US7263364B2 - Data communication method for mobile communication system - Google Patents
Data communication method for mobile communication system Download PDFInfo
- Publication number
- US7263364B2 US7263364B2 US10/754,801 US75480104A US7263364B2 US 7263364 B2 US7263364 B2 US 7263364B2 US 75480104 A US75480104 A US 75480104A US 7263364 B2 US7263364 B2 US 7263364B2
- Authority
- US
- United States
- Prior art keywords
- data
- mss
- duplex
- channel
- bts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/16—Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
Definitions
- the present invention relates to a mobile communication system, and more particularly to a data communication method for a mobile communication system.
- FIG. 1 is a view illustrating a schematic diagram of a conventional mobile communication system.
- mobile stations (MSs) 110 and 112 are connected to a BTS (Base Transmit Subsystem) 120 over an air interface, and a MS 114 is connected to a BTS 122 over the air interface.
- the BTSs 120 and 122 are wirelessly connected to the MSs 110 and 112 , and the other BTS 122 is wirelessly connected to the MS 114 .
- the BTSs Upon receiving each incoming call for MSs of corresponding service areas from a BSC (Base Station Controller), the BTSs transmit the incoming call to a corresponding MS.
- BSC Base Station Controller
- the BSC 130 manages the overall call control processes such as a voice call process, circuit call process, and packet call process, etc., of each MS. Also, the BSC 130 performs signaling with a MSC (Mobile Switching Center), and performs a handover operation.
- MSC Mobile Switching Center
- the MSC 140 is connected to a HLR (Home Location Register) 150 .
- the MSC 140 performs a call connection/switching function for processing incoming/outgoing request signals entering the MSs 110 , 112 and 114 , and performs a network-interworking function with other MSCs.
- HLR (Home Location Register) 150 is a database for storing/managing data of mobile phone subscribers. The HLR 150 registers or deletes a subscriber's location, and inquires about subscriber information.
- RF Radio Frequency
- Uplink channels are adapted to establish a call connection state among the BTSs 120 and 122 and the MSs 110 , 112 and 114 or adapted to answer a message received from a paging channel.
- the downlink channel is adapted to transmit voice or data signal information to the prescribed MSs 110 , 112 and 114 at the BTSs 120 and 122 . That is, one wireless channel is composed of one uplink channel and one downlink channel.
- one wireless channel composed of one uplink channel and one downlink channel is assigned between the MS 110 and the BTS 120
- the other wireless channel is assigned between the MS 112 and the BTS 120 .
- two uplink channels and two downlink channels are used between the MSs 110 and 112 to establish data communication between the MSs 110 and 112 .
- connection scheme for the conventional mobile communication system is indispensable for a full-duplex connection requiring two-way simultaneous data transmission.
- two-way channels assigned each MS are adapted to interchange signaling command/response messages for establishing a wireless access state with others, but there is little traffic on such two-way channels, resulting in unnecessary consumption of most of channel capacities.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a data communication method for a mobile communication system for reducing the consumption of resources when a desirable half-duplex data connection is provided.
- a data communication method for a mobile communication system including the steps of a) determining whether data communication is needed between at least two MSs (Mobile Stations) located in a service area of one BTS (Base Transmit Subsystem); b) if the data communication between the MSs is needed, assigning one physical half-duplex data channel to the MSs in common; and c) if data is transmitted to the MSs over a downlink channel of the half-duplex data channel, adding a header to the data to create data, and transmitting the data to the MSs.
- BTS Base Transmit Subsystem
- FIG. 1 is a view illustrating a schematic diagram of a conventional mobile communication system
- FIG. 2 is a view illustrating a schematic diagram of a mobile communication system in accordance with a preferred embodiment of the present invention
- FIG. 3 is a flow chart illustrating a half-duplex data connection procedure in accordance with a preferred embodiment of the present invention.
- FIG. 4 is a view illustrating the appearance of transmission/reception data formats on a data channel in accordance with a preferred embodiment of the present invention.
- the BTS allocates one physical channel between the two MSs. Provided that data transmission is established over one downlink channel while the BTS transmits data to at least two MSs, these MSs only receive the data without any operation. Therefore, the BTS divides transmission data in block units, and displays a receiver of a corresponding data block on a header of each data block. In this case, a candidate for the receiver may be one or more than two MSs. In the case where the MSs transmit data to the BTS over one uplink channel, only a qualified MS having authority to transmit the data to the BTS is able to perform such data transmission. Typically, in case of receiving uplink traffic data other than signaling information, the BTS transmits the same traffic data in a downlink direction. In this way, the BTS serves as an amplifier between at least two MSs at a short distance.
- FIG. 2 is a view illustrating a schematic diagram of a mobile communication system in accordance with a preferred embodiment of the present invention.
- a plurality of MSs 212 , 214 , 262 and 264 shown in FIG. 2 are designed to establish a half-duplex data connection service according to the present invention.
- the MSs 212 , 214 , 262 and 264 are registered to the half-duplex data connection service in a mobile communication system.
- the MSs 212 , 214 , 262 and 264 are implemented to control half-duplex data. That is, the MSs 212 , 214 , 262 and 264 generate data format for a half-duplex data communication on a core network 200 .
- the MSs 212 , 214 , 262 and 264 receive arbitrary data appropriate for the half-duplex data connection service from the core network 200 .
- the MSs 212 and 214 receive a mobile communication service from a BTS 220
- the MSs 262 and 264 receive a mobile communication service from a BTS 222
- the BTSs 220 and 222 are connected to a MSC 240 over a BSC 230 .
- the MSC 240 performs a call connection/switching function for processing incoming/outgoing request signals entering the MSs 212 , 214 , 262 and 264 .
- HLR 250 is a database for storing/managing data of mobile phone subscribers. The HLR 250 registers or deletes a subscriber's location, and inquires about subscriber information.
- the BTS, the BSC, the MSC and the HLR for providing such MSs with such a mobile communication service are defined as a core network.
- a network for providing mobile phones with a mobile communication service is defined as a core network according to the present invention.
- the MS 212 connected to one BTS 220 requests the BTS 220 to establish a half-duplex data connection between itself 212 and another MS.
- the half-duplex data connection request of the MS 212 is created in the same manner as in a typical mobile communication system; that is, the MS 212 uses a common channel. It should be noted, however, that a predetermined service code for the half-duplex data connection service is prescribed between the MS 212 and the core network 200 . So, the MSs 212 , 214 , 262 and 264 transmit a predetermined counterpart MS information and the predetermined service code to the core network 200 in such a way that such a half-duplex data connection request to the BTS is established.
- the core network 200 searches a database contained in either the HLR 250 or a VLR (Visitor Location Register) (not shown) to determine whether the MS 214 receiving the half-duplex data connection request gains access to the same BTS (i.e., 220 ). Then, the core network 200 determines whether the MS 214 is capable of performing the half-duplex data connection service by determining whether the MS 214 is registered to the half-duplex data connection service in a mobile communication system.
- VLR Visitor Location Register
- all the MSs must inform the mobile communication system of prescribed information for indicating whether or not they support the half-duplex data connection service at a prescribed time at which they are registered to a network.
- the MS 214 it is necessary for the MS 214 to generate a data format for a half-duplex data communication on the core network 200 , receive data appropriate for the half-duplex data connection service from the core network 200 , and process the data.
- the BTS may check whether the half-duplex data connection service is available in a counterpart MS over an additional common channel after substantially paging the counterpart MS. This condition check procedure may be different in individual mobile communication systems.
- the half-duplex data connection request transmitted from the MS 212 to the MS 214 is denied.
- the core network 200 denies the half-duplex data connection request from the MS 212 .
- one physical channel is assigned the MSs 212 and 214 . Prior to such a physical channel assignment, it is noted that the core network 200 must page the MS 214 and transmit half-duplex data connection channel information to the MS 214 .
- the half-duplex data channel is shared with an uplink channel and downlink channel, respectively, and has the following characteristics.
- the concept of a caller i.e., the MS 212 in the present invention
- a callee i.e., the MS 214 in the present invention
- discrimination between a sender and a receiver is of importance.
- a sender is defined as an arbitrary MS with uplink authority as follows.
- the MSs 212 and 214 serve as one virtual MS 210 for the BTS 220 (or the core network). Therefore, the MSs 212 and 214 simultaneously receive all the data transmitted from the BTS 220 to the half-duplex data channel in the downlink direction of the half-duplex data channel between the virtual MS 210 and the BTS 220 .
- the downlink channel information between the virtual MS 210 and the BTS 220 includes a traffic data block for a receiver, and a signaling data block between a sender and the receiver.
- the BTS 220 divides data to be transmitted into a plurality of data blocks, and indicates a receiver of a corresponding data block on a header of each data block.
- a candidate for the receiver may be one or more than two MSs.
- Such receiver information is transmitted using either a unique number for indicating a corresponding MS, or bitmap information.
- the MSs 212 and 214 in case of signal reception reply to corresponding traffic and signal only when they are indicated as a destination in a data block header. Similarly, the MSs 212 and 214 ignore the corresponding traffic and signals when they are not indicated as a destination in a data block header.
- the core network 200 assigns one physical half-duplex data channel to the MSs 212 and 214 , the MSs 212 and 214 serve as one virtual MS 210 for the BTS 220 (or the core network). Therefore, only one of the MSs 212 and 214 is able to transmit a data block to the BTS 220 in the uplink direction of the half-duplex data channel between the virtual MS 210 and the BTS 220 .
- Uplink channel information between the virtual MS 210 and the BTS 220 includes a sender's traffic data block, a sender's signaling data block, and a receiver's signaling data block, etc.
- the signaling data block includes a traffic data ACK (ACKnowledgement) and a signaling data ACK.
- the ACK information is adapted to indicate success or failure of corresponding data block reception and, if necessary, is also adapted to induce data retransmission.
- the MSs 212 and 214 receive the traffic and signal, they should inform the BTS 220 of ACK information of the received traffic and signal, i.e., success or failure of corresponding data block reception, in order to establish stable data communication.
- the MS receiving the data block has no authority to use an uplink channel as a receiver. Only a qualified MS having authority to use such an uplink channel can transmit data to the BTS 220 in the uplink direction. Therefore, one or more receiver MSs among a plurality of MSs making a half-duplex data connection state must have periodic uplink authority.
- a mobile communication system of the present invention periodically assigns a small-sized uplink space to the MS 214 .
- the MS 214 receiving the data block can transmit the reporting ACK data, i.e., success or failure information of the data block's reception, to the core network 200 .
- Such a reporting ACK data is important when establishing synchronization with a receiver.
- a GSM (Global System for Mobile communications) system needs to successively update necessary TA (Timing Advance) information with change in geographical locations involving a corresponding MS therein. But, unless the GSM system successively updates the TA information, it cannot establish a stable uplink transmission. For this stable uplink transmission, the receiver needs to perform a periodic uplink function, such that even the receiver can easily function as a sender without additional synchronization.
- such an uplink channel is divided into a plurality of sub-channels on a time domain to allow the MSs to be individually assigned sub-channels, such that the MSs share the uplink channel with one another.
- additional signaling information is transmitted to the core network 200 according to the authority to use the uplink channel, such that a request to return the authority to use the uplink channel is transmitted to the core network 200 .
- the core network 200 transmits all the traffic to the receiver, and gives the receiver the requested uplink channel use authority using additional signaling information.
- an arbitrary MS defined as a new sender has no transmission information
- the arbitrary MS transfers its own uplink channel use authority to a counterpart MS in the same manner as the above.
- Such a transfer of the uplink channel use authority is repeated until one MS attempting to complete such data connection status, among a plurality of MSs using the half-duplex data channel, generates a termination request via additional signaling information.
- the core network 200 transmits the same traffic data in a downlink direction. Likewise, the core network 200 serves as an amplifier between all MSs located within a short distance range.
- FIG. 3 is a flow chart illustrating a half-duplex data connection procedure in accordance with a preferred embodiment of the present invention
- FIG. 4 is a view illustrating the appearance of transmission/reception data formats on a data channel in accordance with a preferred embodiment of the present invention.
- the MS 212 transmits a half-duplex data connection request to the MS 214 over the core network 200 at step 302 .
- the core network 200 determines on the basis of the half-duplex data connection request whether the MS 214 is located in a service area of the BTS 220 connected to the MS 212 at step 304 , and also determines whether the MS 214 is able to perform a half-duplex data connection service at step 304 .
- determination at step 304 is based on prescribed information indicating whether the MS 214 is registered to the half-duplex data connection service in a mobile communication system.
- a mobile communication system informs the MS 212 of a failure of the half-duplex data connection service at step 306 .
- the core network 200 adapts the MS 212 and the MS 214 to be one virtual MS and assigns one physical half-duplex data channel to the one virtual MS at step 308 . Thereafter, the core network 200 transmits to the MSs 212 and 214 a data block in a downlink direction of the half-duplex data channel at step 310 .
- the core network 200 divides transmission data into block units, and indicates the receiver of a corresponding data block on a header of each data block. In this case, a candidate for the receiver may be one or more than one MS.
- a data block format 400 transmitted to the MSs 212 and 214 is depicted in FIG. 4 .
- the data block is composed of a header 402 and a traffic or signal data 404 .
- the header 402 may indicate a receiver of a corresponding data block as aforementioned. So, the MSs 212 and 214 receiving the data block reply to a corresponding traffic or signal data 404 only when they are indicated as destination information in the data block header 402 . Similarly, the MSs 212 and 214 ignore the corresponding traffic and signal data 404 when they are not indicated as the destination in the data block header 402 .
- the core network 200 allows only one of the MSs 212 and 214 to transmit such a data block to the BTS 220 in the uplink direction of the half-duplex data channel between the virtual MS 210 and the BTS 220 at steps 312 and 314 .
- the dotted line of FIG. 3 indicates that uplink of MS 2 can be limited.
- a data block format 410 transmitted from the MSs 212 and 214 to the core network 200 is also depicted in FIG. 4 .
- the data block is composed of a reporting ACK data 412 and a sender's traffic or signal data 414 .
- a small-sized uplink space 412 is periodically assigned the MS 212 or 214 receiving the data block, such that the MS 212 or 214 can transmit the reporting ACK data 412 of the received data block to the core network 200 .
- the MS 212 or 214 receiving the data block can transmit the reporting ACK data 412 of recently received data block, i.e., success or failure information of the current reception data block, to the core network 200 , therefore, if necessary, the MS 212 or 214 may request the core network 200 to retransmit the necessary data block.
- the MS 212 or 214 having authority to use an uplink channel is assigned an uplink space 414 through which data transmission to a counterpart MS is performed. Therefore, the MS 212 or 214 transmits traffic or signal data to the core network 200 as a sender.
- the BTS assigns one physical channel between the MSs, thereby preventing unnecessary consumption of resources and making it possible for a mobile communication system to make effective data transmission on the condition that it is determined that a short distance half-duplex data connection service is preferable.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2003-1696 | 2003-01-10 | ||
KR10-2003-0001696A KR100539914B1 (en) | 2003-01-10 | 2003-01-10 | Method for data communication in mobile communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040198367A1 US20040198367A1 (en) | 2004-10-07 |
US7263364B2 true US7263364B2 (en) | 2007-08-28 |
Family
ID=33095529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/754,801 Expired - Fee Related US7263364B2 (en) | 2003-01-10 | 2004-01-09 | Data communication method for mobile communication system |
Country Status (2)
Country | Link |
---|---|
US (1) | US7263364B2 (en) |
KR (1) | KR100539914B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100666051B1 (en) | 2005-05-04 | 2007-01-10 | 삼성전자주식회사 | Terminal supporting half-duplex communication displaying standby time and communication method thereof |
US7764694B2 (en) * | 2008-03-07 | 2010-07-27 | Embarq Holdings Company, LLP | System, method, and apparatus for prioritizing network traffic using deep packet inspection (DPI) |
US20090238071A1 (en) * | 2008-03-20 | 2009-09-24 | Embarq Holdings Company, Llc | System, method and apparatus for prioritizing network traffic using deep packet inspection (DPI) and centralized network controller |
JP6387875B2 (en) * | 2015-03-23 | 2018-09-12 | 株式会社Jvcケンウッド | Wireless device and wireless communication method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966378A (en) * | 1995-10-23 | 1999-10-12 | Nokia Mobile Phones Ltd. | Method, device and communication network for avoiding collisions in radio communication |
US6301231B1 (en) * | 1998-06-02 | 2001-10-09 | Amer A. Hassan | Satellite communication system with variable rate satellite link diversity |
US6467059B1 (en) * | 1998-08-31 | 2002-10-15 | Brother Kogyo Kabushiki Kaisha | Wireless transmission system |
US6760393B1 (en) * | 1999-05-06 | 2004-07-06 | Navcom Technology, Inc. | Spread-spectrum GMSK/M-ary radio with oscillator frequency correction |
-
2003
- 2003-01-10 KR KR10-2003-0001696A patent/KR100539914B1/en not_active Expired - Fee Related
-
2004
- 2004-01-09 US US10/754,801 patent/US7263364B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966378A (en) * | 1995-10-23 | 1999-10-12 | Nokia Mobile Phones Ltd. | Method, device and communication network for avoiding collisions in radio communication |
US6301231B1 (en) * | 1998-06-02 | 2001-10-09 | Amer A. Hassan | Satellite communication system with variable rate satellite link diversity |
US6467059B1 (en) * | 1998-08-31 | 2002-10-15 | Brother Kogyo Kabushiki Kaisha | Wireless transmission system |
US6760393B1 (en) * | 1999-05-06 | 2004-07-06 | Navcom Technology, Inc. | Spread-spectrum GMSK/M-ary radio with oscillator frequency correction |
Non-Patent Citations (1)
Title |
---|
Dailey; Methods, Systems, and Terminals for providing Group communications over a common traffic channel; Nov. 16, 2000; WO 00/691190. * |
Also Published As
Publication number | Publication date |
---|---|
KR20040064833A (en) | 2004-07-21 |
KR100539914B1 (en) | 2005-12-28 |
US20040198367A1 (en) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6577874B1 (en) | Methods and systems for providing temporary identification numbers for mobile terminals | |
US6038223A (en) | Access scheme for packet data in a digital cellular communication system | |
US7155211B2 (en) | Method and system for providing a picture as caller identification | |
US6226279B1 (en) | Allowing several multiple access schemes for packet data in a digital cellular communication system | |
JP3240141B2 (en) | Method and apparatus for processing short messages in a cellular network | |
EP0771509B1 (en) | Starting a short message transmission in a cellular communication system | |
EP0979580B1 (en) | Method and apparatus for delivering and presenting calling name information in a wireless communications system | |
US20040063451A1 (en) | Relaying information within an ad-hoc cellular network | |
JP2590754B2 (en) | Calling method and apparatus for mobile communication system | |
EP1834455A2 (en) | Method and apparatus for peer-to-peer instant messaging | |
AU1914192A (en) | Method for establishing an inbound call to the mobile telephone in a cellular mobile telephone network | |
CN1190520A (en) | Method for packet transmission of packet data services in cellular mobile radio networks for voice and data transmission | |
KR930005389A (en) | Method and apparatus for distributing uplink network control and minimizing terminal power level control overhead in radio frequency (RF) data communication network | |
KR100740022B1 (en) | Method and apparatus for shortening call setup time | |
KR20180086477A (en) | An uplink data transmission control method, a user terminal and a network server | |
US7263364B2 (en) | Data communication method for mobile communication system | |
EP1929817B1 (en) | Method of enhancing voice communication between a group of users in a network | |
KR100335694B1 (en) | Method for setting up call in wireless communication | |
US20040157547A1 (en) | Method for broadcasting data in a mobile communication system | |
CN101835104B (en) | The group information updating method of number cancelling mobile terminal and trunking dispatching subsystem | |
KR100250666B1 (en) | Method for asking to page in a personal communication service exchange system | |
KR100239063B1 (en) | How to avoid call collision in cordless phones | |
KR100810248B1 (en) | Method of providing location information of mobile communication terminal in mobile communication system | |
EP1287719B1 (en) | Support of group traffic in telecommunication network | |
US8195207B2 (en) | Method for the transmission of data to at least one listening user of an on-going group call immediately after switching speakers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, HOE-WON;REEL/FRAME:014890/0364 Effective date: 20040109 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150828 |
|
AS | Assignment |
Owner name: LODESTAR LICENSING GROUP LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:070485/0027 Effective date: 20230323 |