US7018603B2 - Synthesis of lithium iron sulphides and their use as cathodes - Google Patents
Synthesis of lithium iron sulphides and their use as cathodes Download PDFInfo
- Publication number
- US7018603B2 US7018603B2 US10/433,680 US43368003A US7018603B2 US 7018603 B2 US7018603 B2 US 7018603B2 US 43368003 A US43368003 A US 43368003A US 7018603 B2 US7018603 B2 US 7018603B2
- Authority
- US
- United States
- Prior art keywords
- lithium
- sulphide
- fes
- molten
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- LWRYTNDOEJYQME-UHFFFAOYSA-N lithium;sulfanylideneiron Chemical class [Li].[Fe]=S LWRYTNDOEJYQME-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title claims description 9
- 238000003786 synthesis reaction Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 33
- 150000003839 salts Chemical class 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 22
- -1 Lithium transition metal sulphides Chemical class 0.000 claims abstract description 21
- 239000002904 solvent Substances 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 14
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 claims abstract description 9
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 22
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 16
- 229910009735 Li2FeS2 Inorganic materials 0.000 claims description 13
- 229910001216 Li2S Inorganic materials 0.000 claims description 8
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 6
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 13
- 150000003624 transition metals Chemical class 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 239000010406 cathode material Substances 0.000 description 8
- 150000004763 sulfides Chemical class 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000001351 cycling effect Effects 0.000 description 6
- 238000000634 powder X-ray diffraction Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001508 alkali metal halide Inorganic materials 0.000 description 2
- 150000008045 alkali metal halides Chemical class 0.000 description 2
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000010671 solid-state reaction Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910012483 Li3Fe2S4 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020050 NbSe3 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- JQGOBMZVGJZVEJ-UHFFFAOYSA-M [Se-2].[Se-2].[SeH-].[Nb+5] Chemical compound [Se-2].[Se-2].[SeH-].[Nb+5] JQGOBMZVGJZVEJ-UHFFFAOYSA-M 0.000 description 1
- CMSLGMKQAWKNKK-UHFFFAOYSA-N [Ti+4].[S-2].[Li+] Chemical compound [Ti+4].[S-2].[Li+] CMSLGMKQAWKNKK-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000005686 dimethyl carbonates Chemical class 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- PDTYYPKTTLMUOE-UHFFFAOYSA-N lithium niobium(5+) trisulfide Chemical compound [Li+].[S--].[S--].[S--].[Nb+5] PDTYYPKTTLMUOE-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- IQMAMZYAQFTIAU-UHFFFAOYSA-N lithium;sulfanylidenemolybdenum Chemical compound [Li].[Mo]=S IQMAMZYAQFTIAU-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- OCDVSJMWGCXRKO-UHFFFAOYSA-N titanium(4+);disulfide Chemical compound [S-2].[S-2].[Ti+4] OCDVSJMWGCXRKO-UHFFFAOYSA-N 0.000 description 1
- 150000008648 triflates Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/007—Titanium sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing niobium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/006—Compounds containing molybdenum, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/06—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/12—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to processes for the production of sulphides, in particular lithium transition metal sulphides useful in the production of batteries.
- lithium metal rechargeable batteries particularly using sulphides, but also selenides, as cathode materials.
- Many lithium metal/molybdenum disulphide (Li/MoS 2 ) batteries were produced but these were withdrawn following an incident in which a fire was attributed to the malfunction of such a battery.
- Other sulphides, such as iron disulphide FeS 2 , titanium disulphide TiS 2 and selenides, such as niobium triselenide NbSe 3 have also been particularly investigated as alternative cathode materials.
- lithium metal rechargeable batteries Although the use of lithium metal rechargeable batteries is now limited for reasons of safety, they are still used in the laboratory testing of materials. Lithium metal primary batteries using iron disulphide cathodes are manufactured.
- lithium-ion type in which the negative electrode (anode) comprises lithium absorbed into a carbon support.
- the negative electrode anode
- a lithium containing cathode material which is usually lithium cobalt oxide LiCoO 2 although lithium nickel oxide LiNiO 2 , lithium manganese oxide LiMn 2 O 4 and mixed oxides are also known to have been used.
- lithium rechargeable batteries Due to their high cost, the use of lithium rechargeable batteries at present is mainly limited to premium applications, such as portable computers or telephones. To gain access to wider markets, for example in applications such as the powering of electric vehicles, the cost must be reduced. Hence there is a strong demand for the high performance obtainable from lithium-ion batteries at much more economical prices.
- Binary transition metal sulphides are however not suitable for direct use in lithium-ion cells as they do not contain lithium.
- Lithium transition metal ternary sulphides such as lithium molybdenum sulphide, lithium titanium sulphide, lithium niobium sulphide and lithium iron sulphide have been suggested as electrode materials for batteries (see for example, Japanese Kokai No 10208782 and Solid State lonics 117 (1999) 273–276).
- the conventional synthesis of lithium iron sulphide is via a solid state reaction in which lithium sulphide, Li 2 S, and ferrous sulphide, FeS, are intimately mixed together and heated under an inert atmosphere at a temperature of ca. 800° C. The reaction is diffusion controlled and the kinetics are slow. Consequently, the reaction can take up to 1 month at temperature to reach completion. This is highly inconvenient and is costly in terms of energy input. The economics of this synthesis for battery production are clearly unfavourable.
- lithium iron sulphide can be made by an electrochemical synthesis route in which a lithium metal/iron disulphide cell is discharged, and the lithium metal is removed and replaced by a carbon anode. This process however, is not amenable to scaling up.
- a further laboratory synthesis of lithium iron sulphide is the solid state reaction of lithium nitride, Li 3 N, with iron disulphide, FeS 2 , but again, this method is unsuitable for large scale use because of the high cost and shock sensitivity of lithium nitride.
- FIG. 1 shows an x-ray diffraction trace for the product obtained using a first example of a process according to the present invention
- FIG. 2 shows cycling curves for the product obtained using a first example of a process according to the present invention
- FIG. 3 shows an x-ray diffraction trace for the product obtained using a second example of a process according to the present invention
- FIG. 4 shows an x-ray diffraction trace for the product obtained using a third example of a process according to the present invention
- FIG. 5 shows cycling curves for the product obtained using a third example of a process according to the present invention.
- FIG. 6 shows an x-ray diffraction trace for the product obtained using a fourth example of a process according to the present invention.
- a process for the production of a lithium transition metal sulphide comprises reacting a transition metal sulphide with lithium sulphide in a solvent comprising a molten salt or a mixture of molten salts.
- the transition metal sulphide used in the process is an iron, molybdenum, niobium or titanium sulphide and is preferably an iron sulphide.
- Ferrous sulphide, FeS, and iron disulphide, FeS 2 are inexpensive and readily available naturally occurring minerals.
- the molten salt or mixture of molten salts comprises an alkali metal halide or a mixture of alkali metal halides, or an alkaline earth metal halide or a mixture of alkaline earth metal halides, or any mixture thereof. More preferably, the molten salt or mixture of molten salts comprises a lithium halide or a mixture of lithium halides.
- the molten salt or mixture of molten salts comprises at least one of lithium fluoride, lithium chloride, lithium bromide or lithium iodide.
- the reaction temperature should be sufficient to liquefy the molten salt or mixture of molten salts. This need not necessarily be the melting point of the molten salt or mixture of molten salts as the addition of the reactants may depress the melting point. Typically, reaction temperatures of less than 1000° C. and most often less than 700° C. are suitable, however dependent on the choice of solvent, reaction temperatures of less than 300° C. may be used.
- reaction proceeds more rapidly than previously known processes. On a laboratory scale, the reaction can be completed in a few hours, with the actual reaction time dependent largely on the heating time of the furnace.
- lithium sulphide may be bought commercially, for large scale production it is more economical to produce lithium sulphide via the reduction of lithium sulphate.
- One convenient method is to heat lithium sulphate above its melting point of 860° C. in the presence of carbon.
- Other standard reduction methods may equally be used, as well known in the art.
- the product After the reaction is complete and allowed to cool, the product must be recovered from the solvent. Suitably the product is recovered by dissolution of the solvent in an organic liquid.
- the organic liquid chosen is dependent on the composition of the solvent used, however some examples include, pyridine, ether and acetonitrile which are suitable for the dissolution of lithium chloride, lithium bromide and lithium iodide respectively. Numerous other suitable liquids will be known to those skilled in the art.
- a mixed salt solvent it may be necessary to perform more than one dissolution process. For example, a reaction using a mixture of lithium chloride and lithium bromide as a solvent may require a first dissolution process using pyridine to remove the lithium chloride, followed by a second dissolution process using ether to remove the lithium bromide.
- the present invention further provides a process for producing at least one lithium transition metal sulphide by reacting a transition metal sulphide with lithium sulphide in the presence of a molten salt or mixture of molten salts.
- a plurality of lithium transition metal sulphides may be made by such a process and subsequently separated.
- a process for producing one or more lithium transition metal sulphides by reacting one or more transition metal sulphides with lithium sulphide in the presence of a further salt with which they do not react, in an inert atmosphere, wherein the salt and at least one component are in a molten state to allow intimate mixing, the salt preferably acting as a solvent for said at least one component.
- Lithium transition metal sulphides obtained by the above described process form a further aspect of the invention. These compounds are useful in the production of electrodes for use in batteries. In particular, they are useful in the production of electrodes for rechargeable batteries. These electrodes form the cathode, and suitable anodes are lithium ion anodes as are known in the art.
- Suitable electrolytes are also well known and include mixtures of inorganic carbonates, for example ethylene carbonate, propylene carbonate, diethyl or dimethyl carbonates, ethyl methyl carbonate together with a lithium salt, usually lithium hexafluorophosphate, LiPF 6 , or lithium trifluoromethane sulphonate (‘triflates’), LiCF 3 SO 3 or lithium tetrafluoroborate, LiBF 4 .
- a lithium salt usually lithium hexafluorophosphate, LiPF 6 , or lithium trifluoromethane sulphonate (‘triflates’), LiCF 3 SO 3 or lithium tetrafluoroborate, LiBF 4 .
- Molten salts and mixtures of molten salts are not conventional solvents and their use, acting like solvents in the production of sulphides, therefore forms a further aspect of the invention. As described above, they are particularly suitable for use as solvents in reactions used in the production of lithium transition metal sulphides.
- Li 2 FeS 2 Lithium iron sulphide, Li 2 FeS 2 was synthesised according to the following equation: Li 2 S+FeS ⁇ Li 2 FeS 2
- FIG. 1 shows an XRD trace of the product obtained.
- the vertical lines 1 represent the standard trace for pure Li 2 FeS 2 taken from the JCPDS database.
- the main peaks are co-incident with and have similar relative intensities to these lines 1 , indicating that the dominant product phase obtained was Li 2 FeS 2 .
- the remaining peaks correspond to small amounts of unreacted starting materials.
- FIG. 2 illustrates three cycling curves which indicate that the cathode could be repeatedly charged and discharged. This demonstrates that the product was suitable for use as a cathode material for a lithium rechargeable battery.
- FIG. 3 shows an XRD trace of the product obtained.
- the vertical lines 1 represent the standard trace for pure Li 2 FeS 2 taken from the JCPDS database.
- the main peaks are co-incident with and have similar relative intensities to these lines 1 , indicating that the dominant product phase obtained was Li 2 FeS 2 .
- the remaining peaks correspond to small amounts of unreacted starting materials.
- FIG. 4 shows an XRD trace of the product obtained.
- the vertical lines 1 represent the standard trace for pure Li 2 FeS 2 taken from the JCPDS database.
- the main peaks are co-incident with and have similar relative intensities to these lines 1 , indicating that the dominant product phase obtained was Li 2 FeS 2 .
- the remaining peaks correspond to small amounts of unreacted starting materials.
- FIG. 5 illustrates three cycling curves which indicate that the cathode could be repeatedly charged and discharged. This demonstrates that the product was suitable for use as a cathode material for a lithium rechargeable battery.
- Li 2 S and FeS 2 were reacted together in a molten salt solvent of lithium chloride, LiCl, at 700° C. for ca. 2 hours, under an argon atmosphere. After completion the lithium chloride was removed by refluxing in pyridine for 8 hours.
- FIG. 6 shows an XRD trace of the product obtained. The main peaks are coincident with the lithium iron sulphides, Li 3 Fe 2 S 4 , Li 2 FeS 2 and Li 2.33 Fe 0.67 S 2 . Unlike the other examples, a single pure product was not obtained. These products are known to be suitable as battery cathode materials (A. G. Ritchie and P. G. Bowles, Process for Producing a Lithium Transition Metal Sulphide, WO 00/78673 A1, 28 Dec. 2000).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Li2S+FeS→Li2FeS2
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0029958.6A GB0029958D0 (en) | 2000-12-08 | 2000-12-08 | Synthesis of lithium transition metal sulphides |
GB0029958.6 | 2000-12-08 | ||
PCT/GB2001/005209 WO2002046102A1 (en) | 2000-12-08 | 2001-11-27 | Synthesis of lithium transition metal sulphides |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040018141A1 US20040018141A1 (en) | 2004-01-29 |
US7018603B2 true US7018603B2 (en) | 2006-03-28 |
Family
ID=9904702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/433,680 Expired - Lifetime US7018603B2 (en) | 2000-12-08 | 2001-11-27 | Synthesis of lithium iron sulphides and their use as cathodes |
Country Status (12)
Country | Link |
---|---|
US (1) | US7018603B2 (en) |
EP (1) | EP1341724B1 (en) |
JP (1) | JP4188685B2 (en) |
KR (1) | KR100755191B1 (en) |
CN (1) | CN1210826C (en) |
AT (1) | ATE272026T1 (en) |
AU (1) | AU2002223897A1 (en) |
CA (1) | CA2436600C (en) |
DE (1) | DE60104561T2 (en) |
ES (1) | ES2225655T3 (en) |
GB (1) | GB0029958D0 (en) |
WO (1) | WO2002046102A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010043883A1 (en) * | 2008-10-14 | 2010-04-22 | Iti Scotland Limited | Lithium-containing transition metal sulfide compounds |
US20110193015A1 (en) * | 2008-10-23 | 2011-08-11 | Nippon Chemical Industrial Co., Ltd. | Process for producing lithium iron sulfide, and process for producing lithium transition metal sulfide |
US20120308870A1 (en) * | 2010-02-18 | 2012-12-06 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
US10033040B2 (en) | 2013-07-08 | 2018-07-24 | The Board Of Trustees Of The Leland Standford Junior University | Stable cycling of lithium sulfide cathodes through strong affinity with multifunctional binders |
US11066307B2 (en) | 2011-07-26 | 2021-07-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Polyanion active materials and method of forming the same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4245581B2 (en) * | 2001-03-29 | 2009-03-25 | 株式会社東芝 | Negative electrode active material and non-aqueous electrolyte battery |
KR100870902B1 (en) * | 2007-07-27 | 2008-11-28 | 경상대학교산학협력단 | Manufacturing Method of Lithium Metal Sulfide Powder |
WO2010084808A1 (en) * | 2009-01-22 | 2010-07-29 | 独立行政法人産業技術総合研究所 | Process for production of iron sulfide/lithium composite |
JP5742606B2 (en) * | 2011-09-07 | 2015-07-01 | 株式会社村田製作所 | Electrode active material, method for producing the same, and secondary battery |
JP6059449B2 (en) * | 2012-04-26 | 2017-01-11 | 古河機械金属株式会社 | Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery |
EP2977354B1 (en) * | 2013-03-18 | 2019-03-06 | National Institute of Advanced Industrial Science and Technology | Lithium titanium sulfide |
CN103367744A (en) * | 2013-05-24 | 2013-10-23 | 深圳华粤宝电池有限公司 | Preparation method and application of lithium-niobium sulfide |
JP6370796B2 (en) * | 2013-10-04 | 2018-08-08 | 国立研究開発法人産業技術総合研究所 | Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide |
JP6577222B2 (en) * | 2015-04-17 | 2019-09-18 | トヨタ自動車株式会社 | Method for producing sulfide solid electrolyte and sulfur-based material |
JP7145519B2 (en) * | 2017-12-25 | 2022-10-03 | 国立研究開発法人産業技術総合研究所 | Halogen-containing composite and method for producing the same |
CN108767234B (en) * | 2018-06-05 | 2021-06-08 | 天津巴莫科技有限责任公司 | A lithium-rich solid solution sulfur oxide cathode material and preparation method thereof |
CN109052488B (en) * | 2018-09-05 | 2020-12-29 | 中国工程物理研究院电子工程研究所 | A kind of cobalt disulfide material with high storage stability and preparation method and application thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4164069A (en) | 1978-04-28 | 1979-08-14 | The United States Of America As Represented By The United States Department Of Energy | Method of preparing a positive electrode for an electrochemical cell |
US4172926A (en) * | 1978-06-29 | 1979-10-30 | The United States Of America As Represented By The United States Department Of Energy | Electrochemical cell and method of assembly |
US4223078A (en) | 1978-03-24 | 1980-09-16 | Compagnie Generale D'electricite | Lithium electric cell |
FR2485267A2 (en) * | 1978-03-24 | 1981-12-24 | Comp Generale Electricite | Positive active material mfr. - by reacting lithium sulphide and ferrous sulphide hot for one to three weeks |
US4401714A (en) * | 1982-07-07 | 1983-08-30 | The United States Of America As Represented By The United States Department Of Energy | Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell |
GB2175292A (en) | 1985-05-14 | 1986-11-26 | Elkem Metals | A method for producing a product of a metal and a non-metal and the product produced therefrom |
US4640832A (en) | 1984-10-06 | 1987-02-03 | Degussa Aktiengesellschaft | Process for the production of sodium polysulfides from the elements sodium and sulfur |
US4731307A (en) | 1986-06-10 | 1988-03-15 | The United States Of America As Represented By The United States Department Of Energy | Methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes, e.g., for lithiating FeS2 |
US4761487A (en) * | 1986-06-10 | 1988-08-02 | The United States Of America As Represented By The United States Department Of Energy | Method for improving voltage regulation of batteries, particularly Li/FeS2 thermal batteries |
GB2351075A (en) | 1999-06-17 | 2000-12-20 | Secr Defence | Producing lithiated transition metal sulphides |
US6207327B1 (en) * | 1998-04-15 | 2001-03-27 | Matsushita Electric Industrial Co., Ltd. | Totally-solid lithium secondary battery |
US6210836B1 (en) * | 1998-04-14 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary battery |
US20030138695A1 (en) * | 1998-11-02 | 2003-07-24 | Ronald A. Guidotti | Energy storage and conversion devices using thermal sprayed electrodes |
-
2000
- 2000-12-08 GB GBGB0029958.6A patent/GB0029958D0/en not_active Ceased
-
2001
- 2001-11-27 US US10/433,680 patent/US7018603B2/en not_active Expired - Lifetime
- 2001-11-27 WO PCT/GB2001/005209 patent/WO2002046102A1/en active IP Right Grant
- 2001-11-27 AT AT01999532T patent/ATE272026T1/en not_active IP Right Cessation
- 2001-11-27 DE DE60104561T patent/DE60104561T2/en not_active Expired - Lifetime
- 2001-11-27 ES ES01999532T patent/ES2225655T3/en not_active Expired - Lifetime
- 2001-11-27 CA CA2436600A patent/CA2436600C/en not_active Expired - Fee Related
- 2001-11-27 AU AU2002223897A patent/AU2002223897A1/en not_active Abandoned
- 2001-11-27 EP EP01999532A patent/EP1341724B1/en not_active Expired - Lifetime
- 2001-11-27 KR KR1020037007650A patent/KR100755191B1/en not_active Expired - Fee Related
- 2001-11-27 JP JP2002547846A patent/JP4188685B2/en not_active Expired - Fee Related
- 2001-11-27 CN CNB018225039A patent/CN1210826C/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4223078A (en) | 1978-03-24 | 1980-09-16 | Compagnie Generale D'electricite | Lithium electric cell |
FR2485267A2 (en) * | 1978-03-24 | 1981-12-24 | Comp Generale Electricite | Positive active material mfr. - by reacting lithium sulphide and ferrous sulphide hot for one to three weeks |
US4164069A (en) | 1978-04-28 | 1979-08-14 | The United States Of America As Represented By The United States Department Of Energy | Method of preparing a positive electrode for an electrochemical cell |
US4172926A (en) * | 1978-06-29 | 1979-10-30 | The United States Of America As Represented By The United States Department Of Energy | Electrochemical cell and method of assembly |
US4401714A (en) * | 1982-07-07 | 1983-08-30 | The United States Of America As Represented By The United States Department Of Energy | Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell |
US4640832A (en) | 1984-10-06 | 1987-02-03 | Degussa Aktiengesellschaft | Process for the production of sodium polysulfides from the elements sodium and sulfur |
GB2175292A (en) | 1985-05-14 | 1986-11-26 | Elkem Metals | A method for producing a product of a metal and a non-metal and the product produced therefrom |
US4676970A (en) * | 1985-05-14 | 1987-06-30 | Elkem Metals Company | Method for producing metal sulfide and the product produced therefrom |
US4731307A (en) | 1986-06-10 | 1988-03-15 | The United States Of America As Represented By The United States Department Of Energy | Methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes, e.g., for lithiating FeS2 |
US4761487A (en) * | 1986-06-10 | 1988-08-02 | The United States Of America As Represented By The United States Department Of Energy | Method for improving voltage regulation of batteries, particularly Li/FeS2 thermal batteries |
US6210836B1 (en) * | 1998-04-14 | 2001-04-03 | Matsushita Electric Industrial Co., Ltd. | Lithium secondary battery |
US6207327B1 (en) * | 1998-04-15 | 2001-03-27 | Matsushita Electric Industrial Co., Ltd. | Totally-solid lithium secondary battery |
US20030138695A1 (en) * | 1998-11-02 | 2003-07-24 | Ronald A. Guidotti | Energy storage and conversion devices using thermal sprayed electrodes |
US20050048370A1 (en) * | 1998-11-02 | 2005-03-03 | Guidotti Ronald A. | Energy storage and conversion devices using thermal sprayed electrodes |
GB2351075A (en) | 1999-06-17 | 2000-12-20 | Secr Defence | Producing lithiated transition metal sulphides |
WO2000078673A1 (en) | 1999-06-17 | 2000-12-28 | Qinetiq Limited | Process for producing a lithium transition metal sulphide |
US6740301B1 (en) * | 1999-06-17 | 2004-05-25 | Qinetiq Limited | Process for producing a lithium transition metal sulphide |
Non-Patent Citations (3)
Title |
---|
Derwent, Abstract 1988-265035, EP 0326914 (published Aug. 9, 1989). |
Saboungi et al; "Solubility Products for Metal Sulfides in Molten Salts"; J. Electrochem. Soc., vol. 125, No. 10, Oct. 1978, pp. 1567-1573, XP002190661. |
Takada et al; "Lithium Iron Sulfide as an Electrode Material in a Solid State Lithium Battery"; Solid State Ionics, North Holland Pub. Company. Amsterdam, NL., vol. 117, No. 3-4, Feb. 2, 1999, pp. 273-276, XP004154434. |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010043883A1 (en) * | 2008-10-14 | 2010-04-22 | Iti Scotland Limited | Lithium-containing transition metal sulfide compounds |
WO2010043886A3 (en) * | 2008-10-14 | 2010-06-10 | Iti Scotland Limited | Lithium containing transition metal sulfide compounds |
WO2010043884A3 (en) * | 2008-10-14 | 2010-06-17 | Iti Scotland Limited | Lithium containing transition metal sulfide compounds |
US20110193015A1 (en) * | 2008-10-23 | 2011-08-11 | Nippon Chemical Industrial Co., Ltd. | Process for producing lithium iron sulfide, and process for producing lithium transition metal sulfide |
US20120308870A1 (en) * | 2010-02-18 | 2012-12-06 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
US9484572B2 (en) * | 2010-02-18 | 2016-11-01 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
US11066307B2 (en) | 2011-07-26 | 2021-07-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Polyanion active materials and method of forming the same |
US10033040B2 (en) | 2013-07-08 | 2018-07-24 | The Board Of Trustees Of The Leland Standford Junior University | Stable cycling of lithium sulfide cathodes through strong affinity with multifunctional binders |
Also Published As
Publication number | Publication date |
---|---|
AU2002223897A1 (en) | 2002-06-18 |
JP4188685B2 (en) | 2008-11-26 |
GB0029958D0 (en) | 2001-01-24 |
KR20040014436A (en) | 2004-02-14 |
EP1341724A1 (en) | 2003-09-10 |
ATE272026T1 (en) | 2004-08-15 |
CA2436600C (en) | 2010-03-23 |
DE60104561D1 (en) | 2004-09-02 |
WO2002046102A1 (en) | 2002-06-13 |
KR100755191B1 (en) | 2007-09-05 |
ES2225655T3 (en) | 2005-03-16 |
EP1341724B1 (en) | 2004-07-28 |
JP2004522674A (en) | 2004-07-29 |
CN1210826C (en) | 2005-07-13 |
CA2436600A1 (en) | 2002-06-13 |
US20040018141A1 (en) | 2004-01-29 |
DE60104561T2 (en) | 2005-08-04 |
CN1489553A (en) | 2004-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7018603B2 (en) | Synthesis of lithium iron sulphides and their use as cathodes | |
US20110200882A1 (en) | Lithium containing transition metal sulfide compounds | |
US5514490A (en) | Secondary lithium battery using a new layered anode material | |
JP4165854B2 (en) | Nonaqueous electrolyte, method for producing nonaqueous electrolyte, and nonaqueous electrolyte lithium secondary battery | |
US9490482B2 (en) | Galvanic elements containing oxygen-containing conversion electrodes | |
EP1187790B1 (en) | Process for producing a lithium transition metal sulphide | |
US5641468A (en) | Lithium manganese oxide compound and method of preparation | |
JPH08287914A (en) | Lithium battery | |
US5766569A (en) | Lithium manganese oxide compound and method of preparation | |
JPH09293515A (en) | Electrode material and lithium secondary battery | |
JP2853708B2 (en) | Organic electrolyte secondary battery | |
JP2001522775A (en) | Lithium-rich carbonaceous material usable as cathode in lithium storage batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: QINETIQ LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RITCHIE, ANDREW GRAHAME;BOWLES, PETER GEORGE;REEL/FRAME:014529/0518 Effective date: 20030513 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |