US7211869B2 - Increasing carrier mobility in NFET and PFET transistors on a common wafer - Google Patents
Increasing carrier mobility in NFET and PFET transistors on a common wafer Download PDFInfo
- Publication number
- US7211869B2 US7211869B2 US11/110,767 US11076705A US7211869B2 US 7211869 B2 US7211869 B2 US 7211869B2 US 11076705 A US11076705 A US 11076705A US 7211869 B2 US7211869 B2 US 7211869B2
- Authority
- US
- United States
- Prior art keywords
- layer
- stress
- transistors
- integrated circuit
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/792—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions comprising applied insulating layers, e.g. stress liners
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
Definitions
- the present invention generally relates to the manufacture of transistors for integrated circuits and, more particularly, to the production of complementary pairs of field effect transistors of enhanced performance at extremely small scale.
- LDD lightly doped drain
- FET field effect transistor
- a principal factor in maintaining adequate performance in field effect transistors is carrier mobility which affects the amount of current or charge which may flow (as electrons or holes) in a doped semiconductor channel under control of a voltage placed on a gate electrode insulated from the channel by a very thin dielectric.
- Reduced carrier mobility in an FET reduces not only the switching speed/slew rate of a given transistor but also reduces the difference between “on” resistance and “off” resistance. This latter effect increases susceptibility to noise and reduces the number of and/or speed at which downstream transistor gates (capacitive loads) can be driven.
- stress of a single type produced by such structures tends to cause warping or curling of the wafer or substrate, particularly if thin (as is the current trend), which compromises later lithographic processes such as the formation of contacts and connections or, in severe cases, chip or wafer cracking; reducing manufacturing yield or (in rare cases) reliability after being put into service.
- such structures may present severe topography on the surface of a chip or wafer which may compromise subsequent manufacturing processes.
- a method of adjusting carrier mobility for different semiconductor conductivities on the same chip comprising steps of providing a first layer of material providing a first stress level on a portion of a surface of a chip, selectively reducing the first stress level of a portion of the first layer of material, providing a second layer of material providing a second stress level on a portion of a surface of the chip, and selectively reducing the second stress level of a portion of the second layer of material.
- an integrated circuit comprising first and second circuit elements such as transistors, and first and second stressed layers, each stressed layer having stress relieved in selected portions thereof.
- FIG. 1 is a cross-sectional view of an exemplary CMOS pair of NMOS and PMOS transistors at a stage of manufacture following production of silicide to enhance contact formation
- FIG. 2 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors with a first etch-stop layer applied thereto,
- FIG. 3 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors with a block-out mask applied to the NFET,
- FIG. 4 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors after a first implantation process to the etch-stop layer
- FIG. 5 is a graphical depiction of a plurality of germanium implantation processes illustrating implantation depth within a silicon nitride film for differing ion fluxes and energies
- FIG. 6 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors with a second etch-stop layer applied thereto,
- FIG. 7 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors with a block-out mask applied to the PFET,
- FIG. 8 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors after a second implantation process to the second etch-stop layer, and
- FIG. 9 is a cross-sectional view of the exemplary CMOS pair of NMOS and PMOS transistors showing how relative thickness of the first and second etch-stop layer may be used to regulate the relative amount of compressive and tensile stresses applied.
- FIG. 1 there is shown, in cross-section, an exemplary pair of complementary NMOS and Pmos transistors such as might comprise a CMOS pair in a portion of an integrated circuit.
- CMOS complementary metal-oxide-semiconductor
- FIG. 1 illustrates transistors prior to the application of the invention thereto, the illustration is intended to be highly schematic for clarity and no portion of FIG. 1 is admitted to be prior art as to the invention.
- the transistors 16 , 18 are formed on substrate 12 (which may be relatively much thicker than depicted since the transistors are possibly deeply scaled, as is the preferred application of the invention).
- the transistors 16 , 18 are isolated from each other by shallow trench isolation 14 which may also serve to define n-well and p-well regions of substrate 12 .
- transistors 16 and 18 are of complementary conductivity types and, accordingly, the portions of substrate 12 underlying these respective transistors are also oppositely doped.
- the transistors are otherwise of similar construction; each having a gate dielectric 20 , a gate electrode 22 , a sidewall spacer structure 24 , 26 and source, drain and gate silicide regions 28 , as will be familiar to those skilled in the art. Source and drain implant regions and extension and/or halo implant regions may be included as may be desired, as is well-known in the art.
- FIG. 2 shows the structure of FIG. 1 after application of a highly stressed film 110 of material over the entire chip or any lesser portion thereof where it is desired to employ the invention.
- the highly stressed film is preferably silicon nitride (Si 3 N 4 ) or silicon oxynitride (Si 3 O X N Y ) or a combination of both. These materials can be deposited in a highly stressed form providing either tensile or compressional stress, depending on particular process parameters such as plasma power and gas flow rates.
- PECVD Plasma Enhanced Chemical Vapor Deposition
- silicon nitride can be deposited at a relatively low temperature (e.g. 400° C.
- film 110 is in the nature of an etch-stop layer which is generally provided in current integrated circuit designs. Therefore, provision of such a film 110 does not, itself, increase process complexity (although it is preferably performed a number of times in accordance with the invention).
- Such a film facilitates formation of openings for connections to the source, drain and gate of respective transistors while avoiding damage thereto by etching a later applied layer which may not be of uniform thickness selectively to the etch-stop and then using the patterned later-applied layer as a mask for timed etching through the etch-stop and, preferably, selectively to the underlying silicide.
- deposition in a highly stressed form has been generally avoided to the extent possible since high stress films may peel off from the substrate if adhesion is not sufficient although stress in film 100 does not compromise functioning as an etch stop.
- Adhesion is generally dependent on the underlying material and adhesion enhancements are not generally necessary for the successful practice of the invention (e.g. for FETs formed of materials currently in common use) but could be used if needed and regulated in thickness to transfer forces in the intended manner.)
- etch-stop material In this preferred case, and for purposes of clarity, a high tensile stress form of etch-stop material is arbitrarily assumed.
- the deposition is preferably isotropic to provide a substantially constant layer thickness which extends over the substrate in front and in back of the gate as well as the front and back gate surfaces which are in front and in back of the plane of the page of FIG. 2 . Therefore, stress is efficiently applied to the substrate surface as well as the gate electrode volume.
- the thickness of the layer is important to the practice of the invention to provide the desired stress level without peeling and transfer stresses from an overlying layer as well as to function as an etch stop. In view of these considerations, a thickness between 300 ⁇ and 2000 ⁇ is generally preferred and adequate. Thus, the invention may be successfully practiced within a very wide range of thicknesses and corresponding developed stress levels and thus the particular thickness chosen is not otherwise critical to the practice of the invention.
- a blockout mask 120 is then applied over transistors which are to have carrier mobility altered by the stress applied by film 110 , in this case the NFET 18 to which tensile stress is applied (causing compressive stress in the transistor channel) to increase electron mobility.
- an ion implantation process (depicted by arrows 125 ) is carried out to reduce or relieve the stress imposed by film 110 .
- Germanium is preferred for this purpose since it can break Si—N bonds and release the stress in the implanted region while being substantially contained in the film 110 (as illustrated in FIG. 5 ) which is of a sufficient thickness to provide the stress levels of interest while not significantly altering the insulating properties thereof.
- etch-stop film 130 is deposited by a process producing compressive stress is deposited to an equal or different thickness to develop a bi-level etch-stop film over and surrounding the transistors 16 , 18 .
- the material of film 130 is preferably but need not be the same material as film 110 but applied by a different process and/or with different process parameters. Again, the thickness of film 130 is determined in connection with the thickness of film 110 (as to etch-stop function and any level of residual persistent forces in film 110 ) and the amount of compressive stress to be developed for the desired hole mobility. Then, as illustrated in FIG.
- the PFET 16 is then covered with a blockout mask 140 and a further ion implantation process 145 performed to reduce stress in film 130 .
- the ion dose and energy can be chosen to maintain the implanted ions within film 140 (and the effects of any implantation into film 110 to be projected and compensated in the overall process.
- the stress imposed by film 130 can thus be partially or fully released with no or only minor effects on the tensile stresses in film 110 ; resulting in the structure illustrated in FIG. 8 in which, for example, high compressive stress is applied to PFET 16 to increase hole mobility while high tensile stress is applied to NFET 18 to increase electron mobility.
- films 110 , 130 and their respective and relative compressive and/or tensile qualities are essentially arbitrary.
- forces developed in film 130 are transferred to the transistor channel through a substantially unstressed portion of film or layer 110 as shear forces which may affect the distribution and gradients of stress in substrate 12 , particularly in regions where stresses change from tensile to compressive or vice-versa. Any such effect will vary somewhat with thickness of film 110 but, in general, will be small and of little significance in the transistor channels.
- Hole and electron carrier mobility may thus be enhanced or regulated to any desired degree within the range of the effect of tensile and compressive force thereon which can be provided by an appropriate thickness and deposition process of the respective films 110 , 130 , generally in the range of ⁇ 2.0 to +2.0 GPa.
- the preferred technique of providing different levels of stress in respective transistors 16 , 18 is by providing differing thickness of films 110 and 130 such that the stress relief by ion implantation can be carried out to substantial completion and full stress removal (since the ion implantation process may be less easily regulated or may require collection of substantial amounts of empirical data for partial stress relief) as shown in FIG. 9 . As illustrated, the structure of FIG.
- the invention is particularly applicable to CMOS technologies where the transistors are deeply scaled to the point that carrier mobilities are compromised.
- the invention provides a method and structure for controlling or improving the carrier mobility in both NFETs and PFETs on the same chip without compromise of manufacturing yield or adverse effects on previously formed structures or later performed processes and which can be readily controlled without compromising manufacturing yield and requiring only a few additional but well-developed processes. Since compressional and tensile forces, although potentially substantial, are applied over relatively small respective areas (in comparison, for example, to chip thickness) there is no tendency of the chip or wafer to warp or curl. Further, since the films 110 , 130 are applied in layers of substantially uniform thickness, severity of topography is not increased.
- an “improvement” in carrier mobility may generally connote an increase therein, a reduction in carrier mobility may be provided by the same process merely by exchanging the etch-stop layer deposition processes relative to the transistor types to thus reverse the types of tensile or compressional forces are applied to respective transistor conduction/impurity types.
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Enhanced carrier mobility in transistors of differing (e.g. complementary) conductivity types is achieved on a common chip by provision of two or more respective stressed layers, such as etch stop layers, overlying the transistors with stress being wholly or partially relieved in portions of the respective layers, preferably by implantations with heavy ions such as germanium, arsenic, xenon, indium, antimony, silicon, nitrogen oxygen or carbon in accordance with a block-out mask. The distribution and small size of individual areas of such stressed structures also prevents warping or curling of even very thin substrates.
Description
This application is a division of U.S. patent application Ser. No. 10/695,754, now U.S. Pat. No. 6,939,814 filed Oct. 30, 2003, and whis is incorporated herein by reference.
1. Field of the Invention
The present invention generally relates to the manufacture of transistors for integrated circuits and, more particularly, to the production of complementary pairs of field effect transistors of enhanced performance at extremely small scale.
2. Description of the Prior Art
Performance and economic factors of integrated circuit design and manufacture have caused the scale of elements (e.g. transistors, capacitors and the like) of integrated circuits to be drastically reduced in size and increased in proximity on a chip. That is, increased integration density and proximity of elements reduces the signal propagation path length and reduces signal propagation time and susceptibility to noise and increase of possible clock rates while the reduction in element size necessary for increased integration density increases to ratio of functionality which can be provided on a chip to the costs of production (e.g. wafer/chip area and process materials) per chip and, potentially, the cost of devices containing the chips by reducing the number of inter-chip and inter-board connections required.
However, the immutable material properties and physical effects by which transistors and other elements function is invariably compromised as the scale of integrated circuit elements is reduced. In response, many improvements in transistor design have been made to maintain suitable levels of performance of these elements, for example, lightly doped drain (LDD) structures (now generally referred to as extension implants since heavier doping levels have been required in current minimum feature size regimes), halo implants and graded impurity profiles have been employed to counteract short channel and punch-through effects and the like, particularly in field effect transistors (FETs) which have become the active device of choice for all but the highest frequency devices. Reduction in device scale has also required operation at reduced voltages to maintain adequate performance without device damage even though operating margins may be reduced.
A principal factor in maintaining adequate performance in field effect transistors is carrier mobility which affects the amount of current or charge which may flow (as electrons or holes) in a doped semiconductor channel under control of a voltage placed on a gate electrode insulated from the channel by a very thin dielectric. Reduced carrier mobility in an FET reduces not only the switching speed/slew rate of a given transistor but also reduces the difference between “on” resistance and “off” resistance. This latter effect increases susceptibility to noise and reduces the number of and/or speed at which downstream transistor gates (capacitive loads) can be driven. Even during the early development of metal-oxide-semiconductor (MOS) field effect transistors and complementary MOS (CMOS) devices (widely used in integrated circuits at the present time), in particular, carrier mobility was a design concern and often required a PMOS device to be made several times as large as a complementary NMOS device with which it was paired in order to obtain reasonably symmetrical operation of the CMOS pair in view of the difference in carrier mobility between electrons, the principal carrier in NMOS devices and holes, the principal carrier in PMOS devices. In more recent and critical designs, it has been shown that carrier mobility degrades in deeply scaled bulk MOS devices due to the heavy doping required to suppress short-channel effects and ultra-thin oxide effects.
It has also been shown theoretically and confirmed experimentally that mechanical stress in the channel region of an FET can increase or decrease carrier mobility significantly; depending on the sign of the stress (e.g. tensile or compressive) and the carrier type (e.g. electron or hole). Tensile stress increases electron mobility and decreases hole mobility while compressive stress increases hole mobility while decreasing electron mobility in the doped semiconductor crystal lattice forming the transistor channel. This phenomenon is well-recognized and theories concerning the physical effects by which it occurs are, in any event, unimportant to its exploitation. In this regard, numerous structures and materials have been proposed for inducing tensile or compressive force in a semiconductor material, such as shallow trench isolation (STI) structures, gate spacers, etch-stop layers and silicide which are generally included in integrated circuit designs. It is also known to induce persistent stresses in semi-conductors for structural reasons. For example, U.S. Pat. Nos. 6,069,049 and 6,399,976 teach that applying a film around a structure and then reducing volume of the film to compress the structure and thus prevent the propagation of defects. However, at the present state of the art, such structures can generally be made of only one type; to produce tensile stress or compressive stress but not both. Therefore, in integrated circuit designs using both PFET and NFET transistors and CMOS technology (in which the logic is implemented principally by complementary PMOS and NMOS transistor pairs), in particular, an enhancement of carrier mobility on one type of transistor was necessarily accompanied by degradation of carrier mobility in the other or complementary type of transistor; yielding little, if any, net performance gain although theoretically capable of improving symmetry of operation of CMOS circuits. However, the stress levels produced by such structures were generally difficult to control particularly since the structure dimensions are often dictated by other design concerns, such as isolation and breakdown voltages.
Additionally, stress of a single type produced by such structures tends to cause warping or curling of the wafer or substrate, particularly if thin (as is the current trend), which compromises later lithographic processes such as the formation of contacts and connections or, in severe cases, chip or wafer cracking; reducing manufacturing yield or (in rare cases) reliability after being put into service. Moreover, such structures may present severe topography on the surface of a chip or wafer which may compromise subsequent manufacturing processes.
It is therefore an object of the present invention to provide a method and structure which can provide tensile and compressive stresses on different electronic element structures on the same chip or wafer.
It is another object of the invention to provide a method and structure which can be easily and repeatably formed with high manufacturing yield which does not adversely affect the chip or wafer or earlier- or later-conducted manufacturing processes in which tensile and compressive stress levels may be readily controlled.
In order to accomplish these and other objects of the invention, a method of adjusting carrier mobility for different semiconductor conductivities on the same chip is provided comprising steps of providing a first layer of material providing a first stress level on a portion of a surface of a chip, selectively reducing the first stress level of a portion of the first layer of material, providing a second layer of material providing a second stress level on a portion of a surface of the chip, and selectively reducing the second stress level of a portion of the second layer of material.
In accordance with another aspect of the invention, an integrated circuit is provided comprising first and second circuit elements such as transistors, and first and second stressed layers, each stressed layer having stress relieved in selected portions thereof.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Referring now to the drawings, and more particularly to FIG. 1 , there is shown, in cross-section, an exemplary pair of complementary NMOS and Pmos transistors such as might comprise a CMOS pair in a portion of an integrated circuit. These transistors have been completed through the formation of silicide on the source, drain and gate regions to reduce resistance of contacts to be later applied thereto. The method of formation of these transistors and the particulars of their structures are unimportant to an understanding of the invention or its successful practice. It should be understood that while FIG. 1 illustrates transistors prior to the application of the invention thereto, the illustration is intended to be highly schematic for clarity and no portion of FIG. 1 is admitted to be prior art as to the invention.
In FIG. 1 and other Figures, the transistors 16, 18 are formed on substrate 12 (which may be relatively much thicker than depicted since the transistors are possibly deeply scaled, as is the preferred application of the invention). The transistors 16, 18 are isolated from each other by shallow trench isolation 14 which may also serve to define n-well and p-well regions of substrate 12. In this regard, transistors 16 and 18 are of complementary conductivity types and, accordingly, the portions of substrate 12 underlying these respective transistors are also oppositely doped. The transistors are otherwise of similar construction; each having a gate dielectric 20, a gate electrode 22, a sidewall spacer structure 24, 26 and source, drain and gate silicide regions 28, as will be familiar to those skilled in the art. Source and drain implant regions and extension and/or halo implant regions may be included as may be desired, as is well-known in the art.
It should be appreciated in the course of the following discussion of FIGS. 2–9 that the embodiment which will be described is that which is expected to be the most advantageous in most applications and integrated circuit designs and thus preferred as well as being an embodiment which will allow the most complete appreciation of the invention to be conveyed. That is, the embodiment and variants thereof which will be described below will illustrate application of variable amounts of tensile and compressive stresses to be respectively applied to adjacent transistors on a single chip and provide other meritorious functions. However, the principles of the invention described in connection with this embodiment can also be applied to provide any desired amount of stress of either sign to adjacent structures of any type in any design. Further, the principles of the invention, while described in connection with an etch-stop layer, can be applied to other structures which may have other functions to provide similar effects on carrier mobility.
It should also be understood that application of a stressed film to a surface of a body will cause a stress of the opposite sign in that body. That is, a tensile film will develop a compressive force in the body that underlies the film. However, when such forces are localized, the sign of the stress in adjacent areas will be of opposite sign. Thus, a compressive stress in a region of a body of material will be accompanied by an adjacent region of tensile stress and vice-versa.
In this preferred case, and for purposes of clarity, a high tensile stress form of etch-stop material is arbitrarily assumed. The deposition is preferably isotropic to provide a substantially constant layer thickness which extends over the substrate in front and in back of the gate as well as the front and back gate surfaces which are in front and in back of the plane of the page of FIG. 2 . Therefore, stress is efficiently applied to the substrate surface as well as the gate electrode volume. The thickness of the layer is important to the practice of the invention to provide the desired stress level without peeling and transfer stresses from an overlying layer as well as to function as an etch stop. In view of these considerations, a thickness between 300 Å and 2000 Å is generally preferred and adequate. Thus, the invention may be successfully practiced within a very wide range of thicknesses and corresponding developed stress levels and thus the particular thickness chosen is not otherwise critical to the practice of the invention.
As illustrated in FIG. 3 , a blockout mask 120 is then applied over transistors which are to have carrier mobility altered by the stress applied by film 110, in this case the NFET 18 to which tensile stress is applied (causing compressive stress in the transistor channel) to increase electron mobility. Then, an ion implantation process (depicted by arrows 125) is carried out to reduce or relieve the stress imposed by film 110. Germanium is preferred for this purpose since it can break Si—N bonds and release the stress in the implanted region while being substantially contained in the film 110 (as illustrated in FIG. 5 ) which is of a sufficient thickness to provide the stress levels of interest while not significantly altering the insulating properties thereof. Experiments by the inventors have shown that such ion implantation can bring the stress levels in layer 110 to substantially zero and that other relatively heavy ions such as arsenic, xenon, indium, antimony can be used. (Even silicon and nitrogen have been successfully employed for the purpose; indicating that oxygen and carbon may also be good candidate materials for this purpose.) Thus the tensile stress can be selectively released (fully or partially) over the PFET transistor while being maintained over the NFET as depicted in FIG. 4 . The implantation dose and energy can be chosen to maintain the implantation substantially within the film 110 to avoid affecting the transistor structure, as illustrated in FIG. 5 .
Then, as illustrated in FIGS. 6 and 7 , the process is repeated to apply, for example, compressive stress to the PFET 16. Specifically, another etch-stop film 130 is deposited by a process producing compressive stress is deposited to an equal or different thickness to develop a bi-level etch-stop film over and surrounding the transistors 16, 18. The material of film 130 is preferably but need not be the same material as film 110 but applied by a different process and/or with different process parameters. Again, the thickness of film 130 is determined in connection with the thickness of film 110 (as to etch-stop function and any level of residual persistent forces in film 110) and the amount of compressive stress to be developed for the desired hole mobility. Then, as illustrated in FIG. 7 , the PFET 16 is then covered with a blockout mask 140 and a further ion implantation process 145 performed to reduce stress in film 130. Again, in accordance with FIG. 5 , the ion dose and energy can be chosen to maintain the implanted ions within film 140 (and the effects of any implantation into film 110 to be projected and compensated in the overall process. The stress imposed by film 130 can thus be partially or fully released with no or only minor effects on the tensile stresses in film 110; resulting in the structure illustrated in FIG. 8 in which, for example, high compressive stress is applied to PFET 16 to increase hole mobility while high tensile stress is applied to NFET 18 to increase electron mobility.
It should be appreciated that the order of films 110, 130 and their respective and relative compressive and/or tensile qualities are essentially arbitrary. However, it should be appreciated that forces developed in film 130 are transferred to the transistor channel through a substantially unstressed portion of film or layer 110 as shear forces which may affect the distribution and gradients of stress in substrate 12, particularly in regions where stresses change from tensile to compressive or vice-versa. Any such effect will vary somewhat with thickness of film 110 but, in general, will be small and of little significance in the transistor channels.
Hole and electron carrier mobility may thus be enhanced or regulated to any desired degree within the range of the effect of tensile and compressive force thereon which can be provided by an appropriate thickness and deposition process of the respective films 110, 130, generally in the range of −2.0 to +2.0 GPa. The preferred technique of providing different levels of stress in respective transistors 16, 18 is by providing differing thickness of films 110 and 130 such that the stress relief by ion implantation can be carried out to substantial completion and full stress removal (since the ion implantation process may be less easily regulated or may require collection of substantial amounts of empirical data for partial stress relief) as shown in FIG. 9 . As illustrated, the structure of FIG. 9 would provide a greater degree or amount of (compressive) stress for PFET 16 than the degree or amount of (tensile) stress provided for NFET 18 and thus would tend to equalize respective electron and hole mobilities in the two transistors where other expedients for doing so may not be as easily or repeatably applied. Therefore, the invention is particularly applicable to CMOS technologies where the transistors are deeply scaled to the point that carrier mobilities are compromised.
In view of the foregoing, it is seen that the invention provides a method and structure for controlling or improving the carrier mobility in both NFETs and PFETs on the same chip without compromise of manufacturing yield or adverse effects on previously formed structures or later performed processes and which can be readily controlled without compromising manufacturing yield and requiring only a few additional but well-developed processes. Since compressional and tensile forces, although potentially substantial, are applied over relatively small respective areas (in comparison, for example, to chip thickness) there is no tendency of the chip or wafer to warp or curl. Further, since the films 110, 130 are applied in layers of substantially uniform thickness, severity of topography is not increased. It should be appreciated that an “improvement” in carrier mobility may generally connote an increase therein, a reduction in carrier mobility may be provided by the same process merely by exchanging the etch-stop layer deposition processes relative to the transistor types to thus reverse the types of tensile or compressional forces are applied to respective transistor conduction/impurity types.
While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Claims (9)
1. An integrated circuit comprising
a first circuit element,
a second circuit element,
a first layer of material overlying said first circuit element and said second circuit element and having a first stress level in a first region of said first layer and a second stress level in a second region of said first layer, and
a second layer of material overlying said first circuit element and said second circuit element and having a first stress level in a first region of said second layer and a second stress level in a second region of said second layer, wherein said second stress level in each of said first and second layers is reduced from the first stress level in each of said first and second layers.
2. The integrated circuit as recited in claim 1 ,
wherein said first layer and said second layer comprise an etch stop layer.
3. The integrated circuit as recite in claim 1 wherein one of said first layer and said second layer is one of silicon nitride or silicon oxynitride.
4. The integrated circuit as recited in claim 1 , wherein said first circuit element is a first transistor and said second circuit element is a second transistor.
5. The integrated circuit as recited in claim 4 , wherein said first and second transistors are field effect transistors of complementary conductivity types.
6. The integrated circuit as recited in claim 1 , wherein said second region of each of said first and second layers is implanted with a heavy ion.
7. The integrated circuit as recited in claim 6 , wherein said heavy ions are of germanium, arsenic, xenon, indium, antimony, silicon, nitrogen oxygen or carbon.
8. The integrated circuit as recited in claim 1 , wherein said first layer and said second layer are of different thickness.
9. The integrated circuit as recited in claim 1 , wherein said first stress levels in each of said first and second layers is in the range of −2.0 to +2.0 GPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/110,767 US7211869B2 (en) | 2003-10-30 | 2005-04-21 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/695,754 US6939814B2 (en) | 2003-10-30 | 2003-10-30 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
US11/110,767 US7211869B2 (en) | 2003-10-30 | 2005-04-21 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10965754 Division | 2003-10-30 | ||
US10/695,754 Division US6939814B2 (en) | 2003-10-30 | 2003-10-30 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050194596A1 US20050194596A1 (en) | 2005-09-08 |
US7211869B2 true US7211869B2 (en) | 2007-05-01 |
Family
ID=34550001
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/695,754 Expired - Lifetime US6939814B2 (en) | 2003-10-30 | 2003-10-30 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
US11/110,767 Expired - Lifetime US7211869B2 (en) | 2003-10-30 | 2005-04-21 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/695,754 Expired - Lifetime US6939814B2 (en) | 2003-10-30 | 2003-10-30 | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
Country Status (1)
Country | Link |
---|---|
US (2) | US6939814B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060261416A1 (en) * | 2005-05-17 | 2006-11-23 | Kiyota Hachimine | Semiconductor device and method of manufacturing the same |
US20070099126A1 (en) * | 2005-11-03 | 2007-05-03 | Samsung Electronics Co., Ltd. | Methods of fabricating integrated circuit transistors by simultaneously removing a photoresist layer and a carbon-containing layer on different active areas |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4557508B2 (en) * | 2003-06-16 | 2010-10-06 | パナソニック株式会社 | Semiconductor device |
US8008724B2 (en) * | 2003-10-30 | 2011-08-30 | International Business Machines Corporation | Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers |
US6982196B2 (en) * | 2003-11-04 | 2006-01-03 | International Business Machines Corporation | Oxidation method for altering a film structure and CMOS transistor structure formed therewith |
US7247534B2 (en) | 2003-11-19 | 2007-07-24 | International Business Machines Corporation | Silicon device on Si:C-OI and SGOI and method of manufacture |
US20050186722A1 (en) * | 2004-02-25 | 2005-08-25 | Kuan-Lun Cheng | Method and structure for CMOS device with stress relaxed by ion implantation of carbon or oxygen containing ions |
JP2005286341A (en) | 2004-03-30 | 2005-10-13 | Samsung Electronics Co Ltd | Low noise and high performance LSI device, layout and manufacturing method thereof |
KR101025761B1 (en) * | 2004-03-30 | 2011-04-04 | 삼성전자주식회사 | Semiconductor integrated circuit having digital circuit and analog circuit and manufacturing method thereof |
US7119404B2 (en) * | 2004-05-19 | 2006-10-10 | Taiwan Semiconductor Manufacturing Co. Ltd. | High performance strained channel MOSFETs by coupled stress effects |
US7361973B2 (en) | 2004-05-21 | 2008-04-22 | International Business Machines Corporation | Embedded stressed nitride liners for CMOS performance improvement |
US20050266632A1 (en) * | 2004-05-26 | 2005-12-01 | Yun-Hsiu Chen | Integrated circuit with strained and non-strained transistors, and method of forming thereof |
DE102004026149B4 (en) * | 2004-05-28 | 2008-06-26 | Advanced Micro Devices, Inc., Sunnyvale | A method of producing a semiconductor device having transistor elements with voltage-inducing etch stop layers |
US20050287747A1 (en) * | 2004-06-29 | 2005-12-29 | International Business Machines Corporation | Doped nitride film, doped oxide film and other doped films |
JP4994581B2 (en) * | 2004-06-29 | 2012-08-08 | 富士通セミコンダクター株式会社 | Semiconductor device |
US20060024879A1 (en) * | 2004-07-31 | 2006-02-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Selectively strained MOSFETs to improve drive current |
DE102004042167B4 (en) * | 2004-08-31 | 2009-04-02 | Advanced Micro Devices, Inc., Sunnyvale | A method of forming a semiconductor structure comprising transistor elements having differently strained channel regions, and corresponding semiconductor structure |
US7268399B2 (en) * | 2004-08-31 | 2007-09-11 | Texas Instruments Incorporated | Enhanced PMOS via transverse stress |
US7223647B2 (en) * | 2004-11-05 | 2007-05-29 | Taiwan Semiconductor Manufacturing Company | Method for forming integrated advanced semiconductor device using sacrificial stress layer |
US7193254B2 (en) * | 2004-11-30 | 2007-03-20 | International Business Machines Corporation | Structure and method of applying stresses to PFET and NFET transistor channels for improved performance |
US7306983B2 (en) * | 2004-12-10 | 2007-12-11 | International Business Machines Corporation | Method for forming dual etch stop liner and protective layer in a semiconductor device |
KR100685879B1 (en) * | 2004-12-30 | 2007-02-23 | 동부일렉트로닉스 주식회사 | Semiconductor device and manufacturing method |
US7195969B2 (en) * | 2004-12-31 | 2007-03-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained channel CMOS device with fully silicided gate electrode |
US20060151843A1 (en) * | 2005-01-12 | 2006-07-13 | International Business Machines Corporation | Hot carrier degradation reduction using ion implantation of silicon nitride layer |
TWI241664B (en) * | 2005-01-14 | 2005-10-11 | Ind Tech Res Inst | Method for fabricating semiconductor device |
US7432553B2 (en) * | 2005-01-19 | 2008-10-07 | International Business Machines Corporation | Structure and method to optimize strain in CMOSFETs |
JP4369379B2 (en) * | 2005-02-18 | 2009-11-18 | 富士通マイクロエレクトロニクス株式会社 | Semiconductor device |
US7164163B2 (en) * | 2005-02-22 | 2007-01-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with hybrid-strain inducing layer |
US7220632B2 (en) * | 2005-02-24 | 2007-05-22 | Freescale Semiconductor, Inc. | Method of forming a semiconductor device and an optical device and structure thereof |
US7429775B1 (en) | 2005-03-31 | 2008-09-30 | Xilinx, Inc. | Method of fabricating strain-silicon CMOS |
US7585704B2 (en) * | 2005-04-01 | 2009-09-08 | International Business Machines Corporation | Method of producing highly strained PECVD silicon nitride thin films at low temperature |
US20060267106A1 (en) * | 2005-05-26 | 2006-11-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Novel semiconductor device with improved channel strain effect |
US7566655B2 (en) * | 2005-05-26 | 2009-07-28 | Applied Materials, Inc. | Integration process for fabricating stressed transistor structure |
US8138104B2 (en) * | 2005-05-26 | 2012-03-20 | Applied Materials, Inc. | Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure |
US8129290B2 (en) | 2005-05-26 | 2012-03-06 | Applied Materials, Inc. | Method to increase tensile stress of silicon nitride films using a post PECVD deposition UV cure |
US7423283B1 (en) | 2005-06-07 | 2008-09-09 | Xilinx, Inc. | Strain-silicon CMOS using etch-stop layer and method of manufacture |
US8105908B2 (en) * | 2005-06-23 | 2012-01-31 | Applied Materials, Inc. | Methods for forming a transistor and modulating channel stress |
US7488670B2 (en) | 2005-07-13 | 2009-02-10 | Infineon Technologies Ag | Direct channel stress |
CN100407424C (en) * | 2005-08-04 | 2008-07-30 | 联华电子股份有限公司 | CMOS transistor element and its making method |
JP2007059473A (en) * | 2005-08-22 | 2007-03-08 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US7436169B2 (en) * | 2005-09-06 | 2008-10-14 | International Business Machines Corporation | Mechanical stress characterization in semiconductor device |
US7655991B1 (en) | 2005-09-08 | 2010-02-02 | Xilinx, Inc. | CMOS device with stressed sidewall spacers |
FR2890782B1 (en) * | 2005-09-14 | 2008-02-29 | St Microelectronics Crolles 2 | SEMICONDUCTOR DEVICE COMPRISING AT LEAST ONE MOS TRANSISTOR COMPRISING AN ETCH STOPPING LAYER AND CORRESPONDING FABRICATION METHOD. |
TWI267926B (en) * | 2005-09-23 | 2006-12-01 | Ind Tech Res Inst | A new method for high mobility enhancement strained channel CMOS with single workfunction metal-gate |
DE102005046974B3 (en) * | 2005-09-30 | 2007-04-05 | Advanced Micro Devices, Inc., Sunnyvale | Manufacturing semiconductor elements by producing different mechanical shaping in different substrate fields by producing layers with different modified inner voltage |
US7936006B1 (en) | 2005-10-06 | 2011-05-03 | Xilinx, Inc. | Semiconductor device with backfilled isolation |
US7615432B2 (en) * | 2005-11-02 | 2009-11-10 | Samsung Electronics Co., Ltd. | HDP/PECVD methods of fabricating stress nitride structures for field effect transistors |
US7785950B2 (en) | 2005-11-10 | 2010-08-31 | International Business Machines Corporation | Dual stress memory technique method and related structure |
JP2007141977A (en) * | 2005-11-16 | 2007-06-07 | Matsushita Electric Ind Co Ltd | Semiconductor device |
US7309637B2 (en) * | 2005-12-12 | 2007-12-18 | Chartered Semiconductor Manufacturing, Ltd | Method to enhance device performance with selective stress relief |
US20070141775A1 (en) * | 2005-12-15 | 2007-06-21 | Chartered Semiconductor Manufacturing, Ltd. | Modulation of stress in stress film through ion implantation and its application in stress memorization technique |
US8153537B1 (en) | 2005-12-15 | 2012-04-10 | Globalfoundries Singapore Pte. Ltd. | Method for fabricating semiconductor devices using stress engineering |
US7518193B2 (en) * | 2006-01-10 | 2009-04-14 | International Business Machines Corporation | SRAM array and analog FET with dual-strain layers comprising relaxed regions |
US7696578B2 (en) * | 2006-02-08 | 2010-04-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Selective CESL structure for CMOS application |
US7678630B2 (en) * | 2006-02-15 | 2010-03-16 | Infineon Technologies Ag | Strained semiconductor device and method of making same |
US20070246776A1 (en) * | 2006-04-20 | 2007-10-25 | Synopsys, Inc. | Stress engineering for cap layer induced stress |
US7592653B2 (en) * | 2006-04-24 | 2009-09-22 | Toshiba America Electronic Components, Inc. | Stress relaxation for top of transistor gate |
JP2007324391A (en) * | 2006-06-01 | 2007-12-13 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US20100224941A1 (en) * | 2006-06-08 | 2010-09-09 | Nec Corporation | Semiconductor device |
US7585720B2 (en) * | 2006-07-05 | 2009-09-08 | Toshiba America Electronic Components, Inc. | Dual stress liner device and method |
US20080026517A1 (en) * | 2006-07-28 | 2008-01-31 | Grudowski Paul A | Method for forming a stressor layer |
DE102006041006B4 (en) * | 2006-08-31 | 2018-05-03 | Advanced Micro Devices, Inc. | A method of patterning contact etch stop layers using a planarization process |
US7629273B2 (en) * | 2006-09-19 | 2009-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for modulating stresses of a contact etch stop layer |
US20080073724A1 (en) * | 2006-09-22 | 2008-03-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Double layer etch stop layer structure for advanced semiconductor processing technology |
US20080079084A1 (en) * | 2006-09-28 | 2008-04-03 | Micron Technology, Inc. | Enhanced mobility MOSFET devices |
KR100809335B1 (en) * | 2006-09-28 | 2008-03-05 | 삼성전자주식회사 | Semiconductor device and manufacturing method thereof |
US7550351B2 (en) * | 2006-10-05 | 2009-06-23 | International Business Machines Corporation | Structure and method for creation of a transistor |
US20080124855A1 (en) * | 2006-11-05 | 2008-05-29 | Johnny Widodo | Modulation of Stress in ESL SiN Film through UV Curing to Enhance both PMOS and NMOS Transistor Performance |
US20080116521A1 (en) * | 2006-11-16 | 2008-05-22 | Samsung Electronics Co., Ltd | CMOS Integrated Circuits that Utilize Insulating Layers with High Stress Characteristics to Improve NMOS and PMOS Transistor Carrier Mobilities and Methods of Forming Same |
JP5040286B2 (en) * | 2006-12-13 | 2012-10-03 | 富士通セミコンダクター株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US8558278B2 (en) * | 2007-01-16 | 2013-10-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with optimized drive current and method of forming |
DE102007004824A1 (en) * | 2007-01-31 | 2008-08-07 | Advanced Micro Devices, Inc., Sunnyvale | Improved stress transfer in an interlayer dielectric by using an additional stress layer over a dual strain layer in a semiconductor device |
JP2008192686A (en) * | 2007-02-01 | 2008-08-21 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US8154107B2 (en) * | 2007-02-07 | 2012-04-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and a method of fabricating the device |
JP5003515B2 (en) * | 2007-03-20 | 2012-08-15 | ソニー株式会社 | Semiconductor device |
CN101271866B (en) * | 2007-03-22 | 2010-05-19 | 中芯国际集成电路制造(上海)有限公司 | Isolation structure for MOS transistor and method of forming same |
US7534678B2 (en) | 2007-03-27 | 2009-05-19 | Samsung Electronics Co., Ltd. | Methods of forming CMOS integrated circuit devices having stressed NMOS and PMOS channel regions therein and circuits formed thereby |
DE102007041210B4 (en) * | 2007-08-31 | 2012-02-02 | Advanced Micro Devices, Inc. | A method of stress transfer in an interlayer dielectric by providing a strained dielectric layer over a stress neutral dielectric material in a semiconductor device and corresponding semiconductor device |
US7902082B2 (en) * | 2007-09-20 | 2011-03-08 | Samsung Electronics Co., Ltd. | Method of forming field effect transistors using diluted hydrofluoric acid to remove sacrificial nitride spacers |
US7923365B2 (en) * | 2007-10-17 | 2011-04-12 | Samsung Electronics Co., Ltd. | Methods of forming field effect transistors having stress-inducing sidewall insulating spacers thereon |
US20090152639A1 (en) * | 2007-12-18 | 2009-06-18 | Texas Instruments Incorporated | Laminated Stress Overlayer Using In-SITU Multiple Plasma Treatments for Transistor Improvement |
JP2009200155A (en) * | 2008-02-20 | 2009-09-03 | Nec Electronics Corp | Semiconductor device and method for manufacturing the same |
US7943961B2 (en) * | 2008-03-13 | 2011-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain bars in stressed layers of MOS devices |
US8999863B2 (en) * | 2008-06-05 | 2015-04-07 | Globalfoundries Singapore Pte. Ltd. | Stress liner for stress engineering |
US7808051B2 (en) * | 2008-09-29 | 2010-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell without OD space effect in Y-direction |
US8232603B2 (en) * | 2009-03-19 | 2012-07-31 | International Business Machines Corporation | Gated diode structure and method including relaxed liner |
US8487354B2 (en) * | 2009-08-21 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for improving selectivity of epi process |
CN102386134B (en) * | 2010-09-03 | 2013-12-11 | 中芯国际集成电路制造(上海)有限公司 | Method for making semiconductor device structure |
US9049061B2 (en) * | 2012-03-21 | 2015-06-02 | The Institute of Microelectronics Chinese Academy of Science | CMOS device and method for manufacturing the same |
CN103325787B (en) * | 2012-03-21 | 2017-05-03 | 中国科学院微电子研究所 | CMOS device and method for fabricating the same |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
CN103646954A (en) * | 2013-11-28 | 2014-03-19 | 上海华力微电子有限公司 | A method for manufacturing a dual stress liner and a semiconductor device containing a dual stress liner |
US9741853B2 (en) * | 2015-10-29 | 2017-08-22 | Globalfoundries Inc. | Stress memorization techniques for transistor devices |
US10056382B2 (en) * | 2016-10-19 | 2018-08-21 | International Business Machines Corporation | Modulating transistor performance |
JP6540650B2 (en) * | 2016-10-19 | 2019-07-10 | 株式会社村田製作所 | Semiconductor device and method of manufacturing the same |
US11222820B2 (en) | 2018-06-27 | 2022-01-11 | International Business Machines Corporation | Self-aligned gate cap including an etch-stop layer |
CN111933642A (en) * | 2020-09-18 | 2020-11-13 | 晶芯成(北京)科技有限公司 | Semiconductor device and manufacturing method thereof |
CN112420871B (en) * | 2020-09-30 | 2021-07-20 | 无锡中科德芯光电感知技术研究院有限公司 | Mesa-type indium gallium arsenide detector chip and preparation method thereof |
CN114447217A (en) | 2020-11-05 | 2022-05-06 | 联华电子股份有限公司 | Semiconductor structure and manufacturing method thereof |
CN112635327A (en) * | 2020-12-14 | 2021-04-09 | 华虹半导体(无锡)有限公司 | Method for manufacturing semiconductor device using stress memorization technology |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030040158A1 (en) | 2001-08-21 | 2003-02-27 | Nec Corporation | Semiconductor device and method of fabricating the same |
US6573172B1 (en) | 2002-09-16 | 2003-06-03 | Advanced Micro Devices, Inc. | Methods for improving carrier mobility of PMOS and NMOS devices |
US20040075148A1 (en) | 2000-12-08 | 2004-04-22 | Yukihiro Kumagai | Semiconductor device |
US20040104405A1 (en) | 2002-12-02 | 2004-06-03 | Taiwan Semiconductor Manufacturing Company | Novel CMOS device |
US20040113217A1 (en) | 2002-12-12 | 2004-06-17 | International Business Machines Corporation | Stress inducing spacers |
US20040235236A1 (en) * | 2003-05-21 | 2004-11-25 | Thomas Hoffmann | Integrated circuit with improved channel stress properties and a method for making it |
US20040262784A1 (en) * | 2003-06-30 | 2004-12-30 | International Business Machines Corporation | High performance cmos device structures and method of manufacture |
-
2003
- 2003-10-30 US US10/695,754 patent/US6939814B2/en not_active Expired - Lifetime
-
2005
- 2005-04-21 US US11/110,767 patent/US7211869B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040075148A1 (en) | 2000-12-08 | 2004-04-22 | Yukihiro Kumagai | Semiconductor device |
US20030040158A1 (en) | 2001-08-21 | 2003-02-27 | Nec Corporation | Semiconductor device and method of fabricating the same |
US6573172B1 (en) | 2002-09-16 | 2003-06-03 | Advanced Micro Devices, Inc. | Methods for improving carrier mobility of PMOS and NMOS devices |
US20040104405A1 (en) | 2002-12-02 | 2004-06-03 | Taiwan Semiconductor Manufacturing Company | Novel CMOS device |
US20040113217A1 (en) | 2002-12-12 | 2004-06-17 | International Business Machines Corporation | Stress inducing spacers |
US20040235236A1 (en) * | 2003-05-21 | 2004-11-25 | Thomas Hoffmann | Integrated circuit with improved channel stress properties and a method for making it |
US20040262784A1 (en) * | 2003-06-30 | 2004-12-30 | International Business Machines Corporation | High performance cmos device structures and method of manufacture |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060261416A1 (en) * | 2005-05-17 | 2006-11-23 | Kiyota Hachimine | Semiconductor device and method of manufacturing the same |
US7737495B2 (en) * | 2005-05-17 | 2010-06-15 | Sony Corporation | Semiconductor device having inter-layers with stress levels corresponding to the transistor type |
US20070099126A1 (en) * | 2005-11-03 | 2007-05-03 | Samsung Electronics Co., Ltd. | Methods of fabricating integrated circuit transistors by simultaneously removing a photoresist layer and a carbon-containing layer on different active areas |
US7541234B2 (en) * | 2005-11-03 | 2009-06-02 | Samsung Electronics Co., Ltd. | Methods of fabricating integrated circuit transistors by simultaneously removing a photoresist layer and a carbon-containing layer on different active areas |
Also Published As
Publication number | Publication date |
---|---|
US6939814B2 (en) | 2005-09-06 |
US20050194596A1 (en) | 2005-09-08 |
US20050093078A1 (en) | 2005-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7211869B2 (en) | Increasing carrier mobility in NFET and PFET transistors on a common wafer | |
US8497168B2 (en) | Structure and method to enhance both NFET and PFET performance using different kinds of stressed layers | |
KR100992036B1 (en) | High-performance MOS FET comprising a stressed gate metal silicide layer and a method of manufacturing the same | |
US8119541B2 (en) | Modulation of stress in stress film through ion implantation and its application in stress memorization technique | |
US7414293B2 (en) | Structure and method of applying localized stresses to the channels of PFET and NFET transistors for improved performance | |
US8008744B2 (en) | Selective STI stress relaxation through ion implantation | |
KR101274184B1 (en) | Intergrated circuit compring stability improved and selectively stressed SRAM cell | |
CN100378957C (en) | Semiconductor structure and method of forming semiconductor transistor | |
US7018891B2 (en) | Ultra-thin Si channel CMOS with improved series resistance | |
US7888214B2 (en) | Selective stress relaxation of contact etch stop layer through layout design | |
US20070158743A1 (en) | Thin silicon single diffusion field effect transistor for enhanced drive performance with stress film liners | |
US8450171B2 (en) | Strained semiconductor device and method of making same | |
US20090315115A1 (en) | Implantation for shallow trench isolation (STI) formation and for stress for transistor performance enhancement | |
US7256084B2 (en) | Composite stress spacer | |
US20050266632A1 (en) | Integrated circuit with strained and non-strained transistors, and method of forming thereof | |
US7737014B2 (en) | Reduction of boron diffusivity in pFETs | |
US6362034B1 (en) | Method of forming MOSFET gate electrodes having reduced depletion region growth sensitivity to applied electric field | |
KR100598284B1 (en) | Semiconductor device manufacturing method | |
KR20050069576A (en) | Method for fabricating transistor of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |