US7243169B2 - Method, system and program for oscillation control of an internal process of a computer program - Google Patents
Method, system and program for oscillation control of an internal process of a computer program Download PDFInfo
- Publication number
- US7243169B2 US7243169B2 US10/864,208 US86420804A US7243169B2 US 7243169 B2 US7243169 B2 US 7243169B2 US 86420804 A US86420804 A US 86420804A US 7243169 B2 US7243169 B2 US 7243169B2
- Authority
- US
- United States
- Prior art keywords
- value
- computer program
- internal process
- input value
- program product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000010355 oscillation Effects 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000008569 process Effects 0.000 title claims abstract description 36
- 238000004590 computer program Methods 0.000 title claims description 29
- 230000008859 change Effects 0.000 claims description 46
- 230000026676 system process Effects 0.000 claims description 37
- 239000013598 vector Substances 0.000 claims description 32
- 230000003247 decreasing effect Effects 0.000 claims description 14
- 230000006399 behavior Effects 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 238000005457 optimization Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B5/00—Anti-hunting arrangements
- G05B5/01—Anti-hunting arrangements electric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99942—Manipulating data structure, e.g. compression, compaction, compilation
Definitions
- the present invention relates to oscillation control of data processing systems, and more specifically to a method, a system and a computer program product for reducing oscillations of an output value generated by an internal process of a computer program.
- a program to be operatively coupled to a data processing system, the program having an internal process configured to read an input value provided by the program, the input value adjusting a performance aspect of the internal process, the internal process configured to provide an output value reflecting changes in the internal process responsive to the input value, the output value readable by the program, a method for reducing oscillations of the output value, the method including writing the output value to a queue stored in memory of the data processing system, selecting a portion of the queue, matching the selected portion of the queue with a predetermined pattern, selecting a type of adjustment to be made to the input value, the type of adjustment corresponding to the matched predetermined pattern, determining a new input value according to the selected type of adjustment, and providing the new value the internal process, the internal process providing a new output value having reduced oscillations responsive to the new input value.
- a program to be operatively coupled to a data processing system, the program having an internal process configured to read an input value provided by the program, the input value adjusting a performance aspect of the internal process, the internal process configured to provide an output value reflecting changes in the internal process responsive to the input value, the output value readable by the program, a computer program product reducing oscillations of the output value, the computer program product including a computer readable medium encoding computer executable code for directing the data processing system, the computer executable code including computer executable code for writing the output value to a queue stored in memory of the data processing system, computer executable code for selecting a portion of the queue, computer executable code for matching the selected portion of the queue with a predetermined pattern, computer executable code for selecting a type of adjustment to be made to the input value, the type of adjustment corresponding to the matched predetermined pattern, computer executable code for determining a new input value according to the selected type of adjustment, and computer executable code for providing the new value the
- FIG. 1 is a block diagram of a data processing system coupled to a database management system
- FIG. 2 shows an oscillation control system of FIG. 1 for an oscillation prone system process
- FIG. 3 shows an embodiment of the oscillation prone system process of FIG. 1 ;
- FIG. 4 shows an oscillating solution of the oscillation prone system process of FIG. 2 without application of the control system
- FIG. 5 shows an oscillating solution of the oscillation prone system process of FIG. 2 with application of the control system
- FIG. 6 provides an operation of the control system of FIG. 1 .
- the following detailed description of the embodiments of the present invention does not limit the implementation of the invention to any particular computer programming language.
- the present invention may be implemented in any computer programming language provided that the OS (Operating System) provides the facilities that may support the requirements of the present invention.
- a preferred embodiment is implemented in the C or C++ computer programming language (or other computer programming languages in conjunction with C/C++). Any limitations presented would be a result of a particular type of operating system, computer programming language, or data processing system and would not be a limitation of the present invention.
- a data processing system 100 has a memory 102 for facilitating the interaction of an oscillation control system 112 with a database management system (DMS) 114 , such that the DMS 114 is operatively coupled to the data processing system 100 .
- the DMS 114 reads an input value Vi 116 from the oscillation control system 112 for adjusting a system process 115 that is monitored by the DMS 114 .
- the system process 115 operates on the input value 116 to generate a corresponding output value Vo 118 .
- the DMS 114 also writes the output value 118 to the control system 112 , the output value 118 being from the system process 115 as a result of the processed input value 116 .
- control system 112 interacts with the oscillation prone system process 115 for controlling oscillation of the output values 118 , received from the DMS 114 , based on the input values 116 .
- the control system 112 adjusts the respective subsequent input values 116 to dampen oscillations determined in a series of the past sampled output values 118 , which are stored by the control system 112 in a queue 120 as a sequence of bit values 24 , 28 (see FIG. 2 ) representing the sampled output values 118 .
- the degree of adjustment to the input values 116 by the control system 112 is based on the contents of a lookup table 122 , which has predefined bit patterns 124 represented as various patterns (Pattern_ 1 , Pattern_ 2 , Pattern_ 3 , etc. . . . ) as further described below.
- the lookup table 122 also has a corresponding predefined type of adjustment 126 to be made to the input value 116 (such as but not limited to increase, decrease, no change) based on a selected portion of the queue 120 of bit values matching one of the bit patterns 124 , as further described below.
- Each of the bit patterns 124 has a corresponding adjustment type 126 in the table 122 .
- the database management system is an example of a program having an internal process which provides an output value and an input value, and it is the oscillations of the output value that are to be reduced.
- the data processing system 100 can have a user interface 108 for interacting with the control system 112 , the user interface 108 being connected to the memory 102 via a BUS 106 .
- the interface 108 is coupled to a processor 104 via the BUS 106 , to interact with a user (not shown) to monitor or otherwise instruct the operation of the control system 112 via an operating system 110 .
- the user interface 108 can include one or more user input devices such as but not limited to a QWERTY keyboard, a keypad, a trackwheel, a stylus, a mouse, a microphone and the user output device such as an LCD screen display and/or a speaker.
- the display can also be used as the user input device as controlled by the processor 104 .
- the user interface 108 can include a computer readable storage medium 46 coupled to the processor 104 for providing instructions to the processor 104 and/or the control system 112 .
- the computer readable medium 46 can include hardware and/or software such as, by way of example only, magnetic disks, magnetic tape, optically readable medium such as CD/DVD ROMS, and memory cards. In each case, the computer readable medium 46 may take the form of a small disk, floppy diskette, cassette, hard disk drive, solid state memory card, or RAM provided in the memory 102 . It should be noted that the above listed example computer readable mediums 46 can be used either alone or in combination.
- the past bit values 28 represent the output values 118 previously received by the control system 112 from the DMS 114 .
- the control system 112 uses a change module 20 for assigning the current bit value 24 to represent the current output value 118 , by comparing the current output value 118 with the previous input value 116 to measure a magnitude of change 22 between the values 116 , 118 .
- the change module 20 determines whether the magnitude of change 22 represents an increase, decrease, or no change between the current output value 118 and the previous input value 116 .
- the current bit value 24 is assigned to the current output value 118 to represent the corresponding change quantity 22 (e.g increasing, decreasing). Accordingly, the change module 20 assigns to each output value 118 (of a sequence of output values 118 ) the predefined bit value 24 , 28 representing the magnitude of change 22 between the respective output value 118 and the corresponding previous input value 116 .
- the change module 20 updates the queue 120 to reflect the bit value 24 assigned to the current output value 118 . It is recognized that the change module 20 could also compare the output value 118 with a previous output value 118 to calculate the magnitude of change 22 .
- the control system 112 also has a comparison module 26 , which selects the portion of the queue 120 (e.g. the bit vector 30 ), on for example a periodic basis, and examines the current bit value 24 in relation to the sequence of the past bit values 28 of the bit vector 30 , as selected from the queue 120 .
- the comparison module 26 makes a determination as to an oscillation state or behavior/character represented by the bit values 24 , 28 of the bit vector 30 , by comparing the bit values 24 , 28 of the bit vector 30 to the predefined patterns 124 in the look-up table 122 .
- the comparison module 26 selects a corresponding type of adjustment 126 to be made to the next input value 116 , such as but not limited to increase, decrease, and no change, as specified by the matching adjustment type 126 to the selected bit patterns 124 .
- control system 112 also has an input module 36 for examining the type of adjustment 126 selected by the comparison module 26 and determines a suitable oscillation factor 38 (either increased, decreased, or unchanged) and then uses the oscillation factor 38 to calculate or otherwise update the next input value 116 to send to the system process 115 via the DMS 114 .
- a suitable oscillation factor 38 either increased, decreased, or unchanged
- the application logic of the control system 112 can be implemented as hardware, software, or a combination thereof.
- the oscillation control system 10 can be applied to any oscillation prone system process 115 that exhibits an oscillating solution, i.e. a solution that behaves in a shifting increasing/decreasing/constant manner towards one or more potential solutions.
- Example optimization systems can include such as but not limited to memory pools, sorting memory, SQL package memory, locking memory, and other memory configurations used for database operations.
- the following description is based on providing an optimum solution 14 for changing memory allocation for two linked memory pools 200 , 202 (see FIG. 2 ).
- the below described operation of the control system 112 is done for the memory pools 200 , 202 by way of example only, and therefore the control system 112 is considered applicable to other oscillation prone system processes 115 in general.
- the control system 112 maintains two values for each memory pool 200 , 202 that are associated with magnitude of change quantity 22 determined by the change module 20 .
- the first value, change pages i.e. input value 116
- the input module 36 maintains an oscillation factor 38 which is a measure of the certainty that is felt at any given time (this is described in detail below) with regard to the convergence character of the output value 118 .
- the comparison module 26 also maintains the bit vector 30 of the change history that includes past bit values 28 .
- the current bit value 24 of 1 can represent an increase in the memory pool size in a given interval of the solution and the current bit value of 0 can represent a decrease in size.
- the representative current bit value 24 can be set to the same value as the most recent bit value 28 in the bit sequence of the bit vector 30 , which can help to identify step function type solution behavior.
- the change quantity 22 denotes a sequence of increasing, increasing, increasing, unchanged, and decreasing (from current to oldest) in the output value 116
- the corresponding current bit value 24 would be 1 and the past bit vector 30 representing the last four bit values 28 would be (0,0,1,1).
- the history module 26 uses the current bit value 24 to update the bit vector 30 , thus making the current bit vector 30 now equal to (0,1,1,1).
- the past bit values 28 would be (0,0,1,1) and the current bit value 24 would be 1 to make the current or updated bit vector 30 as (0,1,1,1).
- bit vector 30 having representative collections of historical bit values 24 , 28 can be extended to any system whereby a distinction can be drawn between two types of change, i.e. it may be that we want to prevent oscillations between large changes and small changes and we define can the threshold by which the change is small or large.
- the control system 112 is applicable in situations where the change quantity 22 can be used to define two or more types of actions. Another point is that you can have a larger number of states (small increase, large increase, small decrease, large decrease, etc. and as long as you define how to set the bit values (e.g. 1s and 0s for all of the possible transitions this system will still be valid).
- the comparison module 26 updates the bit vector 30 in the memory 102 to include the most recent history of change (such as but not limited to investigating 4 intervals). From this recent history the comparison module 26 determines if the memory pools 200 , 202 are in a “converging”, “oscillating”, or “unknown” state representation 34 (other terminology can be “desired”, “undesired”, or “undecided” respectively). This determination involves analyzing the updated bit vector 30 . It is recognized that one or more ′′current bit values 24 could be compared with the bit vector 30 , for example comparing sequences of bit vectors 30 (i.e. the first four values 28 with the previous next four values 28 ) with previously determined patterns 124 to determine the current system process 115 oscillation state represented by the type of adjustment 126 selected by the comparison module 26 .
- the predefined patterns 124 of the look-up table 122 correspond with oscillation types of the system process 115 , which are attributable to the selected bit vector 30 (from the queue 120 ) as follows:
- the “converging” patterns 124 indicate that the system process 115 has a definite goal (i.e. either increasing or decreasing the size of the memory pool 200 , 202 ). Similarly the “oscillating” patterns 124 have a less focused goal (i.e. it seems as though the system process 115 is confused and unsure of how to resize the pool 200 , 202 ). Finally, in the “unknown” patterns 124 it is unclear whether or not the system process 115 has a well defined goal.
- the input module 36 multiplies the oscillation factor 38 by a predefined quantity (such as but not limited to 2) to increase the oscillation factor 38 (for example to a practical maximum of 1.0). Conversely, if the system process 115 is in a “oscillating” state, the input module 36 divides the oscillation factor 38 by a predefined quantity (such as but not limited to 2) to decrease the oscillation factor 38 (for example to some practical minimum, say 0.00390625). Further, it is recognized that increase value and decrease value of the factor 38 do not necessarily have to be the same.
- the oscillation factor 38 can remain unchanged by the input module 36 . Once the oscillation factor 38 is updated to reflect the selected pattern 124 , then the input module 36 multiplies the old change input value 116 by the updated oscillation factor 38 to get the new number of pages (i.e. updated input value 116 ) to reallocate pool 200 , 202 memory.
- the oscillation factor 38 represents the certainty that we feel at any interval that we will make a correct decision when resizing the memory pool 200 , 202 . If we are unsure how good the decision will be the oscillation factor 38 will be small. If we are very certain that the decision will be good the factor 38 will be large (i.e. 1.0).
- control system 112 can be efficient in that it may only use a few operations at each interval to calculate the new input value 116 . Additionally the control system 112 is straightforward to implement using bit vector analysis. Also, the control system 112 has a built in backoff period. We say that when the oscillation factor 38 reaches the defined minimum value (say for example 0.00390625), the oscillation factor can be set to 0. When this is done, no change made in the next interval since the change pages will be multiplied by 0. Additionally, if when the oscillation factor 38 is 0 and the bit vector 30 is (0,1,1,0) there will be no change in the next interval as well (since the next bit vector 30 will then be (1,1,0,0) which is “unknown” and thus the oscillation factor 38 will remain 0).
- the defined minimum value say for example 0.00390625
- This back-off period can be extended through the use of longer bit vectors 30 (i.e. increasing the 4 bit patterns to 8 bit patterns will double the minimum backoff period).
- an oscillating solution 14 is shown for an example system process 115 over a series of time intervals.
- the control system 112 was not applied to the behavior of the system process 115 .
- the oscillating solution 14 is shown such that the control system 112 was applied to the system process 115 , using bit vectors 30 of four bits in length. It should be noted the degree of oscillations have been reduced. We believe that the results could be even further improved with 8 bit or longer bit vectors 30 .
- operation 200 of the control system 112 starts S 202 by reading S 204 the output value 118 from the DMS 114 .
- the control system 112 then assigns the bit value 24 to the output value 118 , representing the determined magnitude of change 22 , and stores S 206 the bit value 24 in the bit vector 30 of the queue 120 .
- the comparison module 26 selects S 210 a portion of the queue 120 as the bit vector 30 and searches S 212 the look-up table 122 for the matching predetermined pattern 124 .
- the comparison module 26 selects S 214 the corresponding adjustment type 126 from the table 122 , corresponding to the selected matching pattern 124 , and then indicates this adjustment type 126 to the input module 36 .
- the input module 36 determines the oscillation factor 38 corresponding to the selected adjustment type 126 and calculates the adjusted input value 116 , which is then sent S 216 to the DMS 114 for delivery to the system process 115 .
- the DMS 114 and associated oscillation control system 112 continue to monitor the output values 118 of the system process 115 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
- 0000—converging
- 0001—unknown
- 0010—unknown
- 0011—unknown
- 0100—unknown
- 0101—oscillating
- 0110—oscillating
- 0111—converging
- 1000—converging
- 1001—oscillating
- 1010—oscillating
- 1011—unknown
- 1100—unknown
- 1101—unknown
- 1110—unknown
- 1111—converging,
where alternatingpatterns 124 of ones and zeros (e.g. 1001,1010,0011,1100) are either considered as showing oscillating or potentially oscillating solution behavior, as compared todefinitive patterns 124 such as 0111,0000,1111,1000 that demonstrate a potential convergence behavior. It should be noted in the abovepredefined pattern 124 examples that the most recentcurrent bit value 24 is on the right hand side of thebit vector 30. It is recognized that thebit vector 30 could contain as little as twobit values bit vector 30. The converging oscillation behavior, for example, could correspond to the “increase”adjustment type 126 of the table 122, while the oscillating behavior could correspond to the “decrease”adjustment type 126 and “unknown” to the no change adjustment type 126 (seeFIG. 1 ). It is recognized that each of the bit values 24, 28 in thebit vector 30 represents a specific one of the output values 118 collected from thesystem process 115, each of the output values 118 corresponding to a paired one of the input values 116, the output values 118 being distributed over a series of time intervals representing a temporal sequencing of the output values 118 collected from thesystem process 115.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/864,208 US7243169B2 (en) | 2004-06-08 | 2004-06-08 | Method, system and program for oscillation control of an internal process of a computer program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/864,208 US7243169B2 (en) | 2004-06-08 | 2004-06-08 | Method, system and program for oscillation control of an internal process of a computer program |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050273643A1 US20050273643A1 (en) | 2005-12-08 |
US7243169B2 true US7243169B2 (en) | 2007-07-10 |
Family
ID=35450335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/864,208 Expired - Fee Related US7243169B2 (en) | 2004-06-08 | 2004-06-08 | Method, system and program for oscillation control of an internal process of a computer program |
Country Status (1)
Country | Link |
---|---|
US (1) | US7243169B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7716016B2 (en) * | 2006-06-30 | 2010-05-11 | International Business Machines Corporation | Method and apparatus for automatic uncertainty-based management feedback controller |
US20080005317A1 (en) * | 2006-06-30 | 2008-01-03 | International Business Machines Corporation | Method and apparatus for cross-tier management in multi-tier computing system architecture |
US9378058B2 (en) * | 2011-10-17 | 2016-06-28 | Excalibur Ip, Llc | Method and system for dynamic control of a multi-tier processing system |
US20170316040A1 (en) * | 2016-04-29 | 2017-11-02 | Hewlett Packard Enterprise | Attribute bit-state mapper |
US10585707B2 (en) | 2017-06-27 | 2020-03-10 | International Business Machines Corporation | Database resource scaling |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4517684A (en) * | 1982-04-15 | 1985-05-14 | Itt Industries, Inc. | Method of and arrangement for providing numerical values indicative of relationsips between pulse train pulses |
US5426672A (en) * | 1990-02-16 | 1995-06-20 | Siemens Aktiengesellschaft | Process and device for timing recovery |
US5432917A (en) | 1992-04-22 | 1995-07-11 | International Business Machines Corporation | Tabulation of multi-bit vector history |
JPH1051314A (en) * | 1996-08-01 | 1998-02-20 | Oki Electric Ind Co Ltd | Reference clock generator and decoder |
US6047362A (en) | 1994-06-30 | 2000-04-04 | Sun Microsystems, Inc. | Delayed removal of address mapping for terminated processes |
US6070202A (en) | 1998-05-11 | 2000-05-30 | Motorola, Inc. | Reallocation of pools of fixed size buffers based on metrics collected for maximum number of concurrent requests for each distinct memory size |
US6105053A (en) | 1995-06-23 | 2000-08-15 | Emc Corporation | Operating system for a non-uniform memory access multiprocessor system |
US6108770A (en) | 1998-06-24 | 2000-08-22 | Digital Equipment Corporation | Method and apparatus for predicting memory dependence using store sets |
US6249852B1 (en) | 1997-07-31 | 2001-06-19 | International Business Machines Corporation | Method for heap management of fixed sized objects using pages |
US20020046204A1 (en) | 2000-08-25 | 2002-04-18 | Hayes Scott R. | Heuristic automated method for ideal bufferpool tuning in a computer database |
US6446182B1 (en) | 1998-12-28 | 2002-09-03 | Bull Sa | Method for a memory organization by physical zones in a computerized or data processing machine or arrangement and the computerized or data processing machine or arrangement for using the method |
US20020133742A1 (en) | 2001-01-16 | 2002-09-19 | Hsiu-Ying Hsu | DRAM memory page operation method and its structure |
US20020140077A1 (en) | 1998-02-27 | 2002-10-03 | Micron Technology, Inc. | Multichip semiconductor package |
US20030005103A1 (en) | 1998-06-15 | 2003-01-02 | Narad Charles E. | Cumulative status of arithmetic operations |
US6618279B2 (en) * | 2001-08-06 | 2003-09-09 | International Business Machines Corporation | Method and apparatus for adjusting control circuit pull-up margin for content addressable memory (CAM) |
-
2004
- 2004-06-08 US US10/864,208 patent/US7243169B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4517684A (en) * | 1982-04-15 | 1985-05-14 | Itt Industries, Inc. | Method of and arrangement for providing numerical values indicative of relationsips between pulse train pulses |
US5426672A (en) * | 1990-02-16 | 1995-06-20 | Siemens Aktiengesellschaft | Process and device for timing recovery |
US5432917A (en) | 1992-04-22 | 1995-07-11 | International Business Machines Corporation | Tabulation of multi-bit vector history |
US6047362A (en) | 1994-06-30 | 2000-04-04 | Sun Microsystems, Inc. | Delayed removal of address mapping for terminated processes |
US6105053A (en) | 1995-06-23 | 2000-08-15 | Emc Corporation | Operating system for a non-uniform memory access multiprocessor system |
JPH1051314A (en) * | 1996-08-01 | 1998-02-20 | Oki Electric Ind Co Ltd | Reference clock generator and decoder |
US6249852B1 (en) | 1997-07-31 | 2001-06-19 | International Business Machines Corporation | Method for heap management of fixed sized objects using pages |
US20020140077A1 (en) | 1998-02-27 | 2002-10-03 | Micron Technology, Inc. | Multichip semiconductor package |
US6070202A (en) | 1998-05-11 | 2000-05-30 | Motorola, Inc. | Reallocation of pools of fixed size buffers based on metrics collected for maximum number of concurrent requests for each distinct memory size |
US20030005103A1 (en) | 1998-06-15 | 2003-01-02 | Narad Charles E. | Cumulative status of arithmetic operations |
US6108770A (en) | 1998-06-24 | 2000-08-22 | Digital Equipment Corporation | Method and apparatus for predicting memory dependence using store sets |
US6446182B1 (en) | 1998-12-28 | 2002-09-03 | Bull Sa | Method for a memory organization by physical zones in a computerized or data processing machine or arrangement and the computerized or data processing machine or arrangement for using the method |
US20020046204A1 (en) | 2000-08-25 | 2002-04-18 | Hayes Scott R. | Heuristic automated method for ideal bufferpool tuning in a computer database |
US20020133742A1 (en) | 2001-01-16 | 2002-09-19 | Hsiu-Ying Hsu | DRAM memory page operation method and its structure |
US6618279B2 (en) * | 2001-08-06 | 2003-09-09 | International Business Machines Corporation | Method and apparatus for adjusting control circuit pull-up margin for content addressable memory (CAM) |
Non-Patent Citations (10)
Title |
---|
Goldrian, G. et al, Tracing of Large Amounts of Data by Using Main Memory as a Trace Buffer, IBM Technical Disclosure Bulletin, vol. 40. No. 06, Jun. 1997. |
Laeuger, J, et al, Direct Strain Oscillation: A New Method Enabling Fast Oscillation Measurements at Extremely Small Deflection Angles and Torques. |
Liu, L., Method To Invalidate History Tables In Tightly Coupled Multiprocessors, IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991. pp. 309-311. |
Matsuo T. et al., Scalable Automatic Buffer Tuning to Provide High Performance and Fair Service for TCP Connections. |
Myers, G., A Fast Bit-Vector Algorithm for Approximate String Matching Based on Dynamic Programming, Journal of the ACM, vol. 46, No. 3., May 1999, pp. 395-415. |
Semke, J., et al., Automatic TCP Buffer Tuning, ACM Sigcomm'98/Computer Communication Review, vol. 28, No. 4, Oct. 1998, pp. 315-323. |
Semke, J., Implementation Issues of the Autotuning Fair Share Algorithm, Pittsburgh Supercomputing Center, Carnegie Mellon University, May 15, 2000,PSC Technical Report, # CMU-PSC-TR-2000-0002. |
Semke, J., PSC TCP Kernel Monitor, May 16, 2000 PSC Technical Report # CMU-PSC-TR-2000-0001. |
Stone, H.S., Means for Updating and Searching Sparse Tables, IBM Technical Disclosure Bulletin, vol. 32, No. 4A, Sep. 1989, pp. 217-222. |
Weigle, E et al., Comparison of TCP Automatic Tuning Techniques for Distributed Computing, Proceedings of the 11th IEEE Intl. Symposium on High Performance Distributed Computing HPDC-11 2002. |
Also Published As
Publication number | Publication date |
---|---|
US20050273643A1 (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bunn | Forecasting with more than one model | |
Borkar | Q-learning for risk-sensitive control | |
Sinclair et al. | Adaptive discretization for episodic reinforcement learning in metric spaces | |
EP3690762A1 (en) | Providing insights about a dynamic machine learning model | |
Todorov | Efficient computation of optimal actions | |
WO2009087757A1 (en) | Information filtering system, information filtering method, and information filtering program | |
US9922123B2 (en) | Policy performance ordering | |
US20220138194A1 (en) | Parameter optimization apparatus, method, and system | |
US5787287A (en) | Representation of control flow and data dependence for machine | |
Smith et al. | Infinite horizon production planning in time-varying systems with convex production and inventory costs | |
Jakobsen et al. | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations | |
Wang et al. | Policy gradient in robust mdps with global convergence guarantee | |
JPWO2011018943A1 (en) | Data summarization system, data summarization method and recording medium | |
EP3607496A1 (en) | Conditional graph execution based on prior simplified graph execution | |
US7243169B2 (en) | Method, system and program for oscillation control of an internal process of a computer program | |
US10410140B1 (en) | Categorical to numeric conversion of features for machine learning models | |
CN109634983B (en) | Method, apparatus, device and medium for determining recall point of interest information | |
JP6876295B2 (en) | Server device | |
JP4897454B2 (en) | Regular expression generation device, regular expression generation method, and regular expression generation program | |
Gerstner et al. | Dimension-and time-adaptive multilevel Monte Carlo methods | |
CN110109867B (en) | Method, apparatus and computer program product for improving online mode detection | |
Takimoto et al. | Predicting nearly as well as the best pruning of a planar decision graph | |
CN113591127A (en) | Data desensitization method and device | |
CN112182199A (en) | Dependency package recommendation method and device, electronic equipment and readable storage medium | |
US11947426B2 (en) | Method, electronic device, and computer program product for recommending protection strategy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARROLL, MATTHEW JAMES;GARCIA-ARELLANO, CHRISTIAN MARCELO;LIGHTSTONE, SAM SAMPSON;AND OTHERS;REEL/FRAME:015389/0954;SIGNING DATES FROM 20040527 TO 20040604 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: GOOGLE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:026664/0866 Effective date: 20110503 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150710 |
|
AS | Assignment |
Owner name: GOOGLE LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:GOOGLE INC.;REEL/FRAME:044142/0357 Effective date: 20170929 |