Ltd | 架橋性ポリエチレン組成物及び電線、ケーブル |
JPH0920867A (ja) | 1995-07-06 | 1997-01-21 | Sekisui Chem Co Ltd | 難燃性樹脂組成物 |
JPH09133270A (ja) | 1995-11-07 | 1997-05-20 | Sekisui Chem Co Ltd | ポリエチレン可撓管 |
JPH09324081A (ja) | 1996-04-02 | 1997-12-16 | Furukawa Electric Co Ltd:The | 架橋ポリエチレンパイプ |
JPH10182757A (ja) | 1996-12-26 | 1998-07-07 | Sumitomo Bakelite Co Ltd | 給水給湯パイプ |
JPH10193468A (ja) | 1997-01-10 | 1998-07-28 | Sekisui Chem Co Ltd | 架橋ポリエチレン管の製造方法 |
WO1998049209A1 (fr) | 1997-04-25 | 1998-11-05 | Mobil Oil Corporation | Resines pour tuyaux de qualite superieure |
WO1998057998A1 (fr) * | 1997-06-16 | 1998-12-23 | Borealis A/S | Procede de polymerisation en plusieurs etapes utilisant un catalyseur presentant differents sites a effet catalytique |
JP2000343583A (ja) | 1999-06-07 | 2000-12-12 | Sekisui Chem Co Ltd | 架橋ポリエチレン管の製造方法 |
KR20010003325A (ko) | 1999-06-22 | 2001-01-15 | 성재갑 | 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합 |
US6340730B1 (en) * | 1999-12-06 | 2002-01-22 | Univation Technologies, Llc | Multiple catalyst system |
WO2001098409A1 (fr) | 2000-06-22 | 2001-12-27 | Exxonmobil Chemical Patents Inc. | Mélange de polyéthylène très basse densité et de polyéthylène haute densité |
JP2004217802A (ja) | 2003-01-15 | 2004-08-05 | Asahi Kasei Chemicals Corp | 無架橋温水パイプ用ポリエチレン樹脂組成物 |
Non-Patent Citations (3)
Title |
---|
"Mild Protection and Deprotection of Alcohols as Ter-Butyl Ethers in the Field of Pheromone Synthesis"; Authors: A. Alexakis, M. Gardette and S. Colin; Tetrahedron Letters, vol. 29, No. 24, 1988; pp. 2951-2954. |
"The Molecular Structure of Polyethylene. V. The Effect of Chain Branching and Molecular Weight on Physical Properties"; Authors: C.A. Sperati, W. A. Franta and H. W. Starkweather, Jr.; pp. 6127-6133, 1953. |
PCT International Search Report; International Application No. PCT/KR2005/000854; International Filing Date: Mar. 24, 2005; Date of Mailing Jul. 12, 2005. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080072986A1 (en) * | 2006-09-25 | 2008-03-27 | The Goodyear Tire & Rubber Company. | Kink, crush, and burst resistant flexible hose construction |
US7658208B2 (en) * | 2006-09-25 | 2010-02-09 | Veyance Technologies, Inc. | Kink, crush, and burst resistant flexible hose construction |
US20090137756A1 (en) * | 2007-04-12 | 2009-05-28 | Pequeno R Eric | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
US7754834B2 (en) | 2007-04-12 | 2010-07-13 | Univation Technologies, Llc | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
US8815357B1 (en) * | 2013-02-27 | 2014-08-26 | Chevron Phillips Chemical Company Lp | Polymer resins with improved processability and melt fracture characteristics |
US9738735B1 (en) * | 2014-08-07 | 2017-08-22 | Basell Polyolefine Gmbh | Process for ethylene polymerization with improved ethylene feed system |
Also Published As
Publication number | Publication date |
---|---|
JP2007517087A (ja) | 2007-06-28 |
JP5079333B2 (ja) | 2012-11-21 |
KR100646249B1 (ko) | 2006-11-23 |
EP1732958B1 (fr) | 2015-08-12 |
NO337427B1 (no) | 2016-04-11 |
CN1906220A (zh) | 2007-01-31 |
NO20062232L (no) | 2006-09-27 |
US20050228139A1 (en) | 2005-10-13 |
WO2006001588A1 (fr) | 2006-01-05 |
KR20050098663A (ko) | 2005-10-12 |
EP1732958A4 (fr) | 2008-07-09 |
EP1732958A1 (fr) | 2006-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7304118B2 (en) | Polyethylene pipe having better melt processibility and high resistance to stress and method of preparing the same using metallocene catalyst | |
US20060183631A1 (en) | Supported metallocene catalyst and method of preparing ethylene-based copolymer using the same | |
EP1844082B1 (fr) | Procédé de préparation d'un catalyseur métallocène mixte sur support | |
KR100964093B1 (ko) | 폴리올레핀 및 이의 제조방법 | |
US9290593B2 (en) | Polyolefin and preparation method thereof | |
KR100886681B1 (ko) | 선형 저밀도 폴리에틸렌의 제조방법 | |
CN107207661B (zh) | 具有优异的加工性能和表面特性的乙烯/α-烯烃共聚物 | |
CN112020522A (zh) | 混杂负载型茂金属催化剂及使用其制备烯烃聚合物的方法 | |
CN110869399A (zh) | 聚乙烯共聚物及其制备方法 | |
KR101412846B1 (ko) | 폴리올레핀의 제조방법 및 이로부터 제조된 폴리올레핀 | |
CN1165151A (zh) | 长链支化聚烯烃的生产方法 | |
EP3199556A1 (fr) | Granulé de polyoléfine pour préparer une fibre, et fibre le comprenant | |
US11072670B2 (en) | Catalyst composition and method for preparing olefin polymer using same | |
EP3670544B1 (fr) | Composition de catalyseur et procédé de préparation de polymère d'oléfine faisant appel à celle-ci | |
JP3483215B2 (ja) | エチレン系共重合体及びそれを含有する熱可塑性樹脂組成物 | |
KR102808384B1 (ko) | 폴리프로필렌 및 에틸렌 알파-올레핀 공중합체를 포함하는 복합 수지 조성물 | |
TWI304812B (en) | Polyethylene pipe having better melt processibility and high resistance to stress and method of preparing the same using metallocene catalyst | |
KR20220043693A (ko) | 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조방법 | |
JP3444431B2 (ja) | エチレン系共重合体及びそれを含有する熱可塑性樹脂組成物 | |
JPH07118343A (ja) | エチレン重合体及びそれを含有する熱可塑性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, KI SOO;LEE, CHOONG HOON;LEE, SANGWOO;AND OTHERS;REEL/FRAME:016457/0683;SIGNING DATES FROM 20050324 TO 20050325 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |