US7258812B2 - Compound magnetic material and fabrication method thereof - Google Patents
Compound magnetic material and fabrication method thereof Download PDFInfo
- Publication number
- US7258812B2 US7258812B2 US10/490,096 US49009604A US7258812B2 US 7258812 B2 US7258812 B2 US 7258812B2 US 49009604 A US49009604 A US 49009604A US 7258812 B2 US7258812 B2 US 7258812B2
- Authority
- US
- United States
- Prior art keywords
- compound magnetic
- organic resin
- mass
- compound
- mixed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 84
- 239000000696 magnetic material Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000006249 magnetic particle Substances 0.000 claims abstract description 80
- 229920005989 resin Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000011812 mixed powder Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 32
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 32
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 239000000314 lubricant Substances 0.000 claims abstract description 19
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 27
- 229920002530 polyetherether ketone Polymers 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 35
- 230000004907 flux Effects 0.000 description 19
- 238000005461 lubrication Methods 0.000 description 16
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004962 Polyamide-imide Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229920002312 polyamide-imide Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 description 1
- 229910001053 Nickel-zinc ferrite Inorganic materials 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004963 Torlon Substances 0.000 description 1
- 229920003997 Torlon® Polymers 0.000 description 1
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- RFGNMWINQUUNKG-UHFFFAOYSA-N iron phosphoric acid Chemical compound [Fe].OP(O)(O)=O RFGNMWINQUUNKG-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
- H01F1/26—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/09—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F2003/026—Mold wall lubrication or article surface lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F2003/145—Both compacting and sintering simultaneously by warm compacting, below debindering temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a compound magnetic material and a fabrication method thereof. Particularly, the present invention relates to a compound magnetic material including compound magnetic particles having metal magnetic particles and a coat layer containing metal oxide, and a fabrication method thereof.
- a material In order to have high magnetic properties in the middle and high frequency range, a material must have a high saturated magnetic flux density, high magnetic permeability, and a high electrical resistivity. Metal magnetic materials that have a high saturated magnetic flux density and permeability generally have a low electrical resistivity (10 ⁇ 6 to 10 ⁇ 4 ⁇ cm). Therefore, the overcurrent loss in the middle and high frequency range is great. Thus, the magnetic property is deteriorated, offering difficulty in the usage as a single element.
- Metal oxide magnetic materials are known to have an electrical resistivity (1-10 8 ⁇ cm) higher than that of metal magnetic materials, exhibiting smaller over current loss in the middle and high frequency range. Deterioration in the magnetic property is small. However, application is restricted since the saturated magnetic flux density is 1 ⁇ 3 to 1 ⁇ 2 the saturated magnetic flux density of the metal magnetic material.
- Japanese Patent National Publication No. 10-503807 discloses a method of forming a compound magnetic material by binding a plurality of compound magnetic particles having a coat of phosphoric acid iron applied to the surface of iron powder with an organic resin such as polyphenylene ether or polyetherimide and amide type oligomer.
- the compound magnetic material in the above-described publication has the organic resin softened under high temperature since the compound magnetic particles are bound with an organic resin of low heat resistance such as polyphelyne ether or polyetherimide and amide type oligomer. As a result, the bind strength between adjacent compound magnetic particles becomes smaller to result in reduction of the strength of the compound magnetic material.
- an object of the present invention is to provide a compound magnetic material of high heat resistance.
- long-period heat resistance temperature is the heat resistance temperature defined by the UL (Underwriters Laboratories) specification 746B, used as a measure of the heat resistance limit where the dynamics property is deteriorated when a heat treatment is applied for a long period of time under zero gravity.
- a fabrication method of a compound magnetic material of the present invention includes the step of preparing mixed powder including an organic resin and compound magnetic particles.
- the long-period heat resistance temperature of the organic resin is at least 200° C.
- the ratio of the organic resin to the composite magnetic particles is more than 0% and not more than 0.2 mass %.
- the compound magnetic particle includes a metal magnetic particle, and a coat layer containing metal oxide, directly bound to the surface of the metal magnetic particle.
- the fabrication method of the compound magnetic material includes the step of forming a compact by introducing mixed powder into a die having a lubricant applied to its surface and conduct warm-compacting, and subjecting the compact to a heat treatment.
- die wall lubrication compacting Introducing powder or mixed powder into a die having a lubricant applied to its surface for compacting is called “die wall lubrication compacting” hereinafter.
- die wall lubrication compacting it is no longer necessary to mix a lubricant into the mixed powder to prevent seizure to the mold.
- compressibility of the mixed powder is improved to allow high compacting density.
- the temperature of the die is preferably at least 70° C. and not more than 150° C. If this temperature is below 70° C., adherence of the lubricant applied at the surface of the die to the die is low. There is a possibility of the lubricant dropping from the die surface together with the mixed powder during the powder feeding stage. If the temperature exceeds 150° C., the lubricant will be fused to reduce in the lubrication effect. There is a possibility of seizure to the die during compacting.
- warm-compacting used here implies the method of compacting to reduce the yield stress and improve compressibility of the powder or mixed powder by heating the powder or mixed powder.
- the heating temperature of the powder or mixed powder is preferably at least 70° C. and not more than 150° C. If this temperature is below 70° C., reduction in the yield stress of the powder or mixed powder and improvement of compressibility are small. If the temperature exceeds 150° C., the powder or mixed powder will be oxidized, imposing the problem that the quality of the product characteristics cannot be maintained.
- a fabrication method of a compound magnetic material of the present invention including the above-described steps, a plurality of compound magnetic particles are bound to each other by an organic resin having a long-period heat resistance temperature of at least 200° C. Therefore, the organic resin will not soften even under high temperature. As a result, the heat resistance of the compound magnetic material can be improved since the bind strength between adjacent compound magnetic particles is maintained. If the ratio of the organic resin exceeds 0.2 mass %, the strength applying effect caused by necking between compound magnetic particles is reduced. This is not desirable since the transverse rupture strength at high temperature is degraded. Also, the usage of die wall lubrication is advantageous in that little, if any, lubricant has to be blended into the mixed powder.
- the step of preparing mixed powder includes the step of preparing mixed powder having a ratio of the organic resin to the compound magnetic particles set to at least 0.01 mass % and not more than 0.15 mass %. Since the containing amount of the organic resin is further defined, a compound magnetic material of a high electrical resistivity, transverse rupture strength, and magnetic flux density can be provided. If the ratio of the organic resin is less than 0.01 mass %, direct contact is established between compound magnetic particles, resulting in a lower electrical resistivity. If the ratio of the organic resin exceeds 0.15 mass %, the transverse rupture strength and magnetic flux density will be degraded.
- the step of forming a compact includes the step of warm-compacting the mixed powder at the temperature of at least 70° C. and not more than 150° C. If this temperature in the warm-compacting step is below 70° C., the density of the compact will be degraded, resulting in a lower magnetic flux density. If the temperature in the warm-compacting step exceeds 150° C., there is a possibility of oxidation of the metal magnetic particles.
- the step of preparing mixed powder includes the step of preparing mixed powder including an organic resin, a compound magnetic particle, and a lubricant.
- the step of preparing mixed powder includes the step of preparing mixed powder including an organic resin and a compound magnetic particle, wherein the remainder of the mixed powder is inevitable impurities.
- the organic resin includes at least one type selected from the group consisting of thermal plastic resin including a ketone group, a thermoplastic polyether nitrile resin, thermoplastic polyalnideimide resin, thermosetting polyamideimide resin, thermoplastic polyimide resin, thermosetting polyimide resin, a polyarylate resin, and resin including fluorine.
- thermoplastic resin including a ketone group
- polyether ether ketone PEEK, long-period heat resistance temperature 260° C.
- polyether ketone ketone PEKK, long-period heat resistance temperature 240° C.
- polyether ketone PEK, long-period heat resistance temperature 220° C.
- PES poly ketone sulfide
- thermoplastic polyamideimide As thermoplastic polyamideimide, TORLON (trade name) available from AMOCO Corporation (long-period heat resistance temperature 230° C.-250° C.) or TI5000 (trade name) available from Toray (long-period heat resistance temperature at least 250° C.) can be enumerated.
- Econol (trade name) (long-period heat resistance temperature 240° C.-260° C.) can be cited.
- thermosetting polyamideimide TI1000 (trade name) available from Toray (long-period heat resistance temperature 230° C.) can be cited.
- resin including fluorine polytetrafluoroethylene (PTFE, long-period heat resistance temperature 260° C.), tetrafluoroethylene-perfluoro alkyl vinyl ether copolymer (PFA, long-period heat resistance temperature 260° C.), and tetrafluoroethylene-hexa fluoro propylene copolymer (FEP, long-period heat resistance temperature 200° C.) can be enumerated.
- PTFE polytetrafluoroethylene
- PFA tetrafluoroethylene-perfluoro alkyl vinyl ether copolymer
- FEP tetrafluoroethylene-hexa fluoro propylene copolymer
- the thickness of the coat layer is at least 0.005 ⁇ m and not more than 20 ⁇ m. If this thickness is smaller than 0.005 ⁇ m, it will be difficult to obtain insulation through the coat layer. If the thickness of the coat layer exceeds 20 ⁇ m, the volume ratio of the metal oxide or metal oxide magnetic substance to the unit volume is increased. It will be difficult to achieve a predetermined saturated magnetic flux density. It is particularly preferable to set the thickness of the coat layer to at least 0.01 ⁇ m and not more than 5 ⁇ m.
- a magnetic substance can be employed for the metal oxide.
- the magnetic substance includes at least one type selected from the group consisting of magnetite (Fe 3 O 4 ), manganese (Mn)-zinc (Zn) ferrite, nickel (Ni)-zinc (Zn) ferrite, cobalt (Co) ferrite, manganese (Mn) ferrite, nickel (Ni) ferrite, copper (Cu) ferrite, magnesium (Mg) ferrite, lithium (Li) ferrite, manganese (Mn)-magnesium (Mg) ferrite, copper (Cu)zinc (Zn) ferrite and magnesium (Mg)-zinc (Zn) ferrite.
- the metal oxide includes metal oxide magnetic particles.
- the metal oxide magnetic particle has an average grain size of at least 0.005 ⁇ m and not more than 5 ⁇ m. If this average grain size of metal oxide magnetic particle is smaller than 0.005 ⁇ m, production of a metal oxide magnetic particle will become difficult. If the average grain size of the metal oxide magnetic particle exceeds 5 ⁇ m, it will be difficult to render the film thickness of the coat film uniform. It is particularly preferable to set the average grain size of the metal oxide magnetic particle to at least 0.5 ⁇ m and not more than 2 ⁇ m.
- average grain size implies the grain size of a particle having the sum of the mass of particles from the smaller grain size arriving at 50% the total mass, in the histogram of the grain size measured by the sieving method, i.e. 50% grain size of D50.
- the metal oxide magnetic particle is not particularly limited, as long as it has soft magnetism and an electrical resistivity of at least 10 ⁇ 3 ⁇ cm.
- the aforementioned various types of soft magnetic ferrite or iron nitride can be employed.
- Manganese-zinc ferrite or nickel-zinc ferrite having a high saturated magnetic flux density is particularly preferable.
- One or more types of these ferrites may be employed.
- the metal oxide is formed of an oxide including phosphorus (P) and iron (Fe).
- P phosphorus
- Fe iron
- the usage of such metal oxide is advantageous in that a thinner coat layer covering the surface of the metal magnetic particle can be provided. Accordingly, the density of the compound magnetic material can be increased to allow improvement of the magnetic property.
- the average grain size of the metal magnetic particle is at least 5 ⁇ m and not more than 200 ⁇ m. If this average grain size of the metal magnetic particle is smaller than 5 ⁇ m, the magnetic property is easily deteriorated due to metal oxidation. If the average grain size of the metal magnetic particle exceeds 200 ⁇ m, the compressibility in the compacting step will be degraded to result in reduction in the density of the compact. Accordingly, it will become more difficult to handle the compact.
- the metal magnetic particle includes at least one type selected from the group consisting of iron (Fe), iron (Fe)-silicon (Si) based alloy, iron (Fe)-nitrogen (N) based alloy, iron (Fe)-nickel (Ni) based alloy, iron (Fe)-carbon (C) based alloy, iron (Fe)-boron (B) based alloy, iron (Fe)-cobalt (Co) based alloy, iron (Fe)-phosphorus (B) based alloy, iron (Fe)-nickel (Ni)-cobalt (Co) based alloy, and iron (Fe)-aluminum (Al)-silicon (Si) based alloy.
- One or more types thereof can be employed.
- the material of the metal magnetic particle is not particularly limited and may be a metal single unit or an alloy as long as it is a soft magnetic metal.
- the magnetic flux density B is at least 15 kG when a magnetic field of at least 12000 A/m is applied
- the electrical resistivity p is at least 10 ⁇ 3 ⁇ cm and not more than 10 2 ⁇ cm.
- the transverse rupture strength is at least 100 MPa at the temperature of 200° C.
- the ratio of the metal oxide to the metal magnetic particles is at least 0.2% and not more than 30% in mass ratio. Specifically, it is desirable that (mass ratio of metal oxide)/(mass ratio of metal magnetic particle) is at least 0.2% and not more than 30%. If this ratio is below 0.2%, the electrical resistivity will be reduced to induce reduction of the alternating-current magnetic property. If the ratio exceeds 30%, the ratio of the metal oxide or metal oxide magnetic material is increased to induce reduction in the saturated magnetic flux density. More preferably, the ratio of the metal oxide or metal oxide magnetic substance to the metal magnetic particles is at least 0.4% and not more than 10% in mass ratio.
- the compound magnetic material of the present invention having both a high magnetic property and high heat resistance can be employed in electronic components such as choke coils, switching supply elements and magnetic heads, various motor components, solenoids for automobiles, various magnetic sensors, various solenoid valves, and the like.
- the compound magnetic material includes a plurality of compound magnetic particles bound together by an organic resin.
- the compound magnetic particle includes a metal magnetic particle, and a coat layer containing metal oxide, bound to the surface of the metal magnetic particle.
- the organic resin has a long-period heat resistance temperature of at least 200° C.
- the ratio of the organic resin to the compound magnetic particles exceeds 0 mass % and not more than 0.2 mass %.
- the ratio of the organic resin to the compound magnetic particles is at least 0.01 mass % and not more than 0.15 mass %.
- FIG. 1 is a sectional view of Sample 2.
- Somaloy (trade name) available from Heganes Corporation was prepared.
- the particle has a coat layer formed of metal oxide including phosphorus and iron applied on the surface of iron powder as a metal magnetic particle.
- the average grain size of the compound magnetic particle is not more than 150 ⁇ m.
- the average thickness of the coat layer is 20 nm.
- Polyether ether ketone resin particles were prepared having the mass ratio of 0.01%, 0.10%, 0.15%, 0.20%, 0.30%, 1.00%, and 3.00% to the compound magnetic particles.
- the combining method is not particularly limited.
- mechanical alloying, oscillation ball mill, planetary ball mill, mechanofusion, coprecipitation method, chemical vapor deposition (CVD), physical vapor deposition (PVD), plating, sputtering, vapor deposition, sol-gel method and the like can be employed.
- the mixed powder was introduced into a die. Compacting was conducted to obtain a compact.
- the compacting method die wall lubrication compacting of applying a lubricant to the die for compacting was employed.
- a lubricant stearic acid, metallic soap, amide based wax, thermoplastic resin, polyethylene, or the like can be employed. In the present embodiment, metallic soap was employed.
- a compact was formed with the temperature of the die at 130° C., the temperature of mixed powder at 130° C. and the mold pressure of 784 MPa.
- the temperature of the die can be set in the range of 70° C. to 150° C., the temperature of mixed powder to the range of 70° C. to 150° C., and the compacting pressure to the range of 392 MPa to 980 MPa.
- a compact was obtained by compacting a sample including only compound magnetic particles, absent of polyether ether ketone particle, by die wall lubrication.
- the compact was subjected to a heat treatment (annealing) at the temperature of 420° C. in nitrogen gas ambient. Accordingly, the polyether ether ketone was softened to permeate into the interface between the plurality of compound magnetic particles, whereby compound magnetic particles are bound with each other, resulting in a solid.
- the compact absent of polyether ether ketone was also subjected to a heat treatment to achieve a solid.
- the temperature of the heat treatment is preferably at least 340° C. and not more than 450° C. If this temperature is lower than 340° C., polyether ether ketone will not be completely softened, and will not be diffused uniformly. If the temperature is higher than 450° C., polyether ether ketone is decomposed, whereby the strength of the compound magnetic material will not be improved. If the heat treatment is conducted in the atmosphere, polyether ether ketone is rendered a gel, whereby the strength of the compound magnetic material is degraded. If the heat treatment is carried out in argon or helium, the fabrication cost will increase. As the heat treatment, HIP (Hot Isostatic Pressing), or SPS (Spark Plasma Sintering), can be employed.
- HIP Hot Isostatic Pressing
- SPS Spark Plasma Sintering
- FIG. 1 is a sectional view of Sample 2.
- compound magnetic material 1 (Sample 2) includes a plurality of compound magnetic particles 30 bound together through an organic resin 40 .
- Compound magnetic particle 30 includes a metal magnetic particle 10 , and a coat layer 20 containing metal oxide, bound at the surface of metal magnetic particle 10 .
- Organic resin 40 has a long-period heat resistance temperature of at least 200° C.
- the transverse rupture strength at the temperature of 200° C., the magnetic flux density when a magnetic field of 12000 A/m is applied, the electrical resistivity, and density were measured for Samples 1-8.
- the transverse rupture strength at 200° C. was evaluated by forming the composite magnetic material in a prism configuration of 10 mm ⁇ 50 mm ⁇ 10 mm (length ⁇ width, thickness) to which a three-point bending test was conducted at the temperature of 200° C. with a span of 40 mm. The results are shown in the following Table 1.
- Samples 2-5 according to the present invention are superior in all the properties.
- Sample 1 that is a Comparative Example had great friction between the compound magnetic particles during the compacting step since PEEK is not added. Therefore, the insulation coat at the surface of the compound magnetic particle was fractured. The desired electrical resistivity could not be achieved.
- Samples 6-8 which are Comparative Examples exhibited lower transverse rupture strength at 200° C. and magnetic flux density since the amount of PEEK was too high. Therefore, the ratio of PEEK is particularly preferably set to at least 0.01 mass % and not more than 0.15 mass %.
- a lubricant (zinc stearate) was blended (0.3 mass %) into mixed powder in advance, and the added amount of PEEK was altered to various levels to obtain mixed powder.
- a solid was obtained by subjecting the mixed powder to compacting and heat treatment without applying a lubricant to the surface of the die. The solid was worked to obtain a compound magnetic material (Samples 9-13). The pressure in the compacting step, temperature, and heat treatment temperature are identical to those of the first embodiment.
- a lubricant (zinc stearate) was blended (0.45 mass %) into mixed powder in advance, and the added amount of PEEK was altered variously to obtain mixed powder.
- the mixed powder was molded at the temperature of 20° C. without a lubricant applied to the surface of the die, and then subjected to heat treatment to obtain a solid.
- the solid was worked to obtain a compound magnetic material (Samples 21-24).
- the pressure during the compacting step, and the heat treatment temperature are similar to those of the first embodiment.
- the transverse rupture strength at the temperature of 200° C. was evaluated by forming the composite magnetic material in a prism configuration of 10 mm ⁇ 50 mm ⁇ 10 mm (length ⁇ width, thickness) to which a three-point bending test was conducted at the temperature of 200° C. with a span of 40 mm. The results are shown in the following Table 1.
- Samples 21-24 exhibited the highest transverse rupture strength when the PEEK amount was set lower than 0.45 mass %. This is because the strength as a whole is reduced if the PEEK amount is below 0.45 mass % since the bind strength of PEEK is the governing strength factor and if the PEEK amount exceeds 0.45 mass % since the bond strength between compound magnetic particle is reduced.
- die wall lubrication must be conducted and the PEEK amount must be set to exceed 0 mass % and not more than 0.2 mass % in order to achieve the desired properties. It is further preferable to set the PEEK amount to at least 0.01 mass % and not more than 0.15 mass %.
- the strength at high temperature is increased since the long-period heat resistance temperature of polyether ether ketone is at least 200° C.
- the heat resistance of the compound magnetic material is improved. Since polyether ether ketone has low viscosity when softened (melt viscosity), even a small amount will induce the capillarity, leading to uniform diffusion. Also, since reliable binding between compound magnetic particles can be achieved even with a small amount, the required amount of organic resin can be reduced. As a result, the ratio of the metal magnetic material can be increased to allow higher magnetic properties.
- Usage of die wall lubrication compacting allows the amount of lubricant in the compact to be reduced. As a result, the density of the compound magnetic material is improved to allow higher magnetic properties. Furthermore, the magnetic permeability can be improved since generation of voids in the compact can be suppressed.
- the coat layer is formed of an oxide including phosphorus and iron in the above embodiments
- advantages similar to those of the above embodiments can be offered by forming the coat layer from metal oxide magnetic particles.
- the metal magnetic particles and metal oxide magnetic particles must be mixed.
- the method of mixing the metal magnetic particles with the metal oxide magnetic particles is not particularly limited. For example, mechanical alloying, ball mill, oscillation ball mill, planetary ball mill, mechanofusion, coprecipitation, chemical vapor deposition (CVD), physical vapor deposition (PVD), plating, sputtering, vapor deposition, sol-gel method, or the like can be employed.
- a compound magnetic material having high heat resistance can be obtained.
- the compound magnetic material according to the present invention can be employed as the component constituting the control mechanism of an automobile engine.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001330744 | 2001-10-29 | ||
JP2001330744 | 2001-10-29 | ||
PCT/JP2002/011180 WO2003038843A1 (fr) | 2001-10-29 | 2002-10-28 | Procede de production d'un materiau magnetique composite |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040258552A1 US20040258552A1 (en) | 2004-12-23 |
US7258812B2 true US7258812B2 (en) | 2007-08-21 |
Family
ID=19146424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/490,096 Expired - Lifetime US7258812B2 (en) | 2001-10-29 | 2002-10-28 | Compound magnetic material and fabrication method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US7258812B2 (ja) |
EP (1) | EP1447824B8 (ja) |
JP (1) | JP4136936B2 (ja) |
KR (1) | KR100916891B1 (ja) |
CN (1) | CN1272810C (ja) |
ES (1) | ES2548802T3 (ja) |
WO (1) | WO2003038843A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050257854A1 (en) * | 2004-05-24 | 2005-11-24 | Sumitomo Electric Industries, Ltd. | Manufacturing method for a soft magnetic material, a soft magnetic material, a manufacturing method for a powder metallurgy soft magnetic material, and a powder metallurgy soft magnetic material |
US20090197782A1 (en) * | 2006-05-30 | 2009-08-06 | Sumitomo Electric Industries, Ltd. | Soft magnetic material and dust core |
US20100224923A1 (en) * | 2009-03-04 | 2010-09-09 | Yong-Hoon Son | Semiconductor memory device and method of manufacturing the same |
US11047500B2 (en) * | 2019-04-17 | 2021-06-29 | Ningbo Richen Electrical Appliance Co., Ltd. | Dual coil solenoid valve for a fuel gas control valve and the control method thereof |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4675657B2 (ja) * | 2004-03-31 | 2011-04-27 | 京セラケミカル株式会社 | 圧粉磁心の製造方法 |
WO2006025430A1 (ja) * | 2004-09-01 | 2006-03-09 | Sumitomo Electric Industries, Ltd. | 軟磁性材料、圧粉磁心および圧粉磁心の製造方法 |
JP4627023B2 (ja) * | 2004-09-01 | 2011-02-09 | 住友電気工業株式会社 | 軟磁性材料、圧粉磁心および圧粉磁心の製造方法 |
JP2006186072A (ja) * | 2004-12-27 | 2006-07-13 | Fuji Electric Holdings Co Ltd | 複合磁気部品の製造方法 |
EP1868213A4 (en) * | 2005-03-29 | 2011-01-26 | Sumitomo Electric Industries | SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING A GREEN BODY |
WO2008049080A1 (en) * | 2006-10-18 | 2008-04-24 | Inframat Corporation | Superfine/nanostructured cored wires for thermal spray applications and methods of making |
WO2008115130A1 (en) * | 2007-03-21 | 2008-09-25 | Höganäs Ab (Publ) | Powder metal polymer composites |
JP4825902B2 (ja) * | 2009-07-15 | 2011-11-30 | 住友電気工業株式会社 | 圧粉磁心の製造方法 |
CN101996723B (zh) * | 2010-09-29 | 2012-07-25 | 清华大学 | 一种复合软磁磁粉芯及其制备方法 |
JP6081051B2 (ja) * | 2011-01-20 | 2017-02-15 | 太陽誘電株式会社 | コイル部品 |
US9205488B2 (en) * | 2011-06-30 | 2015-12-08 | Persimmon Technologies Corporation | Structured magnetic material having domains with insulated boundaries |
FR3000834B1 (fr) * | 2013-01-10 | 2015-02-20 | Commissariat Energie Atomique | Procede de fabrication d'aimants permanents par chauffage de la poudre ferromagnetique |
US9963344B2 (en) * | 2015-01-21 | 2018-05-08 | National Technology & Engineering Solution of Sandia, LLC | Method to synthesize bulk iron nitride |
KR102417443B1 (ko) * | 2015-11-03 | 2022-07-06 | 주식회사 아모그린텍 | 자기장 차폐시트의 제조방법 및 이를 통해 제조된 자기장 차폐시트를 포함하는 안테나 모듈 |
KR102425833B1 (ko) * | 2015-11-03 | 2022-07-28 | 주식회사 아모그린텍 | 자기장 차폐시트 및 이를 포함하는 안테나 모듈 |
JP7059288B2 (ja) * | 2017-09-04 | 2022-04-25 | 住友電気工業株式会社 | 圧粉磁心の製造方法、及び圧粉磁心用原料粉末 |
KR102220359B1 (ko) * | 2019-07-08 | 2021-02-25 | 부경대학교 산학협력단 | 높은 방열성 및 전기절연성을 가지는 금속-폴리머 복합재료의 제조 방법 및 이에 의해 제조된 복합재료 |
PL244029B1 (pl) * | 2021-09-16 | 2023-11-20 | Politechnika Warszawska | Sposób wytwarzania rdzenia magnetycznego ze szczeliną rozproszoną |
US20240006259A1 (en) * | 2022-06-29 | 2024-01-04 | Texas Instruments Incorporated | Integrated circuit with inductor in magnetic package |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268140A (en) * | 1991-10-03 | 1993-12-07 | Hoeganaes Corporation | Thermoplastic coated iron powder components and methods of making same |
JPH08236329A (ja) | 1994-12-16 | 1996-09-13 | General Motors Corp <Gm> | 潤滑性強磁性粒子 |
US5591373A (en) * | 1991-06-07 | 1997-01-07 | General Motors Corporation | Composite iron material |
JPH10503807A (ja) | 1994-07-18 | 1998-04-07 | ホガナス アクチボラゲット | 熱可塑性樹脂を含む鉄粉構成部分及びその製法 |
US5798177A (en) * | 1994-04-25 | 1998-08-25 | Hoganas Ab | Heat treating of magnetic iron powder |
US5980603A (en) * | 1998-05-18 | 1999-11-09 | National Research Council Of Canada | Ferrous powder compositions containing a polymeric binder-lubricant blend |
JP2001155914A (ja) | 1999-11-25 | 2001-06-08 | Hitachi Powdered Metals Co Ltd | 高周波用圧粉磁心およびその製造方法 |
JP2001210511A (ja) | 2000-01-26 | 2001-08-03 | Nippon Funmatsu Gokin Kk | 磁気回路ヨーク |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US629092A (en) * | 1898-01-25 | 1899-07-18 | Henry Schuyler Ross | Means for protecting boilers, pipes, &c., from corrosion. |
US754931A (en) * | 1903-09-25 | 1904-03-15 | George E Cain | Butter-separator. |
JPH0222802A (ja) * | 1988-07-12 | 1990-01-25 | Idemitsu Kosan Co Ltd | 磁石粉末材料及び樹脂結合型磁石 |
JPH09260126A (ja) * | 1996-01-16 | 1997-10-03 | Tdk Corp | 圧粉コア用鉄粉末、圧粉コアおよびその製造方法 |
US6372348B1 (en) * | 1998-11-23 | 2002-04-16 | Hoeganaes Corporation | Annealable insulated metal-based powder particles |
JP2001230116A (ja) * | 1999-12-09 | 2001-08-24 | Sumitomo Electric Ind Ltd | 電磁アクチュエータ |
SE0000454D0 (sv) * | 2000-02-11 | 2000-02-11 | Hoeganaes Ab | Iron powder and method for the preparaton thereof |
-
2002
- 2002-10-28 US US10/490,096 patent/US7258812B2/en not_active Expired - Lifetime
- 2002-10-28 JP JP2003541004A patent/JP4136936B2/ja not_active Expired - Fee Related
- 2002-10-28 KR KR1020047006287A patent/KR100916891B1/ko not_active Expired - Fee Related
- 2002-10-28 EP EP02770286.9A patent/EP1447824B8/en not_active Expired - Lifetime
- 2002-10-28 WO PCT/JP2002/011180 patent/WO2003038843A1/ja active Application Filing
- 2002-10-28 CN CNB028209249A patent/CN1272810C/zh not_active Expired - Fee Related
- 2002-10-28 ES ES02770286.9T patent/ES2548802T3/es not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591373A (en) * | 1991-06-07 | 1997-01-07 | General Motors Corporation | Composite iron material |
US5268140A (en) * | 1991-10-03 | 1993-12-07 | Hoeganaes Corporation | Thermoplastic coated iron powder components and methods of making same |
US5798177A (en) * | 1994-04-25 | 1998-08-25 | Hoganas Ab | Heat treating of magnetic iron powder |
JPH10503807A (ja) | 1994-07-18 | 1998-04-07 | ホガナス アクチボラゲット | 熱可塑性樹脂を含む鉄粉構成部分及びその製法 |
US5754936A (en) * | 1994-07-18 | 1998-05-19 | Hoganas Ab | Iron powder components containing thermoplastic resin and method of making same |
JPH08236329A (ja) | 1994-12-16 | 1996-09-13 | General Motors Corp <Gm> | 潤滑性強磁性粒子 |
US5629092A (en) | 1994-12-16 | 1997-05-13 | General Motors Corporation | Lubricous encapsulated ferromagnetic particles |
US5980603A (en) * | 1998-05-18 | 1999-11-09 | National Research Council Of Canada | Ferrous powder compositions containing a polymeric binder-lubricant blend |
JP2001155914A (ja) | 1999-11-25 | 2001-06-08 | Hitachi Powdered Metals Co Ltd | 高周波用圧粉磁心およびその製造方法 |
JP2001210511A (ja) | 2000-01-26 | 2001-08-03 | Nippon Funmatsu Gokin Kk | 磁気回路ヨーク |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050257854A1 (en) * | 2004-05-24 | 2005-11-24 | Sumitomo Electric Industries, Ltd. | Manufacturing method for a soft magnetic material, a soft magnetic material, a manufacturing method for a powder metallurgy soft magnetic material, and a powder metallurgy soft magnetic material |
US20090197782A1 (en) * | 2006-05-30 | 2009-08-06 | Sumitomo Electric Industries, Ltd. | Soft magnetic material and dust core |
US8241518B2 (en) * | 2006-05-30 | 2012-08-14 | Sumitomo Electric Industries, Ltd. | Soft magnetic material and dust core |
US20100224923A1 (en) * | 2009-03-04 | 2010-09-09 | Yong-Hoon Son | Semiconductor memory device and method of manufacturing the same |
US11047500B2 (en) * | 2019-04-17 | 2021-06-29 | Ningbo Richen Electrical Appliance Co., Ltd. | Dual coil solenoid valve for a fuel gas control valve and the control method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100916891B1 (ko) | 2009-09-09 |
JP4136936B2 (ja) | 2008-08-20 |
CN1575499A (zh) | 2005-02-02 |
EP1447824A4 (en) | 2009-04-08 |
US20040258552A1 (en) | 2004-12-23 |
CN1272810C (zh) | 2006-08-30 |
WO2003038843A1 (fr) | 2003-05-08 |
EP1447824A1 (en) | 2004-08-18 |
ES2548802T3 (es) | 2015-10-20 |
JPWO2003038843A1 (ja) | 2005-02-24 |
EP1447824B8 (en) | 2015-10-28 |
KR20050040822A (ko) | 2005-05-03 |
EP1447824B1 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7258812B2 (en) | Compound magnetic material and fabrication method thereof | |
EP2157586B1 (en) | Sintered soft magnetic powder molded body | |
US8758906B2 (en) | Soft magnetic material, powder magnetic core and process for producing the same | |
JPWO2004107367A1 (ja) | 軟磁性材料、モータコア、トランスコアおよび軟磁性材料の製造方法 | |
EP1600987B1 (en) | Manufacturing methods for soft magnetic material and powder metallurgy soft magnetic material | |
EP1580770B1 (en) | Soft magnetic powder and a method of manufacturing a soft magnetic powder compact | |
CN110997187A (zh) | 压粉铁心的制造方法以及电磁部件的制造方法 | |
EP1650773A1 (en) | Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core | |
JP4917355B2 (ja) | 圧粉磁心 | |
US20080102302A1 (en) | Method for Producing Dust Core Compact and Dust Core Compact | |
EP1662518A1 (en) | Soft magnetic material and method for producing same | |
JP2002256304A (ja) | 複合磁性材料およびその製造方法 | |
JPWO2002080202A1 (ja) | 複合磁性材料 | |
JP4825902B2 (ja) | 圧粉磁心の製造方法 | |
US7601229B2 (en) | Process for producing soft magnetism material, soft magnetism material and powder magnetic core | |
JP2017011073A (ja) | 圧粉磁心、及び圧粉磁心の製造方法 | |
WO2005024858A1 (ja) | 軟磁性材料およびその製造方法 | |
US20070036669A1 (en) | Soft magnetic material and method for producing the same | |
JP2005142522A (ja) | 軟磁性材料の製造方法、軟磁性材料および圧粉磁心 | |
JP2004363226A (ja) | 軟磁性材料の製造方法 | |
JP2005142533A (ja) | 軟磁性材料および圧粉磁心 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO ELECTRIC SINTERED ALLOY, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMADA, YOSHIYUKI;OYAMA, HITOSHI;NISHIOKA, TAKAO;REEL/FRAME:015948/0548 Effective date: 20040227 Owner name: DENSO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMADA, YOSHIYUKI;OYAMA, HITOSHI;NISHIOKA, TAKAO;REEL/FRAME:015948/0548 Effective date: 20040227 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |